LT1784IS5#TR [Linear]

LT1784 - 2.5MHz, Over-The-Top Low Power, Rail-to-Rail Input and Output Op Amp in SOT-23; Package: SOT; Pins: 5; Temperature Range: -40°C to 85°C;
LT1784IS5#TR
型号: LT1784IS5#TR
厂家: Linear    Linear
描述:

LT1784 - 2.5MHz, Over-The-Top Low Power, Rail-to-Rail Input and Output Op Amp in SOT-23; Package: SOT; Pins: 5; Temperature Range: -40°C to 85°C

放大器 光电二极管
文件: 总12页 (文件大小:196K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1784  
2.5MHz, Over-The-Top  
Low Power, Rail-to-Rail Input  
and Output Op Amp in SOT-23  
DESCRIPTION  
FEATURES  
+
The LT®1784 is a 2.5MHz op amp available in the small  
SOT-23packagethatoperatesonallsingleandsplitsupplies  
withatotalvoltageof2.5Vto18V. Theamplifierdrawsless  
than 750μA of quiescent current and has reverse battery  
protection, drawing negligible current for reverse supply  
voltages up to 18V.  
n
Operates with Inputs Above V  
n
Rail-to-Rail Input and Output  
Gain Bandwidth Product: 2.5MHz  
Slew Rate: 2.1V/μs  
n
n
n
n
n
n
n
n
n
n
n
n
Low Input Offset Voltage: 3.5mV Max  
High Voltage Gain: 1000V/mV  
Single Supply Input Range: 0V to 18V  
Specified on 3V, 5V and 5V Supplies  
Reverse Battery Protection to 18V  
Low Power: 750μA Supply Current Max  
Output Shutdown on 6-Lead Version  
High Output Current: 15mA Min  
The input range of the LT1784 includes ground, and a  
unique feature of this device is its Over-The-Top® opera-  
tion capabilitity with either or both of its inputs above the  
positive rail. The inputs handle 18V both differential and  
common mode, independent of supply voltage. The input  
stage incorporates phase reversal protection to prevent  
false outputs from occurring even when the inputs are 9V  
below the negative supply.  
Operating Temperature Range: –40°C to 85°C  
Low Profile (1mm) ThinSOT™ Package  
The LT1784 can drive loads up to 15mA and still maintain  
rail-to-rail capability. A shutdown feature on the 6-lead  
version can disable the part, making the output high  
impedance and reducing quiescent current to 5μA. The  
LT1784 op amp is available in the 5- and 6-lead SOT-23  
packages. For applications requiring lower power, refer to  
the LT1782 and LT1783 data sheets.  
APPLICATIONS  
n
Portable Instrumentation  
n
Battery-Powered Systems  
n
Sensor Conditioning  
n
Supply Current Sensing  
MUX Amplifiers  
n
n
4mA to 20mA Transmitters  
L, LT, LTC, LTM, Linear Technology, the Linear logo and Over-The-Top are registered  
trademarks of Linear Technology Corporation. ThinSOT is a trademark of Linear Technology  
Corporation. All other trademarks are the property of their respective owners.  
TYPICAL APPLICATION  
Programmable Gain, AV = 2, AV = 20, 100kHz Amplifier  
Programmable Gain Amplifier  
Frequency Response  
V
CC  
30  
A
= 20  
A = 2  
V
V
25  
A
V
= 20  
SHDN  
20  
15  
V
CC  
IN  
+
10  
OUT  
LT1784  
SHDN  
5
V
CC  
A
V
= 2  
0
+
V
EE  
–5  
LT1782  
–10  
–15  
–20  
R1 + R2  
R3  
A
= 1+  
V
(
(
)
)
V
EE  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
R1  
R1  
10k  
R2  
9.09k  
OR 1+  
R2 + R3  
1784 TA01b  
R3  
1k  
1784 TA01a  
1784fa  
1
LT1784  
ABSOLUTE MAXIMUM RATINGS  
(Note 1)  
+
Total Supply Voltage (V to V ).................................18V  
Operating Temperature Range (Note 10)..–40°C to 85°C  
Specified Temperature Range (Note 11) ..–40°C to 85°C  
Junction Temperature ........................................... 150°C  
Storage Temperature Range ..................–65°C to 150°C  
Lead Temperature (Soldering, 10 sec) .................. 300°C  
Input Differential Voltage ..........................................18V  
Input Pin Voltage to V ................................ +24V/–10V  
Shutdown Pin Voltage Above V ..............................18V  
Shutdown Pin Current ......................................... 10mA  
