LT1800CS5#TR [Linear]

LT1800 - 80MHz, 25V/µs Low Power Rail-to-Rail Input and Output Precision Op Amp; Package: SOT; Pins: 5; Temperature Range: 0°C to 70°C;
LT1800CS5#TR
型号: LT1800CS5#TR
厂家: Linear    Linear
描述:

LT1800 - 80MHz, 25V/µs Low Power Rail-to-Rail Input and Output Precision Op Amp; Package: SOT; Pins: 5; Temperature Range: 0°C to 70°C

放大器 光电二极管
文件: 总18页 (文件大小:278K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1800  
80MHz, 25V/µs Low Power  
Rail-to-Rail Input and Output  
Precision Op Amp  
FEATURES  
DESCRIPTION  
TheLT®1800isalowpower,highspeedrail-to-railinputand  
outputoperationalamplifierwithexcellentDCperformance.  
The LT1800 features reduced supply current, lower input  
offset voltage, lower input bias current and higher DC gain  
than other devices with comparable bandwidth.  
n
Gain Bandwidth Product: 80MHz  
n
Input Common Mode Range Includes Both Rails  
n
Output Swings Rail-to-Rail  
n
Low Quiescent Current: 2mA Max  
n
Input Offset Voltage: 350μV Max  
n
Input Bias Current: 250nA Max  
The LT1800 has an input range that includes both supply  
rails and an output that swings within 20mV of either  
supply rail to maximize the signal dynamic range in low  
supply applications.  
n
Low Voltage Noise: 8.5nV/√Hz  
n
Slew Rate: 25V/μs  
n
Common Mode Rejection: 105dB  
n
Power Supply Rejection: 97dB  
The LT1800 maintains its performance for supplies from  
2.3V to 12.6V and is specified at 3V, 5V and 5V supplies.  
The inputs can be driven beyond the supplies without  
damage or phase reversal of the output.  
n
Open-Loop Gain: 85V/mV  
n
Operating Temperature Range: –40°C to 85°C  
n
Available in the 8-Pin SO and 5-Pin Low Profile  
(1mm) ThinSOT™ Packages  
The LT1800 is available in the 8-pin SO package with  
the standard op amp pinout and in the 5-pin TSOT-23  
package. For dual and quad versions of the LT1800, see  
the LT1801/LT1802 data sheet. The LT1800 can be used  
as a plug-in replacement for many op amps to improve  
input/output range and performance.  
APPLICATIONS  
n
Low Voltage, High Frequency Signal Processing  
n
Driving A/D Converters  
n
Rail-to-Rail Buffer Amplifiers  
n
Active Filters  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. ThinSOT is a trademark of Linear Technology Corporation. All other  
trademarks are the property of their respective owners.  
n
Video Line Driver  
TYPICAL APPLICATION  
Single Supply 1A Laser Driver Amplifier  
Laser Driver Amplifier 500mA Pulse Response  
5V  
+
V
IN  
R3  
DO NOT FLOAT  
Q1  
ZETEX  
FMMT619  
10Ω  
LT1800  
100mA/DIV  
C1  
39pF  
IR LASER  
INFINEON  
SFH495  
R2  
330Ω  
R1  
1Ω  
1800 TA01a  
1800 TA01b  
50ns/DIV  
1800fa  
1
LT1800  
ABSOLUTE MAXIMUM RATINGS (Note 1)  
+
Specified Temperature Range (Note 5) ....–40°C to 85°C  
Junction Temperature ........................................... 150°C  
Storage Temperature Range...................–65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
Total Supply Voltage (V to V ) ..........................12.6V  
S
S
Input Current (Note 2).......................................... 10mA  
Output Short-Circuit Duration (Note 3) ............ Indefinite  
Operating Temperature Range (Note 4)....–40°C to 85°C  
PIN CONFIGURATION  
TOP VIEW  
TOP VIEW  
+
NC  
1
2
3
4
8
7
6
5
NC  
+
V
1
2
5 V  
S
OUT  
+
–IN  
V
V
S
V
S
+
+IN  
OUT  
+IN 3  
4 –IN  
V
S
NC  
S5 PACKAGE  
5-LEAD PLASTIC TSOT-23  
S8 PACKAGE  
8-LEAD PLASTIC SO  
T
JMAX  
= 150°C, θ = 250°C/W  
JA  
T
= 150°C, θ = 190°C/W  
JA  
JMAX  
ORDER INFORMATION  
LEAD FREE FINISH  
LT1800CS8#PBF  
LT1800IS8#PBF  
LT1800CS5#PBF  
LT1800IS5#PBF  
TAPE AND REEL  
PART MARKING  
1800  
PACKAGE DESCRIPTION  
8-Lead Plastic SO  
SPECIFIED TEMPERATURE RANGE  
LT1800CS8#TRPBF  
LT1800IS8#TRPBF  
LT1800CS5#TRPBF  
LT1800IS5#TRPBF  
0°C to 70°C  
1800I  
8-Lead Plastic SO  
–40°C to 85°C  
0°C to 70°C  
LTRN  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
LTRP  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
ELECTRICAL CHARACTERISTICS  
TA = 25°C. VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
V
CM  
V
CM  
V
CM  
V
CM  
= 0V  
75  
300  
0.5  
0.7  
350  
750  
3
μV  
μV  
mV  
mV  
OS  
= 0V (SOT-23)  
= V  
S
= V (SOT-23)  
3.5  
S
Input Offset Shift  
Input Bias Current  
V
= 0V to V – 1.5V  
20  
180  
μV  
ΔV  
CM  
S
OS  
I
B
V
CM  
V
CM  
= 1V  
25  
500  
250  
1500  
nA  
nA  
= V  
S
I
Input Offset Current  
Input Noise Voltage  
V
V
= 1V  
25  
25  
200  
200  
nA  
nA  
OS  
CM  
CM  
= V  
S
0.1Hz to 10Hz  
1.4  
μV  
P-P  
1800fa  
2
LT1800  
ELECTRICAL CHARACTERISTICS  
TA = 25°C. VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
f = 10kHz  
MIN  
TYP  
8.5  
1
MAX  
UNITS  
nV/√Hz  
pA/√Hz  
pF  
e
n
Input Noise Voltage Density  
Input Noise Current Density  
Input Capacitance  
i
f = 10kHz  
n
C
f = 100kHz  
2
IN  
A
VOL  
Large-Signal Voltage Gain  
V = 5V, V = 0.5V to 4.5V, R = 1k at V /2  
35  
3.5  
30  
85  
8
85  
V/mV  
V/mV  
V/mV  
S
O
L
S
V = 5V, V = 1V to 4V, R = 100Ω at V /2  
S
O
L
S
V = 3V, V = 0.5V to 2.5V, R = 1k at V /2  
S
O
L
S
CMRR  
Common Mode Rejection Ratio  
V = 5V, V = 0V to 3.5V  
85  
78  
105  
97  
dB  
dB  
S
CM  
V = 3V, V = 0V to 1.5V  
S
CM  
Input Common Mode Range  
Power Supply Rejection Ratio  
Minimum Supply Voltage (Note 6)  
0
V
V
dB  
V
S
PSRR  
V = 2.5V to 10V, V = 0V  
80  
97  
S
CM  
2.3  
2.5  
V
Output Voltage Swing Low (Note 7) No Load  
12  
80  
50  
mV  
mV  
mV  
OL  
OH  
I
I
= 5mA  
160  
450  
SINK  
SINK  
= 20mA  
225  
V
Output Voltage Swing High (Note 7) No Load  
16  
120  
450  
60  
250  
850  
mV  
mV  
mV  
I
I
= 5mA  
SOURCE  
SOURCE  
