LT1819IS8#TRPBF [Linear]

LT1819 - 400MHz, 2500V/µs, 9mA Dual Operational Amplifiers; Package: SO; Pins: 8; Temperature Range: -40°C to 85°C;
LT1819IS8#TRPBF
型号: LT1819IS8#TRPBF
厂家: Linear    Linear
描述:

LT1819 - 400MHz, 2500V/µs, 9mA Dual Operational Amplifiers; Package: SO; Pins: 8; Temperature Range: -40°C to 85°C

运算放大器 放大器电路 光电二极管
文件: 总17页 (文件大小:398K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1818/LT1819  
400MHz, 2500V/µs, 9mA  
Single/Dual Operational Amplifiers  
U
DESCRIPTIO  
FEATURES  
The LT®1818/LT1819 are single/dual wide bandwidth,  
high slew rate, low noise and distortion operational ampli-  
fiers with excellent DC performance. The LT1818/LT1819  
have been designed for wider bandwidth and slew rate,  
much lower input offset voltage and lower noise and  
distortion than devices with comparable supply current.  
The circuit topology is a voltage feedback amplifier with  
the excellent slewing characteristics of a current feedback  
amplifier.  
400MHz Gain Bandwidth Product  
2500V/µs Slew Rate  
–85dBc Distortion at 5MHz  
9mA Supply Current Per Amplifier  
Space Saving SOT-23 and MS8 Packages  
6nV/Hz Input Noise Voltage  
Unity-Gain Stable  
1.5mV Maximum Input Offset Voltage  
8µA Maximum Input Bias Current  
800nA Maximum Input Offset Current  
Theoutputdrivesa100loadto±3.8Vwith±5Vsupplies.  
40mA Minimum Output Current, VOUT = ±3V  
±3.5V Minimum Input CMR, VS = ±5V  
Specified at ±5V, Single 5V Supplies  
On a single 5V supply, the output swings from 1V to 4V  
witha100loadconnectedto2.5V. Theamplifierisunity-  
gainstablewitha20pFcapacitiveloadwithouttheneedfor  
a series resistor. Harmonic distortion is –85dBc up to  
5MHz for a 2VP-P output at a gain of 2.  
Operating Temperature Range: 40°C to 85°C  
U
APPLICATIO S  
The LT1818/LT1819 are manufactured on Linear  
Technology’s advanced low voltage complementary bipo-  
lar process. The LT1818 (single op amp) is available in  
SOT-23 and SO-8 packages; the LT1819 (dual op amp) is  
available in MSOP-8 and SO-8 packages.  
Wideband Amplifiers  
Buffers  
Active Filters  
Video and RF Amplification  
Communication Receivers  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
Cable Drivers  
Data Acquisition Systems  
U
TYPICAL APPLICATIO  
FFT of Single Supply ADC Driver  
0
Single Supply Unity-Gain ADC Driver for Oversampling Applications  
f
f
= 5.102539MHz  
= 50Msps  
IN  
S
V
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
= 300mV  
5V  
5V  
IN  
P-P  
SFDR = 78dB  
8192 POINT FFT  
NO WINDOWING  
OR AVERAGING  
2.5VDC  
±1VAC  
+
51.1Ω  
LTC1744  
14 BITS  
50Msps  
(SET FOR 2V  
FULL SCALE)  
+
LT1818  
A
A
IN  
IN  
18pF  
P-P  
2.5V  
2
3
18189 TA01  
0
5M  
10M  
15M  
20M  
25M  
FREQUENCY (Hz)  
18189 TA02  
18189f  
1
LT1818/LT1819  
W W  
U W  
ABSOLUTE AXI U RATI GS  
(Note 1)  
Specified Temperature Range (Note 9)... –40°C to 85°C  
Maximum Junction Temperature .......................... 150°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
Total Supply Voltage (V+ to V)........................... 12.6V  
Differential Input Voltage  
(Transient Only, Note 2) ..................................... ±6V  
Output Short-Circuit Duration (Note 3)........... Indefinite  
Operating Temperature Range (Note 8) .. 40°C to 85°C  
U W  
U
PACKAGE/ORDER I FOR ATIO  
ORDER PART  
NUMBER  
LT1818CS5  
LT1818IS5  
ORDER PART  
NUMBER  
TOP VIEW  
TOP VIEW  
+
OUT A  
–IN A  
+IN A  
1
2
3
4
8 V  
LT1819CMS8  
LT1819IMS8  
OUT 1  
1
2
3
5
4
V+  
7 OUT B  
6 –IN B  
5 +IN B  
A
V
B
+
V
+IN  
–IN  
S5 PART*  
MARKING  
LTF7  
MS8 PART  
MARKING  
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
S5 PACKAGE  
5-LEAD PLASTIC SOT-23  
TJMAX = 150°C, θJA = 250°C/W (NOTE 10)  
LTE7  
LTE5  
TJMAX = 150°C, θJA = 250°C/W (NOTE 10)  
ORDER PART  
NUMBER  
ORDER PART  
NUMBER  
TOP VIEW  
TOP VIEW  
+
NC  
–IN  
+IN  
1
2
3
4
8
7
6
5
NC  
OUT A  
–IN A  
+IN A  
1
2
3
4
8
7
6
5
V
LT1818CS8  
LT1818IS8  
LT1819CS8  
LT1819IS8  
+
V
OUT B  
–IN B  
+IN B  
+
A
OUT  
NC  
B
S8 PART  
MARKING  
1818  
1818I  
S8 PART  
MARKING  
1819  
1819I  
V
V
S8 PACKAGE  
8-LEAD PLASTIC SO  
S8 PACKAGE  
8-LEAD PLASTIC SO  
TJMAX = 150°C, θJA = 150°C/W (NOTE 10)  
TJMAX = 150°C, θJA = 150°C/W (NOTE 10)  
