LT1814CGN [Linear]

Dual/Quad 3mA, 100MHz, 750V/® Operational Amplifiers; 双核/四3mA电流,为100MHz , 750V / ®运算放大器
LT1814CGN
型号: LT1814CGN
厂家: Linear    Linear
描述:

Dual/Quad 3mA, 100MHz, 750V/® Operational Amplifiers
双核/四3mA电流,为100MHz , 750V / ®运算放大器

运算放大器 放大器电路 光电二极管
文件: 总16页 (文件大小:241K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1813/LT1814  
Dual/Quad 3mA, 100MHz,  
750V/µs Operational Amplifiers  
U
DESCRIPTIO  
FEATURES  
The LT®1813/LT1814 are dual and quad, low power, high  
speed, very high slew rate operational amplifiers with  
excellent DC performance. The LT1813/LT1814 feature  
reduced supply current, lower input offset voltage, lower  
input bias current and higher DC gain than other devices  
with comparable bandwidth. The circuit topology is a  
voltage feedback amplifier with the slewing characteris-  
tics of a current feedback amplifier.  
100MHz Gain Bandwidth Product  
750V/µs Slew Rate  
3.6mA Maximum Supply Current per Amplifier  
Tiny 3mm x 3mm x 0.8mm DFN Package  
8nV/Hz Input Noise Voltage  
Unity-Gain Stable  
1.5mV Maximum Input Offset Voltage  
4µA Maximum Input Bias Current  
400nA Maximum Input Offset Current  
Theoutputdrivesa100loadto±3.5Vwith±5Vsupplies.  
Onasingle5Vsupply,theoutputswingsfrom1.1Vto3.9V  
with a 100load connected to 2.5V. The amplifiers are  
stable with a 1000pF capacitive load making them useful  
in buffer and cable driver applications.  
40mA Minimum Output Current, VOUT = ±3V  
±3.5V Minimum Input CMR, VS = ±5V  
30ns Settling Time to 0.1%, 5V Step  
Specified at ±5V, Single 5V Supplies  
Operating Temperature Range: –40°C to 85°C  
U
The LT1813/LT1814 are manufactured on Linear  
Technology’s advanced low voltage complementary bipo-  
lar process. The LT1813 dual op amp is available in  
8-pin MSOP, SO and 3mm x 3mm low profile (0.8mm)  
dual fine pitch leadless packages (DFN). The quad LT1814  
is available in 14-pin SO and 16-pin SSOP packages. A  
single version, the LT1812, is also available (see separate  
data sheet).  
APPLICATIO S  
Active Filters  
Wideband Amplifiers  
Buffers  
Video Amplification  
Communication Receivers  
Cable Drivers  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
Data Acquisition Systems  
U
TYPICAL APPLICATIO  
Bandpass Filter with Independently Settable Gain, Q and fC  
R1  
Filter Frequency Response  
R
R
Q
R = 499  
R1 = 499Ω  
V
V
= ±5V  
S
C
R
G
0
= 5V  
IN  
P-P  
V
IN  
R
R
R
= 475Ω  
= 49.9Ω  
= 499Ω  
DISTORTION:  
2nd < –76dB  
3rd < –90dB  
ACROSS FREQ  
RANGE  
F
Q
G
R
1/4 LT1814  
+
R
C
F
C = 3.3nF  
1/4 LT1814  
+
f
= 100kHz  
C
BANDPASS  
OUT  
1/4 LT1814  
+
Q = 10  
GAIN = 1  
R1  
G
GAIN =  
R
R1  
Q
Q =  
R
R
R
F
1
+
f
C
=
2πR C  
F
1/4 LT1814  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
1814 TA02  
1814 TA01  
18134fa  
1
LT1813/LT1814  
W W  
U W  
ABSOLUTE AXI U RATI GS (Note 1)  
Total Supply Voltage (V+ to V)  
Specified Temperature Range (Note 8).. 40°C to 85°C  
Maximum Junction Temperature ......................... 150°C  
(DD Package) ................................................... 125°C  
Storage Temperature Range ................ 65°C to 150°C  
(DD Package) ................................... 65°C to 125°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
LT1813/LT1814 ................................................ 12.6V  
LT1813HV ........................................................ 13.5V  
Differential Input Voltage (Transient Only, Note 2) .. ±6V  
Input Voltage ............................................................±VS  
Output Short-Circuit Duration (Note 3)........... Indefinite  
Operating Temperature Range ................ 40°C to 85°C  
U W  
U
PACKAGE/ORDER I FOR ATIO  
TOP VIEW  
ORDER PART  
ORDER PART  
NUMBER  
NUMBER  
+
TOP VIEW  
OUT A  
–IN A  
+IN A  
1
2
3
4
8
7
6
5
V
+
OUTA  
–IN A  
+IN A  
1
2
3
4
8 V  
OUT B  
–IN B  
+IN B  
LT1813DDD*  
LT1813CDD  
LT1813IDD  
LT1813DMS8*  
A
7 OUT B  
6 –IN B  
5 +IN B  
B
V
V
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
DD PACKAGE  
8-LEAD (3mm × 3mm) PLASTIC DFN  
MS8 PART MARKING  
LTGZ  
DD PART MARKING**  
LAAQ  
TJMAX = 150°C, θJA = 250°C/W  
TJMAX = 125°C, θJA = 160°C/W  
UNDERSIDE METAL  
INTERNALLY CONNECTED TO V  
TOP VIEW  
TOP VIEW  
OUT A  
–IN A  
+IN A  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
OUT D  
–IN D  
+IN D  
OUT A  
–IN A  
+IN A  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
OUT D  
–IN D  
+IN D  
TOP VIEW  
D +  
+
+
+
A
+
A
D
C
OUT A  
–IN A  
+IN A  
1
2
3
4
8
7
6
5
V
+
V
V
OUT B  
–IN B  
+IN B  
+
V
V
A
+
B
+IN B  
–IN B  
OUT B  
NC  
+IN C  
–IN C  
OUT C  
NC  
+
+
+IN B  
–IN B  
OUT B  
+IN C  
–IN C  
OUT C  
+
C
B
B
V
8
S8 PACKAGE  
8-LEAD PLASTIC SO  
S PACKAGE  
14-LEAD PLASTIC SO  