Output Short-Circuit Duration (Note 2) ............ Indefinite  
PIN CONFIGURATION  
TOP VIEW  
+
TOP VIEW  
+
V
OUT 1  
6
5
4
1
2
3
5
4
OUT  
V
SHDN  
–IN  
V
2
V
+IN 3  
+IN  
–IN  
S6 PACKAGE  
6-LEAD PLASTIC TSOT-23  
S5 PACKAGE  
5-LEAD PLASTIC TSOT-23  
T
JMAX  
= 150°C, θ = 230°C/W  
T
= 150°C, θ = 250°C/W  
JA  
JA  
JMAX  
ORDER INFORMATION  
LEAD FREE FINISH  
LT1784CS5#PBF  
LT1784IS5#PBF  
LT1784CS6#PBF  
LT1784IS6#PBF  
TAPE AND REEL  
PART MARKING  
LTJD  
PACKAGE DESCRIPTION  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
SPECIFIED TEMPERATURE RANGE  
–40°C to 85°C  
LT1784CS5#TRPBF  
LT1784IS5#TRPBF  
LT1784CS6#TRPBF  
LT1784IS6#TRPBF  
LTSN  
–40°C to 85°C  
LTIW  
–40°C to 85°C  
LTIX  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified  
temperature range, otherwise specifications are at TA = 25°C. VS = 3V, 0V; VS = 5V, 0V, VCM = VOUT = half supply, for the 6-lead part  
VPIN5 = 0V, pulse power tested unless otherwise specified.  
SYMBOL PARAMETER  
CONDITIONS  
T = 25°C  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
1.5  
3.5  
4.2  
4.5  
mV  
mV  
mV  
OS  
A
l
l
0°C ≤ T ≤ 70°C  
A
–40°C ≤ T ≤ 85°C  
A
l
Input Offset Voltage Drift (Note 7)  
Input Offset Current  
–40°C ≤ T ≤ 85°C  
5
15  
μV/°C  
ΔV /ΔT  
A
OS  
l
l
I
25  
50  
50  
nA  
μA  
OS  
V
CM  
= 18V (Note 3)  
1784fa  
2
LT1784  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified  
temperature range, otherwise specifications are at TA = 25°C. VS = 3V, 0V; VS = 5V, 0V, VCM = VOUT = half supply, for the 6-lead part  
VPIN5 = 0V, pulse power tested unless otherwise specified.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
I
Input Bias Current  
250  
225  
0.1  
500  
400  
nA  
μA  
nA  
B
V
= 18V (Note 3)  
CM  
SHDN or V = 0V, V = 0V to 18V  
S
CM  
l
Input Bias Current Drift  
Input Noise Voltage  
–40°C ≤ T ≤ 85°C  
0.4  
1.5  
25  
nA/°C  
ΔI /ΔT  
A
B
0.1Hz to 10Hz  
f = 10kHz  
μV  
P-P  
e
n
Input Noise Voltage Density  
Input Noise Current Density  
Input Resistance  
nV/√Hz  
pA/√Hz  
i
n
f = 10kHz  
0.3  
R
IN  
Differential  
100  
45  
200  
150  
80  
kΩ  
MΩ  
kΩ  
Common Mode, V = 0V to (V – 1.2V)  
CM  
CC  
Common Mode, V = 0V to 18V  
CM  
C
V
Input Capacitance  
5
pF  
V
IN  
l
Input Voltage Range  
0
18  
CM  
l
l
CMRR  
Common Mode Rejection Ratio  
(Note 3)  
V
V
= 0V to V – 1.2V  
84  
60  
95  
70  
dB  
dB  
CM  
CM  
CC  
= 0V to 18V (Note 6)  
l
PSRR  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V = 3V to 12.5V, V = V = 1V  
90  
100  
dB  
S
CM  
O
A
VOL  
V = 3V, V = 500mV to 2.5V, R = 10k  
133  
90  
60  
1000  
V/mV  
V/mV  
V/mV  
S
S
O
L
l
l
V = 3V, 0°C ≤ T ≤ 70°C  
A
V = 3V, 40°C ≤ T ≤ 85°C  
S
A
V = 5V, V = 500mV to 4.5V, R = 10k  
266  
180  
120  
1000  
V/mV  
V/mV  
V/mV  
S
O
L
l
l
V = 5V, 0°C ≤ T ≤ 70°C  
S
A
V = 5V, 40°C ≤ T ≤ 85°C  
S
A
l
l
l
V
V
Output Voltage Swing LOW  
Output Voltage Swing HIGH  
No Load  
4
10  
400  
600  
mV  
mV  
mV  
OL  
I
= 5mA  
200  
350  
SINK  
V = 5V, I  
= 10mA  
SINK  
S
l
l
V = 3V, No Load  
2.885  
2.600  
2.93  
2.8  
V
V
OH  
S
V = 3V, I  
= 3mA  
SOURCE  
S
l
l
V = 5V, No Load  
S
4.885  
4.400  
4.93  
4.7  
V
V
S
V = 5V, I  
= 10mA  
SOURCE  
I
Short-Circuit Current (Note 2)  
V = 3V, Short to GND  
4
15  
7.5  
30  
mA  
mA  
SC  
S
V = 3V, Short to V  
S
CC  
V = 5V, Short to GND  
12.5  
20.0  
22  
40  
mA  
mA  
S
V = 5V, Short to V  
S
CC  
l
l
Minimum Supply Voltage  
Reverse Supply Voltage  
2.5  
2.7  
V
V
I = –100μA  
S
18  
I
I
Supply Current  
(Note 4)  
500  
7
750  
900  
μA  
μA  
S
l
l
Supply Current, Shutdown  
SHDN Pin Current  
V
= 2V, No Load (Note 8)  
18  
μA  
PIN5  
l
l
V
PIN5  
V
PIN5  
V
PIN5  
= 0.3V (On), No Load (Note 8)  
= 2V (Shutdown), No Load (Note 8)  
= 5V (Shutdown), No Load (Note 8)  
0.5  
2.0  
5.0  
nA  
μA  
μA  
SHDN  
8
l
l
l
l
Output Leakage Current, Shutdown  