*The temperature grade is identified by a label on the shipping container. Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 9) VS = ±5V, VCM = 0V, unless otherwise noted.  
SYMBOL PARAMETER  
Input Offset Voltage  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
(Note 4)  
0.2  
1.5  
2.0  
3.0  
mV  
mV  
mV  
OS  
T = 0°C to 70°C  
A
T = –40°C to 85°C  
A
V /T Input Offset Voltage Drift  
OS  
T = 0°C to 70°C (Note 7)  
A
10  
10  
15  
30  
µV/°C  
µV/°C  
A
T = –40°C to 85°C (Note 7)  
I
I
Input Offset Current  
Input Bias Current  
60  
800  
1000  
1200  
nA  
nA  
nA  
OS  
B
T = 0°C to 70°C  
A
A
T = –40°C to 85°C  
–2  
±8  
±10  
±12  
µA  
µA  
µA  
T = 0°C to 70°C  
A
T = –40°C to 85°C  
A
e
Input Noise Voltage Density  
Input Noise Current Density  
f = 10kHz  
f = 10kHz  
6
nV/Hz  
n
i
1.2  
pA/Hz  
n
18189f  
2
LT1818/LT1819  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 9) VS = ±5V, VCM = 0V, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
R
IN  
Input Resistance  
V
CM  
= V + 1.5V to V – 1.5V  
1.5  
5
750  
MΩ  
kΩ  
Differential  
C
V
Input Capacitance  
Input Voltage Range  
(Positive/Negative)  
1.5  
±4.2  
pF  
V
V
IN  
Guaranteed by CMRR  
±3.5  
±3.5  
CM  
T = –40°C to 85°C  
A
CMRR  
Common Mode Rejection Ratio  
V
= ±3.5V  
75  
73  
72  
85  
dB  
dB  
dB  
CM  
A
A
T = 0°C to 70°C  
T = –40°C to 85°C  
Minimum Supply Voltage  
Guaranteed by PSRR  
T = –40°C to 85°C  
±1.25  
±2  
±2  
V
V
A
PSRR  
Power Supply Rejection Ratio  
V = ±2V to ±5.5V  
78  
76  
75  
97  
dB  
dB  
dB  
S
T = 0°C to 70°C  
A
T = –40°C to 85°C  
A
A
V
Large-Signal Voltage Gain  
V
V
V
= ±3V, R = 500Ω  
1.5  
1.0  
0.8  
1.0  
0.7  
0.6  
82  
81  
80  
±3.8  
±3.7  
±3.6  
±3.50  
±3.25  
±3.15  
±40  
±35  
±30  
±100  
±90  
±70  
2.5  
6
V/mV  
V/mV  
V/mV  
V/mV  
V/mV  
V/mV  
dB  
dB  
dB  
V
V
V
V
V
V
mA  
mA  
mA  
mA  
mA  
mA  
VOL  
OUT  
A
A
L
T = 0°C to 70°C  
T = –40°C to 85°C  
= ±3V, R = 100Ω  
OUT  
A
A
L
T = 0°C to 70°C  
T = –40°C to 85°C  
Channel Separation  
= ±3V, LT1819  
T = 0°C to 70°C  
100  
±4.1  
±3.8  
±70  
±200  
OUT  
A
A
T = –40°C to 85°C  
R = 500, 30mV Overdrive  
Output Swing(Positive/Negative)  
OUT  
L
T = 0°C to 70°C  
T = –40°C to 85°C  
A
A
R = 100, 30mV Overdrive  
L
T = 0°C to 70°C  
T = –40°C to 85°C  
A
A
I
I
Output Current  
V = ±3V, 30mV Overdrive  
OUT  
OUT  
SC  
T = 0°C to 70°C  
T = –40°C to 85°C  
A
A
Output Short-Circuit Current  
Slew Rate  
V
OUT  
= 0V, 1V Overdrive (Note 3)  
T = 0°C to 70°C  
A
A
T = –40°C to 85°C  
SR  
A = 1  
V
2500  
1800  
V/µs  
A = –1 (Note 5)  
V
900  
750  
600  
V/µs  
V/µs  
V/µs  
T = 0°C to 70°C  
T = –40°C to 85°C  
A
A
FPBW  
GBW  
Full Power Bandwidth  
Gain Bandwidth Product  
6V (Note 6)  
95  
400  
MHz  
P-P  
f = 4MHz, R = 500Ω  
270  
260  
250  
MHz  
MHz  
MHz  
L
T = 0°C to 70°C  
A
T = –40°C to 85°C  
A
t , t  
Rise Time, Fall Time  
Propagation Delay  
Overshoot  
A = 1, 10% to 90%, 0.1V Step  
0.6  
1.0  
20  
ns  
ns  
%
ns  
r
f
V
t
A = 1, 50% to 50%, 0.1V Step  
V
PD  
OS  
A = 1, 0.1V, R = 100Ω  
V L  
t
Settling Time  
A = –1, 0.1%, 5V  
V
10  
S
HD  
Harmonic Distortion  
HD2, A = 2, f = 5MHz, V  
= 2V , R = 500Ω  
–85  
–89  
dBc  
dBc  
V
OUT  
OUT  
P-P  
L
HD3, A = 2, f = 5MHz, V  
= 2V , R = 500Ω  
P-P L  
V
dG  
dP  
Differential Gain  
Differential Phase  
Supply Current  
A = 2, R = 150Ω  
0.07  
0.02  
9
%
V
L
A = 2, R = 150Ω  
DEG  
V
L
I
Per Amplifier  
T = 0°C to 70°C  
10  
13  
14  
mA  
mA  
mA  
S
A
T = –40°C to 85°C  
A
18189f  
3
LT1818/LT1819  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C (Note 9). VS = 5V, 0V; VCM = 2.5V, RL to 2.5V unless otherwise noted.  
SYMBOL PARAMETER  
Input Offset Voltage  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
(Note 4)  
0.4  
2.0  
2.5  
3.5  
mV  
mV  
mV  
OS  
T = 0°C to 70°C  
A
T = –40°C to 85°C  
A
V /T Input Offset Voltage Drift  
OS  
(Note 7)  
T = 0°C to 70°C  
10  
10  
15  
30  
µV/°C  
µV/°C  
A
T = –40°C to 85°C  
A
I
I
Input Offset Current  
Input Bias Current  
60  
800  
1000  
1200  
nA  
nA  
nA  
OS  
B
T = 0°C to 70°C  
A
A
T = –40°C to 85°C  
–2.4  
±8  
±10  
±12  
µA  
µA  
µA  
T = 0°C to 70°C  
A
T = –40°C to 85°C  
A
e
Input Noise Voltage Density  
