LT1930AES5 [Linear]

1A, 1.2MHz/2.2MHz, Step-Up DC/DC Converters; 1A , 1.2MHz的/ 2.2MHz的,升压型DC / DC转换器
LT1930AES5
型号: LT1930AES5
厂家: Linear    Linear
描述:

1A, 1.2MHz/2.2MHz, Step-Up DC/DC Converters
1A , 1.2MHz的/ 2.2MHz的,升压型DC / DC转换器

转换器 稳压器 开关式稳压器或控制器 电源电路 开关式控制器 光电二极管
文件: 总12页 (文件大小:192K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1930/LT1930A  
1A, 1.2MHz/2.2MHz,  
Step-Up DC/DC Converters  
in ThinSOT  
U
FEATURES  
DESCRIPTIO  
The LT®1930 and LT1930A are the industry’s highest  
power SOT-23 switching regulators. Both include an  
internal1A,36Vswitchallowinghighcurrentoutputstobe  
generated in a small footprint. The LT1930 switches at  
1.2MHz, allowing the use of tiny, low cost and low height  
capacitors and inductors. The faster LT1930A switches at  
2.2MHz, enabling further reductions in inductor size.  
Complete regulator solutions approaching one tenth of a  
square inch in area are achievable with these devices.  
Multiple output power supplies can now use a separate  
regulator for each output voltage, replacing cumbersome  
quasi-regulated approaches using a single regulator and  
custom transformers.  
1.2MHz Switching Frequency (LT1930)  
2.2MHz Switching Frequency (LT1930A)  
Low VCESAT Switch: 400mV at 1A  
High Output Voltage: Up to 34V  
5V at 480mA from 3.3V Input (LT1930)  
12V at 250mA from 5V Input (LT1930A)  
Wide Input Range: 2.6V to 16V  
Uses Small Surface Mount Components  
Low Shutdown Current: <1µA  
Low Profile (1mm) ThinSOTTM Package  
Pin-for-Pin Compatible with the LT1613  
U
APPLICATIO S  
Aconstantfrequencyinternallycompensatedcurrentmode  
PWM architecture results in low, predictable output noise  
that is easy to filter. Low ESR ceramic capacitors can be  
used at the output, further reducing noise to the millivolt  
level. The high voltage switch on the LT1930/LT1930A is  
rated at 36V, making the device ideal for boost converters  
up to 34V as well as for single-ended primary inductance  
converter (SEPIC) and flyback designs. The LT1930 can  
generate 5V at up to 480mA from a 3.3V supply or 5V at  
300mA from four alkaline cells in a SEPIC design.  
TFT-LCD Bias Supply  
Digital Cameras  
Cordless Phones  
Battery Backup  
Medical Diagnostic Equipment  
Local 5V or 12V Supply  
External Modems  
PC Cards  
xDSL Power Supply  
, LTC and LT are registered trademarks of Linear Technology Corporation  
ThinSOT is a trademark of Linear Technology Corporation.  
The LT1930/LT1930A are available in the 5-lead ThinSOT  
package.  
U
TYPICAL APPLICATIO  
Efficiency  
L1  
90  
D1  
V
= 5V  
10µH  
IN  
V
OUT  
V
IN  
12V  
85  
80  
75  
70  
65  
60  
55  
50  
5V  
300mA  
V
= 3.3V  
IN  
5
1
R1  
113k  
V
SW  
C1  
IN  
C3*  
10pF  
2.2µF  
LT1930  
SHDN  
C2  
4.7µF  
4
3
SHDN  
FB  
R2  
13.3k  
GND  
2
C1: TAIYO-YUDEN X5R LMK212BJ225MG  
C2: TAIYO-YUDEN X5R EMK316BJ475ML  
D1: ON SEMICONDUCTOR MBR0520  
L1: SUMIDA CR43-100  
1930/A F01  
200  
LOAD CURRENT (mA)  
0
100  
300  
400  
*OPTIONAL  
Figure 1. 5V to 12V, 300mA Step-Up DC/DC Converter  
1930 TA01  
1
LT1930/LT1930A  
W W U W  
U W  
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
ORDER PART  
NUMBER  
VIN Voltage .............................................................. 16V  
SW Voltage ................................................0.4V to 36V  
FB Voltage .............................................................. 2.5V  
Current Into FB Pin .............................................. ±1mA  
SHDN Voltage ......................................................... 10V  
Maximum Junction Temperature ......................... 125°C  
Operating Temperature Range (Note 2) .. 40°C to 85°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
TOP VIEW  