= 20mA  
I
I
Short-Circuit Current  
V = 5V  
S
20  
20  
45  
40  
mA  
mA  
SC  
S
V = 3V  
Supply Current per Amplifier  
Gain Bandwidth Product  
Slew Rate  
1.6  
80  
2
mA  
MHz  
V/μs  
MHz  
dBc  
ns  
S
GBW  
SR  
Frequency = 2MHz  
40  
13  
V = 5V, A = 1, R = 1k, V = 4V  
S
25  
V
L
O
FPBW  
HD  
Full Power Bandwidth  
Harmonic Distortion  
Settling Time  
V = 5V, V  
S
= 4V  
2
OUT  
P-P  
V = 5V, A = 1, R = 1k, V = 2V , f = 500kHz  
S
–75  
250  
0.35  
0.4  
V
L
O
P-P C  
t
0.01%, V = 5V, V  
= 2V, A = 1, R = 1k  
STEP V L  
S
S
Differential Gain (NTSC)  
Differential Phase (NTSC)  
V = 5V, A = +2, R = 150Ω  
S
%
ΔG  
V
L
V = 5V, A = +2, R = 150Ω  
S
Deg  
Δθ  
V
L
The l denotes the specifications which apply over the temperature range of 0°C ≤ TA ≤ 70°C. VS = 5V, 0V; VS = 3V, 0V;  
CM = VOUT = half supply, unless otherwise noted.  
V
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
l
l
V
Input Offset Voltage  
V
CM  
V
CM  
V
CM  
V
CM  
= 0V  
125  
300  
0.6  
0.7  
500  
1250  
3.5  
μV  
μV  
mV  
mV  
OS  
= 0V (SOT-23)  
= V  
S
= V (SOT-23)  
3.75  
S
l
l
Input Offset Shift  
V
= 0V to V – 1.5V  
30  
275  
5
μV  
ΔV  
CM  
S
OS  
V
TC  
Input Offset Voltage Drift (Note 8)  
Input Bias Current  
1.5  
μV/°C  
OS  
l
l
I
B
V
CM  
V
CM  
= 1V  
50  
550  
300  
1750  
nA  
nA  
= V – 0.2V  
S
l
l
I
OS  
Input Offset Current  
V
CM  
V
CM  
= 1V  
25  
25  
250  
250  
nA  
nA  
= V – 0.2V  
S
l
l
l
A
Large-Signal Voltage Gain  
V = 5V, V = 0.5V to 4.5V, R = 1k at V /2  
30  
3
25  
75  
6
75  
V/mV  
V/mV  
V/mV  
VOL  
S
O
L
S
V = 5V, V = 1V to 4V, R = 100Ω at V /2  
S
O
L
S
V = 3V, V = 0.5V to 2.5V, R = 1k at V /2  
S
O
L
S
l
l
CMRR  
Common Mode Rejection Ratio  
V = 5V, V = 0V to 3.5V  
82  
74  
101  
93  
dB  
dB  
S
CM  
V = 3V, V = 0V to 1.5V  
S
CM  
1800fa  
3
LT1800  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the temperature range of  
0°C ≤ TA ≤ 70°C. C. VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
0
TYP  
MAX  
UNITS  
l
l
l
Input Common Mode Range  
Power Supply Rejection Ratio  
Minimum Supply Voltage (Note 6)  
Output Voltage Swing Low (Note 7)  
V
S
V
dB  
V
PSRR  
V = 2.5V to 10V, V = 0V  
S
74  
91  
CM  
2.3  
2.5  
l
l
l
V
No Load  
14  
100  
300  
60  
200  
550  
mV  
mV  
mV  
OL  
OH  
I
I
= 5mA  
= 20mA  
SINK  
SINK  
l
l
l
V
Output Voltage Swing High (Note 7)  
Short-Circuit Current  
No Load  
25  
150  
600  
80  
mV  
mV  
mV  
I
I
= 5mA  
300  
SOURCE  
SOURCE  
= 20mA  
1000  
l
l
I
I
V = 5V  
20  
20  
40  
30  
mA  
mA  
SC  
S
V = 3V  
S
l
l
l
Supply Current per Amplifier  
Gain Bandwidth Product  
Slew Rate  
2
2.75  
mA  
MHz  
V/μs  
S
GBW  
SR  
Frequency = 2MHz  
V = 5V, A = – 1, R = 1k, V = 4V  
P-P  
35  
11  
75  
22  
S
V
L
O
The l denotes the specifications which apply over the temperature range of –40°C ≤ TA ≤ 85°C. VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT  
half supply, unless otherwise noted.  
=
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
l
l
V
Input Offset Voltage  
V
CM  
V
CM  
V
CM  
V
CM  
= 0V  
175  
400  
0.75  
0.9  
700  
2000  
4
μV  
μV  
mV  
mV  
OS  
= 0V (SOT-23)  
= V  
S
= V (SOT-23)  
4
S
l
l
Input Offset Shift  
V
= 0V to V – 1.5V  
30  
300  
5
μV  
ΔV  
CM  
S
OS  
V
OS  
TC  
Input Offset Voltage Drift (Note 8)  
Input Bias Current  
1.5  
μV/°C  
l
l
I
B
V
CM  
V
CM  
= 1V  
50  
600  
400  
2000  
nA  
nA  
= V – 0.2V  
S
l
l
I
OS  
Input Offset Current  
V
CM  
V
CM  
= 1V  
25  
25  
300  
300  
nA  
nA  
= V – 0.2V  
S
l
l
l
A
VOL  
Large-Signal Voltage Gain  
V = 5V, V = 0.5V to 4.5V, R = 1k at V /2  
25  
2.5  
20  
65  
6
65  
V/mV  
V/mV  
V/mV  
S
O
L
S
V = 5V, V = 1.5V to 3.5V, R = 100Ω at V /2  
S
O
L
S
V = 3V, V = 0.5V to 2.5V, R = 1k at V /2  
S
O
L
S
l
l
CMRR  
PSRR  
Common Mode Rejection Ratio  
V = 5V, V = 0V to 3.5V  
81  
73  
101  
93  
dB  
dB  
S
CM  
V = 3V, V = 0V to 1.5V  
S
CM  
l
l
l
Input Common Mode Range  
0
V
V
dB  
V
S
Power Supply Rejection Ratio  
Minimum Supply Voltage (Note 6)  
Output Voltage Swing Low (Note 7)  
V = 2.5V to 10V, V = 0V  
73  
90  
S
CM  
2.3  
2.5  
l
l
l
V
No Load  
15  
105  
170  
70  
210  
400  
mV  
mV  
mV  
OL  
OH  
I
I
= 5mA  
= 10mA  
SINK  
SINK  
l
l
l
V
Output Voltage Swing High (Note 7)  
Short-Circuit Current  
No Load  
25  
150  
300  
90  
350  
700  
mV  
mV  
mV  
I
I
= 5mA  
SOURCE  
SOURCE  
= 10mA  
l
l
I
I
V = 5V  
12.5  
12.5  
30  
30  
mA  
mA  
SC  
S
V = 3V  
S
l
l
l
Supply Current per Amplifier  
Gain Bandwidth Product  
Slew Rate  
2.1  
70  
18  
3
mA  
S
GBW  
SR  
Frequency = 2MHz  
V = 5V, A = – 1, R = 1k, V = 4V  
30  
10  
MHz  
V/μs  
S
V
L
O
1800fa  
4
LT1800  
ELECTRICAL CHARACTERISTICS  
TA = 25°C, VS = 5V, VCM = 0V, VOUT = 0V, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
V
CM  
V
CM  
V
CM  
V
CM  
= V  
S
150  
400  
0.7  
1
500  
1000  
3.5  
μV  
μV  
mV  
mV  
OS  
= V (SOT-23)  
S
S
+
+
= V  
= V (SOT-23)  
4.5  
S
+
Input Offset Shift  
Input Bias Current  
V
= V to V – 1.5V  
30  
475  
μV  
ΔV  
CM  
S
S
OS  
I
V
CM  
V
CM  
= V + 1V  
25  
400  
350  
1500  
nA  
nA  
B
S
+
= V  
S
+
I
OS  
Input Offset Current  
V
CM  
V
CM  
= V + 1V  
20  
20  
250  
250  
nA  
nA  
S
= V  
S
Input Noise Voltage  
0.1Hz to 10Hz  
f = 10kHz  
1.4  
8.5  
1
μV  
P-P  
e
n
Input Noise Voltage Density  
Input Noise Current Density  
Input Capacitance  
nV/√Hz  
pA/√Hz  
pF  
i
f = 10kHz  
n
C
f = 100kHz  
2
IN  
A
VOL  
Large-Signal Voltage Gain  
V = –4V to 4V, R = 1k  
25  
2.5  
70  
7
V/mV  
V/mV  
O
L
V = –2V to 2V, R = 100ꢀ  
O
L
CMRR  
Common Mode Rejection Ratio  
Input Common Mode Range  
V
V