TJMAX = 150°C, θJA = 150°C/W  
GN PACKAGE  
16-LEAD PLASTIC SSOP  
TJMAX = 150°C, θJA = 110°C/W  
TJMAX = 150°C, θJA = 135°C/W  
S8 PART  
MARKING  
ORDER PART  
NUMBER  
ORDER PART  
NUMBER  
ORDER PART  
NUMBER  
LT1814CS  
LT1814IS  
LT1814CGN  
LT1814IGN  
GN PART  
MARKING  
1814  
LT1813DS8*  
LT1813CS8  
1813D  
1813  
LT1813IS8  
1813I  
LT1813HVDS8*  
LT1813HVCS8  
LT1813HVIS8  
813HVD  
1813HV  
813HVI  
1814I  
Consult LTC marketing for parts specified with wider operating temperature ranges. *See Note 9.  
**The temperature grades are identified by a label on the shipping container.  
18134fa  
2
LT1813/LT1814  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VS = ± 5V, VCM = 0V, unless otherwise noted. (Note 8)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
V
Input Offset Voltage (Note 4)  
0.5  
1.5  
2
3
mV  
mV  
mV  
OS  
T = 0°C to 70°C  
A
A
T = 40°C to 85°C  
V  
Input Offset Voltage Drift (Note 7)  
Input Offset Current  
T = 0°C to 70°C  
A
10  
10  
15  
30  
µV/°C  
µV/°C  
OS  
T  
A
T = 40°C to 85°C  
I
I
50  
400  
500  
600  
nA  
nA  
nA  
OS  
T = 0°C to 70°C  
A
T = 40°C to 85°C  
A
Input Bias Current  
0.9  
±4  
±5  
±6  
µA  
µA  
µA  
B
T = 0°C to 70°C  
A
T = 40°C to 85°C  
A
e
Input Noise Voltage Density  
Input Noise Current Density  
Input Resistance  
f = 10kHz  
f = 10kHz  
8
1
nV/Hz  
pA/Hz  
n
i
n
R
V
= 3.5V  
CM  
3
10  
1.5  
MΩ  
MΩ  
IN  
Differential  
C
V
Input Capacitance  
2
pF  
IN  
Input Voltage Range  
Guaranteed by CMRR  
±3.5  
±3.5  
±4.2  
V
V
CM  
T = –40°C to 85°C  
A
CMRR  
Common Mode Rejection Ratio  
V
= ±3.5V  
75  
73  
72  
85  
dB  
dB  
dB  
CM  
T = 0°C to 70°C  
A
T = 40°C to 85°C  
A
Minimum Supply Voltage  
Guaranteed by PSRR  
T = –40°C to 85°C  
±1.25  
±2  
±2  
V
V
A
PSRR  
Power Supply Rejection Ratio  
V = ±2V to ±5.5V  
78  
76  
75  
97  
dB  
dB  
dB  
S
T = 0°C to 70°C  
A
T = 40°C to 85°C  
A
V = ±2V to ±6.5V (LT1813HV)  
75  
73  
72  
97  
3
dB  
dB  
dB  
S
T = 0°C to 70°C  
A
T = 40°C to 85°C  
A
A
V
Large-Signal Voltage Gain  
V
V
= ±3V, R = 500Ω  
1.5  
1.0  
0.8  
V/mV  
V/mV  
V/mV  
VOL  
OUT  
OUT  
L
T = 0°C to 70°C  
A
T = 40°C to 85°C  
A
= ±3V, R = 100Ω  
1.0  
0.7  
0.6  
2.5  
±4  
V/mV  
V/mV  
V/mV  
OUT  
L
T = 0°C to 70°C  
A
A
T = 40°C to 85°C  
Maximum Output Swing  
(Positive/Negative)  
R = 500, 30mV Overdrive  
±3.8  
±3.7  
±3.6  
V
V
V
L
T = 0°C to 70°C  
T = 40°C to 85°C  
A
A
R = 100, 30mV Overdrive  
±3.35  
±3.25  
±3.15  
±3.5  
V
V
V
L
T = 0°C to 70°C  
A
T = 40°C to 85°C  
A
18134fa  
3
LT1813/LT1814  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VS = ±5V, VCM = 0V, unless otherwise noted. (Note 8)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
I
Maximum Output Current  
V
= ±3V, 30mV Overdrive  
OUT  
A
T = 40°C to 85°C  
A
±40  
±35  
±30  
±60  
mA  
mA  
mA  
OUT  
T = 0°C to 70°C  
I
Output Short-Circuit Current  
Slew Rate  
V
= 0V, 1V Overdrive (Note 3)  
±75  
±60  
±55  
±100  
mA  
mA  
mA  
SC  
OUT  
T = 0°C to 70°C  
A
T = 40°C to 85°C  
A
SR  
A = –1 (Note 5)  
V
500  
400  
350  
750  
V/µs  
V/µs  
V/µs  
T = 0°C to 70°C  
T = 40°C to 85°C  
A
A
FPBW  
GBW  
Full Power Bandwidth  
6V (Note 6)  
40  
MHz  
P-P  
Gain Bandwidth Product  
f = 200kHz, R = 500Ω  
75  
65  
60  
100  
MHz  
MHz  
MHz  
L
T = 0°C to 70°C  
A
T = 40°C to 85°C  
A
–3dB BW  
–3dB Bandwidth  
A = 1, R = 500Ω  
200  
2
MHz  
ns  
V
L
t , t  
Rise Time, Fall Time  
Propagation Delay (Note 10)  
Overshoot  
A = 1, 10% to 90%, 0.1V, R = 100Ω  
V L  
r
f
t
A = 1, 50% to 50%, 0.1V, R = 100Ω  
V
2.8  
25  
ns  
PD  
L
OS  
A = 1, 0.1V, R = 100Ω  
%
V
L
t
Settling Time  
A = –1, 0.1%, 5V  
V
30  
ns  
S
THD  
dG  
Total Harmonic Distortion  
Differential Gain  
A = 2, f = 1MHz, V  
= 2V , R = 500Ω  
–76  
0.12  
0.07  
0.4  
100  
dB  
%
V
OUT  
P-P  
L
A = 2, V  
= 2V , R = 150Ω  
P-P L  
V
OUT  
OUT  
dP  
Differential Phase  
Output Resistance  
Channel Separation  
A = 2, V  
V
= 2V , R = 150Ω  
DEG  
P-P  
L
R
OUT  
A = 1, f = 1MHz  
V
V
= ±3V, R = 100Ω  
82  
81  
80  
dB  
dB  
dB  
OUT  
L
T = 0°C to 70°C  
A
T = 40°C to 85°C  
A
I
Supply Current  
Per Amplifier  
T = 0°C to 70°C  
3
3.6  
4.5  
5.0  
mA  
mA  
mA  
S
A
T = 40°C to 85°C  
A
Per Amplifier,V = ±6.5V, (LT1813HV only)  
4.0  
5.0  
5.5  
mA  
mA  
mA  
S
T = 0°C to 70°C  
A
T = 40°C to 85°C  
A
18134fa  
4
LT1813/LT1814  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VS = 5V, VCM = 2.5V, RL to 2.5V, unless otherwise noted. (Note 8)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
V
Input Offset Voltage (Note 4)  
0.7  
2.0  
2.5  
3.5  
mV  
mV  
mV  
OS  
T = 0°C to 70°C  
A
A
T = 40°C to 85°C  
V  
Input Offset Voltage Drift (Note 7)  
Input Offset Current  
T = 0°C to 70°C  