LT1930ES5  
LT1930AES5  
SW 1  
GND 2  
FB 3  
5 V  
IN  
4 SHDN  
S5 PART MARKING  
S5 PACKAGE  
5-LEAD PLASTIC SOT-23  
LTKS  
LTSQ  
TJMAX = 125°C, θJA = 256°C/ W  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating temperature range, otherwise specifications are TA = 25°C.  
VIN = 3V, VSHDN = VIN unless otherwise noted. (Note 2)  
LT1930  
TYP  
LT1930A  
TYP  
PARAMETER  
CONDITIONS  
MIN  
MAX  
2.6  
MIN  
MAX  
2.6  
UNITS  
Minimum Operating Voltage  
Maximum Operating Voltage  
Feedback Voltage  
2.45  
2.45  
V
V
16  
16  
1.240  
1.230  
1.255  
1.270  
1.280  
1.240  
1.230  
1.255  
1.270  
1.280  
V
V
FB Pin Bias Current  
V
V
V
= 1.255V  
120  
4.2  
360  
6
240  
5.5  
720  
8
nA  
mA  
µA  
FB  
Quiescent Current  
= 2.4V, Not Switching  
SHDN  
SHDN  
Quiescent Current in Shutdown  
Reference Line Regulation  
Switching Frequency  
= 0V, V = 3V  
0.01  
0.01  
1.2  
1
0.01  
0.01  
2.2  
1
IN  
2.6V V 16V  
0.05  
0.05  
%/V  
IN  
1
0.85  
1.4  
1.6  
1.8  
1.6  
2.6  
2.9  
MHz  
MHz  
Maximum Duty Cycle  
Switch Current Limit  
84  
1
90  
1.2  
75  
1
90  
1.2  
%
A
(Note 3)  
2
600  
1
2.5  
600  
1
Switch V  
I
= 1A  
= 5V  
400  
0.01  
400  
0.01  
mV  
µA  
V
CESAT  
SW  
Switch Leakage Current  
SHDN Input Voltage High  
SHDN Input Voltage Low  
SHDN Pin Bias Current  
V
SW  
2.4  
2.4  
0.5  
0.5  
V
V
V
= 3V  
= 0V  
16  
0
32  
0.1  
35  
0
70  
0.1  
µA  
µA  
SHDN  
SHDN  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
operating temperature range are assured by design, characterization and  
correlation with statistical process controls.  
Note 2: The LT1930E/LT1930AE are guaranteed to meet performance  
specifications from 0°C to 70°C. Specifications over the 40°C to 85°C  
Note 3: Current limit guaranteed by design and/or correlation to static test.  
2
LT1930/LT1930A  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Quiescent Current  
FB Pin Voltage  
SHDN Pin Current  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
1.28  
1.27  
1.26  
1.25  
1.24  
1.23  
1.22  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
NOT SWITCHING  
LT1930A  
LT1930A  
LT1930  
LT1930  
–10  
–50  
0
25  
50  
75  
100  
–25  
–50 –25  
0
25  
100  
0
1
2
4
5
6
50  
75  
3
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SHDN PIN VOLTAGE (V)  
1930/A G02  
1930/A G01  
1930/A G03  
Current Limit  
Oscillator Frequency  
Switch Saturation Voltage  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
2.5  
2.3  
2.1  
1.9  
1.7  
1.5  
1.3  
1.1  
0.9  
0.7  
0.5  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
LT1930A  
LT1930  
0
10 20 30 40 50 60 70 80 90  
–50  
–25  
0
25  
50  
75  
100  
0
0.2  
0.4  
SWITCH CURRENT (A)  
1.0  
1.2  
0.6  
0.8  
TEMPERATURE (°C)  
DUTY CYCLE (%)  
1930/A G04  
1930/A G06  
1930/A G05  
U
U
U
PI FU CTIO S  
SW (Pin 1): Switch Pin. Connect inductor/diode here.  
Minimize trace area at this pin to reduce EMI.  
SHDN(Pin4):ShutdownPin.Tieto2.4Vormoretoenable  
device. Ground to shut down.  
GND (Pin 2): Ground. Tie directly to local ground plane.  
VIN (Pin 5): Input Supply Pin. Must be locally bypassed.  
FB (Pin 3): Feedback Pin. Reference voltage is 1.255V.  
Connect resistive divider tap here. Minimize trace area at  
FB. Set VOUT according to VOUT = 1.255V(1 + R1/R2).  
3
LT1930/LT1930A  
W
BLOCK DIAGRA  
1
SW  
1.255V  
REFERENCE  
V
IN  
+
5
COMPARATOR  
A2  
+
A1  
DRIVER  
Q1  
R
Q
R
C
S
V
OUT  
C
C
+
R1 (EXTERNAL)  
0.01Ω  
Σ
FB  
R2 (EXTERNAL)  
RAMP  
GENERATOR  
SHUTDOWN  
4
SHDN  
3
FB  
2
GND  
1930/A BD  
1.2MHz  
OSCILLATOR*  
*2.2MHz FOR LT1930A  
Figure 2. Block Diagram  
U
OPERATIO  
The LT1930 uses a constant frequency, current-mode  
