LT1812CS8#PBF [Linear]

暂无描述;
LT1812CS8#PBF
型号: LT1812CS8#PBF
厂家: Linear    Linear
描述:

暂无描述

运算放大器 放大器电路 光电二极管
文件: 总12页 (文件大小:206K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1812  
3mA, 100MHz, 750V/µs  
Operational Amplifier  
with Shutdown  
U
FEATURES  
DESCRIPTIO  
The LT®1812 is a low power, high speed, very high slew  
rate operational amplifier with excellent DC performance.  
The LT1812 features reduced supply current, lower input  
offset voltage, lower input bias current and higher DC gain  
than other devices with comparable bandwidth. A power  
saving shutdown feature reduces supply current to 50µA.  
The circuit topology is a voltage feedback amplifier with  
theslewingcharacteristicsofacurrentfeedbackamplifier.  
100MHz Gain Bandwidth  
750V/µs Slew Rate  
3.6mA Maximum Supply Current  
50µA Supply Current in Shutdown  
8nV/Hz Input Noise Voltage  
Unity-Gain Stable  
1.5mV Maximum Input Offset Voltage  
4µA Maximum Input Bias Current  
400nA Maximum Input Offset Current  
40mA Minimum Output Current, VOUT = ±3V  
±3.5V Minimum Input CMR, VS = ±5V  
30ns Settling Time to 0.1%, 5V Step  
Specified at ±5V, Single 5V Supplies  
Operating Temperature Range: 40°C to 85°C  
Theoutputdrivesa100loadto±3.5Vwith±5Vsupplies.  
Onasingle5Vsupply,theoutputswingsfrom1.1Vto3.9V  
witha100loadconnectedto2.5V.Theamplifierisstable  
with a 1000pF capacitive load which makes it useful in  
buffer and cable driver applications.  
The LT1812 is manufactured on Linear Technology’s  
advanced low voltage complementary bipolar process.  
The dual version is the LT1813. For higher supply voltage  
single, dual and quad operational amplifiers with up to  
70MHz gain bandwidth, see the LT1351 through LT1365  
data sheets.  
U
APPLICATIO S  
Wideband Amplifiers  
Buffers  
Active Filters  
Video and RF Amplification  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
Cable Drivers  
Data Acquisition Systems  
U
TYPICAL APPLICATIO  
Filter Frequency Response  
10  
0
4MHz, 4th Order Butterworth Filter  
–10  
–20  
232  
274Ω  
–30  
–40  
47pF  
232Ω  
665Ω  
V
IN  
–50  
–60  
22pF  
274Ω  
562Ω  
+
LT1812  
220pF  
+
LT1812  
V
–70  
–80  
–90  
470pF  
OUT  
V
V
= ±5V  
S
= 600mV  
P-P  
IN  
PEAKING < 0.12dB  
1812 TA01  
0.1  
1
10  
100  
FREQUENCY (MHz)  
1812 TA02  
1
LT1812  
W W U W  
U W  
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
Total Supply Voltage (V+ to V)............................. 12.6V  
Differential Input Voltage (Transient Only, Note 2) ... ±3V  
Input Voltage ........................................................... ±VS  
Output Short-Circuit Duration (Note 3)............ Indefinite  
Operating Temperature Range (Note 8) ... 40°C to 85°C  
Specified Temperature Range  
(Note 8) .............................................. 40°C to 85°C  
Maximum Junction Temperature ......................... 150°C  
Storage Temperature Range .................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................... 300°C  
ORDER PART  
TOP VIEW  
NUMBER  
NC  
–IN  
+IN  
1
2
3
4
8
7
6
5
SHDN  
LT1812CS8  
LT1812IS8  
+
V
V
OUT  
V
NC  
S8 PART MARKING  
S8 PACKAGE  
8-LEAD PLASTIC SO  
1812  
1812I  
TJMAX = 150°C, θJA = 80°C/ W (NOTE 9)  
Consult factory for Military grade parts.  
ELECTRICAL CHARACTERISTICS  
TA = 25°C, VS = ±5V, VCM = 0V unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
0.4  
30  
MAX  
1.5  
UNITS  
mV  
V
Input Offset Voltage  
Input Offset Current  
Input Bias Current  
(Note 4)  
OS  
I
I
400  
±4  
nA  
OS  
0.9  
8
µA  
B
e
Input Noise Voltage Density  
Input Noise Current Density  
Input Resistance  
f = 10kHz  
f = 10kHz  
nV/Hz  
pA/Hz  
n
i
1
n
R
V
CM  
= ±3.5V  
3
10  
1.5  
MΩ  
MΩ  
IN  
Differential  
C
V
Input Capacitance  
2
pF  
IN  
Input Voltage Range (Positive)  
Input Voltage Range (Negative)  
3.5  
75  
4.2  
4.2  
V
V
CM  
3.5  
CMRR  
Common Mode Rejection Ratio  
Minimum Supply Voltage  
V
= ±3.5V  
85  
±1.25  
97  
dB  
V
CM  
±2  
PSRR  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V = ±2V to ±5.5V  
S
78  
dB  
A
V
V
OUT  
V
OUT  
= ±3V, R = 500Ω  
= ±3V, R = 100Ω  
1.5  
1.0  
3.0  
2.5  
V/mV  
V/mV  
VOL  
OUT  
L
L
Maximum Output Swing  
