LT1810CS8#TR [Linear]

LT1810 - Dual 180MHz, 350V/µs Rail-to-Rail Input and Output Low Distortion Op Amps; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C;
LT1810CS8#TR
型号: LT1810CS8#TR
厂家: Linear    Linear
描述:

LT1810 - Dual 180MHz, 350V/µs Rail-to-Rail Input and Output Low Distortion Op Amps; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C

运算放大器 放大器电路 光电二极管
文件: 总24页 (文件大小:266K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1809/LT1810  
Single/Dual 180MHz, 350V/µs  
Rail-to-Rail Input and Output  
Low Distortion Op Amps  
U
FEATURES  
DESCRIPTIO  
–3dB Bandwidth: 320MHz, AV = 1  
The LT®1809/LT1810 are single/dual low distortion rail-  
to-rail input and output op amps with a 350V/µs slew rate.  
These amplifiers have a –3dB bandwidth of 320MHz at  
unity-gain,again-bandwidthproductof180MHz(AV 10)  
andan85mAoutputcurrenttofittheneedsoflowvoltage,  
high performance signal conditioning systems.  
Gain-Bandwidth Product: 180MHz, AV 10  
Slew Rate: 350V/µs  
Wide Supply Range: 2.5V to 12.6V  
Large Output Current: 85mA  
Low Distortion, 5MHz: 90dBc  
Input Common Mode Range Includes Both Rails  
The LT1809/LT1810 have an input range that includes  
both supply rails and an output that swings within 20mV  
of either supply rail to maximize the signal dynamic range  
in low supply applications.  
Output Swings Rail-to-Rail  
Input Offset Voltage, Rail-to-Rail: 2.5mV Max  
Common Mode Rejection: 89dB Typ  
Power Supply Rejection: 87dB Typ  
The LT1809/LT1810 have very low distortion (–90dBc) up  
to 5MHz that allows them to be used in high performance  
data acquisition systems.  
Open-Loop Gain: 100V/mV Typ  
Shutdown Pin: LT1809  
Single in 8-Pin SO and 6-Pin SOT-23 Packages  
Dual in 8-Pin SO and MSOP Packages  
Operating Temperature Range: 40°C to 85°C  
U
The LT1809/LT1810 maintain their performance for sup-  
plies from 2.5V to 12.6V and are specified at 3V, 5V and  
±5V supplies. The inputs can be driven beyond the sup-  
plies without damage or phase reversal of the output.  
APPLICATIO S  
Driving A/D Converters  
The LT1809 is available in the 8-pin SO package with the  
standard op amp pinout and the 6-pin SOT-23 package.  
The LT1810 features the standard dual op amp pinout and  
is available in 8-pin SO and MSOP packages. These  
devices can be used as a plug-in replacement for many op  
amps to improve input/output range and performance.  
Low Voltage Signal Processing  
Active Filters  
Rail-to-Rail Buffer Amplifiers  
Video Line Driver  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
Distortion vs Frequency  
TYPICAL APPLICATIO  
–40  
A
V
V
= +1  
= 2V  
V
IN  
S
P-P  
–50  
–60  
High Speed ADC Driver  
= ±5V  
5V  
5V  
–70  
R
L
= 100, 2ND  
V
IN  
R3  
49.9Ω  
+
LTC®1420  
PGA GAIN = 1  
REF = 2.048V  
–80  
1V  
P-P  
12 BITS  
10Msps  
LT1809  
–5V  
+A  
IN  
–90  
C1  
470pF  
–A  
IN  
R
L
= 100, 3RD  
R
L
= 1k, 3RD  
–100  
R2  
1k  
1809 TA01  
R
= 1k, 2ND  
L
–5V  
–110  
R1  
1k  
0.3  
1
10  
30  
FREQUENCY (MHz)  
1809 TA02  
1
LT1809/LT1810  
W W U W  
ABSOLUTE AXI U RATI GS  
(Note 1)  
Total Supply Voltage (V+ to V) ........................... 12.6V  
Input Voltage (Note 2) ..............................................±VS  
Input Current (Note 2) ........................................ ±10mA  
Output Short-Circuit Duration (Note 3)............ Indefinite  
Operating Temperature Range (Note 4) .. 40°C to 85°C  
Specified Temperature Range (Note 5)... 40°C to 85°C  
Junction Temperature........................................... 150°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
U W  
U
PACKAGE/ORDER I FOR ATIO  
ORDER PART  
NUMBER  
ORDER PART  
TOP VIEW  
TOP VIEW  
NUMBER  
SHDN  
–IN  
1
2
3
4
8
7
6
5
NC  
+
OUT 1  
6 V  
+
V
LT1809CS6  
LT1809IS6  
LT1809CS8  
LT1809IS8  
+
V
2
5 SHDN  
4 –IN  
+IN  
OUT  
NC  
+IN 3  
V
S6 PACKAGE  
6-LEAD PLASTIC SOT-23  
S8 PART MARKING  
S6 PART MARKING  
S8 PACKAGE  
8-LEAD PLASTIC SO  
TJMAX = 150°C, θJA = 145°C/W (Note 9)  
1809  
1809I  
LTKY  
LTUF  
TJMAX = 150°C, θJA = 100°C/W (Note 9)  
ORDER PART  
NUMBER  
ORDER PART  
NUMBER  
TOP VIEW  
TOP VIEW  
+
+
OUT A  
–IN A  
+IN A  
1
2
3
4
8
7
6
5
V
OUT A  
–IN A  
+IN A  
1
2
3
4
8 V  
OUT B  
–IN B  
+IN B  
LT1810CMS8  
LT1810IMS8  
LT1810CS8  
LT1810IS8  
7 OUT B  
6 –IN B  
5 +IN B  
A
V
B
V
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
S8 PART MARKING  
MS8 PART MARKING  
S8 PACKAGE  
8-LEAD PLASTIC SO  
TJMAX = 150°C, θJA = 130°C/W (Note 9)  
1810  
1810I  
LTRF  
LTTQ  
TJMAX = 150°C, θJA = 100°C/W (Note 9)  
Consult factory for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
TA = 25°C. VS = 5V, 0V; VS = 3V, 0V; VSHDN = open; VCM = VOUT = half supply, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
V
Input Offset Voltage  
V
V
V
V
= V LT1809 SO-8  
0.6  
0.6  
0.6  
0.6  
2.5  
2.5  
3.0  
3.0  
mV  
mV  
mV  
mV  
OS  
CM  
CM  
CM  
CM  
= V LT1809 SO-8  
+
= V  
= V  
+
+
V  
Input Offset Shift  
V
V
= V to V LT1809 SO-8  
0.3  
0.3  
2.0  
2.5  
mV  
mV  
OS  
CM  
CM  
= V to V  
Input Offset Voltage Match (Channel-to-Channel) (Note 10)  
Input Bias Current  
0.7  
6
8
mV  
+
I
V
V
= V  
1.8  
–13  
µA  
µA  
B
CM  
CM  
= V + 0.2V  
27.5  
+
I  
Input Bias Current Shift  
V
= V + 0.2V to V  
14.8  
35.5  
µA  
B
CM  
+
Input Bias Current Match (Channel-to-Channel) (Note 10)  
V
V
= V  
0.1  
0.2  
4
8
µA  
µA  
CM  
CM  
= V + 0.2V  
2
LT1809/LT1810  
ELECTRICAL CHARACTERISTICS  
TA = 25°C. VS = 5V, 0V; VS = 3V, 0V; VSHDN = open; VCM = VOUT = half supply, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
I
Input Offset Current  
V
V
= V  
0.05  
0.2  
1.2  
4
µA  
µA  
OS  
CM  
CM  
= V + 0.2V  
+
I  
Input Offset Current Shift  
Input Noise Voltage Density  
Input Noise Current Density  
Input Capacitance  
V
= V + 0.2V to V  
0.25  
16  
5
5.2  
µA  
nV/Hz  
pA/Hz  
pF  
OS  
CM  
e
f = 10kHz  
f = 10kHz  
n
i
n
C
A
2
IN  
VOL  
Large-Signal Voltage Gain  
V = 5V, V = 0.5V to 4.5V, R = 1k to V /2  
V = 5V, V = 1V to 4V, R = 100to V /2  
V = 3V, V = 0.5V to 2.5V, R = 1k to V /2  
25  
4
15  
80  
10  
42  
V/mV  
V/mV  
V/mV  
S
O
L
S
S
O
L
S
S
O
L
S
+
CMRR  
PSRR  
Common Mode Rejection Ratio  
V = 5V, V = V to V  
66  
61  
82  
78  
dB  
dB  
S
CM  
+
V = 3V, V = V to V  
S
CM  
+
+
CMRR Match (Channel-to-Channel) (Note 10)  
V = 5V, V = V to V  
60  
55  
82  
78  
dB  
dB  
S
CM  
V = 3V, V = V to V  
S
CM  
+
Input Common Mode Range  
V
V
V
dB  
dB  
V
Power Supply Rejection Ratio  
V = 2.5V to 10V, V = 0V  
71  
65  
87  
87  
S
CM  
PSRR Match (Channel-to-Channel) (Note 10)  
Minimum Supply Voltage (Note 6)  
Output Voltage Swing LOW (Note 7)  
V = 2.5V to 10V, V = 0V  
S
CM  
2.3  
2.5  
V
V
No Load  
12  
50  
180  
50  
120  
375  
mV  
mV  
mV  
OL  
OH  
I
I
= 5mA  
= 25mA  
SINK  
SINK  
Output Voltage Swing HIGH (Note 7)  
Short-Circuit Current  
No Load  
20  
80  
330  
80  
180  
650  
mV  
mV  
mV  
I
I
= 5mA  
= 25mA  
SOURCE  
SOURCE  
I
I
V = 5V  
±45  
±35  
±85  
±70  
mA  
mA  
SC  
S
V = 3V  
S
Supply Current per Amplifier  
Supply Current, Shutdown  
12.5  
17  
mA  
S
V = 5V, V  
V = 3V, V  
S
= 0.3V  
= 0.3V  
0.55  
0.31  
1.25  
0.90  
mA  
mA  
S
SHDN  
SHDN  
I
SHDN Pin Current  
V = 5V, V  
V = 3V, V  
S
= 0.3V  
= 0.3V  
420  
220  
750  
500  
µA  
µA  
SHDN  
S
SHDN  
SHDN  
Output Leakage Current, Shutdown  