control scheme to provide excellent line and load regula-  
tion. Operation can be best understood by referring to the  
block diagram in Figure 2. At the start of each oscillator  
cycle, the SR latch is set, which turns on the power switch  
Q1. A voltage proportional to the switch current is added  
to a stabilizing ramp and the resulting sum is fed into the  
positive terminal of the PWM comparator A2. When this  
voltageexceedsthelevelatthenegativeinputofA2,theSR  
latch is reset turning off the power switch. The level at the  
negative input of A2 is set by the error amplifier A1, and is  
simply an amplified version of the difference between the  
feedback voltage and the reference voltage of 1.255V. In  
this manner, the error amplifier sets the correct peak  
current level to keep the output in regulation. If the error  
amplifier’s output increases, more current is delivered to  
the output; if it decreases, less current is delivered. The  
LT1930 has a current limit circuit not shown in Figure 2.  
The switch current is constantly monitored and not al-  
lowed to exceed the maximum switch current (typically  
1.2A). Iftheswitchcurrentreachesthisvalue, theSRlatch  
is reset regardless of the state of comparator A2. This  
current limit helps protect the power switch as well as the  
external components connected to the LT1930.  
The block diagram for the LT1930A (not shown) is iden-  
tical except that the oscillator frequency is 2.2MHz.  
4
LT1930/LT1930A  
U
W U U  
APPLICATIONS INFORMATION  
LT1930 AND LT1930A DIFFERENCES  
iron types. Choose an inductor that can handle at least 1A  
without saturating, and ensure that the inductor has a low  
DCR(copper-wireresistance)tominimizeI2Rpowerlosses.  
A 4.7µH or 10µH inductor will be the best choice for most  
LT1930 designs. For LT1930A designs, a 2.2µH to 4.7µH  
inductor will usually suffice. Note that in some applica-  
tions, the current handling requirements of the inductor  
can be lower, such as in the SEPIC topology where each  
inductor only carries one-half of the total switch current.  
Switching Frequency  
The key difference between the LT1930 and LT1930A is  
thefasterswitchingfrequencyoftheLT1930A.At2.2MHz,  
the LT1930A switches at nearly twice the rate of the  
LT1930. Care must be taken in deciding which part to use.  
The high switching frequency of the LT1930A allows  
smaller cheaper inductors and capacitors to be used in a  
given application, but with a slight decrease in efficiency  
and maximum output current when compared to the  
LT1930. Generally, if efficiency and maximum output  
current are critical, the LT1930 should be used. If applica-  
tion size and cost are more important, the LT1930A will be  
the better choice. In many applications, tiny inexpensive  
chip inductors can be used with the LT1930A, reducing  
solution cost.  
Table 1. Recommended Inductors – LT1930  
MAX  
DCR  
(µH) mΩ  
SIZE  
L × W × H  
(mm)  
L
PART  
VENDOR  
CDRH5D18-4R1  
CDRH5D18-100  
CR43-4R7  
4.1  
10  
4.7  
57  
124  
4.5 × 4.7 × 2.0 Sumida  
(847) 956-0666  
109 3.2 × 2.5 × 2.0 www.sumida.com  
CR43-100  
10  
182  
DS1608-472  
DS1608-103  
4.7  
10  
60  
75  
4.5 × 6.6 × 2.9 Coilcraft  
(847) 639-6400  
www.coilcraft.com  
Duty Cycle  
ELT5KT4R7M  
ELT5KT6R8M  
4.7  
6.8  
240 5.2 × 5.2 × 1.1 Panasonic  
360 (408) 945-5660  
The maximum duty cycle (DC) of the LT1930A is 75%  
compared to 84% for the LT1930. The duty cycle for a  
given application using the boost topology is given by:  
www.panasonic.com  
Table 2. Recommended Inductors – LT1930A  
|VOUT | – |V |  
IN  
MAX  
DCR  
SIZE  
L × W × H  
(mm)  
DC =  
L
|VOUT  
|
PART  
(µH) mΩ  
VENDOR  
Fora5Vto12Vapplication,theDCis58.3%indicatingthat  