R = 500, 30mV Overdrive  
R = 100, 30mV Overdrive  
±3.80  
±3.35  
±4.0  
±3.5  
V
V
L
L
I
I
Maximum Output Current  
Output Short-Circuit Current  
Slew Rate  
V
V
= ±3V, 30mV Overdrive  
±40  
±75  
500  
±60  
±110  
750  
40  
mA  
mA  
V/µs  
MHz  
MHz  
ns  
OUT  
SC  
OUT  
OUT  
= 0V, 1V Overdrive (Note 3)  
SR  
A = 1 (Note 5)  
V
FPBW  
GBW  
Full Power Bandwidth  
Gain Bandwidth Product  
Rise Time, Fall Time  
Overshoot  
3V Peak (Note 6)  
f = 200kHz  
75  
100  
2
t , t  
A = 1, 10% to 90%, 0.1V, R = 100Ω  
V L  
r
f
OS  
A = 1, 0.1V, R = 100Ω  
V
25  
%
L
t
t
Propagation Delay  
Settling Time  
A = 1, 50% V to 50% V , 0.1V, R = 100Ω  
2.8  
ns  
PD  
s
V
IN  
OUT  
L
5V Step, 0.1%, A = 1  
30  
ns  
V
THD  
Total Harmonic Distortion  
Differential Gain  
f = 1MHz, V  
= 2V , A = 2, R = 500Ω  
–76  
0.12  
0.07  
0.4  
dB  
OUT  
P-P  
V
L
V
OUT  
V
OUT  
= 2V , A = 2, R = 150Ω  
%
P-P  
V
L
Differential Phase  
Output Resistance  
= 2V , A = 2, R = 150Ω  
DEG  
P-P  
V
L
R
A = 1, f = 1MHz  
V
OUT  
2
LT1812  
ELECTRICAL CHARACTERISTICS  
TA = 25°C, VS = ±5V, VCM = 0V unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
SHDN Pin Current  
SHDN > V + 2.0V (On)  
SHDN < V + 0.4V (Off)  
0
±1  
µA  
µA  
SHDN  
–100  
50  
I
Supply Current  
SHDN > V + 2.0V (On)  
3
50  
3.6  
100  
mA  
µA  
S
SHDN < V + 0.4V (Off)  
TA = 25°C, VS = 5V, VCM = 2.5V, RL to 2.5V unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
0.5  
30  
MAX  
2.0  
UNITS  
mV  
V
OS  
Input Offset Voltage  
Input Offset Current  
Input Bias Current  
(Note 4)  
I
I
400  
±4  
nA  
OS  
1.0  
8
µA  
B
e
Input Noise Voltage Density  
Input Noise Current Density  
Input Resistance  
f = 10kHz  
f = 10kHz  
nV/Hz  
pA/Hz  
n
i
1
n
R
IN  
V
= 1.5V to 3.5V  
3
10  
1.5  
MΩ  
MΩ  
CM  
Differential  
C
V
Input Capacitance  
2
pF  
IN  
Input Voltage Range (Positive)  
Input Voltage Range (Negative)  
3.5  
73  
4
1
V
V
CM  
1.5  
CMRR  
Common Mode Rejection Ratio  
Large-Signal Voltage Gain  
V
= 1.5V to 3.5V  
82  
dB  
CM  
A
VOL  
V
OUT  
V
OUT  
= 1.5V to 3.5V, R = 500Ω  
= 1.5V to 3.5V, R = 100Ω  
1.0  
0.7  
2.0  
1.5  
V/mV  
V/mV  
L
L
V
OUT  
Maximum Output Swing (Positive)  
Maximum Output Swing (Negative)  
R = 500, 30mV Overdrive  
L
3.9  
3.7  
4.1  
3.9  
V
V
L
R = 100, 30mV Overdrive  
R = 500, 30mV Overdrive  
0.9  
1.1  
1.1  
1.3  
V
V
L
R = 100, 30mV Overdrive  
L
I
I
Maximum Output Current  
Output Short-Circuit Current  
Slew Rate  
V
V
= 3.5V or 1.5V, 30mV Overdrive  
= 2.5V, 1V Overdrive (Note 3)  
±25  
±55  
200  
±40  
±80  
350  
55  
mA  
mA  
V/µs  
MHz  
MHz  
ns  
OUT  
SC  
OUT  
OUT  
SR  
A = 1 (Note 5)  
V
FPBW  
GBW  
Full Power Bandwidth  
Gain Bandwidth Product  
Rise Time, Fall Time  
Overshoot  
1V Peak (Note 6)  
f = 200kHz  
65  
94  
t , t  
A = 1, 10% to 90%, 0.1V, R = 100Ω  
V
2.1  
25  
r
f
L
OS  
A = 1, 0.1V, R = 100Ω  
V
%
L
t
t
Propagation Delay  
Settling Time  
A = 1, 50% V to 50% V , 0.1V, R = 100Ω  
3
ns  
PD  
s
V
IN  
OUT  
L
2V Step, 0.1%, A = 1  
30  
ns  
V
THD  
Total Harmonic Distortion  
Differential Gain  
f = 1MHz, V  
= 2V , A = 2, R = 500Ω  
–75  
0.22  
0.21  
0.45  
dB  
OUT  
P-P  
V
L
V
OUT  
V
OUT  
= 2V , A = 2, R = 150Ω  
%
P-P  
V
L
Differential Phase  
Output Resistance  
SHDN Pin Current  
= 2V , A = 2, R = 150Ω  
DEG  
P-P  
V
L
R
OUT  
A = 1, f = 1MHz  
V
I
SHDN > V + 2.0V (On)  
SHDN < V + 0.4V (Off)  
0
20  
±1  
µA  
µA  
SHDN  
50  
I
Supply Current  
SHDN > V + 2.0V (On)  
SHDN < V + 0.4V (Off)  
2.7  
20  
3.6  
50  
mA  
µA  
S
0°C TA 70°C, VS = ±5V, VCM = 0V unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
(Note 4)  
MIN  
TYP  
MAX  
2
UNITS  
mV  
V
Input Offset Voltage  
Input Offset Voltage Drift  
Input Offset Current  
Input Bias Current  
OS  
V /T  
(Note 7)  
10  
15  
µV/°C  
nA  
OS  
I
I
500  
±5  
OS  
B
µA  
3
LT1812  
ELECTRICAL CHARACTERISTICS  
0°C TA 70°C. VS = ±5V, VCM = 0V unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Voltage Range (Positive)  
Input Voltage Range (Negative)  
3.5  
V
V
CM  
3.5  
CMRR  
Common Mode Rejection Ratio  
Minimum Supply Voltage  
V
CM  
= ±3.5V  
73  
dB  
V
±2  
