LT1801CMS8#TRPBF [Linear]

LT1801 - Dual 80MHz, 25V/µs Low Power Rail-to-Rail Input and Output Precision Op Amps; Package: MSOP; Pins: 8; Temperature Range: 0°C to 70°C;
LT1801CMS8#TRPBF
型号: LT1801CMS8#TRPBF
厂家: Linear    Linear
描述:

LT1801 - Dual 80MHz, 25V/µs Low Power Rail-to-Rail Input and Output Precision Op Amps; Package: MSOP; Pins: 8; Temperature Range: 0°C to 70°C

放大器 光电二极管
文件: 总20页 (文件大小:346K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1801/LT1802  
Dual/Quad 80MHz, 25V/µs  
Low Power Rail-to-Rail Input and  
Output Precision Op Amps  
FEATURES  
DESCRIPTION  
TheLT®1801/LT1802aredual/quad,lowpower,highspeed  
n
Gain Bandwidth Product: 80MHz  
Input Common Mode Range Includes Both Rails  
Output Swings Rail-to-Rail  
Low Voltage Operation: Single or Split Supplies  
2.3V to 12.6V  
n
rail-to-rail input and output operational amplifiers with  
excellent DC performance. The LT1801/LT1802 feature  
reduced supply current, lower input offset voltage, lower  
input bias current and higher DC gain than other devices  
with comparable bandwidth.  
n
n
n
n
n
n
n
n
n
n
n
n
n
n
Low Quiescent Current: 2mA/Amplifier Max  
Input Offset Voltage: 350μV Max  
Input Bias Current: 250nA Max  
3mm × 3mm × 0.8mm DFN Package  
Large Output Current: 50mA Typ  
Low Voltage Noise: 8.5nV/√Hz Typ  
Slew Rate: 25V/μs Typ  
Common Mode Rejection: 105dB Typ  
Power Supply Rejection: 97dB Typ  
Open-Loop Gain: 85V/mV Typ  
Typically, the LT1801/LT1802 have an input offset voltage  
of less than 100μV, an input bias current of less than 50nA  
and an open-loop gain of 85 thousand.  
The LT1801/LT1802 have an input range that includes  
both supply rails and an output that swings within 20mV  
of either supply rail to maximize the signal dynamic range  
in low supply applications.  
The LT1801/LT1802 maintain their performance for sup-  
plies from 2.3V to 12.6V and are specified at 3V, 5V and  
5Vsupplies.Theinputscanbedrivenbeyondthesupplies  
without damage or phase reversal of the output.  
Operating Temperature Range: 40°C to 85°C  
LT1801 is Available in 8-Lead SO, MS8 and DFN  
Packages  
n
LT1802 is Available in 14-Lead SO Package  
The LT1801 is available in the MS8, SO-8 and the 3mm  
× 3mm × 0.8mm dual fine pitch leadless package (DFN)  
withthestandarddualopamppinout.TheLT1802features  
the standard quad op amp configuration and is available  
in the 14-pin plastic SO package. The LT1801/LT1802 can  
be used as plug-in replacements for many op amps to  
improve input/output range and performance.  
APPLICATIONS  
n
Low Voltage, High Frequency Signal Processing  
n
Driving A/D Converters  
n
Rail-to-Rail Buffer Amplifiers  
n
Active Filters  
Video Line Driver  
n
For a single version of these amplifiers, see the LT1800  
data sheet.  
L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation. All other  
trademarks are the property of their respective owners.  
1MHz Filter Frequency Response  
TYPICAL APPLICATION  
0
–20  
3V, 1MHz, 4th Order Butterworth Filter  
909Ω  
2.67k  
220pF  
47pF  
–40  
1.1k  
2.21k  
470pF  
22pF  
909Ω  
–60  
3V  
V
IN  
1.1k  
–80  
1/2 LT1801  
+
1/2 LT1801  
+
V
OUT  
–100  
–120  
V /2  
S
18012 TA01  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
18012 TA02  
18012fc  
1
LT1801/LT1802  
ABSOLUTE MAXIMUM RATINGS (Note 1)  
+
Total Supply Voltage (V to V ) .........................12.6V  
Storage Temperature Range .................. –65°C to 150°C  
Maximum Junction Temperature (DD Package).... 125°C  
Storage Temperature (DD Package)....... –65°C to 125°C  
Lead Temperature MSOP, SOIC  
S
S
Input Current (Note 2)......................................... 10mA  
Output Short-Circuit Duration (Note 3) ........... Indefinite  
Operating Temperature Range (Note 4) ..–40°C to 85°C  
Specified Temperature Range (Note 5) ....–40°C to 85°C  
Junction Temperature .......................................... 150°C  
(Soldering, 10 sec)............................................300°C  
PIN CONFIGURATION  
TOP VIEW  
+
OUT A  
–IN A  
+IN A  
1
2
3
4
8
7
6
5
V
TOP VIEW  
+
OUT B  
–IN B  
+IN B  
OUT A  
–IN A  
+IN A  
1
2
3
4
8 V  
A
7 OUT B  
6 –IN B  
5 +IN B  
B
V
V
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
DD PACKAGE  
8-LEAD (3mm × 3mm) PLASTIC DFN  
= 125°C, θ = 160°C/W, (Note 10)  
T
JMAX  
T
JMAX  
= 150°C, θ = 250°C/W, (Note 10)  
JA  
JA  
EXPOSED PAD INTERNALLY CONNECTED TO V .  
(PCB CONNECTION OPTIONAL)  
TOP VIEW  
OUT A  
–IN A  
+IN A  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
OUT D  
–IN D  
+IN D  
TOP VIEW  
A
B
D
C
+
OUT A  
–IN A  
+IN A  
1
2
3
4
8
7
6
5
V
+
V
V
OUT B  
–IN B  
+IN B  
+
+IN B  
–IN B  
+IN C  
–IN C  
OUT C  
+
V
OUT B  
8
S8 PACKAGE  
8-LEAD PLASTIC SO  
S PACKAGE  
14-LEAD PLASTIC SO  
= 150°C, θ = 160°C/W, (Note 10)  
T
JMAX  
= 150°C, θ = 190°C/W, (Note 10)  
T
JMAX  
JA  
JA  
ORDER INFORMATION  
LEAD FREE FINISH  
LT1801CDD#PBF  
LT1801IDD#PBF  
LT1801CMS8#PBF  
LT1801IMS8#PBF  
LT1801CS8#PBF  
LT1801IS8#PBF  
LT1802CS#PBF  
LT1802IS#PBF  
TAPE AND REEL  
PART MARKING*  
LAAM  
PACKAGE DESCRIPTION  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic SO  
OPERATING TEMPERATURE RANGE  
LT1801CDD#TRPBF  
LT1801IDD#TRPBF  
LT1801CMS8#TRPBF  
LT1801IMS8#TRPBF  
LT1801CS8#TRPBF  
LT1801IS8#TRPBF  
LT1802CS#TRPBF  
LT1802IS#TRPBF  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 85°C  
LAAM  
LTYR  
LTYS  
1801  
1801I  
8-Lead Plastic SO  
LT1802CS  
LT1802IS  
14-Lead Plastic SO  
14-Lead Plastic SO  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping  
container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
18012fc  
2
LT1801/LT1802  
ELECTRICAL CHARACTERISTICS  
TA = 25°C, VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply, unless otherwise noted.  