Input Noise Current Density  
Input Resistance  
f = 10kHz  
6
nV/Hz  
pA/Hz  
n
i
f = 10kHz  
1.4  
n
+
R
V
= V + 1.5V to V – 1.5V  
1.5  
5
750  
MΩ  
kΩ  
IN  
CM  
Differential  
C
V
Input Capacitance  
1.5  
4.2  
pF  
IN  
Input Voltage Range (Positive)  
Guaranteed by CMRR  
3.5  
3.5  
V
V
CM  
T = –40°C to 85°C  
A
Input Voltage Range (Negative)  
Common Mode Rejection Ratio  
Guaranteed by CMRR  
0.8  
82  
1.5  
1.5  
V
V
T = –40°C to 85°C  
A
CMRR  
PSRR  
V
= 1.5V to 3.5V  
73  
71  
70  
dB  
dB  
dB  
CM  
T = 0°C to 70°C  
A
T = –40°C to 85°C  
A
Minimum Supply Voltage  
Guaranteed by PSRR  
T = –40°C to 85°C  
±1.25  
±2  
±2  
V
V
A
Power Supply Rejection Ratio  
V = 4V to 11V  
78  
76  
75  
97  
dB  
dB  
dB  
S
T = 0°C to 70°C  
T = –40°C to 85°C  
A
A
A
Large-Signal Voltage Gain  
V
V
V
= 1.5V to 3.5V, R = 500Ω  
1.0  
0.7  
0.6  
2
4
V/mV  
V/mV  
V/mV  
VOL  
OUT  
L
T = 0°C to 70°C  
A
T = –40°C to 85°C  
A
= 1.5V to 3.5V, R = 100Ω  
0.7  
0.5  
0.4  
V/mV  
V/mV  
V/mV  
OUT  
A
A
L
T = 0°C to 70°C  
T = –40°C to 85°C  
Channel Separation  
= 1.5V to 3.5V, LT1819  
T = 0°C to 70°C  
T = –40°C to 85°C  
81  
80  
79  
100  
4.2  
4
dB  
dB  
dB  
OUT  
A
A
V
Output Swing(Positive)  
R = 500, 30mV Overdrive  
3.9  
3.8  
3.7  
V
V
V
OUT  
L
T = 0°C to 70°C  
T = –40°C to 85°C  
A
A
R = 100, 30mV Overdrive  
3.7  
3.6  
3.5  
V
V
V
L
T = 0°C to 70°C  
T = –40°C to 85°C  
A
A
Output Swing(Negative)  
R = 500, 30mV Overdrive  
0.8  
1
1.1  
1.2  
1.3  
V
V
V
L
T = 0°C to 70°C  
A
T = –40°C to 85°C  
A
R = 100, 30mV Overdrive  
1.3  
1.4  
1.5  
V
V
V
L
T = 0°C to 70°C  
T = –40°C to 85°C  
A
A
18189f  
4
LT1818/LT1819  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C (Note 9). VS = 5V, 0V; VCM = 2.5V, RL to 2.5V unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
Output Current  
V
= 1.5V or 3.5V, 30mV Overdrive  
OUT  
±30  
±25  
±20  
±50  
mA  
mA  
mA  
OUT  
T = 0°C to 70°C  
A
T = –40°C to 85°C  
A
I
Output Short-Circuit Current  
Slew Rate  
V
= 2.5V, 1V Overdrive (Note 3)  
T = 0°C to 70°C  
T = –40°C to 85°C  
±80  
±70  
±50  
±140  
mA  
mA  
mA  
SC  
OUT  
A
A
SR  
A = 1  
V
1000  
800  
V/µs  
A = –1 (Note 5)  
V
450  
375  
300  
V/µs  
V/µs  
V/µs  
T = 0°C to 70°C  
T = –40°C to 85°C  
A
A
FPBW  
GBW  
Full Power Bandwidth  
2V (Note 6)  
125  
360  
MHz  
P-P  
Gain Bandwidth Product  
f = 4MHz, R = 500Ω  
240  
230  
220  
MHz  
MHz  
MHz  
L
T = 0°C to 70°C  
A
T = –40°C to 85°C  
A
t , t  
Rise Time, Fall Time  
Propagation Delay  
Overshoot  
A = 1, 10% to 90%, 0.1V Step  
0.7  
1.1  
20  
ns  
ns  
%
r
f
V
t
A = 1, 50% to 50%, 0.1V Step  
V
PD  
OS  
HD  
A = 1, 0.1V, R = 100Ω  
V L  
Harmonic Distortion  
HD2, A = 2, f = 5MHz, V  
= 2V , R = 500Ω  
= 2V , R = 500Ω  
–72  
–74  
dBc  
dBc  
V
OUT  
OUT  
P-P  
L
HD3, A = 2, f = 5MHz, V  
V
P-P L  
dG  
dP  
Differential Gain  
Differential Phase  
Supply Current  
A = 2, R = 150Ω  
0.07  
0.07  
8.5  
%
V
L
A = 2, R = 150Ω  
DEG  
V
L
I
Per Amplifier  
T = 0°C to 70°C  
10  
13  
14  
mA  
mA  
mA  
S
A
T = –40°C to 85°C  
A
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 6: Full power bandwidth is calculated from the slew rate:  
FPBW = SR/2πV  
P
Note 2: Differential inputs of ±6V are appropriate for transient operation  
only, such as during slewing. Large sustained differential inputs can cause  
excessive power dissipation and may damage the part.  
Note 3: A heat sink may be required to keep the junction temperature  
below absolute maximum when the output is shorted indefinitely.  
Note 7: This parameter is not 100% tested.  
Note 8: The LT1818C/LT1818I and LT1819C/LT1819I are guaranteed  
functional over the operating temperature range of 40°C to 85°C.  
Note 9: The LT1818C/LT1819C are guaranteed to meet specified  
performance from 0°C to 70°C and is designed, characterized and  
expected to meet the extended temperature limits, but is not tested at  
–40°C and 85°C. The LT1818I/LT1819I are guaranteed to meet the  
extended temperature limits.  
Note 4: Input offset voltage is pulse tested and is exclusive of warm-up  
drift.  
Note 5: With ±5V supplies, slew rate is tested in a closed-loop gain of –1  
by measuring the rise time of the output from –2V to 2V with an output  