PSRR  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V = ±2V to ±5.5V  
76  
dB  
S
A
V
V
OUT  
V
OUT  
= ±3V, R = 500Ω  
1.0  
0.7  
V/mV  
V/mV  
VOL  
OUT  
L
= ±3V, R = 100Ω  
L
Maximum Output Swing  
R = 500, 30mV Overdrive  
±3.70  
±3.25  
V
V
L
R = 100, 30mV Overdrive  
L
I
I
Maximum Output Current  
Output Short-Circuit Current  
Slew Rate  
V
V
= ±3V, 30mV Overdrive  
±35  
±60  
400  
65  
mA  
mA  
OUT  
SC  
OUT  
OUT  
= 0V, 1V Overdrive (Note 3)  
SR  
A = 1 (Note 5)  
V
V/µs  
MHz  
GBW  
Gain Bandwidth Product  
SHDN Pin Current  
f = 200kHz  
I
SHDN > V + 2.0V (On)  
SHDN < V + 0.4V (Off)  
±1.5  
µA  
µA  
SHDN  
–150  
I
Supply Current  
SHDN > V + 2.0V (On)  
SHDN < V + 0.4V (Off)  
4.6  
150  
mA  
µA  
S
0°C TA 70°C, VS = 5V, VCM = 2.5V, RL to 2.5V unless otherwise noted.  
V
Input Offset Voltage  
Input Offset Voltage Drift  
Input Offset Current  
Input Bias Current  
(Note 4)  
2.5  
15  
mV  
µV/°C  
nA  
OS  
V /T  
(Note 7)  
10  
OS  
I
I
500  
±5  
OS  
B
µA  
V
Input Voltage Range (Positive)  
Input Voltage Range (Negative)  
3.5  
71  
V
V
CM  
1.5  
CMRR  
Common Mode Rejection Ratio  
Large-Signal Voltage Gain  
V
= 1.5V to 3.5V  
dB  
CM  
A
V
OUT  
V
OUT  
= 1.5V to 3.5V, R = 500Ω  
= 1.5V to 3.5V, R = 100Ω  
0.7  
0.5  
V/mV  
V/mV  
VOL  
L
L
V
Maximum Output Swing (Positive)  
Maximum Output Swing (Negative)  
R = 500, 30mV Overdrive  
L
3.8  
3.6  
V
V
OUT  
L
R = 100, 30mV Overdrive  
R = 500, 30mV Overdrive  
1.2  
1.4  
V
V
L
R = 100, 30mV Overdrive  
L
I
I
Maximum Output Current  
Output Short-Circuit Current  
Slew Rate  
V
V
= 3.5V or 1.5V, 30mV Overdrive  
= 2.5V, 1V Overdrive (Note 3)  
±20  
±45  
150  
55  
mA  
mA  
OUT  
SC  
OUT  
OUT  
SR  
A = 1 (Note 5)  
V
V/µs  
MHz  
GBW  
Gain Bandwidth Product  
SHDN Pin Current  
f = 200kHz  
I
SHDN > V + 2.0V (On)  
SHDN < V + 0.4V (Off)  
±1.5  
µA  
µA  
SHDN  
75  
I
Supply Current  
SHDN > V + 2.0V (On)  
SHDN < V + 0.4V (Off)  
4.5  
75  
mA  
µA  
S
40°C TA 85°C. VS = ±5V, VCM = 0V unless otherwise noted (Note 8).  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
3
UNITS  
mV  
V
Input Offset Voltage  
Input Offset Voltage Drift  
Input Offset Current  
Input Bias Current  
(Note 4)  
OS  
V /T  
OS  
(Note 7)  
10  
30  
µV/°C  
nA  
I
I
600  
±6  
OS  
B
µA  
V
Input Voltage Range (Positive)  
Input Voltage Range (Negative)  
3.5  
72  
V
V
CM  
3.5  
CMRR  
Common Mode Rejection Ratio  
V
CM  
= ±3.5V  
dB  
4
LT1812  
ELECTRICAL CHARACTERISTICS  
40°C TA 85°C. VS = ±5V, VCM = 0V unless otherwise noted (Note 8).  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Minimum Supply Voltage  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
±2  
PSRR  
V = ±2V to ±5.5V  
75  
dB  
S
A
V
OUT  
V
OUT  
= ±3V, R = 500Ω  
= ±3V, R = 100Ω  
0.8  
0.6  
V/mV  
V/mV  
VOL  
L
L
V
Maximum Output Swing  
R = 500, 30mV Overdrive  
L
±3.60  
±3.15  
V
V
OUT  
L
R = 100, 30mV Overdrive  
I
I
Maximum Output Current  
Output Short-Circuit Current  
Slew Rate  
V
V
= ±3V, 30mV Overdrive  
±30  
±55  
350  
60  
mA  
mA  
OUT  
SC  
OUT  
OUT  
= 0V, 1V Overdrive (Note 3)  
SR  
A = 1 (Note 5)  
V
V/µs  
MHz  
GBW  
Gain Bandwidth Product  
SHDN Pin Current  
f = 200kHz  
I
SHDN > V + 2.0V (On)  
SHDN < V + 0.4V (Off)  
±2  
µA  
µA  
SHDN  
200  
I
Supply Current  
SHDN > V + 2.0V (On)  
SHDN < V + 0.4V (Off)  
5
200  
mA  
µA  
S
40°C TA 85°C, VS = 5V, VCM = 2.5V, RL to 2.5V unless otherwise noted (Note 8).  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
3.5  
30  
UNITS  
mV  
V
Input Offset Voltage  
Input Offset Voltage Drift  
Input Offset Current  
Input Bias Current  
(Note 4)  
OS  
V /T  
OS  
(Note 7)  
10  
µV/°C  
nA  
I
I
600  
±6  
OS  
B
µA  
V
Input Voltage Range (Positive)  
Input Voltage Range (Negative)  
3.5  
70  
V
V
CM  
1.5  
CMRR  
Common Mode Rejection Ratio  
Large-Signal Voltage Gain  
V
= 1.5V to 3.5V  
dB  
CM  
A
V
OUT  
V
OUT  
= 1.5V to 3.5V, R = 500Ω  
= 2.0V to 3.0V, R = 100Ω  
0.6  
0.4  
V/mV  
V/mV  
VOL  
L
L
V
Maximum Output Swing (Positive)  
Maximum Output Swing (Negative)  
R = 500, 30mV Overdrive  
L
3.7  
3.5  
V
V
OUT  
L
R = 100, 30mV Overdrive  
R = 500, 30mV Overdrive  
1.3  
1.5  
V
V
L