the LT1930A could be used. A 5V to 24V application has  
a DC of 79.2% making the LT1930 the right choice. The  
LT1930A can still be used in applications where the DC, as  
calculated above, is above 75%. However, the part must  
beoperatedinthediscontinuousconductionmodesothat  
the actual duty cycle is reduced.  
LQH3C2R2M24  
LQH3C4R7M24  
2.2  
4.7  
126 3.2 × 2.5 × 2.0 Murata  
195  
(404) 573-4150  
www.murata.com  
4.5 × 4.0 × 3.0 Sumida  
CR43-2R2  
CR43-3R3  
2.2  
3.3  
71  
86  
(847) 956-0666  
www.sumida.com  
1008PS-272  
1008PS-332  
2.7  
3.3  
100 3.7 × 3.7 × 2.6 Coilcraft  
110 (800) 322-2645  
www.coilcraft.com  
204 5.2 × 5.2 × 1.1 Panasonic  
(408) 945-5660  
www.panasonic.com  
ELT5KT3R3M  
3.3  
INDUCTOR SELECTION  
Several inductors that work well with the LT1930 are listed  
in Table 1 and those for the LT1930A are listed in Table 2.  
These tables are not complete, and there are many other  
manufacturers and devices that can be used. Consult each  
manufacturer for more detailed information and for their  
entireselectionofrelatedparts,asmanydifferentsizesand  
shapes are available. Ferrite core inductors should be used  
to obtain the best efficiency, as core losses at 1.2MHz are  
much lower for ferrite cores than for cheaper powdered-  
The inductors shown in Table 2 for use with the LT1930A  
were chosen for small size. For better efficiency, use  
similar valued inductors with a larger volume. For  
example, the Sumida CR43 series in values ranging from  
2.2µH to 4.7µH will give an LT1930A application a few  
percentage points increase in efficiency, compared to the  
smaller Murata LQH3C Series.  
5
LT1930/LT1930A  
U
W U U  
APPLICATIONS INFORMATION  
CAPACITOR SELECTION  
By choosing the appropriate values for the resistor and  
capacitor, the zero frequency can be designed to improve  
the phase margin of the overall converter. The typical  
target value for the zero frequency is between 35kHz to  
55kHz. Figure 3 shows the transient response of the step-  
up converter from Figure 1 without the phase lead capaci-  
torC3. Thephasemarginisreducedasevidencedbymore  
ringing in both the output voltage and inductor current. A  
10pF capacitor for C3 results in better phase margin,  
which is revealed in Figure 4 as a more damped response  
andlessovershoot. Figure5showsthetransientresponse  
when a 33µF tantalum capacitor with no phase lead  
capacitor is used on the output. The higher output voltage  
ripple is revealed in the upper waveform as a set of double  
lines. The transient response is not greatly improved  
which implies that the ESR zero frequency is too high to  
increase the phase margin.  
Low ESR (equivalent series resistance) capacitors should  
beusedattheoutputtominimizetheoutputripplevoltage.  
Multi-layer ceramic capacitors are an excellent choice, as  
they have extremely low ESR and are available in very  
small packages. X5R dielectrics are preferred, followed by  
X7R, as these materials retain the capacitance over wide  
voltage and temperature ranges. A 4.7µF to 10µF output  
capacitor is sufficient for most applications, but systems  
withverylowoutputcurrentsmayneedonlya1µFor2.2µF  
outputcapacitor. SolidtantalumorOSCONcapacitorscan  
be used, but they will occupy more board area than a  
ceramicandwillhaveahigherESR.Alwaysuseacapacitor  
with a sufficient voltage rating.  
Ceramic capacitors also make a good choice for the input  
decoupling capacitor, which should be placed as close as  
possible to the LT1930/LT1930A. A 1µF to 4.7µF input  
capacitorissufficientformostapplications.Table3shows  
a list of several ceramic capacitor manufacturers. Consult  
the manufacturers for detailed information on their entire  