step from –3V to 3V. With single 5V supplies, slew rate is tested in a  
closed-loop gain of –1 by measuring the rise time of the output from 1.5V  
to 3.5V with an output step from 1V to 4V. Falling edge slew rate is not  
production tested, but is designed, characterized and expected to be within  
10% of the rising edge slew rate.  
Note 10: Thermal resistance (θ ) varies with the amount of PC board  
JA  
metal connected to the package. The specified values are for short traces  
connected to the leads. If desired, the thermal resistance can be  
significantly reduced by connecting the V pin to a large metal area.  
18189f  
5
LT1818/LT1819  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Input Common Mode Range  
Input Bias Current vs Common  
Mode Voltage  
Supply Current vs Temperature  
vs Supply Voltage  
+
12  
10  
8
2
0
V
T
= 25°C  
= ±5V  
T
= 25°C  
OS  
PER AMPLIFIER  
A
S
A
0.5  
–1.0  
–1.5  
2.0  
V
V < 1mV  
V
= ±5V  
S
S
–2  
–4  
–6  
–8  
V
= ±2.5V  
6
2.0  
1.5  
1.0  
0.5  
4
2
0
V
0
2.5  
5
–50 –25  
0
25  
50  
75 100 125  
–5  
2.5  
0
2
3
4
5
6
7
1
TEMPERATURE (°C)  
SUPPLY VOLTAGE (± V)  
INPUT COMMON MODE VOLTAGE (V)  
18189 G03  
18189 G01  
18189 G02  
Input Bias Current vs Temperature  
Input Noise Spectral Density  
Open-Loop Gain vs Resistive Load  
100  
10  
1
10  
0
80  
V
CM  
= 0V  
T
A
= 25°C  
= ±5V  
= 101  
= 10k  
T
= 25°C  
A
V
A
S
V
–0.4  
77  
74  
71  
68  
65  
62  
R
S
–0.8  
–1.2  
–1.6  
–2.0  
–2.4  
i
n
1
e
n
V
= ±5V  
S
V
V
= ±5V  
S
S
V
S
= ±2.5V  
= ±2.5V  
0.1  
100k  
–2.8  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
50  
100 125  
–50 –25  
0
25  
75  
100  
1k  
LOAD RESISTANCE ()  
10k  
TEMPERATURE (°C)  
18189 G05  
18189 G06  
18189 G04  
Output Voltage Swing  
vs Supply Voltage  
Output Voltage Swing  
vs Load Current  
Open-Loop Gain vs Temperature  
+
5
4
3
2
V
80  
77  
74  
71  
68  
65  
62  
T
= 25°C  
OS  
T
= 25°C  
V = ±5V  
S
OS  
V
S
V
O
= ±5V  
= ±3V  
A
A
0.5  
–1.0  
–1.5  
2.0  
V = 30mV  
R
= 500Ω  
= 100Ω  
L
R
L
= 100Ω  
V = 30mV  
R
L
SOURCE  
–2  
–3  
–4  
–5  
SINK  
2.0  
1.5  
1.0  
0.5  
R
L
= 500Ω  
R
= 100Ω  
L
R
= 500Ω  
L
V
0
2
3
4
5
6
7
–120 –80 –40  
0
40  
80  
120  
50  
100 125  
1
–50 –25  
0
25  
75  
SUPPLY VOLTAGE (± V)  
OUTPUT CURRENT (mA)  
TEMPERATURE (°C)  
18189 G08  
18189 G09  
18189 G07  
18189f  
6
LT1818/LT1819  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Output Short-Circuit Current  
vs Temperature  
Output Current vs Temperature  
Output Impedance vs Frequency  
100  
10  
150  
125  
100  
75  
240  
200  
160  
120  
V
V
= ± 5V  
= ±1V  
S
IN  
SOURCE  
SINK  
SOURCE, V = ±5V  
S
A
V
= 100  
SINK, V = ±5V  
SOURCE, V = ±2.5V  
S
S
A
V
= 10  
1
SINK, V = ±2.5V  
S
50  
25  
0
80  
40  
0
A
= 1  
V
0.1  
0.01  
V = 30mV  
OS  
V
OUT  
V
OUT  
= ±3V FOR V = ±5V  
S
T
= 25°C  
= ± 5V  
A
S
= ±1V FOR V = ±2.5V  
S
V
50  
0
TEMPERATURE (˚C)  
100 125  
10k  
100k  
1M  
10M  
100M  
–50 –25  
25  
75  
50  
100 125  
–50 –25  
0
25  
75  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
18189 G12  
18189 G11  
18189 G10  
Gain Bandwidth and Phase  
Margin vs Temperature  
Gain and Phase vs Frequency  
80  
70  
60  
50  
180  
160  
140  
120  
440  
400  
360  
R
= 500Ω  
L
GBW  
= ±5V  
V
S
GBW  
= ±2.5V  
PHASE  
GAIN  
V
S
40  
30  
100  
80  
20  
10  
60  
40  
20  
0
50  
40  
30  
PHASE MARGIN  
= ±2.5V  
PHASE MARGIN  
= ±5V  
V
V
S
S
0
T
= 25°C  
A
V
L
A
= –1  
–10  
R
= 500Ω  
–20  
10k  
–20  
100M 500M  
100k  
1M  
10M  
–50 –25  
0
25  
50  
75 100 125  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
18189 G13  
18189 G15  
Gain vs Frequency, AV = 2  
Gain vs Frequency, AV = 1  
Gain vs Frequency, AV = 1  
5
0
5
0
10  
5
R
= 500Ω  
T
= 25°C  
= 1  
= 500Ω  
L
A
V
L
A
V
S
= ±5V  
V
S
= ±5V  
R
V
S
= ±2.5V  
V = ±2.5V  
S
R
= 100Ω  
L
0
–5  
–5  
T
A
V
= 25°C  
= 2  
A
V
S
F
F
–5  
–10  
T
= 25°C  
= –1  
= R = R = 500Ω  
F G  
A
V
L
= ±5V  
A
R = R = 500Ω  
C = 1pF  
G
R
–10  
–10  
1M  
10M  
100M  
500M  
1M  
10M  
FREQUENCY (Hz)  
100M 300M  
1M  
10M  
FREQUENCY (Hz)  
100M 300M  
FREQUENCY (Hz)  
18189 G16  
18189 G18  
18189 G17  
18189f  
7
LT1818/LT1819  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Gain Bandwidth and Phase Margin  