A
10  
10  
15  
30  
µV/°C  
µV/°C  
OS  
T  
A
T = 40°C to 85°C  
I
I
50  
400  
500  
600  
nA  
nA  
nA  
OS  
T = 0°C to 70°C  
A
T = 40°C to 85°C  
A
Input Bias Current  
–1  
±4  
±5  
±6  
µA  
µA  
µA  
B
T = 0°C to 70°C  
A
T = 40°C to 85°C  
A
e
Input Noise Voltage Density  
Input Noise Current Density  
Input Resistance  
f = 10kHz  
f = 10kHz  
8
1
nV/Hz  
pA/Hz  
n
i
n
R
V
= 3.5V  
CM  
3
10  
1.5  
MΩ  
MΩ  
IN  
Differential  
C
V
Input Capacitance  
2
pF  
IN  
Input Voltage Range  
(Positive)  
Guaranteed by CMRR  
3.5  
3.5  
4.2  
V
V
CM  
T = –40°C to 85°C  
A
Input Voltage Range  
(Negative)  
Guaranteed by CMRR  
T = –40°C to 85°C  
A
0.8  
82  
1.5  
1.5  
V
V
CMRR  
Common Mode Rejection Ratio  
V
= 1.5V to 3.5V  
73  
71  
70  
dB  
dB  
dB  
CM  
T = 0°C to 70°C  
A
T = 40°C to 85°C  
A
Minimum Supply Voltage  
Large-Signal Voltage Gain  
Guaranteed by PSRR  
T = –40°C to 85°C  
2.5  
2
4
4
V
V
A
A
V
V
= 1.5V to 3.5V, R = 500Ω  
1.0  
0.7  
0.6  
V/mV  
V/mV  
V/mV  
VOL  
OUT  
OUT  
L
T = 0°C to 70°C  
A
T = 40°C to 85°C  
A
V
= 1.5V to 3.5V, R = 100Ω  
0.7  
0.5  
0.4  
1.5  
4.1  
3.9  
0.9  
1.1  
V/mV  
V/mV  
V/mV  
OUT  
L
T = 0°C to 70°C  
A
T = 40°C to 85°C  
A
Maximum Output Swing  
(Positive)  
R = 500, 30mV Overdrive  
3.9  
3.8  
3.7  
V
V
V
L
T = 0°C to 70°C  
T = 40°C to 85°C  
A
A
R = 100, 30mV Overdrive  
3.7  
3.6  
3.5  
V
V
V
L
T = 0°C to 70°C  
T = 40°C to 85°C  
A
A
Maximum Output Swing  
(Negative)  
R = 500, 30mV Overdrive  
1.1  
1.2  
1.3  
V
V
V
L
T = 0°C to 70°C  
T = 40°C to 85°C  
A
A
R = 100, 30mV Overdrive  
1.3  
1.4  
1.5  
V
V
V
L
T = 0°C to 70°C  
T = 40°C to 85°C  
A
A
18134fa  
5
LT1813/LT1814  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VS = 5V, VCM = 2.5V, RL to 2.5V, unless otherwise noted. (Note 8)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
I
Maximum Output Current  
V
= 1.5V or 3.5V, 30mV Overdrive  
OUT  
±25  
±20  
±17  
± 35  
mA  
mA  
mA  
OUT  
T = 0°C to 70°C  
A
T = 40°C to 85°C  
A
I
Output Short-Circuit Current  
Slew Rate  
V
= 2.5V, 1V Overdrive (Note 3)  
T = 0°C to 70°C  
T = 40°C to 85°C  
±55  
±45  
±40  
±75  
mA  
mA  
mA  
SC  
OUT  
A
A
SR  
A = –1 (Note 5)  
200  
150  
125  
350  
V/µs  
V/µs  
V/µs  
V
T = 0°C to 70°C  
T = 40°C to 85°C  
A
A
FPBW  
GBW  
Full Power Bandwidth  
2V (Note 6)  
55  
94  
MHz  
P-P  
Gain Bandwidth Product  
f = 200kHz, R = 500Ω  
65  
55  
50  
MHz  
MHz  
MHz  
L
T = 0°C to 70°C  
A
T = 40°C to 85°C  
A
–3dB BW  
–3dB Bandwidth  
A = 1, R = 500Ω  
180  
2.1  
3
MHz  
ns  
V
L
t , t  
r
Rise Time, Fall Time  
Propagation Delay (Note 10)  
Overshoot  
A = 1, 10% to 90%, 0.1V, R = 100Ω  
V L  
f
t
A = 1, 50% to 50%, 0.1V, R = 100Ω  
V
ns  
PD  
L
OS  
A = 1, 0.1V, R = 100Ω  
25  
%
V
L
t
Settling Time  
A = –1, 0.1%, 2V  
V
30  
ns  
S
THD  
dG  
Total Harmonic Distortion  
Differential Gain  
A = 2, f = 1MHz, V  
= 2V , R = 500Ω  
–75  
0.22  
0.21  
0.45  
100  
dB  
%
V
OUT  
P-P  
L
A = 2, V  
= 2V , R = 150Ω  
P-P L  
V
OUT  
OUT  
dP  
Differential Phase  
Output Resistance  
Channel Separation  
A = 2, V  
V
= 2V , R = 150Ω  
DEG  
P-P  
L
R
OUT  
A = 1, f = 1MHz  
V
V
= 1.5V to 3.5V, R = 100Ω  
81  
80  
79  
dB  
dB  
dB  
OUT  
L
T = 0°C to 70°C  
A
T = 40°C to 85°C  
A
I
Supply Current  
Per Amplifier  
T = 0°C to 70°C  
2.9  
4.0  
5.0  
5.5  
mA  
mA  
mA  
S
A
T = 40°C to 85°C  
A
Note 1: Absolute Maximum Ratings are those values beyond which the life  
Note 7: This parameter is not 100% tested  
of the device may be impaired.  
Note 8: The LT1813C/LT1814C are guaranteed to meet specified  
performance from 0°C to 70°C and is designed, characterized and  
expected to meet the extended temperature limits, but is not tested at  
–40°C and 85°C. The LT1813I/LT1814I are guaranteed to meet the  
extended temperature limits.  
Note 2: Differential inputs of ±6V are appropriate for transient operation  
only, such as during slewing. Large sustained differential inputs can cause  
excessive power dissipation and may damage the part.  
Note 3: A heat sink may be required to keep the junction temperature  
below absolute maximum when the output is shorted indefinitely.  
Note 4: Input offset voltage is pulse tested and is exclusive of warm-up  
drift.  
Note 9: The LT1813D is 100% production tested at 25°C. It is designed,  
characterized and expected to meet the 0°C to 70°C specifications  
although it is not tested or QA sampled at these temperatures. The  
LT1813D is guaranteed functional from –40°C to 85°C but may not meet  
those specifications.  
Note 10: Propagation delay is measured from the 50% point on the input  
waveform to the 50% point on the output waveform.  
Note 5: Slew rate is measured between ±2V at the output with ±3V input  