Maximum SHDN Pin Current  
SHDN Pin Input Low Voltage  
SHDN Pin Input High Voltage  
Turn-On Time  
V
V
= 2V, No Load (Note 8)  
= 18V, No Load (Note 8)  
0.05  
10  
1
μA  
μA  
V
PIN5  
PIN5  
30  
0.3  
V
V
(Note 8)  
(Note 8)  
IL  
IH  
2
V
t
t
V
V
= 5V to 0V, R = 10k (Note 8)  
18  
μs  
μs  
ON  
OFF  
PIN5  
PIN5  
L
Turn-Off Time  
= 0V to 5V, R = 10k (Note 8)  
2.2  
L
1784fa  
3
LT1784  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified  
temperature range, otherwise specifications are at TA = 25°C. VS = 3V, 0V; VS = 5V, 0V, VCM = VOUT = half supply, for the 6-lead part  
VPIN5 = 0V, pulse power tested unless otherwise specified.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
GBW  
Gain Bandwidth Product  
(Note 4)  
f = 5kHz  
1.5  
1.2  
1.1  
2.5  
MHz  
MHz  
MHz  
l
l
0°C ≤ T ≤ 70°C  
A
–40°C ≤ T ≤ 85°C  
A
SR  
Slew Rate  
(Note 5)  
1.2  
1.1  
1.0  
2.1  
V/μs  
V/μs  
V/μs  
A = –1, R = ∞  
V
L
l
l
0°C ≤ T ≤ 70°C  
A
–40°C ≤ T ≤ 85°C  
A
FPBW  
Full-Power Bandwidth (Note 9)  
Settling Time  
V
= 2V  
350  
3.7  
kHz  
μs  
OUT  
P-P  
t
V = 5V, ΔV  
S
= 2V to 0.1%, A = –1  
V
S
OUT  
THD  
Distortion  
V = 3V, V = 1.8V , A = 1, R = 10k, f = 1kHz  
0.001  
%
S
O
P-P  
V
L
The l denotes the specifications which apply over the specified temperature range, otherwise specifications are at TA = 25°C.  
VS = 5V, VCM = 0V, VOUT = 0V, for the 6-lead part VPIN5 = V, pulse power tested unless otherwise specified.  
SYMBOL PARAMETER  
CONDITIONS  
T = 25°C  
MIN  
TYP  
MAX  
UNITS  
V
OS  
Input Offset Voltage  
1.6  
3.75  
4.50  
4.80  
mV  
mV  
mV  
A
l
l
0°C ≤ T ≤ 70°C  
A
–40°C ≤ T ≤ 85°C  
A
l
l
l
l
Input Offset Voltage Drift (Note 7)  
Input Offset Current  
–40°C ≤ T ≤ 85°C  
5
15  
50  
μV/°C  
nA  
ΔV /ΔT  
A
OS  
I
OS  
I
B
25  
Input Bias Current  
250  
0.4  
1.5  
25  
500  
nA  
Input Bias Current Drift  
Input Noise Voltage  
0°C ≤ T ≤ 70°C  
nA/°C  
ΔI /ΔT  
B
A
0.1Hz to 10Hz  
f = 1kHz  
μV  
P-P  
e
n
Input Noise Voltage Density  
Input Noise Current Density  
Input Resistance  
nV/√Hz  
pA/√Hz  
i
n
f = 1kHz  
0.3  
l
l
R
IN  
Differential  
100  
45  
200  
80  
kΩ  
kΩ  
Common Mode, V = –5V to 13V  
CM  
C
V
Input Capacitance  
5
pF  
V
IN  
l
l
Input Voltage Range  
–5  
60  
13  
CM  
CMRR  
Common Mode Rejection Ratio  
Large-Signal Voltage Gain  
V
= –5V to 13V  
70  
dB  
CM  
A
VOL  
V = 4V, R = 10k  
50  
35  
100  
V/mV  
V/mV  
O
L
l
0°C ≤ T ≤ 70°C  
A
l
l
l
V
Output Voltage Swing LOW  
Output Voltage Swing HIGH  
Short-Circuit Current (Note 2)  
No Load  
–4.996  
–4.800  
–4.650  
–4.99  
–4.60  
–4.40  
V
V
V
OL  
OH  
I
I
= 5mA  
SINK  
SINK  
= 10mA  
l
l
l
V
No Load  
4.885  
4.550  
4.400  
4.92  
4.75  
4.65  
V
V
V
I
I
= 5mA  
SOURCE  
SOURCE  
= 10mA  
I
Short to GND  
0°C ≤ T ≤ 70°C  
15  
10  
27  
mA  
mA  
SC  
l
l
A
PSRR  
Power Supply Rejection Ratio  
Supply Current  
V = 1.5V to 9V  
S
90  
100  
540  
dB  
I
800  
975  
μA  
μA  
S
l
l
Supply Current, Shutdown  
SHDN Pin Current  
V
PIN5  
= –3V, V = 5V, No Load (Note 8)  
8
20  
μA  
S
l
l
I
V
PIN5  
V
PIN5  
= –4.7V (On), V = 5V, No Load (Note 8)  
= –3V (Shutdown), V = 5V, No Load (Note 8)  
0.5  
2.0  
nA  
μA  
SHDN  
S
8
30  
1
S
l
l
Maximum SHDN Pin Current  
V
PIN5  
V
PIN5  
= 9V, V = 9V (Note 8)  
10  
μA  
μA  
S
Output Leakage Current, Shutdown  
= –7V, V = 9V, No Load (Note 8)  
0.05  
S
1784fa  
4
LT1784  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified  
temperature range, otherwise specifications are at TA = 25°C. VS = 5V, VCM = 0V, VOUT = 0V, for the 6-lead part VPIN5 = V,  
pulse power tested unless otherwise specified.  
SYMBOL PARAMETER  
CONDITIONS  
V = 5V (Note 8)  
MIN  
TYP  
MAX  
UNITS  
l
l
l
l
V
V
SHDN Pin Input Low Voltage  
SHDN Pin Input High Voltage  
Turn-On Time  
–4.7  
V
V
IL  
IH  
S
V = 5V (Note 8)  
S
–3  
t
t
V
V