selection of ceramic parts.  
VOUT  
0.2V/DIV  
AC COUPLED  
ILI  
0.5A/DIV  
AC COUPLED  
Table 3. Ceramic Capacitor Manufacturers  
Taiyo Yuden  
AVX  
(408) 573-4150  
(803) 448-9411  
(714) 852-2001  
www.t-yuden.com  
www.avxcorp.com  
www.murata.com  
250mA  
LOAD  
CURRENT  
150mA  
50µs/DIV  
1930 F03  
Murata  
Figure 3. Transient Response of Figure 1's Step-Up  
Converter without Phase Lead Capacitor  
ThedecisiontouseeitherlowESR(ceramic)capacitorsor  
the higher ESR (tantalum or OSCON) capacitors can affect  
the stability of the overall system. The ESR of any capaci-  
tor, along with the capacitance itself, contributes a zero to  
the system. For the tantalum and OSCON capacitors, this  
zero is located at a lower frequency due to the higher value  
of the ESR, while the zero of a ceramic capacitor is at a  
much higher frequency and can generally be ignored.  
VOUT  
0.2V/DIV  
AC COUPLED  
ILI  
0.5A/DIV  
AC COUPLED  
250mA  
150mA  
LOAD  
CURRENT  
A phase lead zero can be intentionally introduced by  
placing a capacitor (C3) in parallel with the resistor (R1)  
betweenVOUT andVFB asshowninFigure1.Thefrequency  
of the zero is determined by the following equation.  
50µs/DIV  
1930 F04  
Figure 4. Transient Response of Figure 1's Step-Up  
Converter with 10pF Phase Lead Capacitor  
1
ƒZ =  
2π R1C3  
6
LT1930/LT1930A  
U
W U U  
APPLICATIONS INFORMATION  
LAYOUT HINTS  
VOUT  
0.2V/DIV  
AC COUPLED  
The high speed operation of the LT1930/LT1930A  
demandscarefulattentiontoboardlayout. Youwillnotget  
advertised performance with careless layout. Figure 6  
shows the recommended component placement.  
ILI  
0.5A/DIV  
AC COUPLED  
LOAD  
250mA  
CURRENT 150mA  
200µs/DIV  
1930 F04  
Figure 5. Transient Response of Step-Up Converter with 33µF  
Tantalum Output Capacitor and No Phase Lead Capacitor  
L1  
D1  
C1  
V
V
IN  
OUT  
DIODE SELECTION  
+
C2  
SHUTDOWN  
ASchottkydiodeisrecommendedforusewiththeLT1930/  
LT1930A. The Motorola MBR0520 is a very good choice.  
Where the switch voltage exceeds 20V, use the MBR0530  
(a 30V diode). Where the switch voltage exceeds 30V, use  
the MBR0540 (a 40V diode). These diodes are rated to  
handle an average forward current of 0.5A. In applications  
where the average forward current of the diode exceeds  
0.5A, a Microsemi UPS5817 rated at 1A is recommended.  
R2  
R1  
C3  
GND  
1930 F06  
Figure 6. Suggested Layout  
Driving SHDN Above 10V  
The maximum voltage allowed on the SHDN pin is 10V. If  
you wish to use a higher voltage, you must place a resistor  
in series with SHDN. A good value is 121k. Figure 7 shows  
a circuit where VIN = 16V and SHDN is obtained from VIN.  
The voltage on the SHDN pin is kept below 10V.  
SETTING OUTPUT VOLTAGE  
To set the output voltage, select the values of R1 and R2  
(see Figure 1) according to the following equation.  
VOUT  
1.255V  
R1= R2  
– 1  
A good value for R2 is 13.3k which sets the current in the  
resistor divider chain to 1.255V/13.3k = 94.7µA.  
D1  
L1  
V
IN  
16V  
V
OUT  
5
1
V
SW  
IN  
R1  
R2  
121k  
C1  
LT1930  
C2  
4
3
SHDN  
FB  
GND  
2
1930 F07  
Figure 7. Keeping SHDN Below 10V  
7
LT1930/LT1930A  
U
TYPICAL APPLICATIO S  
Efficiency  
4-Cell to 5V SEPIC Converter  
80  
75  
70  
65  
60  
55  
50  
45  
40  
V
= 6.5V  
IN  
C3  
1µF  
L1  
10µH  
D1  
V
IN  
= 4V  
V
4V TO 6.5V  
OUT  
5V  
300mA  
5
1
V
SW  
C1  
IN  
2.2µF  
243k  
LT1930  
SHDN  
4-CELL  
BATTERY  
4
3
L2  
10µH  
C2  
10µF  
SHDN  
FB  
GND  
2
82.5k  
1930 TA02a  
C1: TAIYO-YUDEN X5R LMK212BJ225MG  
C2: TAIYO-YUDEN X5R JMK316BJ106ML  
C3: TAIYO-YUDEN X5R LMK212BJ105MG  
D1: ON SEMICONDUCTOR MBR0520  
L1, L2: MURATA LQH3C100K24  
200  
LOAD CURRENT (mA)  
0
100  
300  
400  
