LT1880IS5#TR [Linear]

LT1880 - SOT-23, Rail-to-Rail Output, Picoamp Input Current Precision Op Amp; Package: SOT; Pins: 5; Temperature Range: -40°C to 85°C;
LT1880IS5#TR
型号: LT1880IS5#TR
厂家: Linear    Linear
描述:

LT1880 - SOT-23, Rail-to-Rail Output, Picoamp Input Current Precision Op Amp; Package: SOT; Pins: 5; Temperature Range: -40°C to 85°C

放大器 光电二极管
文件: 总12页 (文件大小:218K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1880  
SOT-23, Rail-to-Rail Output,  
Picoamp Input Current  
Precision Op Amp  
DESCRIPTION  
The LT®1880 op amp brings high accuracy input perfor-  
manceandrail-to-railoutputswingtotheSOT-23package.  
Input offset voltage is trimmed to less than 150μV and  
the low drift maintains this accuracy over the operating  
temperaturerange.Inputbiascurrentisanultralow900pA  
maximum.  
FEATURES  
n
Offset Voltage: 150μV Max  
n
Input Bias Current: 900pA Max  
n
Offset Voltage Drift: 1.2μV/°C Max  
n
Rail-to-Rail Output Swing  
n
Operates with Single or Split Supplies  
n
Open-Loop Voltage Gain: 1 Million Min  
n
1.2mA Supply Current  
The amplifier works on any total power supply voltage  
between 2.7V and 36V (fully specified from 5V to 15Vꢀ.  
Output voltage swings to within 55mV of the negative  
supply and 250mV of the positive supply, which makes  
the amplifier a good choice for low voltage single supply  
operation.  
n
Slew Rate: 0.4V/μs  
n
Gain Bandwidth: 1.1MHz  
n
Low Noise: 13nV/√Hz at 1kHz  
n
Low Profile (1mmꢀ ThinSOT Package  
APPLICATIONS  
Slew rates of 0.4V/μs with a supply current of 1.2mA give  
superior response and settling time performance in a low  
power precision amplifier.  
n
Thermocouple Amplifiers  
n
Bridge Transducer Conditioners  
n
Instrumentation Amplifiers  
n
Battery-Powered Systems  
The LT1880 is available in a 5-lead SOT-23 package.  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. ThinSOT is a trademark of Linear Technology Corporation. All other  
trademarks are the property of their respective owners.  
n
Photocurrent Amplifiers  
TYPICAL APPLICATION  
Precision Photodiode Amplifier  
Distribution of Input Offset Voltage  
C1  
35  
30  
25  
20  
15  
10  
5
39pF  
R1  
100k, 1%  
+
V
S
V
L
+
LT1880  
OUT  
S1  
V
OUT  
= 0.1V/μA  
V
S
0
1880 TA01  
20  
100 140  
–140 –100 –60 –20  
60  
320μV OUTPUT OFFSET, WORST CASE OVER 0°C TO 70°C  
60kHz BANDWIDTH  
INPUT OFFSET VOLTAGE (μVꢀ  
1880 TA01b  
5.8μs RISE TIME, 10% TO 90%, 100mV OUTPUT STEP  
52μV  
OUTPUT NOISE, MEASURED ON A 100kHz BW  
RMS  
V
=
1.5V TO 18V  
S
S1: SIEMENS INFINEON BPW21 PHOTODIODE (~580pFꢀ  
1880fa  
1
LT1880  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
+
Supply Voltage (V to V ꢀ.........................................40V  
Differential Input Voltage (Note 2ꢀ .......................... 10V  
+
OUT 1  
5 V  
V
2
+
Input Voltage......................................................V to V  
+IN 3  
4 –IN  
Input Current (Note 2ꢀ.......................................... 10mA  
Output Short-Circuit Duration (Note 3............ Indefinite  
Operating Temperature Range (Note 4ꢀ ...40°C to 85°C  
Specified Temperature Range (Note 5ꢀ ....40°C to 85°C  
Maximum Junction Temperature .......................... 150°C  
Storage Temperature Range .................. –65°C to 150°C  
Lead Temperature (Soldering, 10 secꢀ...................300°C  
S5 PACKAGE  
5-LEAD PLASTIC TSOT-23  
T
JMAX  
= 150°C, θ = 250°C/W  
JA  
ORDER INFORMATION  
LEAD FREE FINISH  
LT1880CS5#PBF  
LT1880IS5#PBF  
TAPE AND REEL  
PART MARKING  
LTUM  
PACKAGE DESCRIPTION  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