SHDN Pin Input Voltage Low  
SHDN Pin Input Voltage High  
Turn-On Time  
V
= 0.3V  
0.1  
75  
µA  
V
SHDN  
V
V
0.3  
L
V – 0.5  
S
V
H
t
t
V
V
= 0.3V to 4.5V, R = 100  
80  
50  
ns  
ON  
OFF  
SHDN  
SHDN  
L
Turn-Off Time  
= 4.5V to 0.3V, R = 100  
ns  
L
GBW  
SR  
Gain-Bandwidth Product  
Slew Rate  
Frequency = 2MHz  
160  
300  
23.5  
86  
27  
MHz  
V/µs  
MHz  
dB  
V = 5V, A = –1, R = 1k, V = 4V  
S
V
L
O
P-P  
FPBW  
THD  
Full Power Bandwidth  
Total Harmonic Distortion  
Settling Time  
V = 5V, V  
= 4V  
OUT P-P  
S
V = 5V, A = 1, R = 1k, V = 2V , f = 5MHz  
S
V
L
O
P-P C  
t
0.1%, V = 5V, V  
= 2V, A = 1, R = 500Ω  
ns  
S
S
STEP  
V
L
G  
Differential Gain (NTSC)  
Differential Phase (NTSC)  
V = 5V, A = 2, R = 150Ω  
0.015  
0.05  
%
S
V
L
∆θ  
V = 5V, A = 2, R = 150Ω  
Deg  
S
V
L
3
LT1809/LT1810  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the 0°C TA 70°C  
temperature range. VS = 5V, 0V; VS = 3V, 0V; VSHDN = open; VCM = VOUT = half supply, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
V
Input Offset Voltage  
V
V
V
V
= V LT1809 SO-8  
1
1
1
1
3.0  
3.0  
3.5  
3.5  
mV  
mV  
mV  
mV  
OS  
CM  
CM  
CM  
CM  
= V LT1809 SO-8  
+
= V  
= V  
+
V
TC  
Input Offset Voltage Drift (Note 8)  
Input Offset Voltage Shift  
V
V
= V  
= V  
9
9
25  
25  
µV/°C  
µV/°C  
OS  
CM  
CM  
+
V  
V
V
= V to V LT1809 SO-8  
0.5  
0.5  
2.5  
3.0  
mV  
mV  
OS  
CM  
CM  
+
= V to V  
+
Input Offset Voltage Match (Channel-to-Channel)  
(Note 10)  
V
= V , V = V  
1.2  
6.5  
10  
40  
mV  
CM  
CM  
+
I
Input Bias Current  
V
V
= V – 0.2V  
2
–14  
µA  
µA  
B
CM  
CM  
= V + 0.4V  
30  
+
I  
Input Bias Current Shift  
V
= V + 0.4V to V – 0.2V  
16  
µA  
B
CM  
+
Input Bias Current Match (Channel-to-Channel)  
(Note 10)  
V
V
= V – 0.2V  
0.1  
0.5  
5
10  
µA  
µA  
CM  
CM  
= V + 0.4V  
+
I
Input Offset Current  
V
V
= V – 0.2V  
0.05  
0.40  
1.5  
4.5  
µA  
µA  
OS  
CM  
CM  
= V + 0.4V  
+
I  
Input Offset Current Shift  
Large-Signal Voltage Gain  
V
= V + 0.4V to V – 0.2V  
0.45  
6
µA  
OS  
CM  
A
V = 5V, V = 0.5V to 4.5V, R = 1k to V /2  
V = 5V, V = 1V to 4V, R = 100to V /2  
V = 3V, V = 0.5V to 2.5V, R = 1k to V /2  
20  
3.5  
12  
75  
8.5  
40  
V/mV  
V/mV  
V/mV  
VOL  
S
O
L
S
S
O
L
S
S
O
L
S
+
CMRR  
PSRR  
Common Mode Rejection Ratio  
V = 5V, V = V to V  
64  
60  
80  
75  
dB  
dB  
S
CM  
+
V = 3V, V = V to V  
S
CM  
+
+
CMRR Match (Channel-to-Channel) (Note 10)  
V = 5V, V = V , V = V  
58  
54  
80  
75  
dB  
dB  
S
CM  
CM  
V = 3V, V = V , V = V  
S
CM  
CM  
+
Input Common Mode Range  
V
V
V
dB  
dB  
V
Power Supply Rejection Ratio  
V = 2.5V to 10V, V = 0V  
70  
64  
83  
83  
S
CM  
PSRR Match (Channel-to-Channel) (Note 10)  
Minimum Supply Voltage (Note 6)  
Output Voltage Swing LOW (Note 7)  
V = 2.5V to 10V, V = 0V  
S
CM  
2.3  
2.5  
V
V
No Load  
12  
55  
200  
60  
140  
400  
mV  
mV  
mV  
OL  
OH  
I
I
= 5mA  
= 25mA  
SINK  
SINK  
Output Voltage Swing HIGH (Note 7)  
Short-Circuit Current  
No Load  
50  
110  
370  
120  
220  
700  
mV  
mV  
mV  
I
I
= 5mA  
= 25mA  
SOURCE  
SOURCE  
I
I
V = 5V  
±40  
±30  
±75  
±65  
mA  
mA  
SC  
S
V = 3V  
S
Supply Current per Amplifier  
Supply Current, Shutdown  
15  
20  
mA  
S
V = 5V, V  
V = 3V, V  
S
= 0.3V  
= 0.3V  
0.58  
0.35  
1.4  
1.1  
mA  
mA  
S
SHDN  
SHDN  
I
SHDN Pin Current  
V = 5V, V  
V = 3V, V  
S
= 0.3V  
= 0.3V  
420  
220  
850  
550  
µA  
µA  
SHDN  
S
SHDN  
SHDN  
Output Leakage Current, Shutdown  
SHDN Pin Input Voltage Low  
SHDN Pin Input Voltage High  
V
= 0.3V  
2
µA  
V
SHDN  
V
V
0.3  
L
V – 0.5  
S
V
H
4
LT1809/LT1810  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the 0°C TA 70°C  
temperature range. VS = 5V, 0V; VS = 3V, 0V; VSHDN = open; VCM = VOUT = half supply, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
80  
MAX  
UNITS  
ns  
t
t
Turn-On Time  
V
V
= 0.3V to 4.5V, R = 100  
ON  
SHDN  
SHDN  
L
Turn-Off Time  
= 4.5V to 0.3V, R = 100  
50  
ns  
OFF  
L
GBW  
SR  
Gain-Bandwidth Product  
Slew Rate  
Frequency = 2MHz  
145  
250  
20  
MHz  
V/µs  
MHz  
V = 5V, A = –1, R = 1k, V = 4V  
S
V
L
O
P-P  
FPBW  
Full Power Bandwidth  
V = 5V, V  
= 4V  
S
OUT P-P  
The denotes the specifications which apply over the 40°C TA 85°C temperature range. VS = 5V, 0V; VS = 3V, 0V; VSHDN = open;  
VCM = VOUT = half supply, unless otherwise noted. (Note 5)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
V
Input Offset Voltage  
V
V
V
V
= V LT1809 SO-8  
1
1
1
1
3.5  
3.5  
4.0  
4.0  
mV  
mV  
mV  
mV  
OS  
CM  
CM  
CM  
CM  
= V LT1809 SO-8  
+
= V  
= V  
+
V
TC  
Input Offset Voltage Drift (Note 8)  
Input Offset Voltage Shift  
V
V
= V  
= V  
9
9
25  
25  
µV/°C  
µV/°C  
OS  
CM  
CM  
+
V  
V
V
= V to V LT1809 SO-8  
0.5  
0.5  
3.0  
3.5  
mV  
mV  
OS  
CM  
CM  
= V  
+
Input Offset Voltage Match (Channel-to-Channel)  
(Note 10)  
V
= V , V = V  
1.2  
7
mV  
CM  
CM  
+
I
Input Bias Current  
V
V
= V – 0.2V  
2
–17  
12  
47  
µA  
µA  
B
CM  
CM  
= V + 0.4V  
35  
+
I  
Input Bias Current Shift  
V
= V + 0.4V to V – 0.2V  
19  
µA  
B
CM  
+
Input Bias Current Match (Channel-to-Channel)  
(Note 10)  
V
V
= V – 0.2V  
0.2  
0.6  
6
12  
µA  
µA  
CM  
CM  
= V + 0.4V  
+
I
Input Offset Current  
V
V
= V – 0.2V  
0.08  
0.5  
2
6
µA  
µA  
OS  
CM  
CM  
= V + 0.4V  
+
I  
Input Offset Current Shift  
Large-Signal Voltage Gain  
V
= V + 0.4V to V – 0.2V  
0.58  
7.5  
µA  
OS  
CM  
A
V = 5V, V = 0.5V to 4.5V, R = 1k to V /2  
17  
2.5  
10  
60  
7
35  
V/mV  
V/mV  
V/mV  
VOL  
S
S
S
O
O
L
S
S
S
V = 5V, V = 1V to 4V, R = 100to V /2  
L
V = 3V, V = 0.5V to 2.5V, R = 1k to V /2  
O
L
+
+
CMRR  
PSRR  
Common Mode Rejection Ratio  
V = 5V, V = V to V  
V = 3V, V = V to V  
63  
58  
80  
75  
dB  
dB  
S
S
CM  
CM  
+
+
CMRR Match (Channel-to-Channel) (Note 10)  
V = 5V, V = V to V  
V = 3V, V = V to V  
57  
52  
78  
72  
dB  
dB  
S
S
CM  
CM  
+
Input Common Mode Range  
V
V
V
dB  
dB  
V
Power Supply Rejection Ratio  
V = 2.5V to 10V, V = 0V  
69  
63  
83  
83  
S
CM  
PSRR Match (Channel-to-Channel) (Note 10)  
Minimum Supply Voltage (Note 6)  
Output Voltage Swing LOW (Note 7)  
V = 2.5V to 10V, V = 0V  
S
CM  
2.3  
2.5  
V
V
No Load  
18  
60  
210  
70  
150  
450  
mV  
mV  
mV  
OL  
OH  
I
I
= 5mA  
= 25mA  
SINK  
SINK  
Output Voltage Swing HIGH (Note 7)  
Short-Circuit Current  
No Load  
55  
130  
240  
750  
mV  
mV  
mV  
I
I
= 5mA  
120  
375  
SOURCE  
SOURCE  
= 25mA  
I
I
V = 5V  
±30  
±25  
±70  
±60  
mA  
mA  
SC  
S
V = 3V  
S
Supply Current per Amplifier  
Supply Current, Shutdown  
15  
21  
mA  
S
V = 5V, V  
= 0.3V  
= 0.3V  
0.58  
0.35  
1.5  
1.2  
mA  
mA  
S
SHDN  
SHDN  
V = 3V, V  
S
5
LT1809/LT1810  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the 40°C TA 85°C temperature range. VS = 5V, 0V; VS = 3V, 0V; VSHDN = open;  
VCM = VOUT = half supply, unless otherwise noted. (Note 5)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
SHDN Pin Current  
V = 5V, V  
V = 3V, V  
S
= 0.3V  
= 0.3V  
420  
220  
900  
600  
µA  
µA  
SHDN  
S
SHDN  
SHDN  
Output Leakage Current, Shutdown  
SHDN Pin Input Voltage Low  
SHDN Pin Input Voltage High  
Turn-On Time  
V
= 0.3V  
3
µA  
V
SHDN  
V
V
0.3  
L
V – 0.5  
S
V
H
t
t
V
V
= 0.3V to 4.5V, R = 100  
80  
50  
ns  
ON  
OFF  
SHDN  
L
Turn-Off Time  