R = 100, 30mV Overdrive  
L
I
I
Maximum Output Current  
Output Short-Circuit Current  
Slew Rate  
V
V
= 3.5V or 1.5V, 30mV Overdrive  
= 2.5V, 1V Overdrive (Note 3)  
±17  
±40  
125  
50  
mA  
mA  
OUT  
SC  
OUT  
OUT  
SR  
A = 1 (Note 5)  
V
V/µs  
MHz  
GBW  
Gain Bandwidth Product  
SHDN Pin Current  
f = 200kHz  
I
SHDN > V + 2.0V (On)  
SHDN < V + 0.4V (Off)  
±2  
µA  
µA  
SHDN  
100  
I
Supply Current  
SHDN > V + 2.0V (On)  
SHDN < V + 0.4V (Off)  
5
100  
mA  
µA  
S
Note 1: Absolute Maximum Ratings are those values beyond which the life of  
the device may be impaired.  
Note 6: Full power bandwidth is calculated from the slew rate:  
FPBW = SR/2πV .  
P
Note 2: Differential inputs of ±3V are appropriate for transient operation only,  
such as during slewing. Large sustained differential inputs can cause  
excessive power dissipation and may damage the part.  
Note 7: This parameter is not 100% tested.  
Note 8: The LT1812C is guaranteed to meet specified performance from  
0°C to 70°C. The LT1812C is designed, characterized and expected to meet  
specified performance from 40°C to 85°C but is not tested or QA sampled  
Note 3: A heat sink may be required to keep the junction temperature below  
absolute maximum when the output is shorted indefinitely.  
Note 4: Input offset voltage is pulse tested and is exclusive of warm-up drift.  
Note 5: Slew rate is measured between ±2V on the output with ±3V input for  
at these temperatures. The LT1812I is guaranteed to meet specified  
performance from –40°C to 85°C.  
2
Note 9: θ is specified for a 2500mm board covered with 2 oz copper on  
JA  
both sides. Thermal resistance varies, depending upon the amount of PC  
board metal attached to the device. For this package in particular, power is  
dissipated primarily through Pin 4, which should therefore, have a good  
thermal connection to a copper plane.  
±5V supplies and 2V on the output with a 3V input for single 5V  
supplies.  
P-P  
P-P  
5
LT1812  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Input Common Mode Range  
Input Bias Current vs  
Supply Current vs Temperature  
vs Supply Voltage  
Common Mode Voltage  
+
5
4
3
2
1
0
V
0
0.5  
–1.0  
–1.5  
2.0  
T
= 25°C  
= ±5V  
A
S
0.5  
–1.0  
–1.5  
2.0  
V
V
= ±5V  
S
T
= 25°C  
OS  
A
V
S
= ±2.5V  
V < 1mV  
2.0  
1.5  
1.0  
0.5  
V
0
2.5  
5.0  
5.0  
50  
75 100 125  
0
2
3
4
5
6
7
2.5  
–50 –25  
0
25  
TEMPERATURE (°C)  
1
SUPPLY VOLTAGE (± V)  
INPUT COMMON MODE VOLTAGE (V)  
1812 G03  
1812 G01  
1812 G02  
Input Bias Current  
vs Temperature  
Open-Loop Gain  
vs Resistive Load  
Input Noise Spectral Density  
100  
10  
1
10  
75.0  
72.5  
70.0  
67.5  
65.0  
62.5  
60  
0
T
= 25°C  
T
A
= 25°C  
= ±5V  
= 101  
= 10k  
A
V
A
S
V
–0.2  
R
S
–0.4  
–0.6  
–0.8  
–1.0  
–1.2  
V
V
= ±5V  
S
S
i
n
1
e
n
= ±2.5V  
V
S
= ±5V  
V
S
= ±2.5V  
0.1  
100k  
–1.4  
100  
1k  
LOAD RESISTANCE ()  
50  
100 125  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
10k  
–50 –25  
0
25  
75  
TEMPERATURE (°C)  
1812 G06  
1812 G05  
1812 G04  
Output Voltage Swing  
vs Load Current  
Output Voltage Swing  
vs Supply Voltage  
Open-Loop Gain vs Temperature  
+
+
V
75.0  
72.5  
70.0  
67.5  
V
V
V
= ±5V  
= 30mV  
85°C  
T
= 25°C  
IN  
V
S
V
O
= ±5V  
= ±3V  
S
IN  
A
0.5  
–1.0  
–1.5  
2.0  
0.5  
–1.0  
–1.5  
2.0  
V
= 30mV  
R
= 500Ω  
= 100Ω  
L
25°C  
– 40°C  
R
R
= 500Ω  
= 100Ω  
R
L
L
L
2.0  
1.5  
1.0  
0.5  
2.0  
1.5  
1.0  
0.5  
65.0  
62.5  
60.0  
R
= 100Ω  
L
R
L
= 500Ω  
V
V
50  
100 125  
0
2
3
4
5
7
–40  
0
–50 –25  
0
25  
75  
6
–60  
–20  
20  
40  
60  
1
SUPPLY VOLTAGE (± V)  
TEMPERATURE (°C)  
OUTPUT CURRENT (mA)  
1812 G07  
1812 G08  
1812 G09  
6
LT1812  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Output Short-Circuit Current  
vs Temperature  
Settling Time vs Output Step  
Output Impedance vs Frequency  
5
4
100  
10  
120  
115  
110  
105  
V
S
= ± 5V  
SOURCE  
A
V
= 100  
3
A
V
= 10  
A
2
= 1  
1
1
V
SINK  
0
0.1  
–1  
–2  
–3  
–4  
–5  
T
V
A
= 25°C  
= ±5V  
= –1  
A
S
V
100  
95  
0.01  
0.001  
R = 500Ω  
F
T
= 25°C  
= ± 5V  
S
C = 3pF  
F
A
V
0.1% SETTLING  
90  
50  
TEMPERATURE (°C)  
100 125  
0
10  
5
15  