SPECIFIED TEMPERATURE RANGE  
0°C to 70°C  
LT1880CS5#TRPBF  
LT1880IS5#TRPBF  
LTVW  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
ELECTRICAL CHARACTERISTICS  
The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VS = 5V, 0V; VCM = 2.5V unless otherwise noted. (Note 5)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
OS  
Input Offset Voltage  
40  
150  
200  
250  
μV  
μV  
μV  
l
l
0°C < T < 70°C  
A
–40°C < T < 85°C  
A
l
l
Input Offset Voltage Drift  
(Note 6ꢀ  
0°C < T < 70°C  
0.3  
0.3  
1.2  
1.2  
μV/°C  
μV/°C  
A
–40°C < T < 85°C  
A
I
I
Input Offset Current  
150  
900  
1200  
1400  
pA  
pA  
pA  
OS  
l
l
0°C < T < 70°C  
A
–40°C < T < 85°C  
A
Input Bias Current  
150  
900  
1200  
1500  
pA  
pA  
pA  
B
l
l
0°C < T < 70°C  
A
–40°C < T < 85°C  
A
Input Noise Voltage  
0.1Hz to 10Hz  
f = 1kHz  
0.5  
13  
μVp-p  
nV/√Hz  
pA/√Hz  
e
n
Input Noise Voltage Density  
Input Noise Current Density  
Input Resistance  
i
n
f = 1kHz  
0.07  
R
IN  
Differential  
Common Mode, V = 1V to 3.8V  
380  
210  
MΩ  
GΩ  
CM  
C
V
Input Capacitance  
3.7  
pF  
V
IN  
+
l
Input Voltage Range  
(V + 1.0ꢀ  
(V – 1.2ꢀ  
CM  
1880fa  
2
LT1880  
ELECTRICAL CHARACTERISTICS  
The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VS = 5V, 0V; VCM = 2.5V unless otherwise noted. (Note 5)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
116  
110  
TYP  
135  
135  
2.4  
MAX  
UNITS  
dB  
l
l
l
CMRR  
PSRR  
Common Mode Rejection Ratio  
1V < V < 3.8V  
CM  
+
Power Supply Rejection Ratio  
Minimum Operating Supply Voltage  
Large Signal Voltage Gain  
V = 0V, V = 1.5V; 2.7V < V < 32V  
dB  
CM  
2.7  
V
A
VOL  
R = 10k; 1V < V < 4V  
L OUT  
500  
400  
400  
300  
300  
250  
1600  
V/mV  
V/mV  
V/mV  
V/mV  
V/mV  
V/mV  
l
l
l
R = 2k; 1V < V  
L
< 4V  
800  
400  
OUT  
OUT  
R = 1k; 1V < V  
L
< 4V  
l
l
l
V
V
Output Voltage Swing Low  
Output Voltage Swing High  
No Load  
20  
35  
55  
65  
mV  
mV  
mV  
OL  
I
I
= 100μA  
= 1mA  
SINK  
SINK  
+
130  
200  
l
l
l
V = 5V; No Load  
130  
150  
220  
250  
270  
380  
mV  
mV  
mV  
OH  
+
+
(Referred to V ꢀ  
V = 5V; I  
= 100μA  
= 1mA  
SOURCE  
+
V
= 5V; I  
SOURCE  
+
I
Supply Current per Amplifier  
V = 3V  
1.2  
1.8  
2.2  
mA  
mA  
S
l
l
l
+
V = 5V  
1.2  
1.9  
2.3  
mA  
mA  
+
V = 12V  
1.35  
2
2.4  
mA  
mA  
l
l
I
SC  
Short-Circuit Current  
V
OUT  
V
OUT  
Short to GND  
10  
10  
18  
20  
mA  
mA  
+
Short to V  
GBW  
Gain-Bandwidth Product  
Settling Time  
f = 20kHz  
0.8  
1.1  
10  
MHz  
μs  
t
S
0.01%, V  
= 1.5V to 3.5V  
OUT  
A = –1, R = 2k  
V
L
FPBW  
THD  
Full Power Bandwidth (Note 7ꢀ  
V
= 4V  
32  
kHz  
OUT  
P-P  
Total Harmonic Distortion and Noise  
V = 2V , A = –1, f = 1kHz, R = 1k, BW = 22kHz  
0.002  
0.0008  
%
%
O
P-P  
P-P  
V
V
f
V = 2V , A = 1, f = 1kHz, R = 10k, BW = 22kHz  
O
L
+
SR  
Slew Rate Positive  
Slew Rate Negative  
A = –1  
0.25  
0.2  
0.4  
V/μs  
V/μs  
V
l
l
SR  
A = –1  
V
0.25  
0.25  
0.55  
V/μs  
V/μs  
The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C.  
VS= ±±5V, VCM = 0V unless otherwise noted. (Note 5)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
OS  
Input Offset Voltage  
40  
150  
200  
250  
μV  
μV  
μV  
l
l
0°C < T < 70°C  
A
–40°C < T < 85°C  
A
l
l
Input Offset Voltage Drift  
(Note 6ꢀ  
0°C < T < 70°C  
0.3  
0.3  
1.2  
1.2  
μV/°C  
μV/°C  
A
–40°C < T < 85°C  
A
I
I
Input Offset Current  
Input Bias Current  
Input Noise Voltage  
150  
150  
0.5  
900  
1200  
1400  
pA  
pA  
pA  
OS  
l
l
0°C < T < 70°C  
A
–40°C < T < 85°C  
A
900  
1200  