= 4.5V to 0.3V, R = 100  
ns  
SHDN  
L
GBW  
SR  
Gain-Bandwidth Product  
Slew Rate  
Frequency = 2MHz  
140  
180  
14  
MHz  
V/µs  
MHz  
V = 5V, A = -1, R = 1k, V = 4V  
S
V
L
O
P-P  
FPBW  
Full Power Bandwidth  
V = 5V, V  
S
= 4V  
OUT P-P  
TA = 25°C. VS = ±5V, VSHDN = open, VCM = 0V, VOUT = 0V, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
V
OS  
Input Offset Voltage  
V
CM  
V
CM  
V
CM  
V
CM  
= V LT1809 SO-8  
0.8  
0.8  
0.8  
0.8  
3.0  
3.0  
3.5  
3.5  
mV  
mV  
mV  
mV  
= V LT1809 SO-8  
+
= V  
= V  
+
+
V  
OS  
Input Offset Voltage Shift  
V
CM  
V
CM  
= V to V LT1809 SO-8  
0.35  
0.35  
2.5  
3.0  
mV  
mV  
= V to V  
+
Input Offset Voltage Match (Channel-to-Channel)  
(Note 10)  
V
CM  
= V , V = V  
1
6
mV  
CM  
+
I
Input Bias Current  
V
V
= V  
2
10  
40  
µA  
µA  
B
CM  
CM  
= V + 0.2V  
30  
–12.5  
+
+
I  
Input Bias Current Shift  
V
CM  
= V + 0.2V to V  
14.5  
µA  
B
+
Input Bias Current Match (Channel-to-Channel)  
(Note 10)  
V
CM  
V
CM  
= V  
0.1  
0.4  
5
10  
µA  
µA  
= V + 0.2V  
+
I
Input Offset Current  
V
CM  
V
CM  
= V  
0.05  
0.40  
2
5
µA  
µA  
OS  
= V + 0.2V  
I  
Input Offset Current Shift  
Input Noise Voltage Density  
Input Noise Current Density  
Input Capacitance  
V
CM  
= V + 0.2V to V  
0.45  
16  
5
7
µA  
nV/Hz  
pA/Hz  
pF  
OS  
e
f = 10kHz  
f = 10kHz  
f = 100kHz  
n
i
n
C
A
2
IN  
Large-Signal Voltage Gain  
V = 4V to 4V, R = 1k  
V = 2.5V to 2.5V, R = 100Ω  
30  
4.5  
100  
12  
V/mV  
V/mV  
VOL  
O
O
L
L
+
CMRR  
Common Mode Rejection Ratio  
V
CM  
V
CM  
= V to V  
70  
89  
89  
dB  
dB  
V
+
CMRR Match (Channel-to-Channel) (Note 10)  
Input Common Mode Range  
= V to V  
64  
+
V
V
+
PSRR  
Power Supply Rejection Ratio  
V = 2.5V to 10V, V = 0V  
71  
65  
87  
90  
dB  
dB  
+
PSRR Match (Channel-to-Channel) (Note 10)  
Output Voltage Swing LOW (Note 7)  
V = 2.5V to 10V, V = 0V  
No Load  
V
V
12  
50  
180  
60  
140  
425  
mV  
mV  
mV  
OL  
I
I
= 5mA  
= 25mA  
SINK  
SINK  
Output Voltage Swing HIGH (Note 7)  
No Load  
SOURCE  
SOURCE  
35  
90  
310  
100  
200  
700  
mV  
mV  
mV  
OH  
I
I
= 5mA  
= 25mA  
6
LT1809/LT1810  
ELECTRICAL CHARACTERISTICS  
TA = 25°C. VS = ±5V, VSHDN = open, VCM = 0V, VOUT = 0, unless otherwise noted.  
SYMBOL PARAMETER CONDITIONS  
MIN  
TYP  
±85  
15  
MAX  
UNITS  
mA  
mA  
mA  
µA  
I
I
Short-Circuit Current  
Supply Current per Amplifier  
Supply Current, Shutdown  
SHDN Pin Current  
±55  
SC  
S
20  
1.3  
750  
75  
V
V
V
= 0.3V  
= 0.3V  
= 0.3V  
0.6  
420  
0.1  
SHDN  
SHDN  
SHDN  
I
SHDN  
Output Leakage Current, Shutdown  
SHDN Pin Input Voltage Low  
SHDN Pin Input Voltage High  
Turn-On Time  
µA  
V
V
0.3  
V
L
+
V – 0.5  
V
H
t
t
V
V
= 0.3V to 4.5V, R = 100  
80  
50  
ns  
ON  
OFF  
SHDN  
SHDN  
L
Turn-Off Time  
= 4.5V to 0.3V, R = 100  
ns  
L
GBW  
SR  
Gain-Bandwidth Product  
Slew Rate  
Frequency = 2MHz  
A = –1, R = 1k, V = ±4V,  
110  
175  
180  
350  
MHz  
V/µs  
V
L
O
Measured at V = ±3V  
O
FPBW  
THD  
Full Power Bandwidth  
Total Harmonic Distortion  
Settling Time  
V
= 8V  
14  
90  
34  
MHz  
dB  
OUT  
P-P  
A = 1, R = 1k, V = 2V , f = 5MHz  
V
L
O
P-P C  
t
0.1%, V  
= 8V, A = 1, R = 500Ω  
ns  
S
STEP  
V
L
G  
Differential Gain (NTSC)  
Differential Phase (NTSC)  
A = 2, R = 150Ω  
0.01  
0.01  
%
V
L
∆θ  
A = 2, R = 150Ω  
Deg  
V
L
The denotes the specifications which apply over the 0°C TA 70°C temperature range. VS = ±5V, VSHDN = open, VCM = 0V,  
VOUT = 0V, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
V
Input Offset Voltage  
V
V
V
V
= V LT1809 SO-8  
1
1
1
1
3.25  
3.25  
3.75  
3.75  
mV  
mV  
mV  
mV  
OS  
CM  
CM  
CM  
CM  
= V LT1809 SO-8  
+
= V  
= V  
+
V
TC  
Input Offset Voltage Drift (Note 8)  
Input Offset Voltage Shift  
V
V
= V  
= V  
10  
10  
25  
25  
µV/°C  
µV/°C  
OS  
CM  
CM  
+
V  
V
V
= V to V LT1809 SO-8  
0.5  
0.5  
2.75  
3.25  
mV  
mV  
OS  
CM  
CM  
+
= V to V  
+
Input Offset Voltage Match (Channel-to-Channel)  
(Note 10)  
V
= V to V  
1.2  
6.5  
12.5  
50  
mV  
CM  
+
I
Input Bias Current  
V
V
= V – 0.2V  
2.5  
–15  
µA  
µA  
B
CM  
CM  
= V + 0.4V  
37.5  
+
I  
B
Input Bias Current Shift  
V
= V + 0.4V to V – 0.2V  
17.5  
µA  
CM  
+
Input Bias Current Match (Channel-to-Channel)  
(Note 10)  
V
V
= V – 0.2V  
0.1  
0.5  
6
12  
µA  
µA  
CM  
CM  
= V + 0.4V  
+
I
Input Offset Current  
V
V
= V – 0.2V  
0.06  
0.5  
2.25  
6
µA  
µA  
OS  
CM  
CM  
= V + 0.4V  
+
I  
Input Offset Current Shift  
Large-Signal Voltage Gain  
V
= V + 0.4V to V – 0.2V  
0.56  
8.25  
µA  
OS  
CM  
A
V = 4V to 4V, R = 1k  
V = 2.5V to 2.5V, R = 100Ω  
27  
3.5  
80  
10  
V/mV  
V/mV  
VOL  
O
L
O
L
+
CMRR  
Common Mode Rejection Ratio  
V
V
= V to V  
69  
63  
86  
86  
dB  
dB  
V
CM  
CM  
+
CMRR Match (Channel-to-Channel) (Note 10)  
Input Common Mode Range  
= V to V  
+
V
V
7
LT1809/LT1810  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the 0°C TA 70°C  
temperature range. VS = ±5V, VSHDN = open, VCM = 0V, VOUT = 0V, unless otherwise noted.  
SYMBOL PARAMETER  
PSRR Power Supply Rejection Ratio  
CONDITIONS  
MIN  
70  
TYP  
83  
MAX  
UNITS  
dB  
+
V = 2.5V to 10V, V = 0V  
+
PSRR Match (Channel-to-Channel) (Note 10)  
Output Voltage Swing LOW (Note 7)  
V = 2.5V to 10V, V = 0V  
64  
83  
dB  
V
V
No Load  
20  
50  
210  
80  
160  
475  
mV  
mV  
mV  
OL  
OH  
I
I
= 5mA  
= 25mA  
SINK  
SINK  
Output Voltage Swing HIGH (Note 7)  
No Load  
60  
120  
370  
140  
240  
750  
mV  
mV  
mV  
I
= 5mA  
= 25mA  
SOURCE  
SOURCE  
I
I
I
Short-Circuit Current  
Supply Current per Amplifier  
Supply Current, Shutdown  
SHDN Pin Current  
±45  
±75  
17.5  
0.6  
420  
3
mA  
mA  
mA  
µA  
SC  
25  
1.5  
850  
S
V
V
V
= 0.3V  
SHDN  
SHDN  
SHDN  
I
= 0.3V  
= 0.3V  
SHDN  
Output Leakage Current, Shutdown  
SHDN Pin Input Voltage Low  
SHDN Pin Input Voltage High  
Turn-On Time  
µA  
V
V
0.3  
V
L
+
V – 0.5  
V
H
t
t
V
V
= 0.3V to 4.5V, R = 100  
80  
50  
ns  
ON  
OFF  
SHDN  
SHDN  
L
Turn-Off Time  
= 4.5V to 0.3V, R = 100  
ns  
L
GBW  
SR  
Gain-Bandwidth Product  
Slew Rate  
Frequency = 2MHz  
A = –1, R = 1k, V = ±4V,  
85  
170  
300  
MHz  
V/µs  
140  
V
L
O
Measured at V = ±3V  
O
FPBW  
Full Power Bandwidth  
V
= 8V  
12  
MHz  
OUT  
P-P  
The denotes the specifications which apply over the 40°C TA 85°C temperature range. VS = ±5V, VSHDN = open, VCM = 0V,  
VOUT = 0V, unless otherwise noted. (Note 5)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
V
Input Offset Voltage  
V
V
V
V
= V LT1809 SO-8  
1
1
1
1
3.75  
3.75  
4.25  
4.25  
mV  
mV  
mV  
mV  
OS  
CM  
CM  
CM  
CM  
= V LT1809 SO-8  
+
= V  
= V  
+
V
TC  
Input Offset Voltage Drift (Note 8)  
Input Offset Voltage Shift  
V
V
= V  
= V  
10  
10  
25  
25  
µV/°C  
µV/°C  
OS  
CM  
CM  
+
V  
V
V
= V to V LT1809 SO-8  
0.5  
0.5  
3.00  
3.75  
mV  
mV  
OS  
CM  
CM  
+
= V to V  
+
Input Offset Voltage Match (Channel-to-Channel)  
(Note 10)  
V
= V to V  
1.2  
7.5  
14  
59  
mV  
CM  
+
I
Input Bias Current  
V
V
= V – 0.2V  
2.8  
–17  
µA  
µA  
B
CM  
CM  
= V + 0.4V  
45  
+
I  
Input Bias Current Shift  
V
= V + 0.4V to V – 0.2V  
19.8  
µA  
B
CM  
+
Input Bias Current Match (Channel-to-Channel)  
(Note 10)  
V
V
= V – 0.2V  
0.1  
0.6  
7
14  
µA  
µA  
CM  
CM  
= V + 0.4V  
+
I
Input Offset Current  