SYMBOL PARAMETER CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
V
V
V
V
= 0V  
75  
140  
175  
0.5  
350  
500  
800  
3
μV  
μV  
OS  
CM  
CM  
CM  
CM  
= 0V (MS8)  
= 0V (DD)  
μV  
= V  
mV  
S
ΔV  
Input Offset Shift  
V
= 0V to V – 1.5V  
20  
185  
μV  
OS  
CM  
S
Input Offset Voltage Match  
(Channel-to-Channel) (Note 9)  
V
V
V
= 0V  
= 0V (MS8)  
= 0V (DD)  
100  
150  
280  
650  
900  
1200  
μV  
μV  
μV  
CM  
CM  
CM  
I
I
Input Bias Current  
V
V
= 1V  
25  
250  
nA  
nA  
B
CM  
CM  
= V  
500  
1500  
S
Input Bias Current Match  
(Channel-to-Channel) (Note 9)  
V
V
= 1V  
= V  
S
25  
25  
350  
500  
nA  
nA  
CM  
CM  
Input Offset Current  
V
V
= 1V  
25  
25  
200  
200  
nA  
nA  
OS  
CM  
CM  
= V  
S
Input Noise Voltage  
0.1Hz to 10Hz  
f = 10kHz  
1.4  
8.5  
1
μV  
P-P  
e
Input Noise Voltage Density  
Input Noise Current Density  
Input Capacitance  
nV/√Hz  
pA/√Hz  
pF  
n
i
f = 10kHz  
n
C
A
2
IN  
Large-Signal Voltage Gain  
V = 5V, V = 0.5V to 4.5V, R = 1k at V /2  
35  
3.5  
30  
85  
8
85  
V/mV  
V/mV  
V/mV  
VOL  
S
O
L
S
V = 5V, V = 1V to 4V, R = 100Ω at V /2  
S
O
L
S
V = 3V, V = 0.5V to 2.5V, R = 1k at V /2  
S
O
L
S
CMRR  
PSRR  
Common Mode Rejection Ratio  
V = 5V, V = 0V to 3.5V  
85  
78  
105  
97  
dB  
dB  
S
CM  
V = 3V, V = 0V to 1.5V  
S
CM  
CMRR Match (Channel-to-Channel) (Note 9) V = 5V, V = 0V to 3.5V  
79  
72  
105  
97  
dB  
dB  
S
CM  
V = 3V, V = 0V to 1.5V  
S
CM  
Input Common Mode Range  
Power Supply Rejection Ratio  
0
V
V
dB  
dB  
V
S
V = 2.5V to 10V, V = 0V  
78  
72  
97  
97  
S
CM  
PSRR Match (Channel-to-Channel) (Note 9) V = 2.5V to 10V, V = 0V  
S
CM  
Minimum Supply Voltage (Note 6)  
Output Voltage Swing Low (Note 7)  
2.3  
2.5  
V
V
No Load  
16  
85  
225  
60  
200  
500  
mV  
mV  
mV  
OL  
OH  
I
I
= 5mA  
= 20mA  
SINK  
SINK  
Output Voltage Swing High (Note 7)  
Short-Circuit Current  
No Load  
SOURCE  
SOURCE  
18  
120  
450  
60  
250  
800  
mV  
mV  
mV  
I
I
= 5mA  
= 20mA  
I
I
V = 5V  
20  
20  
45  
40  
mA  
mA  
SC  
S
V = 3V  
S
Supply Current per Amplifier  
Gain Bandwidth Product  
Slew Rate  
1.6  
80  
2
mA  
MHz  
V/μs  
MHz  
dBc  
ns  
S
GBW  
SR  
Frequency = 2MHz  
V = 5V, A = 1, R = 1k, V = 1V to 4V  
40  
12.5  
25  
S
V
L
O
FPBW  
HD  
Full Power Bandwidth  
Harmonic Distortion  
Settling Time  
V = 5V, A = 1, V = 4V  
P-P  
2
S
V
O
V = 5V, A = 1, R = 1k, V = 2V , f = 500kHz  
–75  
250  
0.35  
0.4  
S
V
L
O
P-P C  
t
0.01%, V = 5V, V  
= 2V, A = 1, R = 1k  
STEP V L  
S
S
ΔG  
Differential Gain (NTSC)  
Differential Phase (NTSC)  
V = 5V, A = 2, R = 150Ω  
%
S
V
L
Δθ  
V = 5V, A = 2, R = 150Ω  
Deg  
S
V
L
18012fc  
3
LT1801/LT1802  
The l denotes the specifications which apply over the temperature range  
ELECTRICAL CHARACTERISTICS  
of 0°C < TA < 70°C. VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
l
l
V
Input Offset Voltage  
V
V
V
V
= 0V  
125  
140  
290  
0.6  
500  
650  
950  
3.5  
μV  
μV  
OS  
CM  
CM  
CM  
CM  
= 0V (MS8)  
= 0V (DD)  
μV  
= V  
mV  
S
l
ΔV  
Input Offset Shift  
V
= 0V to V – 1.5V  
30  
275  
μV  
OS  
CM  
S
l
l
l
Input Offset Voltage Match  
(Channel-to-Channel) (Note 9)  
V
V
V
= 0V  
= 0V (MS8)  
= 0V (DD)  
200  
200  
275  
850  
1250  
1500  
μV  
μV  
μV  
CM  
CM  
CM  
l
V
TC  
Input Offset Voltage Drift (Note 8)  
Input Bias Current  
1.5  
5
μV/°C  
OS  
l
l
I
V
V
= 1V  
50  
550  
300  
2000  
nA  
nA  
B
CM  
CM  
= V – 0.2V  
S
l
l
Input Bias Current Match  
(Channel-to-Channel) (Note 9)  
V
V
= 1V  
25  
25  
400  
600  
nA  
nA  
CM  
CM  
= V – 0.2V  
S
l
l
I
Input Offset Current  
V
V
= 1V  
25  
25  
300  
300  
nA  
nA  
OS  
CM  
CM  
= V – 0.2V  
S
l
l
l
A
VOL  
Large-Signal Voltage Gain  
V = 5V, V = 0.5V to 4.5V, R = 1k at V /2  
25  
2.5  
20  
75  
6
75  
V/mV  
V/mV  
V/mV  
S
O
L
S
V = 5V, V = 1V to 4V, R = 100Ω at V /2  
S
O
L
S
V = 3V, V = 0.5V to 2.5V, R = 1k at V /2  
S
O
L
S
l
l
CMRR  
Common Mode Rejection Ratio  
V = 5V, V = 0V to 3.5V  
82  
74  
101  
93  
dB  
dB  
S
CM  
V = 3V, V = 0V to 1.5V  
S
CM  
l
l
CMRR Match (Channel-to-Channel) (Note 9) V = 5V, V = 0V to 3.5V  
76  
68  
101  
93  
dB  
dB  
S
CM  
V = 3V, V = 0V to 1.5V  
S
CM  
l
l
l
l
Input Common Mode Range  
Power Supply Rejection Ratio  
0
V
V
dB  
dB  
V
S
PSRR  
V = 2.5V to 10V, V = 0V  
74  
68  
91  
91  
S
CM  
PSRR Match (Channel-to-Channel) (Note 9) V = 2.5V to 10V, V = 0V  
S
CM  
Minimum Supply Voltage (Note 6)  
Output Voltage Swing Low (Note 7)  
2.3  
2.5  
l
l
l
V
V
No Load  
18  
100  
300  
80  
225  
600  
mV  
mV  
mV  
OL  
OH  
I
I
= 5mA  
= 20mA  
SINK  
SINK  
l
l
l
Output Voltage Swing High (Note 7)  
Short-Circuit Current  
No Load  
SOURCE  
SOURCE  
25  
150  
600  
80  
300  
950  
mV  
mV  
mV  
I
I
= 5mA  
= 20mA  
l
l
I
I
V = 5V  
20  
15  
40  
30  
mA  
mA  
SC  
S
V = 3V  
S
l
l
l
Supply Current per Amplifier  
Gain Bandwidth Product  
Slew Rate  
2
2.8  
mA  
MHz  
V/μs  
S
GBW  
SR  
Frequency = 2MHz  
V = 5V, A = 1, R = 1k, V = 1V to 4V  
35  
11  
75  
22  
S
V
L
O
18012fc  
4
LT1801/LT1802  