1500  
pA  
pA  
pA  
B
l
l
0°C < T < 70°C  
A
–40°C < T < 85°C  
A
0.1Hz to 10Hz  
μV/p-p  
1880fa  
3
LT1880  
ELECTRICAL CHARACTERISTICS  
The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VS = ± ±5V; VCM = 0V unless otherwise noted. (Note 5)  
SYMBOL PARAMETER  
CONDITIONS  
f = 1kHz  
MIN  
TYP  
13  
MAX  
UNITS  
nV/√Hz  
pA/√Hz  
e
n
Input Noise Voltage Density  
Input Noise Current Density  
Input Resistance  
i
n
f = 1kHz  
0.07  
R
IN  
Differential  
Common Mode, V = –13.5V to 13.5V  
380  
190  
MΩ  
GΩ  
CM  
C
V
Input Capacitance  
3.7  
pF  
V
IN  
l
l
l
Input Voltage Range  
–13.5  
118  
13.5  
1.35  
CM  
CMRR  
Common Mode Rejection Ratio  
–13.5V < V < 13.5V  
135  
135  
dB  
dB  
CM  
+
+PSRR  
Positive Power Supply Rejection  
Ratio  
V = –15V, V = 0V; 1.5V < V < 18V  
110  
CM  
+
l
l
–PSRR  
Negative Power Supply Rejection  
Ratio  
V = 15V, V = 0V; –1.5V < V < –18V  
110  
135  
dB  
CM  
Minimum Operating Supply Voltage  
Large Signal Voltage Gain  
1.2  
V
A
VOL  
R = 10k; –13.5V < V < 13.5V  
L OUT  
1000  
700  
500  
300  
1600  
V/mV  
V/mV  
V/mV  
V/mV  
l
l
R = 2k; –13.5V < V  
L
< 13.5V  
OUT  
1000  
l
l
l
V
V
Output Voltage Swing Low  
No Load  
SINK  
SINK  
25  
35  
65  
75  
mV  
mV  
mV  
OL  
(Referred to V  
I
I
= 100μA  
= 1mA  
EE  
130  
200  
l
l
l
Output Voltage Swing High  
(Referred to V  
No Load  
185  
195  
270  
350  
370  
450  
mV  
mV  
mV  
OH  
CC  
I
I
= 100μA  
= 1mA  
SINK  
SINK  
I
I
Supply Current per Amplifier  
Short-Circuit Current  
1.5  
1.8  
2.3  
2.8  
mA  
mA  
S
l
l
l
+
V
V
V
Short to V  
Short to V  
10  
10  
25  
25  
mA  
mA  
SC  
OUT  
OUT  
OUT  
10  
10  
20  
20  
mA  
mA  
FPBW  
GBW  
THD  
Full Power Bandwidth (Note 7ꢀ  
Gain Bandwidth Product  
= 14V  
9
kHz  
P-P  
f = 20kHz  
0.8  
1.1  
MHz  
Total Harmonic Distortion and Noise V = 25V , A = –1, f = 100kHz, R = 10k, BW = 22kHz  
0.00029  
0.00029  
%
%
O
O
P-P  
V
f
L
V = 25V , A = 1, f = 100kHz, R = 10k, BW = 22kHz  
P-P  
V
+
SR  
Slew Rate Positive  
Slew Rate Negative  
A = –1  
0.25  
0.2  
0.4  
V/μs  
V/μs  
V
l
l
SR  
A = –1  
V
0.25  
0.2  
0.55  
V/μs  
V/μs  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The inputs are protected by back-to-back diodes. If the differential  
input voltage exceeds 10V, see Application Information, the input current  
should be limited to less than 10mA.  
Note 4: The LT1880C and LT1880I are guaranteed functional over the  
operating temperature range of –40°C to 85°C.  
Note 5: The LT1880C is guaranteed to meet specified performance from  
0°C to 70°C and is designed, characterized and expected to meet specified  
performance from –40°C to 85°C but is not tested or QA sampled at these  
temperatures. The LT1880I is guaranteed to meet specified performance  
from –40°C to 85°C.  
Note 3: A heat sink may be required to keep the junction temperature  
Note 6: This parameter is not 100% tested.  
below absolute maximum ratings.  
Note 7: Full power bandwidth is calculated from the slew rate.  
FPBW = SR/(2πV ꢀ  
P
1880fa  
4
LT1880  
TYPICAL PERFORMANCE CHARACTERISTICS  
Input Offset Voltage  
vs Temperature  
Input Bias Current  
Input Bias Current  
vs Common Mode Voltage  
vs Common Mode Near VCC  
1000  
800  
1000  
500  
200  
150  
100  
50  
TEMPCO: –55°C TO 125°C  
10 REPRESENTATIVE UNITS  
T
T
T
= 25°C  
= –40°C  
= 85°C  
V
S
= 15V  
A
A
A
I
B
600  
400  
I
B
200  
0
0
0
+
I
B
–200  
–400  
–600  
–800  
–1000  
–50  
–100  
–150  
–200  
+
I
B
–500  
–1000  
T
T
T
= –45°C  
= 25°C  
= 85°C  
A
A
A
V
=
15V  
–10  
S
5
25  