V
V
= V – 0.2V  
0.08  
0.6  
2.5  
8
µA  
µA  
OS  
CM  
CM  
= V + 0.4V  
+
I  
Input Offset Current Shift  
Large-Signal Voltage Gain  
V
= V + 0.4V to V – 0.2V  
0.68  
10.5  
µA  
OS  
CM  
A
V = 4V to 4V, R = 1k  
V = 2.5V to 2.5V, R = 100Ω  
22  
3
70  
10  
V/mV  
V/mV  
VOL  
O
L
O
L
8
LT1809/LT1810  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the 40°C TA 85°C  
temperature range. VS = ±5V, VSHDN = open, VCM = 0V, VOUT = 0V, unless otherwise noted. (Note 5)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
68  
TYP  
86  
MAX  
UNITS  
dB  
+
+
CMRR  
Common Mode Rejection Ratio  
V
CM  
V
CM  
= V to V  
CMRR Match (Channel-to-Channel) (Note 10)  
Input Common Mode Range  
= V to V  
62  
86  
dB  
+
V
V
V
+
PSRR  
Power Supply Rejection Ratio  
V = 2.5V to 10V, V = 0V  
69  
63  
83  
83  
dB  
+
PSRR Match (Channel-to-Channel) (Note 10)  
Output Voltage Swing LOW (Note 7)  
V = 2.5V to 10V, V = 0V  
dB  
V
V
No Load  
23  
60  
220  
100  
170  
525  
mV  
mV  
mV  
OL  
I
I
= 5mA  
= 25mA  
SINK  
SINK  
Output Voltage Swing HIGH (Note 7)  
No Load  
75  
130  
375  
160  
260  
775  
mV  
mV  
mV  
OH  
I
I
= 5mA  
= 25mA  
SOURCE  
SOURCE  
I
I
Short-Circuit Current  
Supply Current per Amplifier  
Supply Current, Shutdown  
SHDN Pin Current  
±30  
±75  
19  
mA  
mA  
mA  
µA  
SC  
25  
1.6  
900  
S
V
V
V
= 0.3V  
= 0.3V  
= 0.3V  
0.65  
420  
4
SHDN  
SHDN  
SHDN  
I
SHDN  
Output Leakage Current, Shutdown  
SHDN Pin Input Voltage Low  
SHDN Pin Input Voltage High  
Turn-On Time  
µA  
V
V
0.3  
V
L
+
V – 0.5  
V
H
t
t
V
V
= 0.3V to 4.5V, R = 100  
80  
50  
ns  
ON  
OFF  
SHDN  
L
Turn-Off Time  
= 4.5V to 0.3V, R = 100  
ns  
SHDN  
L
GBW  
SR  
Gain-Bandwidth Product  
Slew Rate  
Frequency = 2MHz  
80  
160  
220  
MHz  
V/µs  
A = 1, R = 1k, V = ±4V,  
V
110  
L
O
Measured at V = ±3V  
O
FPBW  
Full Power Bandwidth  
V
OUT  
= 8V  
8.5  
MHz  
P-P  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 6: Minimum supply voltage is guaranteed by power supply rejection  
ratio test.  
Note 2: The inputs are protected by back-to-back diodes. If the differential  
input voltage exceeds 1.4V, the input current should be limited to less than  
10mA.  
Note 7: Output voltage swings are measured between the output and  
power supply rails.  
Note 8: This parameter is not 100% tested.  
Note 3: A heat sink may be required to keep the junction temperature  
below the absolute maximum rating when the output is shorted  
indefinitely.  
Note 9: Thermal resistance varies depending upon the amount of PC board  
metal attached to the V pin of the device. θ is specified for a certain  
JA  
amount of 2oz of copper metal trace connecting to the V pin as described  
Note 4: The LT1809C/LT1809I and LT1810C/LT1810I are guaranteed  
functional over the operating temperature range of 40°C and 85°C.  
in the thermal resistance tables in the Applications Information section.  
Note 10: Matching parameters are the difference between the two  
Note 5: The LT1809C/LT1810C are guaranteed to meet specified  
performance from 0°C to 70°C. The LT1809C/LT1810C are designed,  
characterized and expected to meet specified performance from 40°C  
to 85°C but are not tested or QA sampled at these temperatures. The  
LT1809I/LT1810I are guaranteed to meet specified performance from  
40°C to 85°C.  
amplifiers of the LT1810.  
9
LT1809/LT1810  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
VOS Distribution, VCM = 0V  
(PNP Stage)  
VOS Distribution, VCM = 5V  
(NPN Stage)  
VOS Shift for VCM = 0V to 5V  
50  
40  
30  
20  
50  
40  
30  
20  
25  
20  
15  
10  
V
S
= 5V, 0V  
V
S
= 5V, 0V  
V = 5V, 0V  
S
10  
0
10  
0
5
0
–3  
–1  
0
1
2
3
–3  
–1  
0
1
2
3
–1 0  
0.25 0.5 0.75  
INPUT OFFSET VOLTAGE (mV)  
1
–2  
–2  
–0.75 –0.5 –0.25  
INPUT OFFSET VOLTAGE (mV)  
INPUT OFFSET VOLTAGE (mV)  
1809 G01  
1809 G02  
1809 G03  
Input Bias Current  
vs Common Mode Voltage  
Offset Voltage  
vs Input Common Mode  
Supply Current vs Supply Voltage  
25  
20  
15  
10  
5
2.0  
1.5  
V
= 5V, 0V  
V = 5V, 0V  
S
S
TYPICAL PART  
T
= 25°C  
A
T
= 125°C  
= 25°C  
A
0
T
= 125°C  
T
= 125°C  
A
A
1.0  
0.5  
T
A
= –55°C  
–5  
T
= 25°C  
A
T
A
–10  
–15  
–20  
–25  
–30  
T
A
= –55°C  
A
0
10  
5
T
= 25°C  
A
T
= –55°C  
A
–0.5  
–1.0  
–1.5  
T
= 125°C  
T
= –55°C  
A
0
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
–1  
0
1
2
3
4
5
6
TOTAL SUPPLY VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
COMMON MODE VOLTAGE (V)  
1809 G04  
1809 G05  
1809 G06  
Output Saturation Voltage  
vs Load Current (Output Low)  
Output Saturation Voltage  
vs Load Current (Output High)  
Input Bias Current vs Temperature  
5
3
10  
1
10  
1
V
S
= 5V, 0V  
V
S
= 5V, 0V  
V
S
= 5V, 0V  
V
CM  
= 5V  
1
–1  
–3  
–5  
–7  
–9  
–11  
–13  
–15  
T
= 125°C  
= 25°C  
0.1  
0.1  
A
V
= 0V  
CM  
T
= 125°C  
T
A
A
0.01  
0.001  
0.01  
0.001  
T
= 25°C  
T
= –55°C  
A
A
T
A
= –55°C  
–50 –35 –20 –5 10 25 40 55 70 85  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
LOAD CURRENT (mA)  
TEMPERATURE (°C)  
LOAD CURRENT (mA)  
1809 G08  
1809 G09  
1809 G07  
10  
LT1809/LT1810  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Supply Current  
vs SHDN Pin Voltage  
Output Short-Circuit Current  
vs Power Supply Voltage  
Minimum Supply Voltage  
1.0  
0.8  
18  
16  
14  
12  
10  
8
120  
100  
80  
V
CM  
= V– + 0.5V  
V
S
= 5V, 0V  
T
= 25°C  
T
= –55°C  
= 125°C  
A
A
T
= 125°C  
A
0.6  
T
60  
A
0.4  
“SINKING”  
40  
T
A
= 25°C  
0.2  
T
A
= –55°C  
20  
0
0
T
A
= 125°C  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–20  
–40  
–60  
–80  
–100  
6
“SOURCING”  
T
A
= 25°C  
T
= –55°C  
4
A
T
A
= 125°C  
T
= –55°C  
A
2
T
= 25°C  
A
0
1.5  
2.5 3.0 3.5  
4.0 4.5 5.0  
2.0  
1.5  
2.5 3.0 3.5  
4.0 4.5 5.0  
2.0  
0
4
5
1
2
3
TOTAL SUPPLY VOLTAGE (V)  
POWER SUPPLY VOLTAGE (±V)  
SHDN PIN VOLTAGE (V)  
1809 G10  
1809 G11  
1809 G12  
SHDN Pin Current  
vs SHDN Pin Voltage  
Open-Loop Gain  
Open-Loop Gain  
2.5  
2.0  
2.5  
2.0  
50  
V
S
= 3V, 0V  
V = 5V, 0V  
S
V
S
= 5V, 0V  
0
–50  
1.5  
1.5  
1.0  
1.0  
–100  
–150  
–200  
–250  
–300  
–350  
–400  
–450  
T
= 125°C  
A
0.5  
0.5  
T
= –55°C  
R
= 1k  
R = 1k  
L
T
A
= 25°C  
A
L
0
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
R
= 100Ω  
R
= 100Ω  
L
L
0
0.5  
1.5  
2.0  
2.5  
3.0  
0
1
3
4
5
0
1
2
3
4
5
1.0  
2
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
SHDN PIN VOLTAGE (V)  
1809 G14  
1809 G15  
1809 G13  
Open-Loop Gain  
Offset Voltage vs Output Current  
Warm-Up Drift vs Time (LT1809S8)  
15  
10  
2.5  
2.0  
180  
160  
140  
120  
100  
80  
V
= ±5V  
T
= 25°C  
V
= ±5V  
S
A
S
V
S
= ±5V  
1.5  
T
= 25°C  
A
1.0  
5
0
T
= 125°C  
A
0.5  
R
L
= 1k  
L
0
T
A
= –55°C  
V
= 5V, 0V  
= 3V, 0V  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
S
–5  
–10  
–15  
60  
V
S
R
= 100Ω  
40  
20  
0
–100–80 –60 –40 –20  
0
20 40 60 80 100  
–5 –4 –3 –2 –1  
0
1
2
3
4
5
40  
TIME AFTER POWER UP (SEC)  
0
20  
60 80 100 120 140 160  
OUTPUT CURRENT (mA)  
OUTPUT VOLTAGE (V)  
1809 G17  
1809 G16  
1809 G18  
11  
LT1809/LT1810  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
0.1Hz to 10Hz  
Output Voltage Noise  
Input Noise Voltage vs Frequency  
Input Noise Current vs Frequency  
100  
90  
20  
16  
12  
8
10  
8
V
= 5V, 0V  
V
= 5V, 0V  