The l denotes the specifications which apply over the temperature range  
ELECTRICAL CHARACTERISTICS  
of 40°C < TA < 85°C. VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply, unless otherwise noted. (Note 5)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
l
l
V
Input Offset Voltage  
V
V
V
V
= 0V  
175  
200  
320  
0.75  
700  
850  
1150  
4
μV  
μV  
OS  
CM  
CM  
CM  
CM  
= 0V (MS8)  
= 0V (DD)  
μV  
mV  
= V  
S
l
ΔV  
Input Offset Shift  
V
= 0V to V – 1.5V  
30  
300  
μV  
OS  
CM  
S
l
l
l
Input Offset Voltage Match  
(Channel-to-Channel) (Note 9)  
V
V
V
= 0V  
= 0V (MS8)  
= 0V (DD)  
200  
280  
320  
1250  
1600  
1800  
μV  
μV  
μV  
CM  
CM  
CM  
l
V
TC  
Input Offset Voltage Drift (Note 8)  
Input Bias Current  
1.5  
5
μV/°C  
OS  
l
l
I
50  
600  
400  
2250  
nA  
nA  
B
V
= V – 0.2V  
CM  
S
l
l
Input Bias Current Match  
(Channel-to-Channel) (Note 9)  
V
V
= 1V  
25  
25  
450  
700  
nA  
nA  
CM  
CM  
= V – 0.2V  
S
l
l
I
Input Offset Current  
V
V
= 1V  
25  
25  
350  
350  
nA  
nA  
OS  
CM  
CM  
= V – 0.2V  
S
l
l
l
A
VOL  
Large-Signal Voltage Gain  
V = 5V, V = 0.5V to 4.5V, R = 1k at V /2  
20  
2
17.5  
65  
6
65  
V/mV  
V/mV  
V/mV  
S
O
L
S
V = 5V, V = 1.5V to 3.5V, R = 100Ω at V /2  
S
O
L
S
V = 3V, V = 0.5V to 2.5V, R = 1k at V /2  
S
O
L
S
l
l
CMRR  
Common Mode Rejection Ratio  
V = 5V, V = 0V to 3.5V  
81  
73  
101  
93  
dB  
dB  
S
CM  
V = 3V, V = 0V to 1.5V  
S
CM  
l
l
CMRR Match (Channel-to-Channel) (Note 9) V = 5V, V = 0V to 3.5V  
75  
67  
101  
93  
dB  
dB  
S
CM  
V = 3V, V = 0V to 1.5V  
S
CM  
l
l
l
l
Input Common Mode Range  
Power Supply Rejection Ratio  
0
V
V
dB  
dB  
V
S
PSRR  
V = 2.5V to 10V, V = 0V  
73  
67  
90  
90  
S
CM  
PSRR Match (Channel-to-Channel) (Note 9) V = 2.5V to 10V, V = 0V  
S
CM  
Minimum Supply Voltage (Note 6)  
Output Voltage Swing Low (Note 7)  
V
= V = 0.5V  
2.3  
2.5  
CM  
O
l
l
l
V
V
No Load  
15  
105  
170  
90  
250  
400  
mV  
mV  
mV  
OL  
OH  
I
I
= 5mA  
= 10mA  
SINK  
SINK  
l
l
l
Output Voltage Swing High (Note 7)  
Short-Circuit Current  
No Load  
25  
150  
300  
90  
350  
700  
mV  
mV  
mV  
I
I
= 5mA  
= 10mA  
SOURCE  
SOURCE  
l
l
I
I
V = 5V  
12.5  
12.5  
30  
30  
mA  
mA  
SC  
S
V = 3V  
S
l
l
l
Supply Current per Amplifier  
Gain Bandwidth Product  
Slew Rate  
2.1  
70  
18  
3
mA  
MHz  
V/μs  
S
GBW  
SR  
Frequency = 2MHz  
V = 5V, A = 1, R = 1k, V = 1V to 4V  
25  
9
S
V
L
O
18012fc  
5
LT1801/LT1802  
ELECTRICAL CHARACTERISTICS TA = 25°C, VS = 5V, VCM = 0V, VOUT = 0V, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
V
V
V
V
= V  
S
150  
180  
260  
0.7  
600  
750  
1050  
3.5  
μV  
μV  
OS  
CM  
CM  
CM  
CM  
= V (MS8)  
S
μV  
= V (DD)  
S
S
+
mV  
= V  
+
ΔV  
Input Offset Shift  
V
= V to V – 1.5V  
30  
475  
μV  
OS  
CM  
S
S
Input Offset Voltage Match  
(Channel-to-Channel) (Note 9)  
V
V
V
= V  
150  
275  
325  
1000  
1300  
1600  
μV  
μV  
μV  
CM  
CM  
CM  
S
= V (MS8)  
S
= V (DD)  
S
+
I
I
Input Bias Current  
V
V
= V + 1V  
25  
250  
nA  
nA  
B
CM  
CM  
S
400  
1500  
= V  
S
Input Bias Current Match  
(Channel-to-Channel) (Note 9)  
V
V
= V + 1V  
20  
20  
350  
500  
nA  
nA  
CM  
CM  
S
S
+
= V  
Input Offset Current  
V
V
= V + 1V  
20  
20  
250  
250  
nA  
nA  
OS  
CM  
CM  
S
S
+
= V  
Input Noise Voltage  
0.1Hz to 10Hz  
f = 10kHz  
1.4  
8.5  
1
μV/  
P-P  
e
Input Noise Voltage Density  
Input Noise Current Density  
Input Capacitance  
nV/√Hz  
pA/√Hz  
pF  
n
i
f = 10kHz  
n
C
A
f = 100kHz  
2
IN  
Large-Signal Voltage Gain  
V
= –4V to 4V, R = 1k  
25  
2.5  
70  
7
V/mV  
V/mV  
VOL  
O
L
V = –2V to 2V, R = 100Ω  
O
L
CMRR  
PSRR  
Common Mode Rejection Ratio  
V
= V to 3.5V  
85  
109  
109  
dB  
dB  
V
CM  
S
CMRR Match (Channel-to-Channel) (Note 9) V = V to 3.5V  
79  
CM  
S
+
Input Common Mode Range  
V
V
S
S
+
Power Supply Rejection Ratio  
V
V
= 2.5V to 10V, V = 0V  
78  
72  
97  
97  
dB  
dB  
S
S
+
PSRR Match (Channel-to-Channel) (Note 9)  
Output Voltage Swing Low (Note 7)  
= 2.5V to 10V, V = 0V  
S
S
V
V
No Load  
15  
90  
225  
70  
200  
500  
mV  
mV  
mV  
OL  
OH  
I
I
= 5mA  
= 20mA  
SINK  
SINK  
Output Voltage Swing High (Note 7)  
No Load  
20  
130  
450  
80  
260  
850  
mV  
mV  
mV  
I
I
= 5mA  
= 20mA  
SOURCE  
SOURCE  
I
I
Short-Circuit Current  
Supply Current per Amplifier  
Gain Bandwidth Product  
Full Power Bandwidth  
Slew Rate  
25  
50  
1.8  
70  
mA  
mA  
MHz  
MHz  
V/μs  
dBc  
ns  
SC  
3
S
GBW  
FPBW  
SR  
Frequency = 2MHz  
V = 8V  
0.9  
20  
O
P-P  
A = 1, R = 1k, V = 4V, Measured at V = 2V  
V
L
O
O
HD  
Harmonic Distortion  
Settling Time  
A = 1, R = 1k, V = 2V , f = 500kHz  
–75  
300  
0.35  
0.2  
V
L
O
P-P C  
t
0.01%, V  
= 5V, A = 1V, R = 1k  
STEP V L  
S
ΔG  
Differential Gain (NTSC)  
Differential Phase (NTSC)  
A = 2, R = 150Ω  
%
V
L
Δθ  
A = 2, R = 150Ω  
deg  
V
L
18012fc  
6
LT1801/LT1802  
The l denotes the specifications which apply over the temperature range  
ELECTRICAL CHARACTERISTICS  
of 0°C < TA < 70°C. VS = 5V, VCM = 0V, VOUT = 0V, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