–55 –35 –15  
45 65 85 105 125  
13.8  
COMMON MODE VOLTAGE (Vꢀ  
–15  
0
5
10  
15  
13.0  
13.4  
14.2  
14.6  
–5  
COMMON MODE VOLTAGE (Vꢀ  
TEMPERATURE (°Cꢀ  
1880 G01  
1880 G02  
1880 G02A  
Input Bias Current  
vs Common Mode Near VEE  
Output Voltage Swing  
vs Load Current  
Input Bias Current vs Temperature  
200  
150  
100  
50  
1000  
500  
V
=
15V  
V
=
15V  
S
S
T
= –40°C  
A
–0.5  
–1.0  
–1.5  
1.5  
I
B
T
= 85°C  
A
0
T
= 25°C  
A
–50  
–100  
–150  
–200  
–250  
–300  
0
I
B
T
= 25°C  
A
+
I
B
1.0  
–500  
–1000  
+
T
= 85°C  
A
I
B
T
T
T
= –40°C  
= 25°C  
= 85°C  
A
A
A
0.5  
T
= –40°C  
A
–14.2  
–13.8  
–13.0  
–50  
–25  
0
25  
50  
75  
100  
–10  
10  
–14.6  
–13.4  
–8 –6 –4 –2  
0
2
4
6
8
TEMPERATURE (°Cꢀ  
OUTPUT CURRENT (mAꢀ  
COMMON MODE VOLTAGE (Vꢀ  
1880 G03  
1880 G02B  
1880 G04  
Warm Up Drift  
en, in vs Frequency  
0.± to ±0Hz Noise  
6
5
4
3
2
1
0
1000  
100  
10  
V
S
T
A
=
15V  
T
= 25°C  
A
= 25°C  
CURRENT NOISE  
V
S
= 15V  
VOLTAGE NOISE  
V
S
= 2.5V  
V
T
=
15V  
S
A
= 25°C  
1
0
2
4
6
8
10  
1
10  
100  
1k  
0
1
2
3
4
5
FREQUENCY (Hzꢀ  
TIME AFTER POWER ON (MINꢀ  
TIME (SECꢀ  
1880 G08  
1880 G09a  
1880 G05  
1880fa  
5
LT1880  
TYPICAL PERFORMANCE CHARACTERISTICS  
0.0± to ±Hz Noise  
Gain vs Frequency  
PSRR vs Frequency  
160  
140  
120  
100  
80  
140  
120  
100  
80  
V
S
= 15V  
V
S
= 15V  
–PSRR  
60  
40  
+PSRR  
60  
20  
40  
0
20  
V
T
=
15V  
–20  
–40  
S
A
= 25°C  
0
0
20  
40  
60  
80  
100  
0.1  
1
100 1k 10k 100k 1M  
10  
FREQUENCY (Hzꢀ  
1M  
10M  
0.1  
1
10 100 1k 10k 100k  
FREQUENCY (Hzꢀ  
TIME (SECꢀ  
1880 G11  
1880 G09b  
1880 G10  
CMRR vs Frequency  
Gain and Phase vs Frequency  
Settling Time vs Output Step  
10  
8
160  
140  
120  
100  
80  
70  
60  
100  
80  
V
A
=
15V  
V
= 15V  
V
S
= 15V  
S
V
S
= –1  
6
50  
60  
0.1%  
0.01%  
4
40  
40  
PHASE SHIFT  
2
30  
20  
0
20  
0
–2  
–4  
–6  
–8  
–10  
10  
–20  
–40  
–60  
–80  
–100  
60  
GAIN  
0
0.01%  
40  
0.1%  
–10  
–20  
–30  
20  
0
10k  
100k  
FREQUENCY (Hzꢀ  
1M  
10M  
0
5
10 15 20 25 30  
SETTLING TIME (μsꢀ  
35  
40  
1
100  
1k  
10k  
100k 1M  
10  
FREQUENCY (Hzꢀ  
1880 G12  
1880 G13  
1880 G14  
Slew Rate, Gain-Bandwidth  
Product and Phase Margin  
vs Temperature  
Slew Rate, Gain-Bandwidth  
Product and Phase Margin  
vs Power Supply  
Settling Time vs Output Step  
10  
8
0.5  
0.4  
0.5  
0.4  
V
A
=
= 1  
15V  
V
S
= 15V  
T
= 25°C  
S
V
A
SLEW RATE  
6
0.01%  
0.1%  
SLEW RATE  
4
68  
64  
60  
56  
2
0.3  
0.3  
&
M
0
64  
60  
&
M
–2  
–4  
–6  
–8  
1.14  
1.12  
1.10  
1.12  
1.11  
1.10  
0.01%  
0.1%  
10  
GBW  
GBW  
–10  
0
20  
30  
35  
5
15  
25  
–50  
–25  
25  
50  
75  
100  
0
0
2.5  
7.5  
10  
12.5  
15  
5
SETTLING TIME (μsꢀ  
TEMPERATURE (°Cꢀ  
POWER SUPPLY ( Vꢀ  
1880 G15  
1880 G16  
1880 G17  
1880fa  
6
LT1880  
TYPICAL PERFORMANCE CHARACTERISTICS  
Gain vs Frequency  
with CLOAD, AV = –±  
Gain vs Frequency  
with CLOAD, AV = ±  
Output Impedance vs Frequency  
100  
10  
10  
0
10  
0
V
S
= 15V  
1000pF  
500pF  
1000pF  
500pF  
A
V
= 100  
–10  
–20  
–30  
–40  
–10  
–20  
–30  
–40  
A = 10  
V
0pF  
0pF  
1.0  
A
V
= 1  
0.1  
0.01  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
0.01  
0.1  
1.0  
FREQUENCY (MHzꢀ  
10  
100  
FREQUENCY (Hzꢀ  
FREQUENCY (Hzꢀ  
1880 G17A  
1880 G18  
1880 G19  
Total Harmonic Distortion + Noise  
vs Frequency  
Small Signal Response  
Small Signal Response  
10  
V
V
= 5V, 0V  
S
= 2.5V  
CM  
R = R = 1k  
f
G
1.0  
0.1  
V
R
= 2V  
OUT  
P-P  
= 10k  
L
V
V
OUT  
OUT  
(20mV/DIVꢀ  