for ±5V supplies and 2V at the output with a 3V input for single 5V  
P-P  
P-P  
supplies.  
Note 6: Full power bandwidth is calculated from the slew rate:  
FPBW = SR/2πV  
P
18134fa  
6
LT1813/LT1814  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Input Common Mode Range vs  
Input Bias Current  
vs Common Mode Voltage  
Supply Voltage  
Supply Current vs Temperature  
+
0
0.5  
–1.0  
–1.5  
2.0  
5
4
3
2
1
0
V
T
= 25°C  
= ± 5V  
A
S
PER AMPLIFIER  
0.5  
–1.0  
–1.5  
2.0  
V
V
= ± 5V  
S
V
S
= ± 2.5V  
T
= 25°C  
OS  
A
V < 1mV  
2.0  
1.5  
1.0  
0.5  
V
0
2.5  
5.0  
5.0  
2.5  
–50 –25  
0
25  
50  
75 100 125  
0
2
3
4
5
6
7
1
TEMPERATURE (°C)  
SUPPLY VOLTAGE (± V)  
INPUT COMMON MODE VOLTAGE (V)  
1813/14 G03  
1813/14 G01  
1813/14 G02  
Open-Loop Gain  
vs Resistive Load  
Input Bias Current vs Temperature  
Input Noise Spectral Density  
0.6  
0.7  
0.8  
0.9  
100  
10  
1
10  
75.0  
72.5  
70.0  
67.5  
65.0  
62.5  
60  
T
= 25°C  
V
S
= ± 5V  
T
A
= 25°C  
A
V
A
= ± 5V  
= 101  
= 10k  
S
V
S
R
V
V
= ± 5V  
S
S
i
n
1
e
n
= ± 2.5V  
–1.0  
–1.1  
–1.2  
0.1  
100k  
50  
TEMPERATURE (°C)  
100 125  
50 25  
0
25  
75  
100  
1k  
LOAD RESISTANCE ()  
10k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
1813/14 G06  
1813/14 G05  
1813/14 G04  
Output Voltage Swing  
vs Load Current  
Output Voltage Swing  
vs Supply Voltage  
Open-Loop Gain vs Temperature  
+
+
V
75.0  
72.5  
70.0  
67.5  
V
V
V
= ± 5V  
= 30mV  
85°C  
T
= 25°C  
IN  
V
S
V
O
= ± 5V  
= ± 3V  
S
IN  
A
0.5  
–1.0  
–1.5  
2.0  
0.5  
–1.0  
–1.5  
2.0  
V
= 30mV  
R
= 500Ω  
L
25°C  
– 40°C  
R
R
= 500Ω  
= 100Ω  
R
= 100Ω  
L
L
L
2.0  
1.5  
1.0  
0.5  
2.0  
1.5  
1.0  
0.5  
65.0  
62.5  
60.0  
R
= 100Ω  
L
R
= 500Ω  
L
V
V
50  
100 125  
4
7
–60  
–40  
0
20  
–50 –25  
0
25  
75  
0
2
3
5
–20  
40  
60  
1
6
SUPPLY VOLTAGE (± V)  
TEMPERATURE (°C)  
OUTPUT CURRENT (mA)  
1813/14 G07  
1813/14 G02  
1813/14 G09  
18134fa  
7
LT1813/LT1814  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Output Short-Circuit Current  
vs Temperature  
Settling Time vs Output Step  
Output Impedance vs Frequency  
5
4
120  
110  
100  
90  
100  
10  
V
S
= ± 5V  
A
V
= 100  
A
SOURCE  
3
= 10  
A
2
V
1
= 1  
1
V
0
SINK  
–1  
–2  
–3  
–4  
–5  
0.1  
V
A
= ± 5V  
S
V
F
= –1  
0.01  
0.001  
R = 500  
C = 3pF  
F
0.1% SETTLING  
T
= 25°C  
= ± 5V  
A
S
V
80  
0
10  
15  
20  
25  
30  
35  
–50 –25  
0
25  
50  
75 100 125  
5
10k  
100k  
1M  
FREQUENCY (Hz)  
10M  
100M  
TEMPERATURE (°C)  
SETTLING TIME (ns)  
1813/14 G12  
1813/14 G11  
1813/14 G10  
Gain Bandwidth and Phase  
Margin vs Temperature  
Gain and Phase vs Frequency  
Crosstalk vs Frequency  
115  
105  
95  
70  
60  
50  
40  
30  
20  
10  
0
120  
100  
80  
0
R = 500Ω  
L
T
= 25°C  
= 10  
V
T
= 25°C  
A
A
V
F
A
V
A
= –1  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
= 0dBm  
R
= R = 500Ω  
G
IN  
L
GBW  
= ± 5V  
R
= 100Ω  
V
S
PHASE  
GAIN  
GBW  
60  
V
= ±2.5V  
S
±2.5V ±5V  
±5V  
40  
±2.5V  
85  
40  
38  
36  
20  
PHASE MARGIN  
= ±5V  
V
S
0
PHASE MARGIN  
V
–20  
–40  
= ±2.5V  
S
–10  
–50 –25  
0
25  
50  
75 100 125  
10k  
100k  
1M  
10M  
100M 1000M  
100k  
1M  
10M  
100M  
1000M  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1813/14 G13  
1813/14 G14  
1813/14 G15  
Frequency Response  
vs Supply Voltage, AV = 2  
Frequency Response  
vs Capacitive Load, AV = –1  
Frequency Response  
vs Supply Voltage, AV = 1  
12  
8
6
4
2
0
8
6
C = 1000pF  
L
T
A
V
= 25°C  
= –1  
T
= 25°C  
= 2  
T
= 25°C  
A
V
S
A
V
L
A
V
A
A
= 1  
C = 500pF  
L
V
= ±2.5V  
S
= ±5V  
R
= 100Ω  
NO R  
L
R = R = 500Ω  
NO R  
F
G
C = 200pF  
L
4
L
C = 100pF  
L
V
= ±5V  
S
4
–2  
–4  
2
C = 50pF  
L
V
= ±2.5V  
V = ±5V  
S
S
0
C = 0  
L
0
–6  
–8  
–2  
–4  
–6  
–4  
–8  
–10  
–12  
–14  
1
10M  
100M 200M  
1M  
10M  
100M  
500M  
1M  
10M  
100M  
500M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1813/14 G18  
1813/14 G17  
1813/14 G16  
18134fa  
8
LT1813/LT1814  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Power Supply Rejection Ratio  
vs Frequency  
Gain Bandwidth and Phase  
Margin vs Supply Voltage  
Common Mode Rejection Ratio  
vs Frequency  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
110  
90  
T
A
V
= 25°C  
= 1  
= ±5V  
A
V
S
T
= 25°C  
V = ±5V  
S
T
= 25°C  
A
A
GBW  
R
R
= 500  
L
L
–PSRR  
GBW  
= 100Ω  
+PSRR  
70  
45  
40  
35  
PHASE MARGIN  
R
= 100Ω  
L
PHASE MARGIN  
= 500Ω  
R
L
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
1
2
4
5
6
7
0
3
FREQUENCY (Hz)  
FREQUENCY (Hz)  
SUPPLY VOLTAGE (±V)  
1813/14 G20  
1813/14 G21  
1813/14 G19  
Slew Rate vs Input Level  
Slew Rate vs Supply Voltage  