= V to 3.5V  
85  
109  
dB  
V
CM  
S
+
V
S
V
S
+
PSRR  
Power Supply Rejection Ratio  
Output Voltage Swing Low (Note 7)  
= 2.5V to 10V, V = 0V  
80  
97  
dB  
S
S
V
OL  
No Load  
15  
85  
225  
60  
170  
450  
mV  
mV  
mV  
I
I
= 5mA  
= 20mA  
SINK  
SINK  
V
Output Voltage Swing High (Note 7)  
No Load  
17  
130  
450  
70  
260  
900  
mV  
mV  
mV  
OH  
I
I
= 5mA  
SOURCE  
SOURCE  
= 20mA  
I
I
Short-Circuit Current  
Supply Current per Amplifier  
Gain Bandwidth Product  
Slew Rate  
30  
50  
1.8  
70  
mA  
mA  
SC  
2.75  
S
GBW  
SR  
Frequency = 2MHz  
A = – 1, R = 1k, V = 4V, Measured at V = 2V  
MHz  
V/μs  
MHz  
dBc  
ns  
23  
V
L
O
O
FPBW  
HD  
Full Power Bandwidth  
Harmonic Distortion  
Settling Time  
V = 8V  
0.9  
–75  
300  
0.35  
0.2  
O
P-P  
A = 1, R = 1k, V = 2V , f = 500kHz  
V
L
O
P-P C  
t
0.01%, V = 5V, A = 1V, R = 1k  
STEP V L  
S
Differential Gain (NTSC)  
Differential Phase (NTSC)  
A = + 2, R = 150Ω  
%
ΔG  
V
L
A = + 2, R = 150Ω  
Deg  
Δθ  
V
L
The l denotes the specifications which apply over the temperature range of 0°C ≤ TA ≤ 70°C. VS = 5V, VCM = 0V, VOUT = 0V, unless  
otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
l
l
V
Input Offset Voltage  
V
CM  
V
CM  
V
CM  
V
CM  
= V  
S
200  
450  
0.75  
1
800  
1500  
4
μV  
μV  
mV  
mV  
OS  
= V (SOT-23)  
S
S
+
+
= V  
= V (SOT-23)  
5
S
+
l
l
Input Offset Shift  
V
= V to V – 1.5V  
45  
675  
5
μV  
ΔV  
CM  
S
S
OS  
V
TC  
Input Offset Voltage Drift (Note 8)  
Input Bias Current  
1.5  
μV/°C  
OS  
I
V
CM  
V
CM  
= V + 1V  
l
l
30  
450  
400  
1750  
nA  
nA  
B
S
S
+
= V – 0.2V  
1800fa  
5
LT1800  
ELECTRICAL CHARACTERISTICS  
The l denotes the specifications which apply over the temperature range of  
0°C ≤ TA ≤ 70°C. VS = 5V, VCM = 0V, VOUT = 0V, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
l
l
I
Input Offset Current  
V
CM  
V
CM  
= V + 1V  
25  
25  
300  
300  
nA  
nA  
OS  
S
= V – 0.2V  
S
l
l
A
VOL  
Large-Signal Voltage Gain  
V = –4V to 4V, R = 1k  
20  
2
55  
5
V/mV  
V/mV  
O
L
V = –2V to 2V, R = 100Ω  
O
L
l
l
l
CMRR  
Common Mode Rejection Ratio  
Input Common Mode Range  
V
V
= V to 3.5V  
82  
105  
dB  
V
CM  
S
+
V
V
S
S
+
PSRR  
Power Supply Rejection Ratio  
Output Voltage Swing Low (Note 7)  
= 2.5V to 10V, V = 0V  
74  
91  
dB  
S
S
l
l
l
V
V
No Load  
17  
105  
250  
70  
210  
575  
mV  
mV  
mV  
OL  
OH  
I
I
= 5mA  
= 20mA  
SINK  
SINK  
l
l
l
Output Voltage Swing High (Note 7)  
No Load  
25  
150  
600  
90  
mV  
mV  
mV  
I
I
= 5mA  
= 20mA  
310  
SOURCE  
SOURCE  
1100  
l
l
l
l
I
I
Short-Circuit Current  
Supply Current per Amplifier  
Gain Bandwidth Product  
Slew Rate  
25  
45  
2.4  
70  
20  
mA  
mA  
SC  
3.5  
S
GBW  
SR  
Frequency = 2MHz  
A = –1, R = 1k, V = 4V, Measured at V = 2V  
MHz  
V/μs  
V
L
O
O
The l denotes the specifications which apply over the temperature range of –40°C ≤ TA ≤ 85°C. VS = 5V, VCM = 0V, VOUT = 0V, unless  
otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
l
l
V
Input Offset Voltage  
V
CM  
V
CM  
V
CM  
V
CM  
= V  
S
350  
500  
0.75  
1
900  
2250  
4.5  
μV  
μV  
mV  
mV  
OS  
= V (SOT-23)  
S
S
S
= V +  
= V + (SOT-23)  
5.5  
+
l
l
Input Offset Shift  
V
= V to V – 1.5V  
50  
750  
5
μV  
ΔV  
CM  
S
S
OS  
V
TC  
Input Offset Voltage Drift (Note 8)  
Input Bias Current  
1.5  
μV/°C  
OS  
l
l
I
B
V
V
= V + 1V  
50  
450  
450  
2000  
nA  
nA  
CM  
CM  
S
S
= V + – 0.2V  
l
l
I
Input Offset Current  
V
CM  
V
CM  
= V + 1V  
25  
25  
350  
350  
nA  
nA  
OS  
S
= V + – 0.2V  
S
l
l
A
VOL  
Large-Signal Voltage Gain  
V = –4V to 4V, R = 1k  
16  
2
55  
5
V/mV  
V/mV  
O
L
V = –1V to 1V, R = 100ꢀ  
O
L
l
l
l
CMRR  
Common Mode Rejection Ratio  
Input Common Mode Range  
Power Supply Rejection Ratio  
V
V
= V to 3.5V  
81  
104  
dB  
V
CM  
S
+
V
V
S
S
+
PSRR  
= 2.5V to 10V, V = 0V  
73  
90  
dB  
S
S
l
l
l
V
V
Output Voltage Swing Low (Note 7) No Load  
15  
80  
mV  
mV  
mV  
OL  
OH  
I
I
= 5mA  
105  
170  
220  
400  
SINK  
SINK  
= 10mA  
l
l
l
Output Voltage Swing High (Note 7) No Load  
25  
150  
300  
100  
350  
700  
mV  
mV  
mV  
I
I
= 5mA  
SOURCE  
SOURCE  
= 10mA  
l
l
l
l
I
I
Short-Circuit Current  
Supply Current per Amplifier  
Gain Bandwidth Product  
Slew Rate  
12.5  
30  
2.6  
65  
15  
mA  
mA  
SC  
4
S
GBW  
SR  
Frequency = 2MHz  
A = –1, R = 1k, V = 4V, Measured at V = 2V  
MHz  
V/μs  
V
L
O
O
1800fa  
6
LT1800  
ELECTRICAL CHARACTERISTICS  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The inputs are protected by back-to-back diodes and by ESD  
diodes to the supply rails. If the differential input voltage exceeds 1.4V or  
either input goes outside the rails, the input current should be limited to  
less than 10mA.  
Note 4: The LT1800C/LT1800I are guaranteed functional over the  
temperature range of –40°C to 85°C.  
Note 5: The LT1800C is guaranteed to meet specified performance from  
0°C to 70°C. The LT1800C is designed, characterized and expected to  
meet specified performance from –40°C to 85°C but is not tested or  
QA sampled at these temperatures. The LT1800I is guaranteed to meet  
specified performance from –40°C to 85°C.  
Note 6: Minimum supply voltage is guaranteed by power supply rejection  
Note 3: A heat sink may be required to keep the junction temperature  
below the absolute maximum rating when the output is shorted  
indefinitely.  
ratio test.  
Note 7: Output voltage swings are measured between the output and  
power supply rails.  
Note 8: This parameter is not 100% tested.  
TYPICAL PERFORMANCE CHARACTERISTICS  
VOS Distribution, VCM = 0V  
(SO-8, PNP Stage)  