500  
1930 TA02b  
4-Cell to 5V SEPIC Converter with Coupled Inductors  
5V to 24V Boost Converter  
C3  
L1A  
L1  
1µF  
D1  
D1  
10µH  
V
10µH  
V
4V TO 6.5V  
OUT  
OUT  
V
IN  
5V  
5V  
24V  
300mA  
5
1
90mA  
5
1
V
SW  
C1  
V
SW  
IN  
C1  
R1  
665k  
IN  
2.2µF  
4.7µF  
243k  
LT1930  
LT1930  
SHDN  
4-CELL  
BATTERY  
C2  
2.2µF  
4
3
4
3
L1B  
10µH  
C2  
10µF  
SHDN  
SHDN  
FB  
SHDN  
FB  
GND  
2
R2  
36.5k  
GND  
2
82.5k  
C1: TAIYO-YUDEN X5R LMK212BJ225MG  
C2: TAIYO-YUDEN X5R JMK316BJ106ML  
C3: TAIYO-YUDEN X5R LMK212BJ105MG  
D1: ON SEMICONDUCTOR MBR0520  
L1: SUMIDA CLS62-100  
C1: TAIYO-YUDEN X5R EMK316BJ475ML  
C2: TAIYO-YUDEN X5R JMK212BJ475MG  
D1: ON SEMICONDUCTOR MBR0530  
L1: SUMIDA CR43-100  
1930/A TA03  
1930/A TA04  
±15V Dual Output Converter with Output Disconnect  
C4  
1µF  
L1  
3.3µH  
D1  
V
15V  
70mA  
IN  
5V  
5
1
C5  
1µF  
V
SW  
C1  
R1  
147k  
IN  
2.2µF  
LT1930  
D2  
C2  
2.2µF  
4
3
OFF ON  
SHDN  
FB  
R2  
13.3k  
GND  
2
C6  
2.2µF  
C1: TAIYO-YUDEN X5R LMK212BJ225MG  
C2, C3: TAIYO-YUDEN X5R EMK316BJ225ML  
C4, C5: TAIYO-YUDEN X5R TMK316BJ105ML  
(408) 573-4150  
D3  
D4  
–15V  
70mA  
1930/A TA05  
D1 TO D4: ON SEMICONDUCTOR MBR0520 (800) 282-9855  
L1: SUMIDA CR43-3R3 (874) 956-0666  
8
LT1930/LT1930A  
U
TYPICAL APPLICATIO S  
Boost Converter with Reverse Battery Protection  
L1  
4.7µH  
D1  
M1  
V
V
OUT  
IN  
8V  
3V to 6V  
5
1
C1  
2.2µF  
C3  
47pF  
520mA AT V = 6V  
240mA AT V = 3V  
IN  
IN  
V
SW  
IN  
R1  
60.4k  
LT1930  
4
3
C2  
22µF  
SHDN  
SHDN  
FB  
R2  
11.3k  
GND  
2
C1: TAIYO-YUDEN X5R LMK432BJ226MM  
C2: TAIYO-YUDEN X5R LMK212BJ225MG  
D1: ON SEMICONDUCTOR MBR0520  
L1: SUMIDA CR43-4R7  
1930/A TA06  
M1: SILICONIX Si6433DQ  
Efficiency  
3.3V to 5V Boost Converter  
90  
85  
80  
75  
L1  
D1  
5.6µH  
V
= 3.3V  
V
IN  
OUT  
V
IN  
5V  
3.3V  
480mA  
5
1
V
SW  
C1  
R1  
V
= 2.6V  
IN  
IN  
4.7µF  
40.2k  
LT1930  
C2  
10µF  
4
3
70  
65  
OFF ON  
SHDN  
FB  
R2  
13.3k  
GND  
2
60  
55  
50  
C1: TAIYO-YUDEN X5R JMK212BJ475MG www.t-yuden.com  
C2: TAIYO-YUDEN X5R JMK316BJ106ML  
D1: ON SEMICONDUCTOR MBR0520 www.onsemi.com  
L1: SUMIDA CR43-5R6 www.sumida.com  
1930/A TA07a  
100  
200  
400  
0
500  
300  
LOAD CURRENT (mA)  
1930/A TA07b  
5V to 12V, 250mA Step-Up Converter  
Efficiency  
90  
85  
80  
75  
L1  
V
V
= 5V  
OUT  
IN  
D1  
2.2µH  
= 12V  
V
OUT  
V
IN  
12V  
5V  
250mA  
5
1
V
SW  
C1  
IN  
R1  
2.2µF  
115k  
LT1930A  
SHDN  
C2  
2.2µF  
4
3
70  
65  
SHDN  
FB  
R2  
13.3k  
GND  
2
60  
55  
50  
C1: TAIYO-YUDEN X5R LMK212BJ225MG  
C2: TAIYO-YUDEN X5R EMK316BJ225ML  
D1: ON SEMICONDUCTOR MBR0520  
L1: MURATA LQH3C2R2M24  
1930/A TA08a  
50  
100  
200  
0
250  
300  
150  
LOAD CURRENT (mA)  
1930/A TA08b  
9
LT1930/LT1930A  
U
TYPICAL APPLICATIO S  
9V, 18V, 9V Triple Output TFT-LCD Bias Supply with Soft-Start  
D1  
D2  
C3  
18V  
10mA  
C4  
0.1µF  
1µF  
Start-Up Waveforms  
L1  
4.7µH  
D5  
V
9V  
200mA  
IN  
3.3V  
9V OUTPUT  
5V/DIV  
5
1
R1  
124k  
+
V
SW  
IN  
C1  
2.2µF  
R
LT1930  
SS  
30k  
C5  
10µF  
–9V OUTPUT  
5V/DIV  
4
3
V
SHDN  
FB  
SS  
D
SS  
3.3V  
GND  
2
1N4148  
R2  
20k  
18V OUTPUT  
10V/DIV  
0V  
C2  
0.1µF  
C
SS  
68nF  
C1: X5R OR X7R, 6.3V  
C2,C3, C5: X5R OR X7R, 10V  
C4: X5R OR X7R, 25V  
D1- D4: BAT54S OR EQUIVALENT  
D5: MBR0520 OR EQUIVALENT  
L1: PANASONIC ELT5KT4R7M  
D4  
D3  
I
L1 0.5A/DIV  
2ms/DIV  
C6  
1µF  
–9V  
10mA  
1930/A TA11a  
8V, 23V, 8V Triple Output TFT-LCD Bias Supply with Soft-Start  
D1  
D2  
D3  
D4  
23V  
10mA  
C3  
0.1µF  
C4  
0.1µF  
C5  
0.1µF  
C6  
1µF  
Start-Up Waveforms  
L1  
4.7µH  
D7  
V
8V  
220mA  
IN  
3.3V  
8V OUTPUT  
5V/DIV  
5
1
R1  
113k  
+
V
SW  
IN  