S
S
80  
6
70  
4
60  
50  
2
0
NPN ACTIVE  
= 4.5V  
40  
30  
20  
10  
0
–2  
–4  
–6  
–8  
–10  
PNP ACTIVE  
= 2.5V  
V
CM  
V
CM  
PNP ACTIVE  
4
V
CM  
= 2.5V  
NPN ACTIVE  
V
CM  
= 4.5V  
0
0.1  
1
10  
100  
0.1  
1
10  
100  
TIME (2 SEC/DIV)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
1809 G21  
1809 G19  
1809 G20  
Gain Bandwidth and Phase Margin  
vs Supply Voltage  
Gain Bandwidth and Phase Margin  
vs Temperature  
Slew Rate vs Temperature  
55  
50  
45  
40  
35  
30  
450  
400  
350  
300  
250  
200  
150  
100  
50  
55  
50  
45  
40  
35  
T
= 25°C  
= 1k  
A
L
V
= ±5V  
R
S
PHASE MARGIN  
V
S
= ±5V  
PHASE MARGIN  
V
= 3V, 0V  
S
V
S
= 5V, 0V  
190  
185  
180  
175  
170  
165  
160  
200  
V
= ±5V  
S
190  
180  
170  
160  
150  
GAIN BANDWIDTH  
A
R
R
= 1  
V
F
L
= R = 1k  
G
V
= 3V, 0V  
S
= 1k  
RISING AND FALLING  
SLEW RATE  
GAIN BANDWIDTH  
25  
0
50  
75 100 125  
50  
75 100 125  
55  
25  
–55  
–25  
0
25  
0
2
4
6
8
10  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TOTAL SUPPLY VOLTAGE (V)  
1809 G25  
1809 G24  
1809 G23  
Gain and Phase vs Frequency  
Closed-Loop Gain vs Frequency  
Closed-Loop Gain vs Frequency  
15  
12  
9
15  
12  
9
60  
50  
100  
80  
A
V
= +1  
A
V
= +2  
PHASE  
V
S
= 3V, 0V  
V = ±5V  
S
40  
60  
6
6
V
S
= 3V  
V
S
= 3V  
30  
40  
3
3
V
S
= ±5V  
V
= ±5V  
S
0
0
20  
20  
V
S
= ±5V  
V
S
= 3V, 0V  
–3  
–6  
–9  
–12  
–15  
–3  
–6  
–9  
–12  
–15  
10  
0
GAIN  
0
–20  
–40  
–60  
–10  
–20  
C
= 5pF  
= 1k  
L
L
R
100k  
1M  
10M  
FREQUENCY (Hz)  
100M 500M  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M 500M  
1809 G22  
1809 G26  
1809 G27  
12  
LT1809/LT1810  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Common Mode Rejection Ratio  
vs Frequency  
Power Supply Rejection Ratio  
vs Frequency  
Output Impedance vs Frequency  
100  
90  
600  
100  
110  
100  
90  
V
T
= 5V, 0V  
S
A
V
= 5V, 0V  
V
= 5V, 0V  
S
S
= 25°C  
80  
POSITIVE  
SUPPLY  
70  
80  
10  
1
60  
50  
70  
60  
A
= 10  
NEGATIVE  
SUPPLY  
V
A
= 2  
V
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
A
= 1  
V
0.1  
0.01  
1k  
10k  
100k  
1M  
10M  
100M  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M 500M  
10k  
100k  
1M  
10M  
100M 500M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1809 G31  
1809 G28  
1809 G30  
Series Output Resistor  
vs Capacitive Load  
Series Output Resistor  
vs Capacitive Load  
0.01% Settling Time  
40  
35  
30  
25  
20  
15  
10  
5
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
INPUT SIGNAL  
GENERATION  
(2V/DIV)  
V
A
= 5V, 0V  
= +1  
V
A
= 5V, 0V  
= +2  
S
V
S
V
OUTPUT  
SETTLING  
RESOLUTION  
(2mV/DIV)  
R
R
= 10Ω  
S
L
=
R
R
= 10,  
= ∞  
S
L
R
R
= 20Ω  
S
L
=
R
S
= 20, R = ∞  
L
R
= R = 50Ω  
S
L
VS = ±5V  
VOUT = ±4V  
AV = 1  
20ns/DIV  
1809 G34  
R
= R = 50Ω  
S
L
0
0
R
L = 500Ω  
10  
100  
1000  
10  
100  
CAPACITIVE LOAD (pF)  
1000  
tS = 110ns (SETTLING TIME)  
CAPACITIVE LOAD (pF)  
1809 G33  
1809 G32  
Distortion vs Frequency  
Distortion vs Frequency  
Distortion vs Frequency  
–40  
–50  
–40  
–50  
–40  
–50  
A
V
V
O
V
S
= +1  
= 2V  
= 5V  
A
V
V
O
V
S
= +1  
= 2V  
A
V
V
O
V
S
= +2  
= 2V  
P-P  
P-P  
P-P  
= ±5V  
= ±5V  
–60  
–60  
–60  
R
L
= 100, 2ND  
R
= 1k, 2ND  
L
–70  
–70  
–70  
R
L
= 100, 2ND  
R
R
= 100, 2ND  
= 100, 3RD  
1
L
–80  
–80  
–80  
R
L
= 1k, 2ND  
–90  
–90  
–90  
R
L
= 100, 3RD  
L
R
L
= 1k, 3RD  
10  
R
= 1k, 3RD  
L
R
L
= 1k, 3RD  
10  
R = 100, 3RD  
L
–100  
–100  
–100  
R
L
= 1k, 2ND  
–110  
–110  
–110  
0.3  
30  
0.3  
1
10  
30  
0.3  
1
30  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
1809 G36  
1809 G35  
1809 G37  
13  
LT1809/LT1810  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Maximum Undistorted Output  
Signal vs Frequency  
Distortion vs Frequency  
–40  
–50  
4.6  
4.5  
4.4  
4.3  
4.2  
4.1  
4.0  
3.9  
V
= 5V  
A
V
V
O
V
S
= +2  
= 2V  
= 5V  
S
P-P  
A
= –1  
V
–60  
R
L
= 100, 2ND  
–70  
A
= +2  
V
R
L
= 100, 3RD  
–80  
R
L
= 1k, 2ND  
R
L
= 1k, 3RD  
–90  
–100  
–110  
0.3  
1
10  
30  
0.1  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
1809 G38  
1809 G39  
±5V Large-Signal Response  
±5V Small-Signal Response  
5V Large-Signal Response  
VS = ±5V  
AV = +1  
RL = 1k  
10ns/DIV  
1809 G40  
VS = ±5V  
AV = +1  
RL = 1k  
10ns/DIV  
1809 G41  
VS = 5V  
AV = +1  
RL = 1k  
10ns/DIV  
1809 G42  
5V Small-Signal Response  
Output Overdriven Recovery  
Shutdown Response  
VIN  
VSHDN  
0V  
(1V/DIV)  
0V  
0V  
VOUT  
(2V/DIV)  
VOUT  
0V  
VS = 5V  
AV = +1  
RL = 1k  
10ns/DIV  
1809 G43  
VS = 5V, 0V  
AV = +2  
100ns/DIV  
1809 G44  
V
S = 5V, 0V  
100ns/DIV  
1809 G44  
AV = +2  
RL = 100Ω  
14  
LT1809/LT1810  
W U U  
APPLICATIO S I FOR ATIO  
U
Power Dissipation  
Rail-to-Rail Characteristics  
The LT1809/LT1810 amplifiers combine high speed with  
large output current in a small package, so there is a need  
to ensure that the die’s junction temperature does not  
exceed 150°C. The LT1809 is housed in an SO-8 package  
or a 6-lead SOT-23 package and the LT1810 is in an SO-8  
or 8-lead MSOP package. All packages have the Vsupply  
pinfusedtotheleadframetoenhancethethermalconduc-  
tance when connecting to a ground plane or a large metal  
trace. Metal trace and plated through-holes can be used to  
spread the heat generated by the device to the backside of  
the PC board. For example, on a 3/32" FR-4 board with 2oz  
copper, a total of 660 square millimeters connected to  
Pin 4 of LT1810 in an SO-8 package (330 square millime-  
ters on each side of the PC board) will bring the thermal  
resistance, θJA, to about 85°C/W. Without extra metal  
trace connected to the Vpin to provide a heat sink, the  
thermal resistance will be around 105°C/W. More infor-  
mationonthermalresistanceforallpackageswithvarious  
metal areas connecting to the Vpin is provided in Tables  
1, 2 and 3 for thermal consideration.  
The LT1809/LT1810 have an input and output signal  
range that includes both negative and positive power  
supply. Figure 1 depicts a simplified schematic of the  
amplifier. The input stage is comprised of two differential  
amplifiers, a PNP stage Q1/Q2 and a NPN stage Q3/Q4  
that are active over different ranges of common mode  
input voltage. The PNP differential pair is active for  
common mode voltages between the negative supply to  
approximately 1.5V below the positive supply. As the  
input voltage moves closer toward the positive supply,  
the transistor Q5 will steer the tail current I1 to the current  
mirror Q6/Q7, activating the NPN differential pair and  
causingthePNPpairtobecomeinactivefortherestofthe  
input common mode range up to the positive supply.  
A pair of complementary common emitter stages  
Q14/Q15 form the output stage, enabling the output to  
swingfromrail-to-rail.ThecapacitorsC1andC2formthe  
local feedback loops that lower the output impedance at  
high frequency. These devices are fabricated on Linear  
Technology’s proprietary high speed complementary  
bipolar process.  
+
V
R6  
10k  
R3  
R4  
R5  
Q16  
Q17  
+
+
V
V
V
Q12  
ESDD5  
D9  
D1  
ESDD1  
+IN  
ESDD2  
Q11  
Q13  
Q15  
R7  
100k  
I
1
C2  
SHDN  
D6  
D5  
D8  
D7  
Q5  
V
BIAS  
I
2
D2  
ESDD6  
OUT  
C
C
V
V
–IN  
Q4 Q3  
Q1 Q2  
D3  
BUFFER  
AND  
ESDD4  