Slew Rate vs Supply Voltage  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
450  
400  
350  
300  
250  
200  
1200  
1000  
800  
T
A
V
=25°C  
= –1  
= V  
T
A
V
=25°C  
= –1  
V
IN  
T
A
V
=25°C  
= –1  
A
V
IN  
F
A
A
V
S
+
SR  
/2  
= ±1V  
= ±5V  
S(TOTAL)  
R = R = R = 500Ω  
R = R = R = 500Ω  
R = R = R = 500Ω  
G
L
F
G
L
F
G
L
SR  
+
SR  
+
SR  
SR  
SR  
600  
400  
200  
0
2
3
4
5
6
7
0
2
3
4
5
7
1
1
6
0
2
3
4
5
6
7
8
1
SUPPLY VOLTAGE (±V)  
SUPPLY VOLTAGE (±V)  
INPUT LEVEL (V  
)
P-P  
1813/14 G22  
1813/14 G23  
1813/14 G24  
Undistorted Output Swing  
vs Frequency  
Total Harmonic Distortion + Noise  
vs Frequency  
Slew Rate vs Temperature  
9
8
7
6
5
4
3
2
1
0
0.01  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
A
= 1  
= 1  
+
V
SR  
V
= ± 5V  
S
A
A
= –1  
V
SR  
= ± 5V  
V
V
S
0.005  
A
= 1  
V
0.002  
0.001  
T
= 25°C  
= ± 5V  
= 2V  
A
S
O
SR  
V = ±2.5V  
S
V = ± 5V  
S
V
V
R
= 100Ω  
L
P-P  
+
SR  
V
= ±2.5V  
2% MAX DISTORTION  
1M  
FREQUENCY (Hz)  
R
= 500Ω  
S
L
100k  
10M  
100M  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
–50 –25  
0
75 100 125  
25  
50  
TEMPERATURE (°C)  
1813/14 G27  
1813/14 G26  
1813/14 G25  
18134fa  
9
LT1813/LT1814  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
2nd and 3rd Harmonic Distortion  
vs Frequency  
Differential Gain and Phase  
vs Supply Voltage  
Capacitive Load Handling  
100  
90  
0.5  
0.4  
0.3  
0.2  
0.1  
0
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
T
= 25°C  
= ±5V  
S
A
V
V
= 2  
= ±5V  
= 2V  
A
V
S
O
V
DIFFERENTIAL GAIN  
R
= 150  
L
P-P  
80  
2ND HARMONIC  
= 100Ω  
A
= 1  
V
DIFFERENTIAL GAIN  
= 1k  
70  
R
L
R
L
60  
50  
3RD HARMONIC  
= 100Ω  
R
0.5  
0.4  
0.3  
0.2  
0.1  
0
L
A
= –1  
V
DIFFERENTIAL PHASE  
= 150Ω  
40  
30  
20  
10  
0
R
L
3RD HARMONIC  
= 500Ω  
R
L
DIFFERENTIAL PHASE  
= 1k  
2ND HARMONIC  
R
L
R
= 500Ω  
L
10  
100  
1000  
10000  
100k  
1M  
10M  
4
8
10  
12  
6
FREQUENCY (Hz)  
TOTAL SUPPLY VOLTAGE (V)  
CAPACITIVE LOAD (pF)  
1813/14 G28  
1813/14 G30  
1813/14 G29  
Small-Signal Transient  
(AV = 1, CL = 100pF)  
Small-Signal Transient (AV = 1)  
Small-Signal Transient (AV = –1)  
1813/14 G31  
1813/14 G32  
1813/14 G33  
Large-Signal Transient  
(AV = –1, CL = 200pF)  
Large-Signal Transient (AV = 1)  
Large-Signal Transient (AV = –1)  
1813/14 G34  
1813/14 G35  
1813/14 G36  
18134fa  
10  
LT1813/LT1814  
W U U  
APPLICATIO S I FOR ATIO  
U
Layout and Passive Components  
series resistance for protection. This differential input  
voltage generates a large internal current (up to 40mA),  
which results in the high slew rate. In normal transient  
closed-loop operation, this does not increase power dis-  
sipation significantly because of the low duty cycle of the  
transient inputs. Sustained differential inputs, however,  
will result in excessive power dissipation and therefore  
this device should not be used as a comparator.  
The LT1813/LT1814 amplifiers are more tolerant of less  
than ideal board layouts than other high speed amplifiers.  
For optimum performance, a ground plane is recom-  
mendedandtracelengthsshouldbeminimized,especially  
on the negative input lead.  
Low ESL/ESR bypass capacitors should be placed directly  
at the positive and negative supply pins (0.01µF ceramics  
are recommended). For high drive current applications,  
additional 1µF to 10µF tantalums should be added.  
Capacitive Loading  
The LT1813/LT1814 are stable with capacitive loads from  
0pF to 1000pF, which is outstanding for a 100MHz ampli-  
fier. The internal compensation circuitry accomplishes  
this by sensing the load induced output pole and adding  
compensation at the amplifier gain node as needed. As the  
capacitive load increases, both the bandwidth and phase  
margin decrease so there will be peaking in the frequency  
domain and ringing in the transient response. Coaxial  
cable can be driven directly, but for best pulse fidelity a  
resistor of value equal to the characteristic impedance of  
the cable (e.g., 75) should be placed in series with the  
output. The receiving end of the cable should be termi-  
nated with the same value resistance to ground.  
The parallel combination of the feedback resistor and gain  
setting resistor on the inverting input combine with the  
input capacitance to form a pole that can cause peaking or  
even oscillations. If feedback resistors greater than 1k are  
used, a parallel capacitor of value:  
CF > RG • CIN/RF  
should be used to cancel the input pole and optimize  
dynamic performance. For applications where the DC  
noise gain is 1 and a large feedback resistor is used, CF  
should be greater than or equal to CIN. An example would  
be an I-to-V converter.  
Input Considerations  
Slew Rate  