C1  
2.2µF  
R
LT1930  
SS  
–8V OUTPUT  
5V/DIV  
C7  
10µF  
30k  
4
3
V
SS  
SHDN  
FB  
D
SS  
3.3V  
GND  
2
1N4148  
R2  
21k  
0V  
23V OUTPUT  
10V/DIV  
C2  
0.1µF  
C
SS  
68nF  
C1: X5R OR X7R, 6.3V  
IL1 0.5A/DIV  
D5  
D6  
C2-C4, C7, C8: X5R OR X7R, 10V  
C5: X5R OR X7R, 16V  
2ms/DIV  
C8  
1µF  
C6: X5R OR X7R, 25V  
D1- D6: BAT54S OR EQUIVALENT  
D7: MBR0520 OR EQUIVALENT  
L1: PANASONIC ELT5KT4R7M  
–8V  
10mA  
1930/A TA12a  
10  
LT1930/LT1930A  
U
PACKAGE DESCRIPTIO  
S5 Package  
5-Lead Plastic SOT-23  
(Reference LTC DWG # 05-08-1633)  
(Reference LTC DWG # 05-08-1635)  
2.80 – 3.10  
(.110 – .118)  
(NOTE 3)  
SOT-23  
(Original)  
SOT-23  
(ThinSOT)  
.90 – 1.45  
1.00 MAX  
A
A1  
A2  
L
(.035 – .057)  
(.039 MAX)  
.00 – .15  
(.00 – .006)  
.01 – .10  
(.0004 – .004)  
2.60 – 3.00  
1.50 – 1.75  
(.102 – .118) (.059 – .069)  
(NOTE 3)  
.90 – 1.30  
(.035 – .051)  
.80 – .90  
(.031 – .035)  
.35 – .55  
(.014 – .021)  
.30 – .50 REF  
(.012 – .019 REF)  
PIN ONE  
.95  
(.037)  
REF  
.25 – .50  
(.010 – .020)  
(5PLCS, NOTE 2)  
.20  
(.008)  
A2  
A
DATUM ‘A’  
1.90  
(.074)  
REF  
L
.09 – .20  
(.004 – .008)  
(NOTE 2)  
A1  
S5 SOT-23 0401  
NOTE:  
1. CONTROLLING DIMENSION: MILLIMETERS  
MILLIMETERS  
2. DIMENSIONS ARE IN  
(INCHES)  
3. DRAWING NOT TO SCALE  
4. DIMENSIONS ARE INCLUSIVE OF PLATING  
5. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
6. MOLD FLASH SHALL NOT EXCEED .254mm  
7. PACKAGE EIAJ REFERENCE IS:  
SC-74A (EIAJ) FOR ORIGINAL  
JEDEL MO-193 FOR THIN  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tation that the interconnection of its circuits as described herein will notinfringe onexisting patent rights.  
11  
LT1930/LT1930A  
U
TYPICAL APPLICATIO  
3.3V to 5V, 450mA Step-Up Converter  
L1  
2.2µH  
D1  
V
OUT  
V
IN  
5V  
3.3V  
450mA  
5
1
V
SW  
C1  
R1  
30.1k  
IN  
2.2µF  
LT1930A  
SHDN  
C2  
10µF  
4
3
SHDN  
FB  
R2  
10k  
GND  
2
C1: TAIYO-YUDEN X5R LMK212BJ225MG  
C2: TAIYO-YUDEN X5R JMK316B106ML  
D1: ON SEMICONDUCTOR MBR0520  
L1: MURATA LQH3C2R2M24  
1930/A TA09a  
Efficiency  
90  
85  
80  
75  
V
V
= 3.3V  
OUT  
IN  
3.3V to 5V Transient Response  
= 5V  
VOUT  
50mV/DIV  
AC COUPLED  
70  
65  
ILI  
0.5A/DIV  
AC COUPLED  
300mA  
LOAD  
60  
55  
50  
CURRENT  
200mA  
20µs/DIV  
1930 F03  
100  
200  
400  
0
500  
300  
LOAD CURRENT (mA)  
1930/A TA09b  
RELATED PARTS  
PART NUMBER  
LT1307  
DESCRIPTION  
Single Cell Micropower 600kHz PWM DC/DC Converter  
Burst ModeTM Operation DC/DC Converter with Programmable Current Limit 1.5V Minimum, Precise Control of Peak Current Limit  
COMMENTS  
3.3V at 75mA from Single Cell, MSOP Package  
LT1316  
LT1317  
2-Cell Micropower DC/DC Converter with Low-Battery Detector  
Single Cell Micropower DC/DC Converter  
3.3V at 200mA from 2 Cells, 600kHz Fixed Frequency  
3V at 30mA from 1V, 1.7MHz Fixed Frequency  
5V at 150mA from 5V Input, ThinSOT Package  
5V at 200mA from 3.3V Input, ThinSOT Package  
20V at 12mA from 2.5V, ThinSOT Package  
LT1610  
LT1611  
Inverting 1.4MHz Switching Regulator in 5-Lead ThinSOT  
1.4MHz Switching Regulator in 5-Lead ThinSOT  
LT1613  
LT1615  
Micropower Constant Off-Time DC/DC Converter in 5-Lead ThinSOT  
Micropower Inverting DC/DC Converter in 5-Lead ThinSOT  
Inverting 1.2MHz/2.2MHz Switching Regulator in 5-Lead ThinSOT  
LT1617  
–15V at 12mA from 2.5V Input, ThinSOT Package  
5V at 350mA from 5V input, ThinSOT Package  
LT1931/LT1931A  
Burst Mode is a trademark of Linear Technology Corporation.  
1930af LT/TP 0801 2K • PRINTED IN USA  
LINEAR TECHNOLOGY CORPORATION 2001  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
12  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT1930AES5#PBF