VOS Distribution, VCM = 5V  
(SO-8, NPN Stage)  
VOS Distribution, VCM = 0V  
(SOT-23, PNP Stage)  
40  
35  
30  
25  
20  
15  
10  
5
45  
40  
35  
30  
25  
20  
15  
10  
5
45  
40  
35  
30  
25  
20  
15  
10  
5
V
V
= 5V, 0V  
= 0V  
V
V
= 5V, 0V  
= 5V  
V
V
= 5V, 0V  
= 0V  
S
CM  
S
CM  
S
CM  
0
0
–250  
0
–1250  
–750  
–250  
250  
750  
1250  
–150  
–50  
250  
50  
150  
–2000 –1200  
–400  
2000  
400  
1200  
INPUT OFFSET VOLTAGE (μV)  
INPUT OFFSET VOLTAGE (μV)  
INPUT OFFSET VOLTAGE (μV)  
1800 G03  
1800 G01  
1800 G02  
VOS Distribution, VCM = 5V  
(SOT-23, NPN Stage)  
Offset Voltage  
vs Input Common Mode Voltage  
Supply Current vs Supply Voltage  
35  
30  
500  
400  
4
3
2
1
0
V
= 5V, 0V  
V
V
= 5V, 0V  
CM  
S
S
T
= –55°C  
A
TYPICAL PART  
= 5V  
300  
T
T
= 125°C  
A
T
A
25  
200  
T
= 25°C  
A
100  
20  
15  
10  
5
= 25°C  
A
0
–100  
–200  
–300  
–400  
–500  
= –55°C  
T
= 125°C  
2
A
0
–2500 –1500 –500  
500  
1500  
2500  
0
1
2
3
4
5
6
7
8
9
10 11 12  
0
1
3
4
5
INPUT OFFSET VOLTAGE (μV)  
TOTAL SUPPLY VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
1800 G04  
1800 G05  
1800 G06  
1800fa  
7
LT1800  
TYPICAL PERFORMANCE CHARACTERISTICS  
Input Bias Current  
vs Common Mode Voltage  
Input Bias Current  
vs Temperature  
Output Saturation Voltage  
vs Load Current (Output Low)  
10  
1
1.0  
0.8  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
= 5V, 0V  
V
= 5V, 0V  
S
S
T
T
T
= 25°C  
A
A
A
= 125°C  
= –55°C  
NPN ACTIVE  
0.6  
V
V
= 5V, 0V  
S
CM  
0.4  
= 5V  
0.2  
0.1  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
T
A
= 125°C  
A
PNP ACTIVE  
0.01  
0.001  
V
V
= 5V, 0V  
CM  
S
T
= –55°C  
T
= 25°C  
1
A
= 1V  
–0.1  
–1  
0
1
2
3
4
5
6
0.01  
0.1  
10  
100  
–60 –40 –20  
0
20  
40  
60  
80  
LOAD CURRENT (mA)  
INPUT COMMON MODE VOLTAGE (V)  
TEMPERATURE (°C)  
1800 G09  
1800 G07  
1800 G08  
Output Saturation Voltage  
Output Short-Circuit Current  
vs Power Supply Voltage  
vs Load Current (Output High)  
Minimum Supply Voltage  
10  
1
70  
60  
50  
40  
30  
20  
10  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0.6  
V
= 5V, 0V  
T
= 25°C  
S
A
T
= –55°C  
A
0.4  
0.2  
T
= 125°C  
A
T
= –55°C  
SINKING  
= 5V, 0V  
A
A
T
= 25°C  
A
V
S
0.1  
0
T
= 125°C  
= –55°C  
A
T
= –55°C  
= 125°C  
SOURCING  
–0.2  
T
= 125°C  
A
0.01  
0.001  
T
A
T
= 25°C  
1
T
A
A
–0.4  
–0.6  
T
= 25°C  
A
0.01  
0.1  
10  
100  
0
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
LOAD CURRENT (mA)  
TOTAL SUPPLY VOLTAGE (V)  
POWER SUPPLY VOLTAGE ( V)  
1800 G10  
1800 G11  
1800 G12  
Open-Loop Gain  
Open-Loop Gain  
Open-Loop Gain  
2000  
1600  
1200  
800  
2000  
1600  
1200  
800  
2000  
1600  
1200  
800  
V
= 3V, 0V  
TO GND  
V
= 5V, 0V  
TO GND  
V
=
5V  
R TO GND  
L
S
L
S
L
S
R
R
400  
400  
400  
R
= 1k  
L
R
= 1k  
R
= 1k  
L
L
0
0
0
–400  
–800  
–1200  
–1600  
–2000  
–400  
–800  
–1200  
–1600  
–2000  
–400  
–800  
–1200  
–1600  
–2000  
R
= 100ꢀ  
L
R
L
= 100ꢀ  
R
= 100Ω  
L
0
0.5  
1.5  
2
2.5  
3
1
0.5  
1
3
3.5  
4.5  
–4 –3  
1
2
4
0
1.5  
2
2.5  
4
5
–5  
–2 –1  
0
3
5
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
1800 G13  
1800 G14  
1800 G15  
1800fa  
8
LT1800  
TYPICAL PERFORMANCE CHARACTERISTICS  
Warm-Up Drift  
Offset Voltage vs Output Current  
vs Time (LT1800S8)  
Input Noise Voltage vs Frequency  
60  
120  
110  
100  
90  
2.0  
1.5  
V
= 5V, 0V  
V
= 5V  
S
S
V
=
5V  
S
50  
40  
1.0  
T
= –55°C  
A
0.5  
V
=
2.5V  
1.5V  
NPN ACTIVE  
= 4.25V  
S
S
80  
30  
20  
0
V
CM  
70  
–0.5  
–1.0  
–1.5  
–2.0  
T
= 25°C  
A
T
= 125°C  
A
60  
V
=
10  
0
50  
PNP ACTIVE  
= 2.5V  
V
CM  
TYPICAL PART  
40  
20  
40  
80 100 120 140  
0
60  
0.01  
0.1  
1
FREQUENCY (kHz)  
10  
100  
0
15  
–60 –45 –30 –15  
30 45 60  
TIME AFTER POWER-UP (SECONDS)  
OUTPUT CURRENT (mA)  
1800 G18  
1800 G17  
1800 G16  
0.1Hz to 10Hz Output Voltage  
Noise  
Input Current Noise vs Frequency  
3.0  
2000  
1000  
0
V
= 5V, 0V  
S
2.5  
2.0  
PNP ACTIVE  
= 2.5V  
1.5  
1.0  
V
CM  
–1000  
–2000  
NPN ACTIVE  
= 4.25V  
0.5  
0
V
CM  
0
1
2
3
4
5
6
7
8
9
10  
0.01  
0.1  
1
FREQUENCY (kHz)  
10  
100  
TIME (SECONDS)  
1800 G19  
1800 G20  
Gain Bandwidth and Phase  
Margin vs Supply Voltage  
Gain Bandwidth and Phase  
Margin vs Temperature  
100  
90  
80  
70  
60  
50  
100  
90  
T
= 25°C  
GBW PRODUCT  
2.5V  
A
V
=
S
GAIN BANDWIDTH  
PRODUCT  
80  
GBW PRODUCT  
5V  
V
=
S
70  
PHASE MARGIN  
2.5V  
60  
50  
40  
30  
20  
10  
60  
60  
50  
40  
30  
20  
V
=
S
PHASE MARGIN  
PHASE MARGIN  
5V  
V
=
S
–55 –35 –15  
5
25 45 65 85 105 125  
0
1
2
3
4
5
6
7
8
9
10  
TEMPERATURE (°C)  
TOTAL SUPPLY VOLTAGE (V)  
1800 G22  
1800 G21  
1800fa  
9
LT1800  
TYPICAL PERFORMANCE CHARACTERISTICS  
Slew Rate vs Temperature  
Gain and Phase vs Frequency  
70  
60  
50  
40  
100  
80  
35  
30  
A
R
R
= –1  
G
= 1k  
V
F
L
= R = 1k  
V
=
2.5V  
5V  
S
PHASE  
60  
40  
30  
20  
20  
0
25  
V
=
S
GAIN  
10  
0
–20  
–40  
–60  
–80  
–100  
20  
15  
10  
–10  
–20  
–30  
V
V
=
=
2.5V  
5V  
S
S
0.01  
0.1  
1
10  
100 300  
–55 –35 –15  
5
25 45 65 85 105 125  
TEMPERATURE (oC)  
FREQUENCY (MHz)  
1800 G24  
1800 G23  
Gain vs Frequency (AV = 1)  
Gain vs Frequency (AV = 2)  
Output Impedance vs Frequency  
600  
100  
12  
9
18  
15  
12  
9
R
C
V
= 1k  
= 10pF  
= 2  
V = 2.5V  
S
R
C
V
= 1k  
= 10pF  
= 1  
L
L
L
L
A
A
6
A
= 10  
V
10  
1
3
V
= 2.5V  
S
A
= 1  
V
0
6
V
=
2.5V  
V
= 5V  
S
S
A
= 2  
V
–3  
–6  
–9  
–12  
3
0.1  
V
= 5V  
S
0
0.01  
0.001  
–3  
–6  
0.1  
1
10  
FREQUENCY (MHz)  
100  
500  
0.1  
1
10  
100 300  
0.1  
1
10  