The inputs of the LT1813/LT1814 amplifiers are con-  
nected to the base of an NPN and PNP bipolar transistor in  
parallel. The base currents are of opposite polarity and  
provide first order bias current cancellation. Due to  
variationinthematchingofNPNandPNPbeta,thepolarity  
of the input bias current can be positive or negative. The  
offset current, however, does not depend on beta match-  
ingandistightlycontrolled.Therefore,theuseofbalanced  
source resistance at each input is recommended for  
applications where DC accuracy must be maximized. For  
example, with a 100source resistance at each input, the  
400nA maximum offset current results in only 40µV of  
extra offset, while without balance the 4µA maximum  
input bias current could result in a 0.4mV offset contribu-  
tion.  
The slew rate of the LT1813/LT1814 is proportional to the  
differential input voltage. Highest slew rates are therefore  
seen in the lowest gain configurations. For example, a 5V  
output step in a gain of 10 has a 0.5V input step, whereas  
in unity gain there is a 5V input step. The LT1813/LT1814  
is tested for a slew rate in a gain of 1. Lower slew rates  
occur in higher gain configurations.  
Power Dissipation  
The LT1813/LT1814 combine two or four amplifiers with  
high speed and large output drive in a small package. It is  
possible to exceed the maximum junction temperature  
specification under certain conditions. Maximum junction  
temperature (TJ) is calculated from the ambient tempera-  
ture (TA) and power dissipation (PD) as follows:  
The inputs can withstand differential input voltages of up  
to 6V without damage and without needing clamping or  
TJ = TA + (PD θJA)  
18134fa  
11  
LT1813/LT1814  
W U U  
U
APPLICATIO S I FOR ATIO  
Power dissipation is composed of two parts. The first is  
due to the quiescent supply current and the second is due  
to on-chip dissipation caused by the load current. The  
worst-case load induced power occurs when the output  
voltage is at 1/2 of either supply voltage (or the maximum  
swingiflessthan1/2thesupplyvoltage).ThereforePDMAX  
is:  
Complementary followers form an output stage that buff-  
ers the gain node from the load. The input resistor, input  
stage transconductance, and the capacitor on the high  
impedance node determine the bandwidth. The slew rate  
is determined by the current available to charge the gain  
node capacitance. This current is the differential input  
voltage divided by R1, so the slew rate is proportional to  
the input step. Highest slew rates are therefore seen in the  
lowest gain configurations.  
P
DMAX = (V+ – V) • (ISMAX) + (V+/2)2/RL or  
PDMAX =(V+ V)(ISMAX)+(V+VOMAX)(VOMAX/RL)  
Example: LT1814S at 70°C, VS = ±5V, RL=100Ω  
PDMAX = (10V) • (4.5mA) + (2.5V)2/100= 108mW  
TJMAX = 70°C + (4 • 108mW) • (100°C/W) = 113°C  
The RC network across the output stage is bootstrapped  
when the amplifier is driving a light or moderate load and  
has no effect under normal operation. When a heavy load  
(capacitive or resistive) is driven, the network is incom-  
pletely bootstrapped and adds to the compensation at the  
high impedance node. The added capacitance moves the  
unity-gain frequency away from the pole formed by the  
output impedance and the capacitive load. The zero cre-  
ated by the RC combination adds phase to ensure that the  
total phase lag does not exceed 180° (zero phase margin),  
and the amplifier remains stable. In this way, the LT1813/  
LT1814 are stable with up to 1000pF capacitive loads in  
unity gain, and even higher capacitive loads in higher  
closed-loop gain configurations.  
Circuit Operation  
The LT1813/LT1814 circuit topology is a true voltage  
feedback amplifier that has the slewing behavior of a  
currentfeedbackamplifier.Theoperationofthecircuitcan  
be understood by referring to the Simplified Schematic.  
ComplementaryNPNandPNPemitterfollowersbufferthe  
inputs and drive an internal resistor. The input voltage  
appears across the resistor, generating current that is  
mirrored into the high impedance node.  
W
W
(one amplifier)  
SI PLIFIED SCHE ATIC  
+
V
C
C
+IN  
R
C
R1  
OUT  
–IN  
C
V
1814 SS  
18134fa  
12  
LT1813/LT1814  
U
TYPICAL APPLICATIO  
Filter Frequency Response  
10  
0
4MHz, 4th Order Butterworth Filter  
–10  
–20  
232  
274Ω  
–30  
–40  
47pF  
232Ω  
665Ω  
–50  
–60  
–70  
–80  
–90  
V
IN  
22pF  
274Ω  
562Ω  
1/2 LT1813  
+
220pF  
V
V
= ±5V  
V
S
1/2 LT1813  
470pF  
OUT  
= 600mV  
P-P  
+
IN  
PEAKING < 0.12dB  
1813/14 TA01  
0.1  
1
10  
100  
FREQUENCY (MHz)  
1813/14 TA02  
Gain of 20 Composite Amplifier Drives Differential Load with Low Distortion  
10k  
499  
499Ω  
1k  
LOAD  
68pF  
1/4 LT1814  
+
+
1/4 LT1814  
+