l
l
V
Input Offset Voltage  
V
V
V
V
= V  
S
200  
220  
290  
0.75  
800  
1000  
1300  
4
μV  
μV  
OS  
CM  
CM  
CM  
CM  
= V (MS8)  
S
μV  
= V (DD)  
S
S
+
mV  
= V  
+
l
ΔV  
Input Offset Shift  
V
= V to V – 1.5V  
45  
675  
μV  
OS  
CM  
S
S
l
l
l
Input Offset Voltage Match  
(Channel-to-Channel) (Note 9)  
V
V
V
= V  
240  
300  
340  
1500  
1700  
1950  
μV  
μV  
μV  
CM  
CM  
CM  
S
= V (MS8)  
S
= V (DD)  
S
l
V
TC  
Input Offset Voltage Drift (Note 8)  
Input Bias Current  
1.5  
5
μV/°C  
OS  
+
l
l
I
V
V
= V + 1V  
30  
450  
300  
2000  
nA  
nA  
B
CM  
CM  
S
= V – 0.2V  
S
+
l
l
Input Bias Current Match  
(Channel-to-Channel) (Note 9)  
V
V
= V + 1V  
25  
25  
400  
700  
nA  
nA  
CM  
CM  
S
= V – 0.2V  
S
+
l
l
I
Input Offset Current  
V
V
= V + 1V  
25  
25  
300  
300  
nA  
nA  
OS  
CM  
CM  
S
= V – 0.2V  
S
l
l
A
VOL  
Large-Signal Voltage Gain  
V
= –4V to 4V, R = 1k  
15  
2
55  
5
V/mV  
V/mV  
O
O
L
V = –2V to 2V, R = 100Ω  
L
l
l
l
l
l
CMRR  
Common Mode Rejection Ratio  
V
V
= V to 3.5V  
82  
105  
105  
dB  
dB  
V
CM  
CM  
S
CMRR Match (Channel-to-Channel) (Note 9)  
Input Common Mode Range  
= V to 3.5V  
76  
S
+
V
V
S
S
+
PSRR  
Power Supply Rejection Ratio  
V
V
= 2.5V to 10V, V = 0V  
74  
68  
91  
93  
dB  
dB  
S
S
+
PSRR Match (Channel-to-Channel) (Note 9)  
Output Voltage Swing Low (Note 7)  
= 2.5V to 10V, V = 0V  
S
S
l
l
l
V
V
No Load  
17  
105  
250  
80  
250  
575  
mV  
mV  
mV  
OL  
OH  
I
I
= 5mA  
= 20mA  
SINK  
SINK  
l
l
l
Output Voltage Swing High (Note 7)  
No Load  
25  
150  
600  
90  
310  
975  
mV  
mV  
mV  
I
I
= 5mA  
= 20mA  
SOURCE  
SOURCE  
l
l
l
l
I
I
Short-Circuit Current  
Supply Current per Amplifier  
Gain Bandwidth Product  
Slew Rate  
22.5  
45  
2.4  
70  
20  
mA  
mA  
SC  
4
S
GBW  
SR  
Frequency = 2MHz  
A = 1, R = 1k, V = 4V,  
MHz  
V/μs  
V
L
O
Measured at V = 2V  
O
The l denotes the specifications which apply over the temperature range of 40°C < TA < 85°C. VS = 5V, VCM = 0V, VOUT = 0V,  
unless otherwise noted. (Note 5)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
l
l
V
Input Offset Voltage  
V
V
V
V
= V  
S
350  
350  
350  
0.75  
1000  
1200  
1500  
5
μV  
μV  
OS  
CM  
CM  
CM  
CM  
= V (MS8)  
S
μV  
= V (DD)  
S
S
+
mV  
= V  
+
l
ΔV  
Input Offset Shift  
V
= V to V – 1.5V  
50  
750  
μV  
OS  
CM  
S
S
l
l
l
Input Offset Voltage Match  
(Channel-to-Channel) (Note 9)  
V
V
V
= V  
280  
380  
410  
1700  
1900  
2100  
μV  
μV  
μV  
CM  
CM  
CM  
S
= V (MS8)  
S
= V (DD)  
S
18012fc  
7
LT1801/LT1802  
The l denotes the specifications which apply over the temperature range  
ELECTRICAL CHARACTERISTICS  
of 40°C < TA < 85°C. VS = 5V, VCM = 0V, VOUT = 0V, unless otherwise noted. (Note 5)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
V
TC  
Input Offset Voltage Drift (Note 8)  
Input Bias Current  
1.5  
5
μV/°C  
OS  
+
l
l
I
V
V
= V + 1V  
50  
450  
400  
2250  
nA  
nA  
B
CM  
CM  
S
= V – 0.2V  
S
+
l
l
Input Bias Current Match  
(Channel-to-Channel) (Note 9)  
V
V
= V + 1V  
25  
25  
450  
700  
nA  
nA  
CM  
CM  
S
= V – 0.2V  
S
+
l
l
I
Input Offset Current  
V
V
= V + 1V  
25  
25  
350  
350  
nA  
nA  
OS  
CM  
CM  
S
= V – 0.2V  
S
l
l
A
VOL  
Large-Signal Voltage Gain  
V
= –4V to 4V, R = 1k  
12.5  
2
55  
5
V/mV  
V/mV  
O
O
L
V = –1V to 1V, R = 100Ω  
L
l
l
l
l
l
CMRR  
Common Mode Rejection Ratio  
V
V
= V to 3.5V  
81  
104  
104  
dB  
dB  
V
CM  
CM  
S
CMRR Match (Channel-to-Channel) (Note 9)  
Input Common Mode Range  
= V to 3.5V  
75  
S
+
V
V
S
S
+
PSRR  
Power Supply Rejection Ratio  
V
V
= 2.5V to 10V, V = 0V  
73  
67  
90  
90  
dB  
dB  
S
S
+
PSRR Match (Channel-to-Channel) (Note 9)  
Output Voltage Swing Low (Note 7)  
= 2.5V to 10V, V = 0V  
S
S
l
l
l
V
V
No Load  
20  
110  
180  
100  
275  
400  
mV  
mV  
mV  
OL  
OH  
I
I
= 5mA  
= 10mA  
SINK  
SINK  
l
l
l
Output Voltage Swing High (Note 7)  
No Load  
30  
150  
300  
110  
350  
700  
mV  
mV  
mV  
I
I
= 5mA  
= 10mA  
SOURCE  
SOURCE  
l
l
l
l
I
I
Short-Circuit Current  
Supply Current per Amplifier  
Gain Bandwidth Product  
Slew Rate  
12.5  
30  
2.6  
65  
15  
mA  
mA  
SC  
4.5  
S
GBW  
SR  
Frequency = 2MHz  
A = 1, R = 1k, V = 4V,  
MHz  
V/μs  
V
L
O
Measured at V = 2V  
O
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 6: Minimum supply voltage is guaranteed by power supply rejection  
ratio test.  
Note 7: Output voltage swings are measured between the output and  
power supply rails.  
Note 2: The inputs are protected by back-to-back diodes. If the differential  
input voltage exceeds 1.4V, the input current should be limited to less than  
10mA. It is not 100% tested.  
Note 3: A heat sink may be required to keep the junction temperature  
below the absolute maximum rating when the output is shorted  
indefinitely.  
Note 8: This parameter is not 100% tested.  
Note 9: Matching parameters are the difference between amplifiers A  
and D and between B and C on the LT1802; between the two amplifiers  
on the LT1801.  