20  
25  
35  
10k  
100k  
1M  
FREQUENCY (Hz)  
10M  
100M  
–50 –25  
0
25  
75  
30  
SETTLING TIME (ns)  
1812 G12  
1812 G10  
1812 G11  
Shutdown Supply Current  
vs Temperature  
Gain Bandwidth and Phase  
Margin vs Temperature  
Gain and Phase vs Frequency  
70  
60  
50  
40  
30  
20  
10  
0
120  
100  
80  
115  
105  
95  
70  
60  
T
= 25°C  
V
SHDN  
= V + 0.4V  
R = 500Ω  
L
A
V
F
A
= –1  
R
= R = 500Ω  
G
GBW  
= ±5V  
V
S
= ±5V  
V
S
50  
40  
30  
20  
10  
PHASE  
GAIN  
GBW  
= ±2.5V  
60  
V
S
±2.5V ±5V  
±5V  
40  
±2.5V  
85  
40  
38  
36  
20  
V
S
= ±2.5V  
PHASE MARGIN  
V
= ±5V  
S
0
PHASE MARGIN  
–20  
–40  
V
= ±2.5V  
S
–10  
0
10k  
100k  
1M  
10M  
100M 1000M  
50  
100 125  
50  
125  
–50 –25  
0
25  
75  
–50 –25  
0
25  
75  
100  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1812 G13  
1812 G14  
1812 G15  
Gain vs Frequency  
Gain vs Frequency  
Gain vs Frequency  
6
4
2
0
12  
8
8
6
C = 1000pF  
L
T
A
V
= 25°C  
= –1  
T
= 25°C  
A
V
S
T
= 25°C  
= 2  
A
V
A
V
L
A
= 1  
A
C = 500pF  
L
V
S
= ±2.5V  
= ±5V  
NO R  
R
= 100Ω  
L
R = R = 500Ω  
NO R  
F
G
C = 200pF  
L
4
L
V
= ±5V  
C = 100pF  
L
S
–2  
–4  
4
2
C = 50pF  
L
V
= ±2.5V  
V = ±5V  
S
S
0
C = 0  
L
–6  
–8  
0
–2  
–4  
–6  
–10  
–12  
–14  
–4  
–8  
1M  
10M  
100M  
500M  
1
10M  
FREQUENCY (Hz)  
100M 200M  
1M  
10M  
100M  
500M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1812 G16  
1812 G18  
1812 G17  
7
LT1812  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Power Supply Rejection Ratio  
vs Frequency  
Common Mode Rejection Ratio  
vs Frequency  
Gain Bandwidth and Phase  
Margin vs Supply Voltage  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
110  
90  
T
A
V
= 25°C  
T = 25°C  
A
V = ±5V  
S
T
= 25°C  
A
V
S
A
GBW  
= 1  
R
R
= 500Ω  
L
L
= ±5V  
GBW  
= 100Ω  
–PSRR  
+PSRR  
70  
45  
40  
35  
PHASE MARGIN  
R
= 100Ω  
L
PHASE MARGIN  
= 500Ω  
R
L
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
1
2
4
5
6
7
0
3
FREQUENCY (Hz)  
FREQUENCY (Hz)  
SUPPLY VOLTAGE (±V)  
1812 G20  
1812 G21  
1812 G19  
Slew Rate vs Supply Voltage  
Slew Rate vs Supply Voltage  
Slew Rate vs Input Level  
600  
500  
400  
300  
200  
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
1200  
1000  
800  
T
A
V
=25°C  
T
A
V
=25°C  
T
A
V
=25°C  
= –1  
= ±5V  
A
V
A
V
A
V
S
= –1  
= –1  
= V  
S(TOTAL)  
/2  
= ±1V  
IN  
IN  
R = R = R = 500Ω  
R = R = R = 500Ω  
R = R = R = 500Ω  
F
G
L
F
G
L
F
G
L
SR  
+
SR  
SR  
+
SR  
SR  
+
SR  
600  
400  
200  
0
2
3
4
5
6
7
0
2
3
4
5
6
7
0
2
3
4
5
6
7
8
1
1
1
SUPPLY VOLTAGE (±V)  
SUPPLY VOLTAGE (±V)  
INPUT LEVEL (V  
)
P-P  
1812 G22  
1812 G23  
1812 G24  
Total Harmonic Distortion + Noise  
vs Frequency  
Undistorted Output Swing  
vs Frequency  
Slew Rate vs Temperature  
9
8
7
6
5
4
3
2
1
0
0.01  
1200  
1000  
800  
A
V
= 1  
SR  
+
A
V
= 1  
V
S
= ±5V  
SR  
= ±5V  
A = –1  
V
V
S
0.005  
A
V
= 1  
600  
SR  
V
V
= ±2.5V  
S
400  
200  
0
0.002  
0.001  
+
SR  
T
= 25°C  
= ±5V  
= 2V  
T
= 25°C  
= ±5V  
= 100Ω  
A
S
O
A
S
L
= ±2.5V  
S
V
V
V
R
P-P  
R
= 500Ω  
2% MAX DISTORTION  
1M  
FREQUENCY (Hz)  
L
100k  
10M  
100M  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
1812 G27  
1812 G26  
1812 G25  
8
LT1812  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
2nd and 3rd Harmonic Distortion  
vs Frequency  
Differential Gain and Phase  
vs Supply Voltage  
Capacitive Load Handling  
100  
90  
0.25  
0.20  
0.15  
0.10  
0.05  
0
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
T
= 25°C  
= ±5V  
T
= 25°C  
= 2  
A
S
A
DIFFERENTIAL GAIN  
V
A
V
V
V
S
O
R
= 150  
L
= ±5V  
80  
= 2V  
P-P  
A = 1  
V
70  
2ND HARMONIC  
3RD HARMONIC  
DIFFERENTIAL GAIN  
= 1k  
R
60  
50  
L
R
L
= 100Ω  
0.25  
0.20  
0.15  
0.10  
0.05  
0
A
= –1  
V
DIFFERENTIAL PHASE  
= 150Ω  
40  
30  
20  
10  
0
R
L
DIFFERENTIAL PHASE  
= 1k  
3RD HARMONIC  
2ND HARMONIC  
R
L
R
= 500Ω  
L
T
= 25°C  
A
10  
100  
1000  
10000  
100k  
10M  
1M  
4
8
10  
12  
6
FREQUENCY (Hz)  
CAPACITIVE LOAD (pF)  
TOTAL SUPPLY VOLTAGE (V)  
1812 G30  
1812 G28  
1812 G29  
Small-Signal Transient,  
AV = –1  
Small-Signal Transient,  
AV = 1  
Small-Signal Transient,  