1/4 LT1814  
800Ω  
9k  
68pF  
1/4 LT1814  
+
GAIN = 20  
–3dB BANDWIDTH = 10MHz  
V
IN  
DISTORTION = –77dB AT 2MHz,  
499Ω  
499Ω  
1k  
R
L
= 1k  
1814 TA03  
18134fa  
13  
LT1813/LT1814  
U
PACKAGE DESCRIPTIO  
DD Package  
8-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1698)  
R = 0.115  
0.38 ± 0.10  
TYP  
5
8
0.675 ±0.05  
3.5 ±0.05  
2.15 ±0.05 (2 SIDES)  
1.65 ±0.05  
3.00 ±0.10  
(4 SIDES)  
1.65 ± 0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
PACKAGE  
OUTLINE  
(DD8) DFN 0203  
4
1
0.28 ± 0.05  
0.75 ±0.05  
0.200 REF  
0.28 ± 0.05  
0.50 BSC  
0.50  
BSC  
2.38 ±0.05  
(2 SIDES)  
2.38 ±0.10  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-1)  
2. ALL DIMENSIONS ARE IN MILLIMETERS  
3. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
4. EXPOSED PAD SHALL BE SOLDER PLATED  
MS8 Package  
8-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1660)  
0.889 ± 0.127  
(.035 ± .005)  
5.23  
(.206)  
MIN  
3.2 – 3.45  
(.126 – .136)  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 3)  
0.52  
(.206)  
REF  
0.65  
(.0256)  
BSC  
0.42 ± 0.04  
(.0165 ± .0015)  
TYP  
8
7 6  
5
RECOMMENDED SOLDER PAD LAYOUT  
3.00 ± 0.102  
(.118 ± .004)  
NOTE 4  
4.90 ± 0.15  
(1.93 ± .006)  
DETAIL “A”  
0.254  
(.010)  
0° – 6° TYP  
GAUGE PLANE  
1
2
3
4
0.53 ± 0.015  
(.021 ± .006)  
1.10  
(.043)  
MAX  
0.86  
(.034)  
REF  
DETAIL “A”  
0.18  
(.077)  
SEATING  
PLANE  
0.22 – 0.38  
(.009 – .015)  
TYP  
0.13 ± 0.076  
(.005 ± .003)  
0.65  
(.0256)  
BSC  
MSOP (MS8) 0802  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
18134fa  
14  
LT1813/LT1814  
U
PACKAGE DESCRIPTIO  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.189 – .197  
(4.801 – 5.004)  
.045 ±.005  
NOTE 3  
.050 BSC  
7
5
8
6
.245  
MIN  
.160 ±.005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.030 ±.005  
TYP  
1
3
4
2
RECOMMENDED SOLDER PAD LAYOUT  
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
SO8 0303  
S Package  
14-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.337 – .344  
.045 ±.005  
(8.560 – 8.738)  
.050 BSC  
NOTE 3  
13  
12  
11  
10  
8
14  
N
9
N
1
.245  
MIN  
.160 ±.005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
2
3
N/2  
N/2  
.030 ±.005  
TYP  
RECOMMENDED SOLDER PAD LAYOUT  
7
1
2
3
4
5
6
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0° – 8° TYP  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
.016 – .050  
(0.406 – 1.270)  
S14 0502  
NOTE:  
INCHES  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
1. DIMENSIONS IN  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
18134fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LT1813/LT1814  
U
TYPICAL APPLICATIO  
Two Op Amp Instrumentation Amplifier  
R5  
220  
R4  
10k  
R1  
10k  
R2  
1k  
R3  
1k  
1/2  
LT1813  
1/2  
LT1813  
+
+
V
OUT  
V
IN  
+
R2 + R3  
⎞ ⎛  
(
)
R4  
R3  
1
2
R2 R3  
R1 R4  
GAIN =  
1+  
+
+
= 102  
⎟ ⎜  
R5  
⎠ ⎝  
TRIM R5 FOR GAIN  
1813/14 TA03  
TRIM R1 FOR COMMON MODE REJECTION  
BW = 1MHz  
U
PACKAGE DESCRIPTIO  
GN Package  
.189 – .196*  
(4.801 – 4.978)  
16-Lead Plastic SSOP (Narrow .150 Inch)  
.045 ±.005  
(Reference LTC DWG # 05-08-1641)  
.009  
(0.229)  
REF  
16 15 14 13 12 11 10 9  
.254 MIN  
.150 – .165  
.229 – .244  
.150 – .157**  
(5.817 – 6.198)  
(3.810 – 3.988)  
.0165 ± .0015  
.0250 TYP  
RECOMMENDED SOLDER PAD LAYOUT  
1
2
3
4
5
6
7
8
NOTE:  
.015 ± .004  
(0.38 ± 0.10)  
1. CONTROLLING DIMENSION: INCHES  
× 45°  
.053 – .068  
(1.351 – 1.727)  
.004 – .0098  
(0.102 – 0.249)  
INCHES  
2. DIMENSIONS ARE IN  
(MILLIMETERS)  
.007 – .0098  
(0.178 – 0.249)  
0° – 8° TYP  
3. DRAWING NOT TO SCALE  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
.016 – .050  
(0.406 – 1.270)  
.0250  
(0.635)  
BSC  
.008 – .012  
(0.203 – 0.305)  
GN16 (SSOP) 0502  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
±2.5V to ±15V Operation  
LT1363/LT1364/LT1365 Single/Dual/Quad 70MHz, 1000V/µs, C-LoadTM Op Amps  
LT1395/LT1396/LT1397 Single/Dual/Quad 400MHz Current Feedback Amplifiers  
4.6mA Supply Current, 800V/µs, 80mA Output Current  
Low Noise 3.5nV/Hz  
LT1806/LT1807  
LT1809/LT1810  
LT1812  
Single/Dual 325MHz, 140V/µs Rail-to-Rail I/O Op Amps  
Single/Dual 180MHz, 350V/µs Rail-to-Rail I/O Op Amps  
Single 3mA, 100MHz, 750V/µs Op Amp  
Low Distortion –90dBc at 5MHz  
Single Version of LT1813/LT1814; 50µA Shutdown Option  
6.5mA Supply Current, 6nV/Hz Input Noise  
LT1815/LT1816/LT1817 Single/Dual/Quad 220MHz, 1500V/µs Op Amps  
C-Load is a trademark of Linear Technology Corporation.  
18134fa  
LT/TP 0503 1K REV A • PRINTED IN THE USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
© LINEAR TECHNOLOGY CORPORATION 2001  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT1814CGN#PBF