(20mV/DIVꢀ  
0.01  
A
V
= –1  
0.001  
1880 G21  
1880 G20  
A = 1  
V
NO LOAD  
TIME (2μs/DIVꢀ  
A
= –1  
TIME (2μs/DIVꢀ  
V
A
V
= 1  
NO LOAD  
0.0001  
10  
100  
1k  
FREQUENCY (Hzꢀ  
10k  
100k  
1880 G17B  
Small Signal Response  
Large Signal Response  
Large Signal Response  
V
V
V
OUT  
OUT  
OUT  
(20mV/DIVꢀ  
(5V/DIVꢀ  
(5V/DIVꢀ  
1880 G22  
1880 G24  
1880 G23  
A
C
= 1  
= 500pF  
TIME (2μs/DIVꢀ  
A
V
= 1  
TIME (50μs/DIVꢀ  
A
V
= –1  
TIME (50μs/DIVꢀ  
V
L
1880fa  
7
LT1880  
APPLICATIONS INFORMATION  
The LT1880 single op amp features exceptional input  
precisionwithrail-to-railoutputswing.Slewrateandsmall  
signal bandwidth are superior to other amplifiers with  
comparable input precision. These characteristics make  
the LT1880 a convenient choice for precision low voltage  
systemsandforimprovedACperformanceinhighervoltage  
precision systems. Obtaining beneficial advantage of the  
precision inherent in the amplifier depends upon proper  
applications circuit design and board layout.  
Input Protection  
The inverting and noninverting input pins of the LT1880  
havelimitedon-chipprotection.ESDprotectionisprovided  
to prevent damage during handling. The input transistors  
have voltage clamping and limiting resistors to protect  
against input differentials up to 10V. Short transients  
above this level will also be tolerated. If the input pins can  
see a sustained differential voltage above 10V, external  
limiting resistors should be used to prevent damage to  
the amplifier. A 1k resistor in each input lead will provide  
protection against a 30V differential voltage.  
Preserving Input Precision  
Preserving the input voltage accuracy of the LT1880  
requires that the applications circuit and PC board layout  
do not introduce errors comparable to or greater than the  
40μV offset. Temperature differentials across the input  
connections can generate thermocouple voltages of 10’s  
of microvolts. PC board layouts should keep connections  
to the amplifier’s input pins close together and away from  
heatdissipatingcomponents.Aircurrentsacrosstheboard  
can also generate temperature differentials.  
Capacitive Loads  
The LT1880 can drive capacitive loads up to 600pF in unity  
gain. The capacitive load driving capability increases as  
the amplifier is used in higher gain configurations, see the  
graph labled Capacitive Load Response. Capacitive load  
driving may be increased by decoupling the capacitance  
from the output with a small resistance.  
Capacitance Load Response  
The extremely low input bias currents, 150pA, allow high  
accuracytobemaintainedwithhighimpedancesourcesand  
feedback networks. The LT1880’s low input bias currents  
are obtained by using a cancellation circuit on-chip. This  
30  
V
=
15V  
S
A
T
= 25°C  
25  
20  
15  
10  
5
+
causestheresultingI  
andI  
tobeuncorrelated,as  
BIAS  
BIAS  
implied by the l specification being comparable to I  
.
BIAS  
OS  
A
= 1  
V
The user should not try to balance the input resistances in  
each input lead, as is commonly recommended with most  
amplifiers. The impedance at either input should be kept  
as small as possible to minimize total circuit error.  
A
V
= 10  
0
PCboardlayoutisimportanttoinsurethatleakagecurrents  
10  
100  
1000  
10000  
CAPACITIVE LOAD (pFꢀ  
do not corrupt the low I  
of the amplifier. In high  
BIAS  
1880 G25  
precision, high impedance circuits, the input pins should  
be surrounded by a guard ring of PC board interconnect,  
with the guard driven to the same common mode voltage  
as the amplifier inputs.  