= 0V to –5V, R = 10k (Note 8)  
18  
2.2  
2.6  
μs  
μs  
ON  
OFF  
PIN5  
PIN5  
L
Turn-Off Time  
= –5V to 0V, R = 10k (Note 8)  
L
GBW  
Gain Bandwidth Product  
f = 5kHz  
0°C ≤ T ≤ 70°C  
1.55  
1.30  
1.20  
MHz  
MHz  
MHz  
l
l
A
–40°C ≤ T ≤ 85°C  
A
SR  
Slew Rate  
1.3  
1.2  
1.1  
2.2  
V/μs  
V/μs  
V/μs  
A = –1, R = ∞, V = 4V, Measured at V = 2V  
V
L
O
O
l
l
0°C ≤ T ≤ 70°C  
A
–40°C ≤ T ≤ 85°C  
A
FPBW  
Full-Power Bandwidth (Note 9)  
Settling Time  
V
= 8V  
94  
kHz  
μs  
OUT  
P-P  
t
S
3.4  
V = 5V, ΔV  
S
= 4V to 0.1%, A = 1  
V
OUT  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: A heat sink may be required to keep the junction temperature  
below absolute maximum.  
Note 6: This specification implies a typical input offset voltage of 5.7mV at  
= 18V and a maximum input offset voltage of 18mV at V = 18V.  
Note 7: This parameter is not 100% tested.  
Note 8: Specifications apply to 6-lead SOT-23 with shutdown.  
Note 9: Full-power bandwidth is calculated from the slew rate.  
V
CM  
CM  
FPBW = SR/2πV .  
P
Note 3: V = 5V limits are guaranteed by correlation to V = 3V and  
S
S
Note 10: The LT1784C is guaranteed functional over the operating  
temperature range –40°C to 85°C.  
Note 11: The LT1784C is guaranteed to meet specified performance from  
0°C to 70°C. The LT1784C is designed, characterized and expected to  
meet specified performance from –40°C to 85°C but is not tested or QA  
sampled at these temperatures. LT1784I is guaranteed to meet specified  
performance from –40°C to 85°C.  
V = 5V or V = 9V tests.  
S
S
Note 4: V = 3V limits are guaranteed by correlation to V = 5V and  
S
S
V = 5V or V = 9V tests.  
S
S
Note 5: Guaranteed by correlation to slew rate at V = 5V, and GBW at  
S
V = 5V and V = 5V tests.  
S
S
TYPICAL PERFORMANCE CHARACTERISTICS  
Output Voltage  
vs Large Input Voltage  
Supply Current vs Supply Voltage  
Minimum Supply Voltage  
5
4
3
2
1
0
400  
300  
700  
650  
600  
550  
500  
450  
400  
350  
300  
V
= 5V, 0V  
S
200  
T
= 125°C  
A
T
= 25°C  
T
100  
A
T
= –55°C  
A
T
= 125°C  
A
0
T
= 25°C  
A
5V  
–100  
–200  
–300  
–400  
= –55°C  
A
+
V
IN  
3
TOTAL SUPPLY VOLTAGE (V)  
1
2
4
5
–10  
–2  
2
V
6
(V)  
10  
14  
18  
–6  
10  
SUPPLY VOLTAGE (V)  
2
4
6
8
12 14 16 18  
IN  
1784 G02  
1784 G03  
1784 G01  
1784fa  
5
LT1784  
TYPICAL PERFORMANCE CHARACTERISTICS  
Input Bias Current  
Output Saturation Voltage  
Output Saturation Voltage  
vs Common Mode Voltage  
vs Load Current (Output High)  
vs Load Current (Output Low)  
1
300,000  
250,000  
200,000  
150,000  
100,000  
1
0.1  
V
V
=
S
OD  
2.5V  
= 30mV  
V
V
= p2.5V  
OD  
V
= 5V, 0V  
S
S
= 30mV  
T
= 125oC  
A
T
= 25°C  
A
0.1  
800  
600  
400  
200  
0
T
= 25oC  
T
= 125°C  
A
A
T
= –55°C  
A
T
= 25°C  
0.01  
0.001  
A
T
= 125°C  
A
T
= –55°C  
A
T
= –55oC  
A
–200  
–400  
0.01  
3.5  
4.5  
5
5.5  
14 16 18  
4
1
10  
100  
1000  
10000  
1
10  
100  
1000  
10000  
COMMON MODE VOLTAGE (V)  
SOURCING LOAD CURRENT (μA)  
SINKING LOAD CURRENT (µA)  
1784 G05  
1784 G06  
1784 G04  
Output Saturation Voltage  
vs Input Overdrive  
Output Short-Circuit Current  
vs Temperature  
0.1Hz to 10Hz Noise Voltage  
100  
10  
1
50  
45  
40  
35  
30  
25  
V
= 2.5V  
V
= 5V  
S
S
OUTPUT HIGH  
SINKING  
OUTPUT LOW  
V
= 2.5V  
S
SOURCING  
NO LOAD  
0
10  
20  
30  
40  
50  
60  
0
1
2
3
4
5
6
7
8
9
10  
–50  
0
25  
50  
75  
100 125  
–25  
INPUT OVERDRIVE (mV)  
TIME (sec)  
TEMPERATURE (°C)  
1784 G07  
1784 G09  
1784 G08  
Noise Voltage Density  
vs Frequency  
Gain and Phase Shift  
vs Frequency  
Input Noise Current vs Frequency  
70  
60  
120  
100  
80  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
= 2.5V  
V
= 2.5V  
V
=
2.5V  
S
S
S
50  
PHASE  
40  
60  
30  
40  
20  
20  
GAIN  
10  
0
0
–20  
–40  
–60  
–80  
–10  
–20  
–30  
1
10  
100  
1k  