vs Supply Voltage  
Power Supply Rejection Ratio  
vs Frequency  
Common Mode Rejection Ratio  
vs Frequency  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
450  
400  
350  
300  
T
A
V
= 25°C  
= 1  
= ±5V  
T = 25°C  
A
T
= 25°C  
A
V
S
GBW  
A
R
R
= 500Ω  
L
V
S
= ±2.5V  
V
S
= ±5V  
PSRR  
+PSRR  
GBW  
= 100Ω  
L
PHASE MARGIN  
= 100Ω  
45  
R
L
40  
35  
30  
PHASE MARGIN  
R
L
= 500Ω  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
2
4
5
6
3
FREQUENCY (Hz)  
FREQUENCY (Hz)  
SUPPLY VOLTAGE (±V)  
18189 G20  
18189 G21  
18189 G19  
Slew Rate vs Input Step  
Slew Rate vs Supply Voltage  
Slew Rate vs Temperature  
2000  
1500  
1000  
500  
0
2000  
1600  
1200  
800  
400  
0
2400  
2000  
1600  
1200  
T
=25°C  
T
=25°C  
= –1  
A
V
F
A
V
S
A
= –1  
A
V
V
= 6V  
R
= R = R = 500  
G
= ±5V  
IN  
P-P  
P-P  
L
V
S
= ±5V  
R
= R = R = 500Ω  
G L  
F
+
SR  
SR  
V
= 2V  
V
S
= ±2.5V  
IN  
800  
400  
0
A
V
= –1  
R = R = R = 500Ω  
F
G
L
0
2
3
4
5
6
7
1
50  
TEMPERATURE (°C)  
100 125  
4
5
–50 –25  
0
25  
75  
2
3
6
SUPPLY VOLTAGE (±V)  
INPUT STEP (V  
)
P-P  
18189 G23  
18189 G24  
18189 G22  
Differential Gain and Phase  
vs Supply Voltage  
Distortion vs Frequency, AV = 2  
Distortion vs Frequency, AV = –1  
–60  
–70  
–60  
–70  
T
= 25°C  
A
2ND, R = 100  
L
2ND, R = 100  
L
0.10  
0.08  
0.06  
0.04  
0.02  
0
DIFFERENTIAL GAIN  
= 150Ω  
3RD, R = 100  
L
2ND, R = 500  
L
R
L
–80  
–80  
2ND, R = 500  
L
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
3RD, R = 100  
L
3RD, R = 500  
L
–90  
–90  
3RD, R = 500  
L
–100  
–110  
–120  
–100  
–110  
–120  
DIFFERENTIAL PHASE  
A
V
V
= –1  
= ±5V  
= 2V  
A
V
V
= 2  
= ±5V  
= 2V  
V
S
O
V
S
O
R
= 150Ω  
L
P-P  
P-P  
2
3
4
5
6
1M  
10M  
2M  
5M  
1M  
10M  
2M  
5M  
SUPPLY VOLTAGE (±V)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
18189 G25  
18189 G26  
18189 G27  
18189f  
8
LT1818/LT1819  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Channel Separation  
vs Frequency  
Distortion vs Frequency, AV = 1  
0.1% Settling Time  
–60  
–70  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
A
V
V
= 1  
= ±5V  
= 2V  
V
S
O
INPUT  
TRIGGER  
(1V/DIV)  
P-P  
2ND, R = 100  
L
3RD, R = 100  
L
–80  
OUTPUT  
SETTLING  
RESIDUE  
(5mV/DIV)  
–90  
–100  
–110  
–120  
T
= 25°C  
= ±5V  
= –1  
3RD, R = 500  
L
A
S
V
VS = ±5V  
5ns/DIV  
18189 G30  
V
A
VOUT = ±2.5V  
2ND, R = 500  
L
SETTLING TIME = 9ns  
AV = –1  
RF = RG = 500Ω  
CF = 4.1pF  
R
= R = R = 500Ω  
F
G
L
1M  
10M  
2M  
5M  
10k  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
18188 G29  
18189 G28  
Small-Signal Transient, 20dB Gain  
Large-Signal Transient, AV = –1  
20mV/DIV  
2V/DIV  
10ns/DIV  
18189 G31  
V
S = ±5V  
5ns/DIV  
18189 G32  
Large-Signal Transient, AV = 1  
Large-Signal Transient, AV = –1  
1V/DIV  
1V/DIV  
V
S = ±5V  
10ns/DIV  
18189 G33  
V
S = ±5V  
10ns/DIV  
18189 G34  
18189f  
9
LT1818/LT1819  
U
W U U  
APPLICATIO S I FOR ATIO  
load, aresistorof10to50mustbeconnectedbetween  
the output and the capacitive load to avoid ringing or  
oscillation (see RS in Figure 1). The feedback must still be  
taken directly from the output so that the series resistor  
will isolate the capacitive load to ensure stability.  
Layout and Passive Components  
As with all high speed amplifiers, the LT1818/LT1819  
require some attention to board layout. A ground plane is  
recommended and trace lengths should be minimized,  
especially on the negative input lead.  
Input Considerations  
Low ESL/ESR bypass capacitors should be placed directly  
at the positive and negative supply (0.01µF ceramics are  
recommended). For high drive current applications, addi-  
tional 1µF to 10µF tantalums should be added.  
The inputs of the LT1818/LT1819 amplifiers are con-  
nected to the bases of NPN and PNP bipolar transistors  
in parallel. The base currents are of opposite polarity and  
provide first order bias current cancellation. Due to  
variation in the matching of NPN and PNP beta, the  
polarity of the input bias current can be positive or  
negative. The offset current, however, does not depend  
on beta matching and is tightly controlled. Therefore, the  