ESDD3  
OUTPUT BIAS  
Q10  
+
V
V
D4  
Q9  
R1  
Q8  
R2  
BIAS  
GENERATION  
C1  
Q14  
Q7  
Q6  
V
1809 F01  
Figure 1. LT1809 Simplified Schematic Diagram  
15  
LT1809/LT1810  
W U U  
U
APPLICATIO S I FOR ATIO  
Table 1. LT1809 6-Lead SOT-23 Package  
connected to its Vpin has a thermal resistance of  
105°C/W, θJA. Operating on ±5V supplies with both  
amplifiers simultaneously driving 50loads, the worst-  
case power dissipation is given by:  
COPPER AREA  
TOPSIDE (mm )  
BOARD AREA  
THERMAL RESISTANCE  
(JUNCTION-TO-AMBIENT)  
2
2
(mm )  
270  
100  
20  
2500  
2500  
2500  
2500  
135°C/W  
145°C/W  
160°C/W  
200°C/W  
PD(MAX) = 2 • (10 • 25mA) + 2 • (2.5)2/50  
= 0.5 + 0.250 = 0.750W  
0
Device is mounted on topside.  
The maximum ambient temperature that the part is al-  
lowed to operate is:  
Table 2. LT1809/LT1810 SO-8 Package  
COPPER AREA  
TA = TJ – (PD(MAX) • 105°C/W)  
TOPSIDE  
(mm )  
BACKSIDE BOARD AREA  
(mm )  
THERMAL RESISTANCE  
(JUNCTION-TO-AMBIENT)  
2
2
2
(mm )  
= 150°C – (0.750W • 105°C/W) = 71°C  
1100  
330  
35  
1100  
330  
35  
2500  
2500  
2500  
2500  
2500  
65°C/W  
85°C/W  
95°C/W  
100°C/W  
105°C/W  
To operate the device at higher ambient temperature,  
connect more metal area to the Vpin to reduce the  
thermal resistance of the package as indicated in Table 2.  
35  
0
0
0
Input Offset Voltage  
Device is mounted on topside.  
Theoffsetvoltagewillchangedependinguponwhichinput  
stage is active and the maximum offset voltage is guaran-  
teedtobelessthan3mV. ThechangeofVOS overtheentire  
input common mode range (CMRR) is less than 2.5mV on  
a single 5V and 3V supply.  
Table 3. LT1810 8-Lead MSOP Package  
COPPER AREA  
TOPSIDE  
(mm )  
BACKSIDE  
(mm )  
BOARD AREA THERMAL RESISTANCE  
2
2
2
(mm )  
2500  
2500  
2500  
2500  
2500  
(JUNCTION-TO-AMBIENT)  
540  
100  
100  
30  
540  
100  
0
110°C/W  
120°C/W  
Input Bias Current  
130°C/W  
0
135°C/W  
The input bias current polarity depends upon a given input  
common voltage at whichever input stage is operating.  
WhenthePNPinputstageisactive, theinputbiascurrents  
flow out of the input pins and flow into the input pins when  
the NPN input stage is activated. Because the input offset  
current is less than the input bias current, matching the  
source resistances at the input pin will reduce total offset  
error.  
0
0
140°C/W  
Device is mounted on topside.  
Junction temperature TJ is calculated from the ambient  
temperature TA and power dissipation PD as follows:  
TJ = TA + (PD θJA)  
ThepowerdissipationintheICisthefunctionofthesupply  
voltage,outputvoltageandtheloadresistance.Foragiven  
supply voltage, the worst-case power dissipation PD(MAX)  
occurs at the maximum supply current with the output  
voltage at half of either supply voltage (or the maximum  
swingislessthan1/2thesupplyvoltage). PD(MAX) isgiven  
by:  
PD(MAX) = (VS • IS(MAX)) + (VS/2)2/RL  
Example: An LT1810 in SO-8 mounted on a 2500mm2  
area of PC board without any extra heat spreading plane  
Output  
The LT1809/LT1810 can deliver a large output current,  
so the short-circuit current limit is set around 90mA to  
prevent damage to the device. Attention must be paid to  
keep the junction temperature of the IC below the abso-  
lute maximum rating of 150°C (refer to the Power Dissi-  
pation section) when the output is continuously short  
circuited. The output of the amplifier has reverse-biased  
diodes connected to each supply. If the output is forced  
16  
LT1809/LT1810  
W U U  
APPLICATIO S I FOR ATIO  
U
beyond either supply, unlimited current will flow through  
these diodes. If the current is transient and limited to  
several hundred milliamps, no damage to the device will  
occur.  
output and the capacitive load to avoid ringing or oscilla-  
tion. The feedback should still be taken from the output so  
that the resistor will isolate the capacitive load to ensure  
stability. Graphs on capacitive loads indicate the transient  
responseoftheamplifierwhendrivingcapacitiveloadwith  
a specified series resistor.  
Overdrive Protection  
When the input voltage exceeds the power supplies, two  
pairs of crossing diodes, D1 to D4, will prevent the output  
fromreversingpolarity. Iftheinputvoltageexceedseither  
power supply by 700mV, diodes D1/D2 or D3/D4 will turn  
on, keeping the output at the proper polarity. For the  
phase reversal protection to perform properly, the input  
current must be limited to less than 5mA. If the amplifier  
isseverelyoverdriven,anexternalresistorshouldbeused  
to limit the overdrive current.  
Feedback Components  
Whenfeedbackresistorsareusedtosetupgain,caremust  
be taken to ensure that the pole formed by the feedback  
resistors and the total capacitance at the inverting input  
does not degrade stability. For instance, the LT1809 in a  
noninverting gain of 2, set up with two 1K resistors and a  
capacitance of 3pF (device plus PC board), will probably  
ring in transient response. The pole that is formed at  
106MHzwillreducephasemarginby34degreeswhenthe  
crossover frequency of the amplifier is around 70MHz. A  
capacitor of 3pF or higher connected across the feedback  
resistor will eliminate any ringing or oscillation.  
The LT1809/LT1810’s input stages are also protected  
against differential input voltages of 1.4V or higher by  
back-to-backdiodes,D5/D8,thatpreventtheemitter-base  
breakdown of the input transistors. The current in these  
diodes should be limited to less than 10mA when they are  
active. The worst-case differential input voltage usually  
occurs when the input is driven while the output is shorted  
to ground in a unity-gain configuration. In addition, the  
amplifier is protected against ESD strikes up to 3kV on all  
pins by a pair of protection diodes on each pin that are  
connected to the power supplies as shown in Figure 1.  
SHDN Pin  
The LT1809 has a SHDN pin to reduce the supply current  
to less than 1.25mA. When the SHDN pin is pulled low, it  
will generate a signal to power down the device. If the pin  
is left unconnected, an internal pull-up resistor of 10k will  
keep the part fully operating as shown in Figure 1. The  
output will be high impedance during shutdown, and the  
turn-on and turn-off time is less than 100ns. Because the  
inputs are protected by a pair of back-to-back diodes, the  
input signal will feed through to the output during shut-  
down mode if the amplitude of signal between the inputs  
is larger than 1.4V.  
Capacitive Load  
The LT1809/LT1810 is optimized for high bandwidth and  
low distortion applications. It can drive a capacitive load  
about 20pF in a unity-gain configuration and more with  
higher gain. When driving a larger capacitive load, a  
resistor of 10to 50should be connected between the  
17  
LT1809/LT1810  
U
TYPICAL APPLICATIO S  
Driving A/D Converters  
and resistors, an NPO chip capacitor and metal-film sur-  
face mount resistors, should be used since these compo-  
nents can add to distortion. The voltage glitch of the  
converter, due to its sampling nature, is buffered by the  
LT1809 and the ability of the amplifier to settle it quickly  
will affect the spurious-free dynamic range of the system.  
Figure2toFigure7depicttheLT1809drivingtheLTC1420  
at different configurations and voltage supplies. The FFT  