10k  
100k  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
1
10  
100  
1k  
10k  
100k  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1784 G12  
1784 G11  
1784 G10  
1784fa  
6
LT1784  
TYPICAL PERFORMANCE CHARACTERISTICS  
Gain Bandwidth Product  
vs Temperature  
Gain Bandwidth Product and  
Phase Margin vs Supply Voltage  
Slew Rate vs Temperature  
65  
60  
55  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
3.0  
2.5  
2.0  
1.5  
A
= –1  
G
V
=
2.5V  
V
= 5V  
V
F
S
PHASE MARGIN  
S
R
= R = 10k  
f = 5kHz  
f = 5kHz  
RISING  
FALLING  
GAIN BANDWIDTH  
PRODUCT  
2.7  
2.6  
2.5  
2.4  
50  
TEMPERATURE (°C)  
100 125  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
–50 –25  
0
25  
75  
0
2
4
6
8
10 12 14 16 18  
TOTAL SUPPLY VOLTAGE (V)  
1784 G13  
1784 G14  
1784 G15  
Gain Bandwidth and Phase  
Margin vs Load Resistance  
PSRR vs Frequency  
CMRR vs Frequency  
120  
65  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
=
2.5V  
V = 2.5V  
S
S
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
60  
55  
PHASE MARGIN  
POSITIVE SUPPLY  
GAIN BANDWIDTH  
PRODUCT  
NEGATIVE SUPPLY  
2.6  
2.4  
2.2  
2.0  
V
A
= 2.5V  
S
V
F
= –1  
R
= R = 10k  
G
f = 5kHz  
–10  
1k  
10k  
LOAD RESISTANCE (Ω)  
100k  
10k  
100k  
1M  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1784 G17  
1784 G18  
1784 G16  
Disabled Output Impedance  
vs Frequency  
Settling Time to 0.1%  
vs Output Step  
Output Impedance vs Frequency  
1k  
100  
10  
5
4
1M  
V
= 2.5V  
V
V
=
PIN 5  
2.5V  
= 2.5V  
V
= 5V  
S
S
S
A
= 1  
V
3
100k  
A
= –1  
V
A
= 100  
V
2
1
10k  
1k  
0
A
= 10  
V
–1  
–2  
–3  
–4  
–5  
1
A
= –1  
V
A
= 1  
V
A
= 1  
2
V
0.1  
100  
100  
0.01  
0
4
6
7
1
3
5
8
1k  
10k  
100k  
1M  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
1M  
SETTLING TIME (μs)  
FREQUENCY (Hz)  
1784 G20  
1784 G19  
1784 G21  
1784fa  
7
LT1784  
TYPICAL PERFORMANCE CHARACTERISTICS  
Capacitive Load Handling  
Undistorted Output Swing  
vs Frequency  
Total Harmonic Distortion + Noise  
vs Frequency  
Overshoot vs Capacitive Load  
70  
60  
50  
40  
30  
20  
10  
0
12  
10  
8
0.1  
0.01  
DISTORTION ≤ 1%  
= 1  
V
V
= 5V, 0V  
= 2.5V  
R
V
= 10k  
L
S
CM  
A
= 3V, 0V  
V
V
=
5V  
S
S
A
= 1  
V
V
V
= 1.8V  
OUT  
CM  
P-P  
= 1V  
A
= 5  
V
6
V
=
2.5V  
A
= –1  
S
V
A
= 1  
V
4
0.001  
A
= 10  
V
2
0
0.0001  
10  
100  
CAPACITIVE LOAD (pF)  
1000  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1784 G22  
1784 G24  
1784 G23  
Total Harmonic Distortion + Noise  
vs Load Resistance  
Total Harmonic Distortion + Noise  
vs Output Voltage Amplitude  
Open-Loop Gain  
10  
1
1
FREQUENCY = 1kHz  
A
V
V
= 1  
V
S
V
S
= 5V  
V
= HALF SUPPLY  
= 3V TOTAL  
CM  
V
V
=
IN  
1.5V  
1V  
S
= 2V AT 1kHz  
IN  
P-P  
=
R
= 2k  
L
0.1  
A
V
= 1  
= 3V, 0V  
V
S
R
= 10k  
L
0.1  
0.01  
0.01  
A
V
= –1  
V
S
R
= 50k  
L
= 3V, 0V  
A
V
= 1  
=
V
S
RF = RG = 10k  
1.5V  
V
V
= 3V, 0V  
IN  
S
= 0.1V TO 2.1V  
0.001  
A
V
= –1  
1.5V  
V
S
=
RF = RG = 10k  
0.0001  
0.001  
–6 –5 –4 –3 –2 –1  
0
1
2
3
4
5
6
100  
1k  
10k  
100k  
0
1
2
3
OUTPUT VOLTAGE AMPLITUDE (V  
)
OUTPUT VOLTAGE (V)  
P-P  
LOAD RESISTANCE TO GROUND (Ω)  
1784 G26  
1784 G27  
1784 G25  
Supply Current  
vs SHDN Pin Voltage  
Large Signal Response  
Small Signal Response  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
V
= 5V, 0V  
S
T
= 125°C  
A
T
= 25°C  
A
T
= –55°C  
A
20mV/DIV  
2V/DIV  
1784 G29  
1784 G30  
V
A
C
=
= 1  
= 15pF  
5V  
5μs/DIV  
V
A
C
=
= 1  
= 15pF  
5V  
2μs/DIV  
S
V
L
S
V
L
0
0
0.5  
1
1.5  
2
2.5  
SHUTDOWN PIN VOLTAGE (V)  
1784 G28  
1784fa  
8
LT1784  
APPLICATIONS INFORMATION  
Supply Voltage  
Output  
The positive supply pin of the LT1784 should be bypassed  
with a small capacitor (typically 0.1μF) within an inch of  
the pin. When driving heavy loads, and additional 4.7μF  