AV = 1, CL = 1000pF  
1812 G31  
1812 G32  
1812 G33  
Large-Signal Transient,  
AV = –1  
Large-Signal Transient,  
AV = 1  
Large-Signal Transient,  
AV = 1, CL = 1000pF  
1812 G36  
1812 G34  
1812 G35  
9
LT1812  
W U U  
U
APPLICATIO S I FOR ATIO  
Layout and Passive Components  
capacitive load increases, both the bandwidth and phase  
margin decrease so there will be peaking in the frequency  
domainandinthetransientresponse. Coaxialcablecanbe  
driven directly, but for best pulse fidelity, a resistor of  
value equal to the characteristic impedance of the cable  
(i.e., 75) should be placed in series with the output. The  
other end of the cable should be terminated with the same  
value resistor to ground.  
The LT1812 amplifier is more tolerant of less than ideal  
layouts than other high speed amplifiers. For maximum  
performance (for example, fast settling) use a ground  
plane,shortleadlengthsandRF-qualitybypasscapacitors  
(0.01µF to 0.1µF). For high drive current applications, use  
low ESR bypass capacitors (1µF to 10µF tantalum).  
The parallel combination of the feedback resistor and gain  
setting resistor on the inverting input combine with the  
input capacitance to form a pole that can cause peaking or  
even oscillations. If feedback resistors greater than 2k are  
used, a parallel capacitor of value  
Slew Rate  
The slew rate is proportional to the differential input  
voltage. Highest slew rates are therefore seen in the  
lowest gain configurations. For example, a 5V output step  
in a gain of 10 has a 0.5V input step, whereas in unity gain  
there is a 5V input step. The LT1812 is tested for slew rate  
in a gain of 1. Lower slew rates occur in higher gain  
configurations.  
CF > RG • CIN/RF  
should be used to cancel the input pole and optimize  
dynamic performance. For applications where the DC  
noise gain is 1 and a large feedback resistor is used, CF  
should be greater than or equal to CIN. An example would  
be an I-to-V converter.  
Shutdown  
The LT1812 has a shutdown pin (SHDN, Pin 8) for  
conserving power. When this pin is open or biased at  
least 2V above the negative supply, the part operates  
normally. When pulled down to V, the supply current  
drops to about 50µA. Typically, the turn-off delay is 1µs  
and the turn-on delay 0.5µs. The current out of the SHDN  
pin is also typically 50µA. In shutdown mode, the ampli-  
fier output is not isolated from the inputs, so the LT1812  
shutdown feature cannot be used for multiplexing appli-  
cations. The 50µA typical shutdown current is exclusive  
of any output (load) current. In order to prevent load  
current (and maximize the power savings), either the  
load needs to be disconnected, or the input signal needs  
to be 0V. Even in shutdown mode, the LT1812 can still  
drive significant current into a load. For example, in an  
AV = 1 configuration, when driven with a 1V DC input, the  
LT1812 drives 2mA into a 100load. It takes about  
500µs for the load current to reach this value.  
Input Considerations  
Each of the LT1812 amplifier inputs is the base of an NPN  
and PNP transistor whose base currents are of opposite  
polarity and provide first-order bias current cancellation.  
BecauseofvariationinthematchingofNPNandPNPbeta,  
the polarity of the input bias current can be positive or  
negative. The offset current does not depend on beta  
matching and is well controlled. The use of balanced  
source resistance at each input is recommended for  
applications where DC accuracy must be maximized. The  
inputs can withstand differential input voltages of up to 3V  
without damage and need no clamping or source resis-  
tance for protection.  
The device should not be used as a comparator because  
with sustained differential inputs, excessive power dissi-  
pation may result.  
Capacitive Loading  
Power Dissipation  
The LT1812 is stable with a 1000pF capacitive load, which  
is outstanding for a 100MHz amplifier. This is accom-  
plished by sensing the load induced output pole and  
adding compensation at the amplifier gain node. As the  
The LT1812 combines high speed and large output drive  
in a small package. It is possible to exceed the maximum  