responses show better than 90dB of SFDR for a ±5V  
supply, and 80dB on a 5V single supply for the 1.394MHz  
signal.  
The LT1809/LT1810 have a 27ns settling time to 0.1% of  
a 2V step signal and 20output impedance at 100MHz  
makingitidealfordrivinghighspeedA/Dconverters. With  
the rail-to-rail input and output and low supply voltage  
operation, the LT1809 is also desirable for single supply  
applications. As shown in Figure 2, the LT1809 drives a  
10Msps, 12-bit ADC, the LTC1420. The lowpass filter, R3  
and C1, reduces the noise and distortion products that  
might come from the input signal. High quality capacitors  
5V  
5V  
V
P-P  
IN  
R3  
49.9  
+
1V  
LTC1420  
12 BITS  
LT1809  
–5V  
+A  
PGA GAIN = 1  
REF = 2.048V  
IN  
10Msps  
C1  
470pF  
–A  
IN  
R2  
1k  
1809 F02  
–5V  
R1  
1k  
Figure 2. Noninverting A/D Driver  
0
V
A
= ±5V  
S
V
= +2  
–20  
f
f
= 10Msps  
= 1.394MHz  
SAMPLE  
IN  
SFDR = 90dB  
–40  
–60  
–80  
–100  
–120  
0
1
2
3
4
5
FREQUENCY (MHz)  
1809 F03  
Figure 3. 4096 Point FFT Response  
18  
LT1809/LT1810  
U
TYPICAL APPLICATIO S  
0
–20  
–40  
–60  
1k  
5V  
5V  
1k  
V
P-P  
IN  
+
–80  
–100  
–120  
2V  
49.9Ω  
LTC1420  
PGA GAIN = 1  
REF = 2.048V  
12 BITS  
10Msps  
LT1809  
–5V  
+A  
IN  
–A  
IN  
470pF  
1809 F04  
0
1
2
3
4
5
–5V  
FREQUENCY (MHz)  
1809 F05  
Figure 4. Inverting A/D Driver  
Figure 5. 4096 Point FFT Response  
0
–20  
5V  
–40  
–60  
5V  
V
P-P  
ON 2.5V DC  
IN  
3
2
7
1V  
+
49.9Ω  
LTC1420  
PGA GAIN = 2  
REF = 4.096V  
6
1
12 BITS  
10Msps  
LT1809  
4
+A  
IN  
–80  
–100  
–120  
1
–A  
IN  
2
470pF  
V
CM  
1809 F06  
3
1k  
1µF  
1k  
0
1
2
3
4
5
FREQUENCY (MHz)  
0.15µF  
1809 F07  
Figure 7. 4096 Point FFT Response  
Figure 6. Single Supply A/D Driver  
19  
LT1809/LT1810  
U
TYPICAL APPLICATIO S  
Single Supply Video Line Driver  
The LT1809 is a wideband rail-to-rail op amp with a large  
output current that allows it to drive video signals in low  
supply applications. Figure 8 depicts a single supply video  
line driver with AC coupling to minimize the quiescent  
power dissipation. Resistors R1 and R2 are used to level-  
shift the input and output to provide the largest signal  
swing. A gain of 2 is set up with R3 and R4 to restore the  
signal at VOUT, which is attenuated by 6dB due to the  
matching of the 75line with the back-terminated  
resistor, R5. The back termination will eliminate any re-  
flection of the signal that comes from the load. The input  
termination resistor, RT, is optional—it is used only if  
matching of the incoming line is necessary. The values of  
C1, C2 and C3 are selected to minimize the droop of the  
luminance signal. In some less stringent requirements,  
the value of capacitors could be reduced. The 3dB band-  
width of the driver is about 95MHz on 5V supply and the  
amountofpeakingwillvaryuponthevalueofcapacitorC4.  
5V  
C1  
R1  
33µF  
5k  
C3  
3
2
7
LT1809  
4
75Ω  
R5  
V
IN  
+
1000µF  
COAX CABLE  
75Ω  
6
R
R2  
5k  
T
V
OUT  
75Ω  
R
LOAD  
75Ω  
R4  
1k  
1809 F08  
C4  
3pF  
R3  
1k  
+
C2  
150µF  
Figure 8. 5V Single Supply Video Line Driver  
5
V
S
= 5V  
4
3
2
1
0
–1  
–2  
–3  
–4  
–5  
0.2  
1
10  
100  
FREQUENCY (MHz)  
1809 F09  
Figure 9. Video Line Driver Frequency Response  
20  
LT1809/LT1810  
U
PACKAGE DESCRIPTIO  
Dimensions in inches (millimeters) unless otherwise noted.  
S6 Package  
6-Lead Plastic SOT-23  
(Reference LTC DWG # 05-08-1634)  
(Reference LTC DWG # 05-08-1636)  
2.80 – 3.10  
(.110 – .118)  
(NOTE 3)  
SOT-23  
(Original)  
SOT-23  
(ThinSOT)  
.90 – 1.45  
1.00 MAX  
A
A1  
A2  
L
(.035 – .057)  
(.039 MAX)  
.00 – 0.15  
(.00 – .006)  
.01 – .10  
(.0004 – .004)  
2.60 – 3.00  
1.50 – 1.75  
(.102 – .118) (.059 – .069)  
(NOTE 3)  
.90 – 1.30  
(.035 – .051)  
.80 – .90  
(.031 – .035)  
PIN ONE ID  
.35 – .55  
(.014 – .021)  
.30 – .50 REF  
(.012 – .019 REF)  
.95  
(.037)  
REF  
.25 – .50  
(.010 – .020)  
(6PLCS, NOTE 2)  
.20  
(.008)  
A2  
A
DATUM ‘A’  
1.90  
(.074)  
REF  
L
.09 – .20  
(.004 – .008)  
(NOTE 2)  
A1  
S6 SOT-23 0401  
NOTE:  
1. CONTROLLING DIMENSION: MILLIMETERS  
MILLIMETERS  
2. DIMENSIONS ARE IN  
(INCHES)  
3. DRAWING NOT TO SCALE  
4. DIMENSIONS ARE INCLUSIVE OF PLATING  
5. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
6. MOLD FLASH SHALL NOT EXCEED .254mm  
7. PACKAGE EIAJ REFERENCE IS:  
SC-74A (EIAJ) FOR ORIGINAL  
JEDEC MO-193 FOR THIN  
21  
LT1809/LT1810  
U
PACKAGE DESCRIPTIO  
Dimensions in inches (millimeters) unless otherwise noted.  
MS8 Package  
8-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1660)  
0.118 ± 0.004*  
(3.00 ± 0.102)  
8
7
6
5
0.118 ± 0.004**  
(3.00 ± 0.102)  
0.193 ± 0.006  
(4.90 ± 0.15)  
1
2
3
4
0.043  
(1.10)  
MAX  
0.034  
(0.86)  
REF  
0.007  
(0.18)  
0° – 6° TYP  
SEATING  
PLANE  
0.009 – 0.015  
(0.22 – 0.38)  
0.021 ± 0.006  
(0.53 ± 0.015)  
0.005 ± 0.002  
(0.13 ± 0.05)  
0.0256  
(0.65)  
BSC  
MSOP (MS8) 1100  
* DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH,  
PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
** DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
22  
LT1809/LT1810  
U
PACKAGE DESCRIPTIO  
Dimensions in inches (millimeters) unless otherwise noted.  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
7
5
8
6
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
1
3
4
2
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.016 – 0.050  
(0.406 – 1.270)  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
TYP  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
SO8 1298  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
23  
LT1809/LT1810  
U
TYPICAL APPLICATIO  
Single 3V Supply, 4MHz, 4th Order Butterworth Filter  
shown Figure 10. On a 3V supply, the filter has a pass-  
band of 4MHz with 2.5VP-P signal and a stopband that is  
greater than 70dB to frequency of 100MHz.  
Benefiting from a low voltage supply operation, low  
distortion and rail-to-rail output of LT1809, a low distor-  
tion filter that is suitable for antialiasing can be built as  
232Ω  
274Ω  
47pF  
22pF  
232Ω  
665Ω  
V
IN  
274Ω  
562Ω  
220pF  
1/2 LT1810  
470pF  
V
OUT  
1/2 LT1810  
+
+
V
S
1809 F10  
2
Figure 10. Single 3V Supply, 4MHz, 4th Order Butterworth Filter  
10  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
V
V
= 3V, 0V  
S
–80  
–90  
= 2.5V  
P-P  
IN  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
1809 F11  
Figure 11. Filter Frequency Response  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
800V/µs Slew Rate, Shutdown  
LT1395  
400MHz Current Feedback Amplifier  
LT1632/LT1633  
Dual/Quad 45MHz, 45V/µs Rail-to-Rail Input and Output Op Amps High DC Accuracy, 1.35mV V  
, 70mA Output Current,  
OS(MAX)  
Max Supply Current 5.2mA per Amplifier  
LT1630/LT1631  
LT1806/LT1807  
Dual/Quad 30MHz, 10V/µs Rail-to-Rail Input and Output Op Amps High DC Accuracy, 525µV V  
, 70mA Output Current,  
OS(MAX)  
Max Supply Current 4.4mA per Amplifier  
Single/Dual 325MHz, 140V/µs Rail-to-Rail  
Input and Output Op Amps  
High DC Accuracy, 550µV V  
Low Distortion –80dBc at 5MHz  
, Low Noise 3.5nV/Hz,  
OS(MAX)  
sn180910 180910fs LT/TP 1100 4K • PRINTED IN USA  
LINEAR TECHNOLOGY CORPORATION 2000  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
24  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  