electrolytic capacitor should be used. When using split  
supplies the same is true for the negative supply pin.  
The output of the LT1784 can swing to within 80mV of the  
positive rail and within 4mV of the negative rail with no  
load. When monitoring input voltages within 80mV of the  
positive rail or within 4mV of the negative rail, gain should  
be taken to keep the output from clipping. The LT1784  
can typically sink and source over 25mA at 5V supplies,  
sourcing current is reduced to 7.5mA at 3V total supplies  
as noted in the Electrical Characteristics section.  
The LT1784 is protected against reverse battery voltages  
up to 18V. In the event a reverse battery condition occurs  
the supply current is less than 1nA.  
The LT1784 is internally compensated to drive at least  
400pF of capacitance under any output loading condi-  
tions. A 0.22μF capacitor in series with a 150ꢀ resistor  
between the output and ground will compensate these  
amplifiers for larger capacitive loads, up to 10,000pF at  
all output currents.  
Inputs  
The LT1784 has two input stages, NPN and PNP (see the  
SimplifiedSchematic),resultinginthreedistinctoperating  
regions as shown in the “Input Bias Current vs Common  
Mode” Typical Performance Characteristic curve.  
+
For input voltages about 1V or more below V , the PNP  
Distortion  
input stage is active and the input bias current is typically  
–250nA. When the input common mode voltage is within  
0.6V of the positive rail, the NPN stage is operating and  
the input bias current is typically 500nA. Increases in  
temperature will cause the voltage at which operation  
switches from the PNP input stage to the NPN input stage  
There are two main contributors to distortion in op amps:  
output crossover distortion as the output transitions from  
sourcing to sinking current, and distortion caused by non-  
linear common mode rejection. If the op amp is operating  
inverting, there is no common mode induced distortion.  
If the op amp is operating in the PNP input stage (input  
+
to move towards V . The input offset voltage of the NPN  
+
not within 1V of V ), the CMRR is very good, typically  
stage is untrimmed and is typically 3mV.  
95dB. When the LT1784 switches between input stages,  
there is significant nonlinearity in the CMRR. Lower load  
resistance increases the output crossover distortion but  
has no effect on the input stage transition distortion. For  
lowest distortion, the LT1784 should be operated single  
supply, with the output always sourcing current and with  
A Schottky diode in the collector of the input transistors,  
along with special geometries for these NPN transistors,  
allowtheLT1784tooperatewitheitherorbothofitsinputs  
+
+
above V . At about 0.3V above V , the NPN input transis-  
tors is fully saturated and the input bias current is typically  
200μA at room temperature. The input offset voltage is  
+
theinputvoltageswingbetweengroundand(V 1V).See  
+
typically 3mV when operating above V . The LT1784 will  
operate with inputs 18V above V regardless of V .  
TypicalPerformanceCharacteristicscurve,TotalHarmonic  
Distortion + Noise vs Output Voltage Amplitude.”  
+
The inputs are protected against excursions as much as  
Gain  
10V below V by an internal 1k resistor in series with each  
input and a diode from the input to the negative supply.  
The input stage of the LT1784 incorporates phase reversal  
protection to prevent the output from phase reversing for  
The open-loop gain is almost independent of load when  
theoutputissourcingcurrent.Thisoptimizesperformance  
in single supply applications where the load is returned  
to ground. The Typical Performance Characteric curve  
“Open-Loop Gain” for various loads shows the details.  
inputs up to 9V below V . There are no clamping diodes  