100 300  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
1800 G25  
1800 G26  
1800 G27  
Common Mode Rejection Ratio  
vs Frequency  
Power Supply Rejection Ratio  
vs Frequency  
Series Output Resistor  
vs Capacitive Load  
90  
80  
70  
60  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
120  
V
T
= 5V, 0V  
= 25°C  
V
A
= 5V, 0V  
= 1  
V
= 5V, 0V  
S
A
S
V
S
100  
80  
NEGATIVE  
SUPPLY  
POSITIVE  
SUPPLY  
R
= 10Ω  
OS  
50  
40  
60  
40  
R
= 20Ω  
OS  
30  
20  
10  
20  
0
R
= R = 50Ω  
L
OS  
0
–10  
0
0.001  
0.01  
0.1  
1
10  
100  
10  
100  
1000  
10000  
0.01  
0.1  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
CAPACITIVE LOAD (pF)  
1800 G29  
1800 G30  
1800 G28  
1800fa  
10  
LT1800  
TYPICAL PERFORMANCE CHARACTERISTICS  
Series Output Resistor  
vs Capacitive Load  
Distortion vs Frequency  
Distortion vs Frequency  
–40  
–50  
–40  
–50  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
V
A
V
= 5V, 0V  
= 1  
V
A
V
= 5V, 0V  
= 2  
V
A
= 5V, 0V  
= 2  
S
V
S
V
S
V
= 2V  
= 2V  
OUT  
P-P  
OUT  
P-P  
R
= 1k,  
L
–60  
–60  
2ND  
R
L
= 1507, 2ND  
R
L
= 150Ω, 2ND  
R
= 1k, 2ND  
L
R
3RD  
= 150Ω,  
–70  
–70  
L
R
= 150Ω, 3RD  
L
R
= 10Ω  
OS  
–80  
–80  
R
= 20Ω  
–90  
–90  
OS  
–100  
–100  
R
L
= 1k, 3RD  
R
= 1k, 3RD  
L
R
= R = 50Ω  
L
OS  
–110  
–110  
0
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
10  
100  
1000  
10000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
CAPACITIVE LOAD (pF)  
1800 G32  
1800 G33  
1800 G31  
Maximum Undistorted Output  
Signal vs Frequency  
5V Large-Signal Response  
5V Small-Signal Response  
4.6  
4.5  
4.4  
4.3  
4.2  
4.1  
4.0  
3.9  
50mV/DIV  
0V  
A
= 2  
V
1V/DIV  
0V  
A
= –1  
V
1800 G35  
1800 G36  
V
= 5V, 0V  
= 1k  
V
A
= 5V, 0V  
= 1  
= 1k  
100ns/DIV  
V
A
= 5V, 0V  
= 1  
= 1k  
50ns/DIV  
S
L
S
V
S
V
R
R
R
L
L
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
1800 G34  
5V Large-Signal Response  
5V Small-Signal Response  
Output Overdriven Recovery  
V
IN  
1V/DIV  
50mV/DIV  
0V  
2V/DIV  
0V  
0V  
V
OUT  
2V/DIV  
0V  
1800 G38  
1800 G39  
1800 G37  
V
A
=
5V  
50ns/DIV  
V
A
= 5V, 0V  
= 2  
= 1k  
100ns/DIV  
V
A
=
5V  
200ns/DIV  
S
V
L
S
V
L
S
V
L
= 1  
= 1  
R
= 1k  
R
R
= 1k  
1800fa  
11  
LT1800  
APPLICATIONS INFORMATION  
Circuit Description  
ApairofcomplementarycommonemitterstagesQ14/Q15  
that enable the output to swing from rail to rail constructs  
the output stage. The capacitors C2 and C3 form the lo-  
cal feedback loops that lower the output impedance at  
high frequency. These devices are fabricated on Linear  
Technology’s proprietary high speed complementary  
bipolar process.  
The LT1800 has an input and output signal range that cov-  
ers from the negative power supply to the positive power  
supply. Figure 1 depicts a simplified schematic of the  
amplifier. The input stage is comprised of two differential  
amplifiers, a PNP stage Q1/Q2 and an NPN stage Q3/Q4  
that are active over the different ranges of common mode  
inputvoltage.ThePNPdifferentialpairisactivebetweenthe  
negative supply to approximately 1.2V below the positive  
supply. Astheinputvoltagemovesclosertowardtheposi-  
Power Dissipation  
TheLT1800amplifierisofferedinasmallpackage,SOT-23,  
whichhasathermalresistanceof250°C/W,θ .Sothereis  
tive supply, the transistor Q5 will steer the tail current I to  
JA  
1
aneedtoensurethatthedie’sjunctiontemperatureshould  
the current mirror Q6/Q7, activating the NPN differential  
pair and the PNP pair becomes inactive for the rest of the  
input common mode range up to the positive supply. Also  
attheinputstage,devicesQ17toQ19acttocancelthebias  
current of the PNP input pair. When Q1-Q2 are active, the  
current in Q16 is controlled to be the same as the current  
in Q1-Q2, thus the base current of Q16 is nominally equal  
to the base current of the input devices. The base current  
of Q16 is then mirrored by devices Q17-Q19 to cancel the  
base current of the input devices Q1-Q2.  
not exceed 150°C. Junction temperature T is calculated  
J
from the ambient temperature T , power dissipation P  
A
D
and thermal resistance θ :  
JA  
T = T + (P • θ )  
J
A
D
JA  
The power dissipation in the IC is the function of the sup-  
ply voltage, output voltage and the load resistance. For  
a given supply voltage, the worst-case power dissipation  
P
DMAX  
occurs at the maximum supply current and the  
+
V
R3  
R4  
R5  
+
V
V
Q12  
+
+
D1  
ESDD1  
ESDD2  
Q11  
Q13  
Q15  
I
I
1
2
C2  
+IN  
–IN  
+
D6  
D5  
D8  
D7  
Q5  
V
BIAS  
I
3
D2  
OUT  
C
C
V
Q4 Q3  
Q1 Q2  
D3  
BUFFER  
AND  
ESDD4  
ESDD3  
OUTPUT BIAS  
Q10  
+
V
V
D4  
Q9  
R1  
Q8  
R2  
Q16  
C1  
Q17  
Q18  
Q14  
Q7  
Q6  
Q19  
V
1800 F01  
Figure 1. LT1800 Simplified Schematic Diagram  
1800fa  
12  
LT1800  
APPLICATIONS INFORMATION  
output voltage is at half of either supply voltage (or the  
maximum swing is less than 1/2 supply voltage). P  
is given by:  
amplifierhasreverse-biaseddiodesconnectedtoeachsup-  
ply. If the output is forced beyond either supply, unlimited  
current will flow through these diodes. If the current is  
transient and limited to several hundred mA, and the total  
supply voltage is less than 12.6V, the absolute maximum  
rating, no damage will occur to the device.  
DMAX  
2
P
= (V • I  
) + (V /2) /R  
DMAX  
S
SMAX  
S
L
Example:AnLT1800inaSOT-23packageoperatingon 5V  
supplies and driving a 50Ω load, the worst-case power  
dissipation is given by:  
Overdrive Protection  
2
P
= (10 • 4mA) + (2.5) /50 = 0.04 + 0.125 = 0.165W  
When the input voltage exceeds the power supplies, two  