junction temperature under certain conditions. Maximum  
10  
LT1812  
W U U  
APPLICATIO S I FOR ATIO  
U
junction temperature (TJ) is calculated from the ambient  
appears across the resistor generating currents that are  
mirrored into the high impedance node. Complementary  
followers form an output stage that buffers the gain node  
from the load. The bandwidth is set by the input resistor  
andthecapacitanceonthehighimpedancenode.Theslew  
rate is determined by the current available to charge the  
gainnodecapacitance.Thiscurrentisthedifferentialinput  
voltage divided by R1, so the slew rate is proportional to  
the input. Highest slew rates are therefore seen in the  
lowest gain configurations. The RC network across the  
output stage is bootstrapped when the amplifier is driving  
a light or moderate load and has no effect under normal  
operation. When driving capacitive loads (or a low value  
resistive load) the network is incompletely bootstrapped  
and adds to the compensation at the high impedance  
node. The added capacitance slows down the amplifier  
which improves the phase margin by moving the unity-  
gain cross away from the pole formed by the output  
impedanceandthecapacitiveload.Thezerocreatedbythe  
RC combination adds phase to ensure that the total phase  
lag does not exceed 180 degrees (zero phase margin) and  
the amplifier remains stable. In this way, the LT1812 is  
stablewithupto1000pFcapacitiveloadsinunitygain,and  
even higher capacitive loads in higher closed-loop gain  
configurations.  
temperature (TA) and power dissipation (PD) as follows:  
LT1812CS8: TJ = TA + (PD • 80°C/W) (Note 9)  
Power dissipation is composed of two parts. The first is  
due to the quiescent supply current and the second is due  
to on-chip dissipation caused by the load current. The  
worst-case load induced power occurs when the output  
voltage is at 1/2 of either supply voltage (or the maximum  
swing if less than 1/2 supply voltage). Therefore PDMAX is:  
PDMAX = (V+ V)(ISMAX) + (V+/2)2/RL or  
PDMAX = (V+ V)(ISMAX) + (V+ – VOMAX)(VOMAX/RL)  
Example: LT1812CS8 at 70°C, VS = ±5V, RL = 100Ω  
PDMAX = (10V)(4.5mA) + (2.5V)2/100= 108mW  
TJMAX = 70°C + (108mW)(80°C/W) = 79°C  
Circuit Operation  
The LT1812 circuit topology is a true voltage feedback  
amplifier that has the slewing behavior of a current feed-  
back amplifier. The operation of the circuit can be under-  
stood by referring to the Simplified Schematic. The inputs  
are buffered by complementary NPN and PNP emitter  
followers that drive a 300resistor. The input voltage  
W
W
SI PLIFIED SCHEMATIC  
+
V
R
B
R1  
300Ω  
C
C
+IN  
R
C
OUT  
–IN  
C
BIAS  
CONTROL  
SHDN  
V
1812 SS  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LT1812  
U
TYPICAL APPLICATIO  
Single 5V Supply 10MS/s 12-Bit ADC Buffer  
V
P-P  
IN  
2V  
+
12 BITS  
10MS/s  
68Ω  
2.5V  
DC  
LT1812  
LTC1420  
470pF  
1812 TA03  
U
PACKAGE DESCRIPTION  
S8 Package  
8-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
0.010 – 0.020  
(0.254 – 0.508)  
7
5
8
6
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
0.016 – 0.050  
(0.406 – 1.270)  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
TYP  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
SO8 1298  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
1
3
4
2
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
4mA Supply Current, 1mV Max V , 1µA Max I  
LT1360/LT1361/LT1362  
LT1363/LT1364/LT1365  
LT1395/LT1396/LT1397  
LT1398/LT1399  
Single/Dual/Quad 50MHz, 800V/µs, C-LoadTM Amplifiers  
Single/Dual/Quad 70MHz, 1000V/µs C-Load Amplifiers  
Single/Dual/Quad 400MHz Current Feedback Amplifiers  
Dual/Triple 300MHz Current Feedback Amplifiers  
Dual 3mA, 100MHz, 750V/µs Operational Amplifier  
OS  
B
50mA Output Current, 1.5mV Max V , 2µA Max I  
OS  
B
4.6mA Supply Current, 800V/µs, 80mA Output Current  
4.5mA Supply Current, 80mA Output Current, Shutdown  
Dual Version of the LT1812  
LT1813  
C-Load is a trademark of Linear Technology Corporation.  
1812f LT/TP 0200 4K • PRINTED IN USA  
LINEAR TECHNOLOGY CORPORATION 1999  
12 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  