Getting Rail-to-Rail Operation without Rail-to-Rail  
Inputs  
The LT1880 does not have rail-to-rail inputs, but for most  
inverting applications and noninverting gain applications,  
this is largely inconsequential. Figure 1 shows the basic  
op amp configurations, what happens to the op amp  
inputs, and whether or not the op amp must have rail-  
to-rail inputs.  
Input Common Mode Range  
The LT1880 output is able to swing nearly to each power  
supply rail, but the input stage is limited to operating  
+
between V + 1V and V – 1.2V. Exceeding this common  
mode range will cause the gain to drop to zero, however  
no gain reversal will occur.  
1880fa  
8
LT1880  
APPLICATIONS INFORMATION  
V
V
IN  
V
IN  
REF  
+
+
+
R
G
V
IN  
R
R
F
F
R
G
V
REF  
INVERTING: A = –R /R  
NONINVERTING: A = 1 +R /R  
G
NONINVERTING: A = +1  
V
V
F
G
V
F
OP AMP INPUTS DO NOT MOVE,  
BUT ARE FIXED AT DC BIAS  
INPUTS MOVE BY AS MUCH AS  
INPUTS MOVE AS MUCH AS  
OUTPUT  
V
IN  
, BUT THE OUTPUT MOVES  
POINT V  
MORE  
REF  
INPUT MUST BE  
INPUT DOES NOT HAVE TO BE  
RAIL-TO-RAIL  
INPUT MAY NOT HAVE TO BE  
RAIL-TO-RAIL  
RAIL-TO-RAIL FOR OVERALL  
CIRCUIT RAIL-TO-RAIL  
PERFORMANCE  
1880 F01  
Figure ±. Some Op Amp Configurations Do Not Require  
Rail-to Rail Inputs to Achieve Rail-to-Rail Outputs  
The circuit of Figure 2 shows an extreme example of the  
inverting case. The input voltage at the 1M resistor can  
swing 13.5V and the LT1880 will output an inverted,  
divided-by-ten version of the input voltage. The input  
accuracy is limited by the resistors to 0.2%. Output  
referred, this error becomes 2.7mV. The 40μV input offset  
voltage contribution, plus the additional error due to input  
bias current times the ~100k effective source impedance,  
contribute only negligibly to error.  
Precision Photodiode Amplifier  
Photodiode amplifiers usually employ JFET op amps be-  
cause of their low bias current; however, when precision  
is required, JFET op amps are generally inadequate due to  
their relatively high input offset voltage and drift. The  
LT1880 provides a high degree of precision with very low  
bias current (I = 150pA typicalꢀ and is therefore appli-  
B
cable to this demanding task. Figure 3 shows an LT1880  
configured as a transimpedance photodiode amplifier.  
1.5V  
1.35V  
OUTPUT  
SWING  
C
F
13.5V SWINGS  
WELL OUTSIDE  
SUPPLY RAILS  
WORST-CASE  
OUTPUT OFFSET  
≤196μV AT 25°C  
R
51.1k  
5V  
+
F
LT1880  
≤262μV 0°C TO 70°C  
≤323μV –40°C TO 85°C  
V
IN  
1M, 0.1%  
+
PHOTODIODE  
(SEE TEXTꢀ  
LT1880  
OUT  
100k, 0.1%  
–1.5V  
C
D
1880 F02  
–5V  
1880 F02  
Figure 2. Extreme Inverting Case: Circuit Operates Properly with  
Input Voltage Swing Well Outside Op Amp Supply Rails.  
Figure 3. Precision Photodiode Amplifier  
1880fa  
9
LT1880  
APPLICATIONS INFORMATION  
The transimpedance gain is set to 51.1kΩ by R . The  
connection. The LT1634 reference places 1.25V at the  
noninverting input of the LT1880, which then maintains  
its inverting input at the same voltage by driving 1mA  
of current through the RTD and the total 1.25kΩ of  
resistance set by R1 and R2. Imprecise components R4  
and C1 ensure circuit stability, which would otherwise be  
excessively dependant on the cable characteristics. R5 is  
also noncritical and is included to improve ESD immunity  
and decouple any cable capacitance from the LT1880’s  
output. The 4-wire cable allows Kelvin sensing of the RTD  
voltagewhileexcludingthecableIRdropsfromthevoltage  
reading. With 1mA excitation, a 1kΩ RTD will have 1V  