useofbalancedsourceresistanceateachinputisrecom-  
mended for applications where DC accuracy must be  
maximized. For example, with a 100source resistance  
at each input, the 800nA maximum offset current results  
in only 80µV of extra offset, while without balance the  
8µA maximum input bias current could result in an  
0.8mV offset condition.  
The parallel combination of the feedback resistor and gain  
setting resistor on the inverting input combine with the  
input capacitance to form a pole that can cause peaking or  
even oscillations. If feedback resistors greater than 500Ω  
are used, a parallel capacitor of value  
CF > RG • CIN/RF  
should be used to cancel the input pole and optimize  
dynamic performance (see Figure 1). For applications  
where the DC noise gain is 1 and a large feedback resistor  
is used, CF should be greater than or equal to CIN. An  
example would be an I-to-V converter.  
The inputs can withstand differential input voltages of up  
to 6V without damage and without needing clamping or  
series resistance for protection. This differential input  
voltage generates a large internal current (up to 50mA),  
which results in the high slew rate. In normal transient  
closed-loop operation, this does not increase power dis-  
sipation significantly because of the low duty cycle of the  
transient inputs. Sustained differential inputs, however,  
will result in excessive power dissipation and therefore  
this device should not be used as a comparator.  
In high closed-loop gain configurations, RF >> RG, and no  
CF need to be added. To optimize the bandwidth in these  
applications, a capacitance, CG, may be added in parallel  
withRG inordertocanceloutanyparasiticCF capacitance.  
Capacitive Loading  
The LT1818/LT1819 are optimized for low distortion and  
highgainbandwidthapplications. Theamplifierscandrive  
a capacitive load of 20pF in a unity-gain configuration and  
more with higher gain. When driving a larger capacitive  
+
IN  
+
R
S
R
G
C
LOAD  
IN  
C
G
R
F
C
F
18189 F01  
Figure 1  
18189f  
10  
LT1818/LT1819  
U
W U U  
APPLICATIO S I FOR ATIO  
Slew Rate  
Example: LT1819IS8 at 85°C, VS = ±5V, RL = 100Ω  
The slew rate of the LT1818/LT1819 is proportional to the  
differential input voltage. Highest slew rates are therefore  
seen in the lowest gain configurations. For example, a 6V  
outputstepwithagainof10hasa0.6Vinputstep,whereas  
at unity gain there is a 6V input step. The LT1818/LT1819  
is tested for slew rate at a gain of –1. Lower slew rates  
occur in higher gain configurations, whereas the highest  
slew rate (2500V/µs) occurs in a noninverting unity-gain  
configuration.  
P
DMAX = (10V) • (14mA) + (2.5V)2/100= 202.5mW  
TJMAX = 85°C + (2 • 202.5mW) • (150°C/W) = 146°C  
Circuit Operation  
The LT1818/LT1819 circuit topology is a true voltage  
feedback amplifier that has the slewing behavior of a  
currentfeedbackamplifier.Theoperationofthecircuitcan  
be understood by referring to the Simplified Schematic.  
ComplementaryNPNandPNPemitterfollowersbufferthe  
inputs and drive an internal resistor. The input voltage  
appears across the resistor, generating a current that is  
mirrored into the high impedance node.  
Power Dissipation  
TheLT1818/LT1819combinehighspeedandlargeoutput  
drive in small packages. It is possible to exceed the  
maximum junction temperature specification (150°C)  
under certain conditions. Maximum junction temperature  
(TJ) is calculated from the ambient temperature (TA),  
powerdissipationperamplifier(PD)andnumberofampli-  
fiers (n) as follows:  
Complementaryfollowersformanoutputstagethatbuffer  
thegainnodefromtheload. Theinputresistor, inputstage  
transconductance and the capacitor on the high imped-  
ance node determine the bandwidth. The slew rate is  
determined by the current available to charge the gain  
node capacitance. This current is the differential input  
voltage divided by R1, so the slew rate is proportional to  
the input step. Highest slew rates are therefore seen in the  
lowest gain configurations.  
TJ = TA + (n • PD θJA)  
Power dissipation is composed of two parts. The first is  
due to the quiescent supply current and the second is due  
to on-chip dissipation caused by the load current. The  