pairs of crossing diodes D1 to D4 will prevent the output  
from reversing polarity. If the input voltage exceeds either  
power supply by 700mV, diode D1/D2 or D3/D4 will turn  
on to keep the output at the proper polarity. For the phase  
reversal protection to perform properly, the input current  
must be limited to less than 10mA. If the amplifier is  
severely overdriven, an external resistor should be used  
to limit the overdrive current.  
DMAX  
The maximum ambient temperature that the part is al-  
lowed to operate is:  
T = T – (P • 250°C/W)  
DMAX  
A
J
= 150°C – (0.165W • 250°C/W) = 108°C  
Input Offset Voltage  
The offset voltage will change depending upon which  
input stage is active. The PNP input stage is active from  
the negative supply rail to 1.2V of the positive supply rail,  
then the NPN input stage is activated for the remaining  
input range up to the positive supply rail during which  
the PNP stage remains inactive. The offset voltage is  
typically less than 75μV in the range that the PNP input  
stage is active.  
The LT1800’s input stages are also protected against a  
large differential input voltage of 1.4V or higher by a pair  
of back-back diodes D5/D8 to prevent the emitter-base  
breakdown of the input transistors. The current in these  
diodes should be limited to less than 10mA when they are  
active. The worst-case differential input voltage usually  
occurs when the input is driven while the output is shorted  
to ground in a unity gain configuration. In addition, the  
amplifier is protected against ESD strikes up to 3kV on  
all pins by a pair of protection diodes on each pin that are  
connected to the power supplies as shown in Figure 1.  
Input Bias Current  
The LT1800 employs a patent-pending technique to trim  
the input bias current to less than 250nA for the input  
common mode voltage of 0.2V above negative supply  
rail to 1.2V of the positive rail. The low input offset volt-  
age and low input bias current of the LT1800 provide the  
precision performance especially for high source imped-  
ance applications.  
Capacitive Load  
The LT1800 is optimized for high bandwidth, low power  
and precision applications. It can drive a capacitive load  
of about 75pF in a unity gain configuration, and more for  
highergain.Whendrivingalargercapacitiveload,aresistor  
of 10Ω to 50Ω should be connected between the output  
and the capacitive load to avoid ringing or oscillation. The  
feedback should still be taken from the output so that the  
resistor will isolate the capacitive load to ensure stability.  
Graphsoncapacitiveloadsindicatethetransientresponse  
of the amplifier when driving capacitive load with a speci-  
fied series resistor.  
Output  
TheLT1800candeliveralargeoutputcurrent,sotheshort-  
circuit current limit is set around 50mA to prevent damage  
to the device. Attention must be paid to keep the junction  
temperature of the IC below the absolute maximum rating  
of150°C(refertothePowerDissipationsection)whenthe  
output is continuously short-circuited. The output of the  
1800fa  
13  
LT1800  
APPLICATIONS INFORMATION  
Feedback Components  
a capacitance of 5pF (part plus PC board) will probably  
ring in transient response. The pole is formed at 12.7MHz  
that will reduce phase margin by 32 degrees when the  
crossover frequency of the amplifier is around 20MHz. A  
capacitor of 5pF or higher connected across the feedback  
resistor will eliminate any ringing or oscillation.  
Whenfeedbackresistorsareusedtosetupgain,caremust  
be taken to ensure that the pole formed by the feedback  
resistors and the total capacitance at the inverting input  
does not degrade stability. For instance, the LT1800 in a  
noninverting gain of 2, set up with two 5k resistors and  
TYPICAL APPLICATIONS  
Single Supply 1A Laser Driver Amplifier  
time domain response of this circuit, measured at R1 and  
given a 500mV 230ns input pulse, is also shown in the  
graphic on the front page. While the circuit is capable  
of 1A operation, the laser diode and the transistor are  
thermally limited due to power dissipation, so they must  
be operated at low duty cycles.  
The circuit in the front page of this data sheet shows the  
LT1800 used in a 1A laser driver application. One of the  
reasons the LT1800 is well suited to this control task is  
that its 2.3V operation ensures that it will be awake during  
power-up and operated before the circuit can otherwise  
cause significant current to flow in the 2.1V threshold  
laser diode. Driving the noninverting input of the LT1800  
Fast 1A Current Sense Amplifier  
Asimple,fastcurrentsenseamplifierinFigure2issuitable  
forquicklyrespondingtoout-of-rangecurrents.Thecircuit  
amplifies the voltage across the 0.1Ω sense resistor by  
a gain of 20, resulting in a conversion gain of 2V/A. The  
–3dBbandwidthofthecircuitis4MHz, andtheuncertainty  
due to V and I is less than 4mA. The minimum output  
to a voltage V will control the turning on of the high  
IN  
current NPN transistor, FMMT619 and the laser diode.  
A current equal to V /R1 flows through the laser diode.  
IN  
The LT1800 low offset voltage and low input bias current  
allows it to control the current that flows through the laser  
diode precisely. The overall circuit is a 1A per volt V-to-I  
converter. Frequency compensation components R2 and  
C1 are selected for fast but zero-overshoot time domain  
response to avoid overcurrent conditions in the laser. The  
OS  
B
voltage is 60mV, corresponding to 30mA. The large-signal  
response of the circuit is shown in Figure 3.  
I
L
3V  
0A TO 1A  