LT1814 - Quad 3mA, 100MHz, 750V/&#181;s Operational Amplifier; Package: SSOP; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1814CGN#TRPBF

LT1814 - Quad 3mA, 100MHz, 750V/&#181;s Operational Amplifier; Package: SSOP; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1814CS

LT1814 - Quad 3mA, 100MHz, 750V/&#181;s Operational Amplifier; Package: SO; Pins: 14; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1814CS#PBF

LT1814 - Quad 3mA, 100MHz, 750V/&#181;s Operational Amplifier; Package: SO; Pins: 14; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1814CS#TRPBF

LT1814 - Quad 3mA, 100MHz, 750V/&#181;s Operational Amplifier; Package: SO; Pins: 14; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1814G

Optoelectronic
ETC

LT1814IGN

Dual/Quad 3mA, 100MHz, 750V/® Operational Amplifiers
Linear

LT1814IGN#PBF

LT1814 - Quad 3mA, 100MHz, 750V/&#181;s Operational Amplifier; Package: SSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1814IGN#TRPBF

LT1814 - Quad 3mA, 100MHz, 750V/&#181;s Operational Amplifier; Package: SSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1814IS

暂无描述
Linear

LT1814IS#PBF

LT1814 - Quad 3mA, 100MHz, 750V/&#181;s Operational Amplifier; Package: SO; Pins: 14; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1814IS#TRPBF

LT1814 - Quad 3mA, 100MHz, 750V/&#181;s Operational Amplifier; Package: SO; Pins: 14; Temperature Range: -40&deg;C to 85&deg;C
Linear