相关型号:

LT1810CS8#TRPBF

LT1810 - Dual 180MHz, 350V/µs Rail-to-Rail Input and Output Low Distortion Op Amps; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C
Linear

LT1810IMS8

Single/Dual 180MHz, 350V/ms Rail-to-Rail Input and Output Low Distortion Op Amps
Linear

LT1810IMS8#PBF

LT1810 - Dual 180MHz, 350V/µs Rail-to-Rail Input and Output Low Distortion Op Amps; Package: MSOP; Pins: 8; Temperature Range: -40°C to 85°C
ADI

LT1810IMS8#TR

LT1810 - Dual 180MHz, 350V/µs Rail-to-Rail Input and Output Low Distortion Op Amps; Package: MSOP; Pins: 8; Temperature Range: -40°C to 85°C
Linear

LT1810IMS8#TRPBF

LT1810 - Dual 180MHz, 350V/µs Rail-to-Rail Input and Output Low Distortion Op Amps; Package: MSOP; Pins: 8; Temperature Range: -40°C to 85°C
Linear

LT1810IS8

Single/Dual 180MHz, 350V/ms Rail-to-Rail Input and Output Low Distortion Op Amps
Linear

LT1810IS8#PBF

LT1810 - Dual 180MHz, 350V/µs Rail-to-Rail Input and Output Low Distortion Op Amps; Package: SO; Pins: 8; Temperature Range: -40°C to 85°C
ADI

LT1810IS8#TRPBF

LT1810 - Dual 180MHz, 350V/µs Rail-to-Rail Input and Output Low Distortion Op Amps; Package: SO; Pins: 8; Temperature Range: -40°C to 85°C
Linear

LT1811

UNDERSTANDING THE SUBJECT IS CUSTOMER SERVICE
ETC

LT1811G

Optoelectronic
ETC

LT1812

3mA, 100MHz, 750V/us Operational Amplifier with Shutdown
Linear

LT1812CS5

3mA, 100MHz, 750V/us Operational Amplifier with Shutdown
Linear