across it at 0°C, and +3.85mV/°C temperature response.  
This voltage can be easily read in myriad ways, with the  
best method depending on the temperature region to be  
emphasized and the particular ADC that will be reading  
the voltage.  
F
feedback capacitor, C , may be as large as desired where  
F
response time is not an issue, or it may be selected for  
maximally flat response and highest possible bandwidth  
given a photodiode capacitance C . Figure 4 shows a  
D
chart of C and rise time versus C for maximally flat  
F
D
response. Total output offset is below 262μV, worst-case,  
over temperature (0°C to 70°Cꢀ. With a 5V output swing,  
this guarantees a minimum 86dB dynamic range over  
temperature (0°C to 70°Cꢀ, and a full-scale photodiode  
current of 98μA.  
Single-Supply Current Source for Platinum RTD  
The precision, low bias current input stage of the LT1880  
makes it ideal for precision integrators and current  
sources. Figure 5 shows the LT1880 providing a simple  
precisioncurrentsourceforaremote1kΩRTDona4-wire  
R5  
180Ω, 5%  
100  
+
C
F
10  
1
V
= 1.00V AT 0°C + 3.85mV/°C  
–50°C TO 600°C  
OUT  
1kΩ  
AT 0°C  
RTD*  
C1  
RISE TIME  
5V  
0.1μF  
R4  
1k, 5%  
R1  
1.24K  
0.1%  
100mV OUTPUT STEP  
10 100 1000  
LT1880  
0.1  
+
0.1  
1
C
D
(pFꢀ  
R2  
10Ω  
1%  
1880 F04  
R3  
150k, 1%  
Figure 4. Feedback CF and Rise Time vs Photodiode CD  
LT1634ACS8  
-1.25  
5V  
*OMEGA F3141 1kΩ, 0.1% PLATINUM RTD  
(800ꢀ 826-6342  
1880 F05  
Figure 5. Single Supply Current Source for Platinum RTD  
1880fa  
10  
LT1880  
SIMPLIFIED SCHEMATIC  
+
5
V
R3  
R4  
CX1  
100μA  
R5  
R27  
Q41  
Q23  
Q24  
Q6  
Q38  
CM1  
RCM1  
RCM2  
Q5  
Q4  
Q3  
OUT  
1
Q47  
B
A
35μA  
CM2  
Q48  
Q58  
Q59  
Q12  
Q16  
CM3  
V
R1  
Q46  
Q14  
500Ω  
Q20  
C
B
A
4
–IN  
+IN  
R22  
500Ω  
3
7μA  
10μA  
R2  
500Ω  
Q1  
Q2  
Q45  
Q7  
Q44  
Q8  
R38  
21μA  
1880 SD  
2
V
PACKAGE DESCRIPTION  
S5 Package  
5-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1635ꢀ  
0.62  
MAX  
0.95  
REF  
2.90 BSC  
(NOTE 4ꢀ  
1.22 REF  
1.50 – 1.75  
(NOTE 4ꢀ  
2.80 BSC  
1.4 MIN  
3.85 MAX 2.62 REF  
PIN ONE  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.30 – 0.45 TYP  
5 PLCS (NOTE 3ꢀ  
0.95 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3ꢀ  
S5 TSOT-23 0302 REV B  
NOTE:  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
1880fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
11  
LT1880  
TYPICAL APPLICATION  
All SOT-23 JFET Input Transimpedance Photodiode Amplifier  
C4  
1.2pF  
1k  
TIME DOMAIN  
RESPONSE TRIM  
+
R5  
100k, 1%  
V
C5  
1.2pF  
J1  
R2  
220k, 5%  
C1  
0.01μF  
+
R7  
47Ω  
5%  
U1  
LT1880  
U2  
LT1806  
V
OUT  
R3  
10k  
5%  
+
R1  
220k, 5%  
N1  
J1: ON SEMI MMBF4416 JFET  
C2  
0.1μF  
N1:ON SEMI MMBT3904 NPN  
S1  
R6  
47Ω  
5%  
C3  
0.01μF  
S1: SIEMENS/INFINEON SFH213FA PHOTODIODE (~3pFꢀ  
V
= 5V  
SUPPLY  
BANDWIDTH = 7MHz  
NOISE FIGURE = 2dB AT 100kHz, 25°C  
A
= 100kΩ  
Z
V
1880 TA02  
RELATED PARTS  
PART NUMBER  
LT1782  
DESCRIPTION  
COMMENTS  
Rugged, General Purpose SOT-23 Op Amp  
Low Noise JFET Op Amp  
Rail-to-Rail I/O  
LT1792  
4.2nV/√Hz  
LT1881/LT1882  
LTC2050  
Dual/Quad Precision Op Amps  
50μV V  
, 200pA I  
Rail-to-Rail Output  
OS(MAXꢀ  
B(MAXꢀ  
Zero Drift Op Amp in SOT-23  
3μV V  
, Rail-to-Rail Output  
OS(MAXꢀ  
LT6010  
135μA Rail-to-Rail Output Precision Op Amp  
Lower Power Version of LT1880  
1880fa  
LT 0909 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
12  
© LINEAR TECHNOLOGY CORPORATION 2009  
(408ꢀ 432-1900 FAX: (408ꢀ 434-0507 www.linear.com  