Note 10: Thermal resistance (θ ) varies with the amount of PC board  
JA  
metal connected to the package. The specified values are for short  
traces connected to the leads. If desired, the thermal resistance can be  
substantially reduced by connecting Pin 4 of the SO-8 and MS8, Pin 11 of  
Note 4: The LT1801C/LT1801I and LT1802C/LT1802I are guaranteed  
functional over the temperature range of 40°C to 85°C.  
Note 5: The LT1801C/LT1802C are guaranteed to meet specified  
performance from 0°C to 70°C. The LT1801C/LT1802C are designed,  
characterized and expected to meet specified performance from  
–40°C to 85°C but are not tested or QA sampled at these temperatures.  
The LT1801I/LT1802I are guaranteed to meet specified performance from  
–40°C to 85°C.  
the SO-14 or the underside metal of the DD package to a larger metal area  
(V trace).  
S
18012fc  
8
LT1801/LT1802  
TYPICAL PERFORMANCE CHARACTERISTICS  
VOS Distribution, VCM = 0V  
(PNP Stage)  
V
OS Distribution, VCM = 5V  
(NPN Stage)  
Supply Current vs Supply Voltage  
35  
30  
25  
20  
15  
10  
5
45  
40  
35  
30  
25  
20  
15  
10  
5
4
3
2
1
0
V
V
= 5V, 0V  
CM  
V
V
= 5V, 0V  
CM  
PER AMPLIFIER  
S
S
= 0V  
= 5V  
T
= 125°C  
A
T
A
= 25°C  
A
T
= –55°C  
0
–250  
0
0
1
2
3
4
5
6
7
8
9
10 11 12  
–150  
–50  
250  
–2000 –1200  
–400  
2000  
50  
150  
400  
1200  
INPUT OFFSET VOLTAGE (μV)  
INPUT OFFSET VOLTAGE (μV)  
TOTAL SUPPLY VOLTAGE (V)  
18012 G03  
18012 G01  
18012 G02  
Offset Voltage  
vs Input Common Mode Voltage  
Input Bias Current  
vs Common Mode Voltage  
Input Bias Current  
vs Temperature  
500  
400  
1.0  
0.8  
0.8  
V
= 5V, 0V  
V
= 5V, 0V  
S
S
T
A
= –55°C  
TYPICAL PART  
T
T
T
= 25°C  
A
A
A
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
= 125°C  
= –55°C  
NPN ACTIVE  
300  
0.6  
V
= 5V, 0V  
CM  
S
200  
0.4  
V
= 5V  
T
A
= 25°C  
100  
0.2  
0
0
–100  
–200  
–300  
–400  
–500  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
PNP ACTIVE  
= 5V, 0V  
T
A
= 125°C  
2
V
S
CM  
V
= 1V  
–0.1  
0
1
3
4
5
–1  
0
1
2
3
4
5
6
–60 –40 –20  
0
20  
40  
60  
80  
INPUT COMMON MODE VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
TEMPERATURE (°C)  
18012 G04  
18012 G05  
18012 G06  
Output Saturation Voltage  
vs Load Current (Output Low)  
Output Saturation Voltage  
vs Load Current (Output High)  
10  
1
10  
1
V
= 5V, 0V  
V
= 5V, 0V  
S
S
0.1  
0.1  
T
= 125°C  
= –55°C  
A
T
A
= 125°C  
A
0.01  
0.001  
0.01  
0.001  
T
= 25°C  
1
T
= –55°C  
T
A
= 25°C  
1
T
A
A
0.01  
0.1  
10  
100  
0.01  
0.1  
10  
100  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
18012 G07  
18012 G08  
18012fc  
9
LT1801/LT1802  
TYPICAL PERFORMANCE CHARACTERISTICS  
Output Short-Circuit Current  
vs Power Supply Voltage  
Minimum Supply Voltage  
Open-Loop Gain  
70  
60  
50  
40  
30  
20  
10  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0.6  
0.4  
2000  
1600  
1200  
800  
T
= 25°C  
V
= 3V, 0V  
TO GND  
A
A
S
L
R
T
= –55°C  
A
T
= 125°C  
0.2  
T
= –55°C  
SINKING  
A
A
400  
R
= 1k  
L
T
= 25°C  
A
0
0
–400  
–800  
–1200  
–1600  
–2000  
T
= –55°C  
= 125°C  
SOURCING  
R
= 100Ω  
–0.2  
L
T
= 125°C  
A
T
A
–0.4  
–0.6  
T
= 25°C  
A
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
0
0.5  
1.5  
2
2.5  
3
1
POWER SUPPLY VOLTAGE ( V)  
TOTAL SUPPLY VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
18012 G10  
18012 G09  
18012 G11  
Open-Loop Gain  
Open-Loop Gain  
Offset Voltage vs Output Current  
2000  
1600  
1200  
800  
2000  
1600  
1200  
800  
2.0  
1.5  
V
S
= 5V  
V
= 5V, 0V  
TO GND  
V
=
5V  
R TO GND  
L
S
L
S
R
1.0  
T
= –55°C  
A
0.5  
400  
400  
R
= 1k  
R
= 1k  
L
L
0
0
0
–400  
–800  
–1200  
–1600  
–2000  
–400  
–800  
–1200  
–1600  
–2000  
–0.5  
–1.0  
–1.5  
–2.0  
T
= 25°C  
A
T
= 125°C  
A
R
= 100Ω  
L
R
= 100Ω  
L
0
15  
0
0.5  
1
1.5  
OUTPUT VOLTAGE (V)  
2
2.5  
3
3.5  
4
4.5  
5
–5 –4 –3 –2 –1  
0
1
2
3
4
5
–60 –45 –30 –15  
30 45 60  
OUTPUT VOLTAGE (V)  
OUTPUT CURRENT (mA)  
18012 G12  
18012 G13  
18012 G14  
Warm-Up Drift vs Time  
Input Noise Voltage vs Frequency  
60  
120  
110  
100  
90  
V
S
= 5V, 0V  
V
S
=
5V  
50  
40  
NPN ACTIVE  
= 4.25V  
V
=
2.5V  
1.5V  
S
80  
30  
20  
V
CM  
70  
60  
V
S
=
10  
0
PNP ACTIVE  
= 2.5V  
50  
V
CM  
TYPICAL PART  
40  
0.01  
0.1  
1
FREQUENCY (kHz)  
10  
100  
20  
40  
80 100 120 140  
0
60  
TIME AFTER POWER-UP (SECONDS)  
18012 G16  
18012 G15  
18012fc  
10  
LT1801/LT1802  
TYPICAL PERFORMANCE CHARACTERISTICS  
Gain Bandwidth and Phase  
Margin vs Supply Voltage  
Input Current Noise vs Frequency  
0.1Hz to 10Hz Input Voltage  
3.0  
2000  
1000  
0
100  
90  
80  
70  
60  
V
= 5V, 0V  
V
S
= 5V, 0V  
T = 25°C  
A
S
2.5  
2.0  
GAIN BANDWIDTH  
PRODUCT  
PNP ACTIVE  
= 2.5V  
60  
50  
40  
30  
20  
1.5  
1.0  
V
CM  
PHASE MARGIN  
–1000  
–2000  
NPN ACTIVE  
= 4.25V  
0.5  
0
V
CM  
0.01  
0.1  
1
FREQUENCY (kHz)  
10  
100  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
TIME (SECONDS)  
TOTAL SUPPLY VOLTAGE (V)  
18012 G17  
18012 G18  
18012 G19  
Gain Bandwidth and Phase  
Margin vs Temperature  
Slew Rate vs Temperature  
Gain and Phase vs Frequency  
100  
90  
80  
70  
60  
50  
70  
60  
50  
40  
100  
80  
35  
A
R
R
= –1  
G
= 1k  
V
F
L
GBW PRODUCT  
2.5V  
= R = 1k  
V
=
V
=
2.5V  
S
S
PHASE  
30  
25  
60  
GBW PRODUCT  
5V  
40  
V
=
S
30  
20  
20  
0
V
=
5V  
S
GAIN  
PHASE MARGIN  
2.5V  
60  
50  
40  
30  
20  
10  
V
=
S
10  
0
–20  
–40  
–60  
–80  
–100  
20  
15  
10  
PHASE MARGIN  
5V  
V
S
=
–10  
–20  
–30  
V
V
=
=
2.5V  
5V  
S
S
–55 –35 –15  
5
25 45 65 85 105 125  
0.01  
0.1  
1
10  
100 300  
–55 –35 –15  
5
25 45 65 85 105 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FREQUENCY (MHz)  
18012 G22  
18012 G21  