LT1930 - 1A, 1.2MHz/2.2MHz, Step-Up DC/DC Converters in ThinSOT; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1930AES5#TRM

LT1930 - 1A, 1.2MHz/2.2MHz, Step-Up DC/DC Converters in ThinSOT; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1930AES5#TRMPBF

LT1930 - 1A, 1.2MHz/2.2MHz, Step-Up DC/DC Converters in ThinSOT; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1930AES5#TRPBF

LT1930 - 1A, 1.2MHz/2.2MHz, Step-Up DC/DC Converters in ThinSOT; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1930A_15

1A, 1.2MHz/2.2MHz, Step-Up DC/DC Converters in ThinSOT
Linear

LT1930ES5

1A, 1.2MHz/2.2MHz, Step-Up DC/DC Converters
Linear

LT1930ES5#PBF

LT1930 - 1A, 1.2MHz/2.2MHz, Step-Up DC/DC Converters in ThinSOT; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1930ES5#TR

LT1930 - 1A, 1.2MHz/2.2MHz, Step-Up DC/DC Converters in ThinSOT; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1930ES5#TRM

暂无描述
Linear

LT1930ES5#TRMPBF

LT1930 - 1A, 1.2MHz/2.2MHz, Step-Up DC/DC Converters in ThinSOT; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1930ES5#TRPBF

LT1930 - 1A, 1.2MHz/2.2MHz, Step-Up DC/DC Converters in ThinSOT; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1930_15

1A, 1.2MHz/2.2MHz, Step-Up DC/DC Converters in ThinSOT
Linear