相关型号:

LT1880IS5#TRM

LT1880 - SOT-23, Rail-to-Rail Output, Picoamp Input Current Precision Op Amp; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1880IS5#TRMPBF

LT1880 - SOT-23, Rail-to-Rail Output, Picoamp Input Current Precision Op Amp; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1881

Dual and Quad Rail-to-Rail Output, Picoamp Input Precision Op Amps
Linear

LT1881ACN8

Dual and Quad Rail-to-Rail Output, Picoamp Input Precision Op Amps
Linear

LT1881ACN8#PBF

LT1881 - Dual Rail-to-Rail Output, Picoamp Input Precision Op Amps; Package: PDIP; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1881ACN8#TR

IC DUAL OP-AMP, 85 uV OFFSET-MAX, 0.85 MHz BAND WIDTH, PDIP8, 0.300 INCH, PLASTIC, DIP-8, Operational Amplifier
Linear

LT1881ACN8#TRPBF

IC DUAL OP-AMP, 85 uV OFFSET-MAX, 0.85 MHz BAND WIDTH, PDIP8, 0.300 INCH, PLASTIC, DIP-8, Operational Amplifier
Linear

LT1881ACS8

Dual and Quad Rail-to-Rail Output, Picoamp Input Precision Op Amps
Linear

LT1881ACS8#PBF

LT1881 - Dual Rail-to-Rail Output, Picoamp Input Precision Op Amps; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1881ACS8#TR

LT1881 - Dual Rail-to-Rail Output, Picoamp Input Precision Op Amps; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1881ACS8#TRPBF

LT1881 - Dual Rail-to-Rail Output, Picoamp Input Precision Op Amps; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1881AIN8

Dual and Quad Rail-to-Rail Output, Picoamp Input Precision Op Amps
Linear