18012 G20  
Gain vs Frequency (AV = 1)  
Gain vs Frequency (AV = 2)  
12  
9
18  
15  
12  
9
R
L
C
= 1k  
= 10pF  
= 2  
R
C
V
= 1k  
= 10pF  
= 1  
L
L
L
V
A
A
6
3
V
= 2.5V  
S
0
6
V
=
2.5V  
V
= 5V  
S
S
–3  
–6  
–9  
–12  
3
V
= 5V  
S
0
–3  
–6  
0.1  
1
10  
100 300  
0.1  
1
10  
100 300  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
18012 G23  
18012 G24  
18012fc  
11  
LT1801/LT1802  
TYPICAL PERFORMANCE CHARACTERISTICS  
Common Mode Rejection Ratio  
vs Frequency  
Power Supply Rejection Ratio  
vs Frequency  
Output Impedance vs Frequency  
600  
100  
120  
90  
80  
70  
60  
V
= 5V, 0V  
= 25°C  
V
= 5V, 0V  
V
= 2.5V  
S
A
S
S
T
100  
80  
NEGATIVE  
SUPPLY  
POSITIVE  
SUPPLY  
A
V
= 10  
10  
1
50  
40  
A
= 1  
V
60  
40  
30  
20  
A
= 2  
V
0.1  
10  
0.01  
20  
0
0
0.001  
–10  
0.001  
0.1  
1
10  
FREQUENCY (MHz)  
100  
500  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
18012 G25  
18012 G26  
18012 G27  
Series Output Resistor  
vs Capacitive Load  
Series Output Resistor  
vs Capacitive Load  
Distortion vs Frequency  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
–40  
–50  
V
A
V
= 5V, 0V  
= 1  
V
A
= 5V, 0V  
= 1  
V
S
A
V
= 5V, 0V  
= 2  
S
V
S
V
= 2V  
OUT  
P-P  
R
OS  
= 10Ω  
–60  
R
L
= 150Ω, 2ND  
R
= 1k, 2ND  
L
–70  
R
L
= 150Ω, 3RD  
R
OS  
= 20Ω  
R
= 10Ω  
OS  
–80  
R
= 20Ω  
OS  
–90  
–100  
R
OS  
= R = 50Ω  
L
R
L
= 1k, 3RD  
R
OS  
= R = 50Ω  
L
0
0
–110  
10  
100  
1000  
10000  
10  
100  
1000  
10000  
0.01  
0.1  
1
10  
CAPACITIVE LOAD (pF)  
CAPACITIVE LOAD (pF)  
FREQUENCY (MHz)  
18012 G28  
18012 G29  
18012 G30  
Maximum Undistorted Output  
Signal vs Frequency  
Distortion vs Frequency  
–40  
–50  
4.6  
V
A
V
= 5V, 0V  
= 2  
S
V
4.5  
4.4  
4.3  
4.2  
4.1  
4.0  
3.9  
= 2V  
OUT  
P-P  
R
= 1k,  
L
–60  
2ND  
R
L
= 150Ω, 2ND  
A
= 2  
V
R
3RD  
= 150Ω,  
–70  
L
A
= –1  
V
–80  
–90  
–100  
V
= 5V, 0V  
= 1k  
S
L
R
= 1k, 3RD  
L
R
–110  
0.01  
0.1  
1
10  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
FREQUENCY (MHz)  
18012 G32  
18012 G31  
18012fc  
12  
LT1801/LT1802  
TYPICAL PERFORMANCE CHARACTERISTICS  
5V Small-Signal Response  
5V Large-Signal Response  
50mV/DIV  
0V  
1V/DIV  
0V  
V
V
R
= 5V, 0V  
= 1  
= 1k  
50ns/DIV  
18012 G34  
S
A
L
V
V
R
= 5V, 0V  
= 1  
= 1k  
100ns/DIV  
18012 G33  
S
A
L
5V Small-Signal Response  
5V Large-Signal Response  
50mV/DIV  
0V  
2V/DIV  
0V  
V
A
=
5V  
50ns/DIV  
18012 G36  
V
A
=
5V  
200ns/DIV  
18012 G35  
S
V
S
V
= 1  
= 1  
R
= 1k  
R
= 1k  
L
L
Output Overdriven Recovery  
V
IN  
1V/DIV  
0V  
V
OUT  
2V/DIV  
V
V
R
= 5V, 0V  
= 2  
= 1k  
100ns/DIV  
18012 G37  
S
A
L
18012fc  
13  
LT1801/LT1802  
APPLICATIONS INFORMATION  
Circuit Description  
ApairofcomplementarycommonemitterstagesQ14/Q15  
that enable the output to swing from rail to rail constructs  
the output stage. The capacitors C2 and C3 form the  
local feedback loops that lower the output impedance at  
high frequency. These devices are fabricated on Linear  
Technology’s proprietary high speed complementary  
bipolar process.  
The LT1801/LT1802 have an input and output signal range  
that covers from the negative power supply to the positive  
powersupply.Figure1depictsasimplifiedschematicofthe  
amplifier. The input stage is comprised of two differential  
amplifiers, a PNP stage Q1/Q2 and an NPN stage Q3/Q4  
that are active over the different ranges of common mode  
input voltage. The PNP differential pair is active between  
the negative supply to approximately 1.2V below the posi-  
tive supply. As the input voltage moves closer toward the  
Power Dissipation  
The LT1801 amplifier is offered in a small package, SO-8,  
whichhasathermalresistanceof190°C/W,θ .Sothereis  
positivesupply,thetransistorQ5willsteerthetailcurrentI  
JA  
1
aneedtoensurethatthedie’sjunctiontemperatureshould  
tothecurrentmirrorQ6/Q7,activatingtheNPNdifferential  
pair and the PNP pair becomes inactive for the rest of the  
input common mode range up to the positive supply. Also  
attheinputstage,devicesQ17toQ19acttocancelthebias  
current of the PNP input pair. When Q1-Q2 are active, the  
current in Q16 is controlled to be the same as the current  
in Q1-Q2, thus the base current of Q16 is nominally equal  
to the base current of the input devices. The base current  
of Q16 is then mirrored by devices Q17-Q19 to cancel the  
base current of the input devices Q1-Q2.  
not exceed 150°C. Junction temperature T is calculated  
J
from the ambient temperature T , power dissipation P  
A
D
and thermal resistance θ :  
JA  
T = T + (P • θ )  
J
A
D
JA  
The power dissipation in the IC is the function of the sup-  
ply voltage, output voltage and the load resistance. For a  
given supply voltage, the worst-case power dissipation  
P
DMAX  
occurs at the maximum supply current and the  
+
V
R3  
R4  
R5  
+
V
V
Q12  
+
+
D1  
ESDD1  
ESDD2  
Q11  
Q13  
Q15  
I
I
1
2
C2  
+IN  
–IN  
+
D6  
D5  
D8  
D7  
Q5  
V
BIAS  
I
3
D2  
OUT  
C
C
V
Q4 Q3  
Q1 Q2  
D3  
BUFFER  
AND  
ESDD4  
ESDD3  
OUTPUT BIAS  
Q10  
V
+
V
D4  
Q9  
R1  
Q8  
R2  
Q16  
C1  
Q17  
Q18  
Q14  
Q7  
Q6  
Q19  
V
18012 F01  
Figure 1. LT1801/LT1802 Simplified Schematic Diagram  
18012fc  
14  
LT1801/LT1802  
APPLICATIONS INFORMATION  
output voltage is at half of either supply voltage (or the  
Output  
maximum swing is less than 1/2 supply voltage). P  
is given by:  
DMAX  
The LT1801/LT1802 can deliver a large output current,  
so the short-circuit current limit is set around 50mA to  
prevent damage to the device. Attention must be paid to  
keep the junction temperature of the IC below the absolute  
maximum rating of 150°C (refer to the Power Dissipation  
section) when the output is continuously short circuited.  