between the inputs and the maximum differential input  
voltage is 18V.  
1784fa  
9
LT1784  
APPLICATIONS INFORMATION  
Shutdown  
the SHDN pin 1.2V or more above V . When shut down,  
+
the supply current is less than 1μA (V ≤ V  
≤ V ). In  
OUT  
The 6-lead part includes a shutdown feature that disables  
thepart,reducingquiescentcurrentandmakingtheoutput  
high impedance. The part can be shut down by bringing  
normal operation, the SHDN pin can be tied to V or left  
floating. See Typical Performance Characteristics curve,  
“Supply Current vs SHDN pin Voltage.”  
TYPICAL APPLICATIONS  
Negative Rectifier  
Adjustable Clamp  
+
V
LT1784  
V
+
IN  
+
V
- ~80mV  
CLAMP  
OUT  
LT1784  
V
IN  
+
V
10k  
V
LT1784  
WORKS WELL  
TO 100kHz  
OUT  
V
- ~80mV  
CLAMP  
V
10k  
WORKS WELL  
TO 100kHz  
V
1784 TA02  
SIMPLIFIED SCHEMATIC  
+
V
Q2  
Q1  
Q3  
Q22  
D1  
SHDN  
R1  
6k  
D3  
R2  
1k  
Q19  
–IN  
+IN  
Q4  
R6  
R7  
1.5k  
1.5k  
Q17  
Q18  
Q20  
J1  
+
OUT  
Q7  
Q8  
Q11  
Q12  
R3  
1k  
20μA  
Q16  
R8  
0.75k  
R9  
0.75k  
Q15  
Q9  
D5  
Q10  
Q26  
Q13  
Q14  
Q21  
R4  
2k  
R5  
2k  
Q25 Q23  
Q24  
Q5  
Q6  
D4  
V
1784 SS  
1784fa  
10  
LT1784  
PACKAGE DESCRIPTION  
S5 Package  
5-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1635 Rev B)  
0.62  
MAX  
0.95  
REF  
2.90 BSC  
(NOTE 4)  
1.22 REF  
1.4 MIN  
1.50 – 1.75  
(NOTE 4)  
2.80 BSC  
3.85 MAX 2.62 REF  
PIN ONE  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.30 – 0.45 TYP  
5 PLCS (NOTE 3)  
0.95 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
NOTE:  
S5 TSOT-23 0302 REV B  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
S6 Package  
6-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1636 Rev B)  
2.90 BSC  
(NOTE 4)  
0.62  
MAX  
0.95  
REF  
1.22 REF  
1.50 – 1.75  
(NOTE 4)  
2.80 BSC  
1.4 MIN  
3.85 MAX 2.62 REF  
PIN ONE ID  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.30 – 0.45  
6 PLCS (NOTE 3)  
0.95 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
S6 TSOT-23 0302 REV B  
NOTE:  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
1784fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
11  
LT1784  
TYPICAL APPLICATIONS  
Protected Fault Conditions  
–18V  
5V  
5V  
5V  
+
+
V
V
+
+
+
+
+
LT1784  
LT1784  
LT1784  
LT1784  
18V  
+
10V  
+
24V  
1784 TA03  
REVERSE BATTERY  
INPUT OVERVOLTAGE  
INPUT DIFFERENTIAL VOLTAGE  
INPUTS BELOW GROUND  
Simple Peak Detector  
Simple Supply Full Wave Rectifier  
1k  
5V  
OUT  
ACCURACY  
BANDWIDTH  
V
+
IN  
BAT54  
5V  
98%  
90%  
3dB  
3kHz TO 5.7kHz  
116Hz TO 47kHz  
34Hz TO 96kHz  
LT1784  
1k  
1k  
BAT54  
1μF  
IN  
+
LT1784  
V
OUT  
WORKS WELL  
TO 15kHz  
100k  
V
IN  
= 3V , V = 2.5V  
P-P CM  
1784 TA04  
1785 TA05  
Simple Polarity Selector  
1k  
+
V
IN  
1k  
IN  
1V/DIV  
+
OUT  
1V/DIV  
LT1784  
OUT  
FOLLOW  
SHDN  
0V  
V
SHDN  
5V/DIV  
INVERT  
V
1785 TA06a  
1785 TA06b  
100μs/DIV  
= 3V AT 5kHz  
V
V
= 5V  
S
IN  
P-P  
RELATED PARTS  
PART NUMBER  
LT1782  
DESCRIPTION  
COMMENTS  
Micropower Over-The-Top Rail-to-Rail In/Out Op Amp in SOT-23  
1.25MHz Over-The-Top Rail-to-Rail In/Out Op Amp in SOT-23  
10MHz Rail-to-Rail In/Out Op Amp in SOT-23  
55μA Max Supply Current, 800μV Max Offset Voltage  
300μA Max Supply Current, 800μV Max Offset Voltage  
Unity-Gain Stable, 2.25μV/μs Slew Rate  
Micropower, 0.4V/μs Slew Rate  
LT1783  
LT1797  
LT1637  
1.1MHz Over-The-Top Rail-to-Rail In/Out Op Amp  
LT1638/LT1639  
LT1880  
Dual/Quad 1.2MHz Over-The-Top Rail-to-Rail In/Out Op Amp  
SOT-23 Pico Amp Input, Precision, Rail-to-Rail Output Op Amp  
Micropower 230μA Max, 0.4V/μs Slew Rate  
150μV Offset, 900pA Bias Current  
1784fa  
LT 0609 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
12  
© LINEAR TECHNOLOGY CORPORATION 2000  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT1784IS6