52.3Ω  
+
V
OUT  
LT1800  
0V TO 2V  
0.1Ω  
500mV/DIV  
0V  
1k  
52.3Ω  
1800 F02  
V
= 2 • I  
= 4MHz  
OUT  
L
f
–3dB  
1800 F03  
UNCERTAINTY DUE TO V  
I
< 4mA  
OS,  
B
V
S
= 3V  
50ns/DIV  
Figure 2. Fast 1A Current Sense  
Figure 3. Current Sense Amplifier Large-Signal Response  
1800fa  
14  
LT1800  
TYPICAL APPLICATIONS  
Single 3V Supply, 1MHz, 4th Order Butterworth Filter  
rail-to-rail for maximum dynamic range. Figure 5 displays  
the frequency response of the filter. Stopband attenuation  
The circuit shown in Figure 4 makes use of the low voltage  
operation and the wide bandwidth of the LT1800 to create  
aDCaccurate1MHz4thorderlowpasslterpoweredfrom  
a 3V supply. The amplifiers are configured in the inverting  
mode for the lowest distortion and the output can swing  
is greater than 100dB at 50MHz. With a 2.25V , 250kHz  
P-P  
input signal, the filter has harmonic distortion products  
of less than –85dBc. Worst-case output offset voltage is  
less than 6mV.  
47pF  
909Ω  
2.67k  
3V  
909Ω  
22pF  
1.1k  
2.21k  
V
IN  
1.1k  
220pF  
LT1800  
+
470pF  
V
OUT  
LT1800  
+
V /2  
S
1800 F04  
Figure 4. 3V, 1MHz, 4th Order Butterworth Filter  
0
–20  
–40  
–60  
–80  
–100  
–120  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
1800 F05  
Figure 5. Frequency Response of Filter  
1800fa  
15  
LT1800  
PACKAGE DESCRIPTION  
S5 Package  
5-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1635)  
0.62  
MAX  
0.95  
REF  
2.90 BSC  
(NOTE 4)  
1.22 REF  
1.50 – 1.75  
(NOTE 4)  
2.80 BSC  
1.4 MIN  
3.85 MAX 2.62 REF  
PIN ONE  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.30 – 0.45 TYP  
5 PLCS (NOTE 3)  
0.95 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
NOTE:  
S5 TSOT-23 0302 REV B  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
1800fa  
16  
LT1800  
PACKAGE DESCRIPTION  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.189 – .197  
(4.801 – 5.004)  
.045 .005  
NOTE 3  
.050 BSC  
7
5
8
6
.245  
MIN  
.160 .005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.030 .005  
TYP  
1
3
4
2
RECOMMENDED SOLDER PAD LAYOUT  
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
SO8 0303  
1800fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
17  
LT1800  
TYPICAL APPLICATION  
Low Power High Voltage Amplifier  
DC output voltage. When no signal is present, the op  
amp output sits at about mid-supply. Transistors Q1 and  
Q3 create bias voltages for Q2 and Q4, which are forced  
into a low quiescent current by degeneration resistors  
Certainmaterialsusedinopticalapplicationshavecharac-  
teristics that change due to the presence and strength of a  
DCelectriceld.Thevoltageappliedacrossthesematerials  
should be precisely controlled to maintain desired proper-  
ties, sometimes as high as 100’s of volts. The materials  
are not conductive and represent a capacitive load.  
R4 and R5. When a transient signal arrives at V , the op  
IN  
amp output moves and causes the current in Q2 or Q4  
to change depending on the signal polarity. The current,  
limited by the clipping of the LT1800 output and the 3kꢀ  
of total emitter degeneration, is mirrored to the output  
devices to drive the capacitive load. The LT1800 output  
then returns to near mid-supply, providing the precise DC  
outputvoltagetotheload.Theattentiontolimitthecurrent  
of the output devices minimizes power dissipation thus  
allowing for dense layout, and inherits better reliability.  
Figure 7 shows the time domain response of the amplifier  
providing a 200V output swing into a 100pF load.  
The circuit of Figure 6 shows the LT1800 used in an ampli-  
fier capable of a 250V output swing and providing precise  
130V  
5V  
10k  
4.99k  
1k  
Q6  
Q5  
0.1MF  
Q2  
Q1  
5V  
5V  
R4  
2k  
R6  
2k  
+
R2  
2k  
V
OUT  
LT1800  
MATERIAL UNDER  
R5  
2k  
R7  
2k  
ELECTRIC FIELD  
100pF  
V
IN  
2V/DIV  
Q3  
Q4  
V
IN  
R1  
2k  
A = V /V = –100  
V OUT IN  
C1  
39pF  
10k  
V
OUT  
50V/DIV  
130V SUPPLY I = 130MA  
Q
Q7  
Q8  
1k  
OUTPUT SWING = 128.8V  
OUTPUT OFFSET   20mV  
OUTPUT SHORT-CIRCUIT CURRENT   3mA  
10% TO 90% RISE TIME   8Ms, 200V OUTPUT STEP  
SMALL-SIGNAL BANDWIDTH   150kHz  
Q1, Q2, Q7, Q8: ON SEMI MPSA42  
Q3, Q4, Q5, Q6: ON SEMI MPSA92  
C2  
R3  
200k  
8pF  
4.99k  
150V  
–130V  
1800 F07  
10μs/DIV  
1800 F06  
Figure 6. Low Power, High Voltage Amplifier  
Figure 7. Large-Signal Time Domain  
Response of the Amplifier  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
0.1dB Gain Flatness to 150MHz, Shutdown  
LT1498/LT1499 Dual/Quad 10MHz, 6Vμs Rail-to-Rail Input and Output C-Load™ Op Amps High DC Accuracy, 475μV V , 4mV/°C Max Drift,  
LT1399  
Triple 300MHz Current Feedback Amplifier  
OS(MAX)  
Max Supply Current 2.2mA per Amp  
LT1630/LT1631 Dual/Quad 30MHz, 10V/μs Rail-to-Rail Input and Output Op Amps  
High DC Accuracy, 525μV V , 70mA Output Current,  
OS(MAX)  
Max Supply Current 4.4mA per Amplifier  
LT1801/LT1802 80MHz, 25V/μs Low Power Rail-to-Rail Input/Output Precision Op Amps  
LT1806/LT1807 Single/Dual 325MHz, 140V/μs Rail-to-Rail Input and Output Op Amps  
Dual/Quad Version of the LT1800  
High DC Accuracy, 550μV V  
, Low Noise 3.5nV/√Hz,  
OS(MAX)  
Low Distortion –80dB at 5MHz, Power-Down (LT1806)  
LT1809/LT1810 Single/Dual 180MHz Rail-to-Rail Input/Output Op Amps  
350V/μs Slew Rate, Low Distortion –t at 5MHz,  
Power-Down (LT1809)  
C-Load is a trademark of Linear Technology Corporation.  
1800fa  
LT 0709 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
18  
© LINEAR TECHNOLOGY CORPORATION 2009  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT1800CS5#TRM