相关型号:

LT1812CS8#TR

LT1812 - 3mA, 100MHz, 750V/&#181;s Operational Amplifier with Shutdown; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1812CS8#TRPBF

暂无描述
Linear

LT1812G

Optoelectronic
ETC

LT1812IS5

3mA, 100MHz, 750V/us Operational Amplifier with Shutdown
Linear

LT1812IS5#PBF

3mA, 100MHz, 750V/µs Operational Amplifier with Shutdown
ADI

LT1812IS5#TR

暂无描述
Linear

LT1812IS5#TRM

LT1812 - 3mA, 100MHz, 750V/&#181;s Operational Amplifier with Shutdown; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1812IS5#TRMPBF

LT1812 - 3mA, 100MHz, 750V/&#181;s Operational Amplifier with Shutdown; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1812IS5#TRPBF

LT1812 - 3mA, 100MHz, 750V/&#181;s Operational Amplifier with Shutdown; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1812IS6

3mA, 100MHz, 750V/us Operational Amplifier with Shutdown
Linear

LT1812IS6#PBF

LT1812 - 3mA, 100MHz, 750V/&#181;s Operational Amplifier with Shutdown; Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1812IS6#TR

Operational Amplifier, 1 Func, 3000uV Offset-Max, BIPolar, PDSO6
ADI