The output of the amplifier has reverse-biased diodes  
connected to each supply. If the output is forced beyond  
either supply, unlimited current will flow through these  
diodes. If the current is transient and limited to several  
hundredmAandthetotalsupplyvoltageislessthan12.6V,  
the absolute maximum rating, no damage will occur to  
the device.  
2
P
DMAX  
= (V • I  
) + (V /2) /R  
S
SMAX  
S
L
Example:AnLT1801inanSO-8packageoperatingon 5V  
supplies and driving a 50Ω load, the worst-case power  
dissipation is given by:  
2
P
DMAX  
= (10 • 4.5mA) + (2.5) /50 = 0.045 + 0.125  
= 0.17W  
Ifbothamplifiersareloadedsimultaneously, thenthetotal  
power dissipation is 0.34W.  
The maximum ambient temperature that the part is  
allowed to operate is:  
Overdrive Protection  
T = T – (P • 190°C/W)  
DMAX  
A
J
When the input voltage exceeds the power supplies, two  
pairs of crossing diodes D1 to D4 will prevent the output  
from reversing polarity. If the input voltage exceeds either  
power supply by 700mV, diode D1/D2 or D3/D4 will turn  
on to keep the output at the proper polarity. For the phase  
reversal protection to perform properly, the input current  
must be limited to less than 10mA. If the amplifier is  
severely overdriven, an external resistor should be used  
to limit the overdrive current.  
= 150°C – (0.34W • 190°C/W) = 85°C  
Input Offset Voltage  
The offset voltage will change depending upon which  
input stage is active. The PNP input stage is active from  
the negative supply rail to 1.2V from the positive supply  
rail, then the NPN input stage is activated for the remain-  
ing input range up to the positive supply rail during which  
the PNP stage remains inactive. The offset voltage is  
typically less than 75μV in the range that the PNP input  
stage is active.  
The LT1801/LT1802’s input stages are also protected  
against a large differential input voltage of 1.4V or higher  
by a pair of back-back diodes D5/D8 to prevent the emit-  
ter-base breakdown of the input transistors. The current  
in these diodes should be limited to less than 10mA when  
they are active. The worst-case differential input voltage  
usually occurs when the input is driven while the output  
is shorted to ground in a unity gain configuration. In ad-  
dition, the amplifier is protected against ESD strikes up  
to 3kV on all pins by a pair of protection diodes on each  
pin that are connected to the power supplies as shown  
in Figure 1.  
Input Bias Current  
The LT1801/LT1802 employ a patent-pending technique  
to trim the input bias current to less than 250nA for the  
input common mode voltage of 0.2V above negative sup-  
ply rail to 1.2V of the positive rail. The low input offset  
voltage and low input bias current of the LT1801/LT1802  
provide precision performance especially for high source  
impedance applications.  
18012fc  
15  
LT1801/LT1802  
APPLICATIONS INFORMATION  
Capacitive Load  
Feedback Components  
The LT1801/LT1802 are optimized for high bandwidth,  
low power and precision applications. They can drive a  
capacitive load of about 75pF in a unit y-gain configuration,  
and more for higher gain. When driving a larger capaci-  
tive load, a resistor of 10Ω to 50Ω should be connected  
betweentheoutputandthecapacitiveloadtoavoidringing  
or oscillation. The feedback should still be taken from the  
output so that the resistor will isolate the capacitive load  
toensurestability. Graphsoncapacitiveloadsindicatethe  
transientresponseoftheamplifierwhendrivingcapacitive  
load with a specified series resistor.  
Whenfeedbackresistorsareusedtosetupgain,caremust  
be taken to ensure that the pole formed by the feedback  
resistors and the total capacitance at the inverting input  
doesnotdegradestability.Forinstance,theLT1801/LT1802  
in a noninverting gain of 2, setup with two 5k resistors  
and a capacitance of 5pF (part plus PC board) will prob-  
ably oscillate. The pole is formed at 12.7MHz that will  
reduce phase margin by 57 degrees when the crossover  
frequency of the amplifier is around 20MHz. A capacitor  
of 5pF or higher connected across the feedback resistor  
will eliminate any ringing or oscillation.  
TYPICAL APPLICATIONS  
Single 3V Supply, 1MHz, 4th Order Butterworth Filter  
Fast 1A Current Sense Amplifier  
The circuit shown on the first page of this data sheet  
makes use of the low voltage operation and the wide  
bandwidth of the LT1801 to create a DC accurate 1MHz  
4th order lowpass filter powered from a 3V supply. The  
amplifiers are configured in the inverting mode for the  
lowest distortion and the output can swing rail-to-rail for  
maximum dynamic range. Also on the first page of this  
data sheet, the graph displays the frequency response of  
the filter. Stopband attenuation is greater than 100dB at  
Asimple,fastcurrentsenseamplifierinFigure2issuitable  
forquicklyrespondingtoout-of-rangecurrents.Thecircuit  
amplifies the voltage across the 0.1Ω sense resistor by  
a gain of 20, resulting in a conversion gain of 2V/A. The  
–3dBbandwidthofthecircuitis4MHz,andtheuncertainty  
due to V and I is less than 4mA. The minimum output  
OS  
B
voltageis60mV,correspondingto30mA.Thelarge-signal  
response of the circuit is shown in Figure 3.  
50MHz. With a 2.25V , 250kHz input signal, the filter  
P-P  
has harmonic distortion products of less than 85dBc.  
Worst case output offset voltage is less than 6mV.  
I
L
3V  
0A TO 1A  
52.3Ω  
+
V
OUT  
1/2 LT1801  
0V TO 2V  
0.1Ω  
500mV/DIV  
0V  
1k  
52.3Ω  
18012 F02  
V
= 2 • I  
= 4MHz  
OUT  
L
f
–3dB  
UNCERTAINTY DUE TO V  
I < 4mA  
B
V
S
= 3V  
50ns/DIV  
18012 F03  
OS,  
Figure 2. Fast 1A Current Sense  
Figure 3. Current Sense Amplifier Large-Signal Response  
18012fc  
16  
LT1801/LT1802  
TYPICAL APPLICATIONS  
Single Supply 1A Laser Driver Amplifier  
bias current allows it to control the current that flows  
through the laser diode precisely. The overall circuit is  
a 1A per volt V-to-I converter. Frequency compensation  
components R2 and C1 are selected for fast but zero-  
overshoot time domain response to avoid overcurrent  
conditions in the laser. The time domain response of this  
circuit, measured at R1 and given a 500mV 230ns input  
pulse, is shown in Figure 5. While the circuit is capable  
of 1A operation, the laser diode and the transistor are  
thermally limited due to power dissipation, so they must  
be operated at low duty cycles.  