worst-case load-induced power occurs when the output  
voltage is at 1/2 of either supply voltage (or the maximum  
swingiflessthan1/2thesupplyvoltage).ThereforePDMAX  
is:  
PDMAX = (V+ – V) • (ISMAX) + (V+/2)2/RL or  
PDMAX = (V+ – V) • (ISMAX) +  
(V+ – VOMAX) • (VOMAX/RL)  
18189f  
11  
LT1818/LT1819  
U
TYPICAL APPLICATIO  
Single Supply Differential ADC Driver  
5V  
10µF  
18pF  
V
IN  
+
51.1Ω  
1/2 LT1819  
5V  
LTC1744  
14 BITS  
50Msps  
(SET FOR 2V  
FULL SCALE)  
+
A
A
IN  
18pF  
18pF  
536Ω  
P-P  
IN  
536Ω  
51.1Ω  
1/2 LT1819  
4.99k  
5V  
+
4.99k  
0.1µF  
18189 TA05  
Results Obtained with the Circuit of Figure 2 at 5MHz.  
FFT Shows 81dB Overall Spurious Free Dynamic Range  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
0
5M  
10M  
15M  
20M  
25M  
FREQUENCY (Hz)  
18189 TA06  
18189f  
12  
LT1818/LT1819  
W
W
SI PLIFIED SCHE ATIC  
(One Amplifier)  
+
V
+IN  
R1  
OUT  
–IN  
C
V
18189 SS  
U
PACKAGE DESCRIPTIO  
MS8 Package  
8-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1660)  
0.889 ± 0.127  
(.035 ± .005)  
5.23  
(.206)  
MIN  
3.2 – 3.45  
(.126 – .136)  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 3)  
0.52  
(.206)  
REF  
0.65  
(.0256)  
BSC  
0.42 ± 0.04  
(.0165 ± .0015)  
TYP  
8
7 6  
5
RECOMMENDED SOLDER PAD LAYOUT  
3.00 ± 0.102  
(.118 ± .004)  
NOTE 4  
4.90 ± 0.15  
(1.93 ± .006)  
DETAIL “A”  
0.254  
(.010)  
0° – 6° TYP  
GAUGE PLANE  
1
2
3
4
0.53 ± 0.015  
(.021 ± .006)  
1.10  
(.043)  
MAX  
0.86  
(.034)  
REF  
DETAIL “A”  
0.18  
(.077)  
SEATING  
PLANE  
0.22 – 0.38  
(.009 – .015)  
TYP  
0.13 ± 0.076  
(.005 ± .003)  
0.65  
(.0256)  
BSC  
MSOP (MS8) 0802  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
18189f  
13  
LT1818/LT1819  
U
PACKAGE DESCRIPTIO  
S5 Package  
5-Lead Plastic SOT-23  
(Reference LTC DWG # 05-08-1633)  
0.62  
MAX  
0.95  
REF  
2.80 – 3.10  
(NOTE 4)  
1.22 REF  
1.50 – 1.75  
(NOTE 4)  
2.60 – 3.00  
1.4 MIN  
3.85 MAX 2.62 REF  
PIN ONE  
0.25 – 0.50  
TYP 5 PLCS  
NOTE 3  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.95 BSC  
0.90 – 1.30  
0.20 BSC  
DATUM ‘A’  
0.00 – 0.15  
0.90 – 1.45  
0.35 – 0.55 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
NOTE:  
S5 SOT-23 0502  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
ATTENTION: ORIGINAL SOT23-5L PACKAGE.  
MOST SOT23-5L PRODUCTS CONVERTED TO THIN SOT23  
PACKAGE, DRAWING # 05-08-1635 AFTER APPROXIMATELY  
APRIL 2001 SHIP DATE  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. PACKAGE EIAJ REFERENCE IS SC-74A (EIAJ)  
18189f  
14  
LT1818/LT1819  
U
PACKAGE DESCRIPTIO  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.189 – .197  
(4.801 – 5.004)  
.045 ±.005  
NOTE 3  
.050 BSC  
N
7
5
8
6
N
.245  
MIN  
.160 ±.005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
1
2
3
N/2  
N/2  
4
.030 ±.005  
TYP  
RECOMMENDED SOLDER PAD LAYOUT  
1
3
2
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
SO8 0502  
18189f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LT1818/LT1819  
U
TYPICAL APPLICATIO  
80MHz, 20dB Gain Block  
V
IN  
+
1/2 LT1819  
+
V
1/2 LT1819  
OUT  
432Ω  
432Ω  
200Ω  
200Ω  
–3dB BANDWIDTH: 80MHz  
18189 TA03  
20dB Gain Block Frequency Response  
Large-Signal Transient Response  
25  
20  
15  
10  
5
1V/DIV  
0
–5  
V
= ±5V  
= 25°C  
S
A
T
–10  
100k  
10ns/DIV  
18189 TA07  
1M  
10M  
100M  
FREQUENCY (Hz)  
18189 TA04  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1395/LT1396/LT1397  
LT1806/LT1807  
Single/Dual/Quad 400MHz Current Feedback Amplifiers  
Single/Dual 325MHz, 140V/µs Rail-to-Rail I/O Op Amps  
Single/Dual 180MHz, 350V/µs Rail-to-Rail I/O Op Amps  
Single/Dual/Quad 100MHz, 750V/µs Op Amps  
4.6mA Supply Current  
Low Noise: 3.5nV/Hz  
LT1809/LT1810  
Low Distortion: –90dBc at 5MHz  
Low Power: 3.6mA Max at ±5V  
Programmable Supply Current  
1.9nV/Hz Noise, 3mA Max  
LT1812/LT1813/LT1814  
LT1815/LT1816/LT1817  
LT6203/LT6204  
Single/Dual/Quad 220MHz, 1500V/µs Op Amps  
Dual/Quad 100MHz, Rail-to-Rail I/O Op Amps  
18189f  
LT/TP 0103 2K • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
LINEAR TECHNOLOGY CORPORATION 2002  
This datasheet has been download from:  
www.datasheetcatalog.com  
Datasheets for electronics components.  