2.5MHz, Over-The-Top Low Power, Rail-to-Rail Input and Output Op Amp in SOT-23
Linear

LT1784IS6#PBF

LT1784 - 2.5MHz, Over-The-Top Low Power, Rail-to-Rail Input and Output Op Amp in SOT-23; Package: SOT; Pins: 6; Temperature Range: -40°C to 85°C
Linear

LT1784IS6#TR

LT1784 - 2.5MHz, Over-The-Top Low Power, Rail-to-Rail Input and Output Op Amp in SOT-23; Package: SOT; Pins: 6; Temperature Range: -40°C to 85°C
Linear

LT1784IS6#TRM

LT1784 - 2.5MHz, Over-The-Top Low Power, Rail-to-Rail Input and Output Op Amp in SOT-23; Package: SOT; Pins: 6; Temperature Range: -40°C to 85°C
Linear

LT1784IS6#TRMPBF

LT1784 - 2.5MHz, Over-The-Top Low Power, Rail-to-Rail Input and Output Op Amp in SOT-23; Package: SOT; Pins: 6; Temperature Range: -40°C to 85°C
Linear

LT1784IS6#TRPBF

LT1784 - 2.5MHz, Over-The-Top Low Power, Rail-to-Rail Input and Output Op Amp in SOT-23; Package: SOT; Pins: 6; Temperature Range: -40°C to 85°C
Linear

LT1785

60V Fault Protected RS485/RS422 Transceivers
Linear

LT1785A

60V Fault Protected RS485/RS422 Transceivers
Linear

LT1785AC

60V Fault Protected RS485/RS422 Transceivers
Linear

LT1785ACN8

60V Fault Protected RS485/RS422 Transceivers
Linear

LT1785ACN8#PBF

LT1785 - 60V Fault Protected RS485/RS422 Transceivers; Package: PDIP; Pins: 8; Temperature Range: 0°C to 70°C
Linear

LT1785ACN8#TRPBF

IC LINE TRANSCEIVER, PDIP8, 0.300 INCH, LEAD FREE, PLASTIC, DIP-8, Line Driver or Receiver
Linear