LT1800 - 80MHz, 25V/&#181;s Low Power Rail-to-Rail Input and Output Precision Op Amp; Package: SOT; Pins: 5; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1800CS5#TRMPBF

暂无描述
Linear

LT1800CS5#TRPBF

LT1800 - 80MHz, 25V/&#181;s Low Power Rail-to-Rail Input and Output Precision Op Amp; Package: SOT; Pins: 5; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1800CS8

80MHz, 25V/ms Low Power Rail-to-Rail Input and Output Precision Op Amp
Linear

LT1800CS8#PBF

LT1800 - 80MHz, 25V/&#181;s Low Power Rail-to-Rail Input and Output Precision Op Amp; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1800CS8#TRPBF

LT1800 - 80MHz, 25V/&#181;s Low Power Rail-to-Rail Input and Output Precision Op Amp; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1800IS5

80MHz, 25V/ms Low Power Rail-to-Rail Input and Output Precision Op Amp
Linear

LT1800IS5#TR

LT1800 - 80MHz, 25V/&#181;s Low Power Rail-to-Rail Input and Output Precision Op Amp; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1800IS8

80MHz, 25V/ms Low Power Rail-to-Rail Input and Output Precision Op Amp
Linear

LT1800IS8#PBF

LT1800 - 80MHz, 25V/&#181;s Low Power Rail-to-Rail Input and Output Precision Op Amp; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1800IS8#TR

LT1800 - 80MHz, 25V/&#181;s Low Power Rail-to-Rail Input and Output Precision Op Amp; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1800IS8#TRPBF

暂无描述
Linear