相关型号:

LT1819_15

400MHz, 2500V/s, 9mA Single/Dual Operational Amplifiers
Linear

LT1839

TRANSISTOR | BJT | NPN | 300MA I(C) | TO-39
ETC

LT1840-7

AC-DC Regulated Power Supply Module, 1 Output, 450W, CASE T01, MODULE
BEL

LT1840-7DB1

AC-DC Regulated Power Supply Module, 1 Output, 450W, CASE T01, MODULE
BEL

LT1840-7DFB1

AC-DC Regulated Power Supply Module, 1 Output, 450W, CASE T01, MODULE
BEL

LT1840-7DZB1

AC-DC Regulated Power Supply Module, 1 Output, CASE T01, MODULE
BEL

LT1840-7DZF

AC-DC Regulated Power Supply Module, 1 Output, 450W, CASE T01, MODULE
BEL

LT1840-7DZFB1

AC-DC Regulated Power Supply Module, 1 Output, 500W, Hybrid, CASE T01, MODULE
BEL

LT1840-7FB1

AC-DC Regulated Power Supply Module
BEL

LT1840-7ZB1

AC-DC Regulated Power Supply Module, 1 Output, 500W, Hybrid
BEL

LT1840-7ZD

AC-DC Regulated Power Supply Module, 1 Output, 500W, Hybrid
BEL

LT1846

Current Mode PWM Controller
Linear