Figure 4 shows the LT1801 used in a 1A laser driver ap-  
plication. One of the reasons the LT1801 is well suited to  
this control task is that its 2.3V operation ensures that it  
will be awaked during power-up and operated before the  
circuit can otherwise cause significant current to flow in  
the 2.1V threshold laser diode. Driving the noninverting  
input of the LT1801 to a voltage V will control the turning  
IN  
on of the high current NPN transistor, FMMT619 and the  
laser diode. A current equal to V /R1 flows through the  
IN  
laser diode. The LT1801 low offset voltage and low input  
5V  
+
V
IN  
R3  
DO NOT FLOAT  
Q1  
ZETEX  
FMMT619  
10Ω  
1/2 LT1801  
C1  
39pF  
IR LASER  
INFINEON  
SFH495  
R2  
330Ω  
R1  
1Ω  
18012 F04  
Figure 4. Single Supply 1A Laser Driver Amplifier  
100mA/DIV  
50ns/DIV  
18012 F05  
Figure 5. 500mA Pulse Response  
18012fc  
17  
LT1801/LT1802  
PACKAGE DESCRIPTION  
DD Package  
8-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1698)  
R = 0.115  
0.38 ± 0.10  
TYP  
5
8
0.675 ±0.05  
3.5 ±0.05  
2.15 ±0.05 (2 SIDES)  
1.65 ±0.05  
3.00 ±0.10  
(4 SIDES)  
1.65 ± 0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(NOTE 6)  
PACKAGE  
OUTLINE  
(DD) DFN 1203  
4
1
0.25 ± 0.05  
0.25 ± 0.05  
0.75 ±0.05  
0.200 REF  
0.50 BSC  
0.50  
BSC  
2.38 ±0.05  
(2 SIDES)  
2.38 ±0.10  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-1)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON TOP AND BOTTOM OF PACKAGE  
MS8 Package  
8-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1660 Rev F)  
0.889 ± 0.127  
(.035 ± .005)  
5.23  
(.206)  
MIN  
3.20 – 3.45  
(.126 – .136)  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 3)  
0.52  
(.0205)  
REF  
0.65  
(.0256)  
BSC  
0.42 ± 0.038  
(.0165 ± .0015)  
8
7 6  
5
TYP  
RECOMMENDED SOLDER PAD LAYOUT  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 4)  
4.90 ± 0.152  
(.193 ± .006)  
DETAIL “A”  
0.254  
(.010)  
0° – 6° TYP  
GAUGE PLANE  
1
2
3
4
0.53 ± 0.152  
(.021 ± .006)  
1.10  
(.043)  
MAX  
0.86  
(.034)  
REF  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.22 – 0.38  
0.1016 ± 0.0508  
(.009 – .015)  
(.004 ± .002)  
0.65  
(.0256)  
BSC  
TYP  
MSOP (MS8) 0307 REV F  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
18012fc  
18  
LT1801/LT1802  
PACKAGE DESCRIPTION  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.189 – .197  
(4.801 – 5.004)  
.045 ±.005  
NOTE 3  
.050 BSC  
7
5
8
6
.245  
MIN  
.160 ±.005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.030 ±.005  
TYP  
1
3
4
2
RECOMMENDED SOLDER PAD LAYOUT  
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
SO8 0303  
S Package  
14-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.337 – .344  
.045 ±.005  
(8.560 – 8.738)  
.050 BSC  
NOTE 3  
14  
N
13  
12  
11  
10  
9
8
N
1
.245  
MIN  
.160 ±.005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
2
3
N/2  
N/2  
7
.030 ±.005  
TYP  
RECOMMENDED SOLDER PAD LAYOUT  
1
2
3
4
5
6
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0° 8° TYP  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
.016 – .050  
(0.406 – 1.270)  
S14 0502  
NOTE:  
INCHES  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
1. DIMENSIONS IN  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
18012fc  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However,noresponsibilityisassumedforitsuse.LinearTechnologyCorporationmakesnorepresenta-  
t ion t h a t t he in ter c onne c t ion o f i t s cir cui t s a s de s cr ib e d her ein w ill no t in fr inge on ex is t ing p a ten t r igh t s.  
19  
LT1801/LT1802  
TYPICAL APPLICATION  
Low Power High Voltage Amplifier  
amp output sits at about mid-supply. Transistors Q1 and  
Q3 create bias voltages for Q2 and Q4, which are forced  
into a low quiescent current by degeneration resistors  
Certainmaterialsusedinopticalapplicationshavecharac-  
teristics that change due to the presence and strength of a  
DCelectriceld.Thevoltageappliedacrossthesematerials  
shouldbepreciselycontrolledtomaintaindesiredproper-  
ties, sometimes as high as 100’s of volts. The materials  
are not conductive and represent a capacitive load.  
R4 and R5. When a transient signal arrives at V , the op  
IN  
amp output moves and causes the current in Q2 or Q4  
to change depending on the signal polarity. The current,  
limited by the clipping of the LT1801 output and the 3kΩ  
of total emitter degeneration, is mirrored to the output  
devices to drive the capacitive load. The LT1801 output  
then returns to near mid-supply, providing the precise DC  
outputvoltagetotheload.Theattentiontolimitthecurrent  
of the output devices minimizes power dissipation thus  
allowing for dense layout, and inherits better reliability.  
Figure 7 shows the time domain response of the amplifier  
providing a 200V output swing into a 100pF load.  
The circuit of Figure 6 shows the LT1801 used in an ampli-  
fier capable of a 250V output swing and providing precise  
DC output voltage. When no signal is present, the op  
130V  
5V  
10k  
4.99k  
1k  
Q6  
Q5  
0.1μF  
Q2  
Q1  
5V  
5V  
R4  
2k  
R6  
2k  
+
R2  
2k  
V
OUT  
MATERIAL UNDER  
ELECTRIC FIELD  
100pF  
1/2 LT1801  
V
IN  
2V/DIV  
R5  
2k  
R7  
2k  
Q3  
Q4  
V
IN  
V
OUT  
50V/DIV  
R1  
2k  
A
V
= V /V = –100  
OUT IN  
C1  
39pF  
10k  
130V SUPPLY I = 130μA  
OUTPUT SWING = 128.8V  
OUTPUT OFFSET 20mV  
OUTPUT SHORT-CIRCUIT CURRENT 3mA  
10% TO 90% RISE TIME 8μs, 200V OUTPUT STEP  
SMALL-SIGNAL BANDWIDTH 150kHz  
Q1, Q2, Q7, Q8: ON SEMI MPSA42  
Q3, Q4, Q5, Q6: ON SEMI MPSA92  
Q
Q7  
Q8  
1k  
C2  
R3  
200k  
8pF  
4.99k  
150V  
–130V  
10μs/DIV  
18012 F07  
18012 F06  
Figure 7. Large-Signal Time Domain  
Response of the Amplifier  
Figure 6. Low Power, High Voltage Amplifier  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
LT1399  
Triple 300MHz Current Feedback Amplifier  
0.1dB Gain Flatness to 150MHz, Shutdown  
LT1498/LT1499 Dual/Quad 10MHz, 6V/μs Rail-to-Rail Input and Output C-Load Op Amps High DC Accuracy, 475μV V  
, 4μV/°C Max Drift  
OS(MAX)  
High DC Accuracy, 525μV V  
OS(MAX)  
LT1630/LT1631 Dual/Quad 30MHz, 10V/μs Rail-to-Rail Input and Output Op Amps  
, 70mA Output  
Current, Max Supply Current 4.4mA per Amplifier  
LT1800  
80MHz, 25V/μs Low Power Rail-to-Rail Input/Output Precision Op Amp Single Version of LT1801/LT1802  
LT1806/LT1807 Single/Dual 325MHz, 140V/μs Rail-to-Rail Input and Output Op Amps  
High DC Accuracy, 550μV V  
, Low Noise 3.5nV/√Hz,  
OS(MAX)  
Low Distortion –80dB at 5MHz, Power-Down (LT1806)  
LT1809/LT1810 Single/Dual 180MHz Rail-to-Rail Input/Output Op Amps  
C-Load is a trademark of Linear Technology Corporation  
350V/μs Slew Rate, Low Distortion –90dBc at 5MHz,  
Power-Down (LT1809)  
18012fc  
LT 0309 REV C • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
© LINEAR TECHNOLOGY CORPORATION 2002  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY