LT1931AES5 [Linear]

LT1931 - 1.2MHz/2.2MHz Inverting DC/DC Converters in ThinSOT; Package: SOT; Pins: 5; Temperature Range: -40°C to 85°C;
LT1931AES5
型号: LT1931AES5
厂家: Linear    Linear
描述:

LT1931 - 1.2MHz/2.2MHz Inverting DC/DC Converters in ThinSOT; Package: SOT; Pins: 5; Temperature Range: -40°C to 85°C

开关 光电二极管
文件: 总12页 (文件大小:207K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1931/LT1931A  
1.2MHz/2.2MHz Inverting  
DC/DC Converters in ThinSOT  
U
FEATURES  
DESCRIPTIO  
The LT®1931/LT1931A are the industry’s highest power  
inverting SOT-23 current mode DC/DC converters. Both  
parts include a 1A integrated switch allowing high current  
outputs to be generated in a small footprint. The LT1931  
switchesat1.2MHzwhiletheLT1931Aswitchesat2.2MHz.  
These high speeds enable the use of tiny, low cost  
capacitors and inductors 2mm or less in height. The  
LT1931 is capable of generating 5V at 350mA or –12V  
at 150mA from a 5V supply, while the LT1931A can  
generate –5V at 300mA using significantly smaller induc-  
tors. Both parts are easy pin-for-pin upgrades for higher  
power LT1611 applications.  
Fixed Frequency 1.2MHz/2.2MHz Operation  
Very Low Noise: 1mVP-P Output Ripple  
5V at 350mA from 5V Input  
–12V at 150mA from 5V Input  
Uses Small Surface Mount Components  
Wide Input Range: 2.6V to 16V  
Low Shutdown Current: <1µA  
Low VCESAT Switch: 400mV at 1A  
Low Profile (1mm) ThinSOTTM Package  
Pin-for-Pin Compatible with the LT1611  
U
APPLICATIO S  
The LT1931/LT1931A operate in a dual inductor inverting  
topology that filters both the input side and output side  
current.Verylowoutputvoltagerippleapproaching1mVP-P  
canbeachievedwhenceramicoutputcapacitorsareused.  
Fixed frequency switching ensures a clean output free  
from low frequency noise typically present with charge  
pumpsolutions.Thelowimpedanceoutputremainswithin  
1% of nominal during large load steps. The 36V switch  
allows VIN to VOUT differential of up to 34V.  
Disk Drive MR Head Bias  
Digital Camera CCD Bias  
LCD Bias  
GaAs FET Bias  
Local Low Noise/Low Impedance Negative Supply  
The LT1931/LT1931A are available in the 5-lead ThinSOT  
package.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
ThinSOT is a trademark of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
C2  
1µF  
Efficiency  
L1A  
L1B  
10µH  
10µH  
V
IN  
5V  
100  
95  
D1  
90  
85  
80  
75  
70  
65  
60  
55  
50  
V
V
SW  
OUT  
IN  
–5V  
SHDN  
350mA  
R1  
C4  
220pF  
LT1931  
GND  
29.4k  
C1  
4.7µF  
C3  
22µF  
NFB  
R2  
10k  
C1: TAIYO YUDEN X5R JMK212BJ475MG  
C2: TAIYO YUDEN X5R LMK212BJ105MG  
C3: TAIYO YUDEN X5R JMK325BJ226MM  
D1: ON SEMICONDUCTOR MBR0520  
L1: SUMIDA CLS62-100  
1931 F01  
0
100 150 200 250 300 350  
LOAD CURRENT (mA)  
50  
1931 TA01  
Figure 1. 5V to –5V, 350mA Inverting DC/DC Converter  
1
LT1931/LT1931A  
W W  
U W  
U W  
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
VIN Voltage .............................................................. 16V  
SW Voltage ................................................0.4V to 36V  
NFB Voltage ............................................................. 2V  
Current Into NFB Pin............................................ ±1mA  
SHDN Voltage .......................................................... 16V  
Maximum Junction Temperature .......................... 125°C  
Operating Temperature Range (Note 2) .. 40°C to 85°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
ORDER PART  
NUMBER  
TOP VIEW  
SW 1  
GND 2  
NFB 3  
5 V  
IN  
LT1931ES5  
LT1931AES5  
4 SHDN  
S5 PART MARKING  
S5 PACKAGE  
5-LEAD PLASTIC SOT-23  
LTRA  
LTSP  
TJMAX = 125°C, θJA = 256°C/ W  
Consult factory for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating temperature range, otherwise specifications are TA = 25°C.  
VIN = 3V, VSHDN = VIN, unless otherwise noted. (Note 2)  
LT1931  
TYP  
LT1931A  
TYP  
PARAMETER  
CONDITIONS  
MIN  
MAX  
2.6  
MIN  
MAX  
2.6  
UNITS  
Minimum Operating Voltage  
Maximum Operating Voltage  
Feedback Voltage  
2.45  
2.45  
V
V
16  
16  
1.275 1.255 1.235 –1.275 –1.255 –1.235  
V
V
1.280  
1.230 –1.280  
–1.230  
NFB Pin Bias Current  
V
V
V
= –1.255V  
4
8
6
8
16  
8
µA  
mA  
µA  
NFB  
Quiescent Current  
= 2.4V, Not Switching  
4.2  
5.8  
SHDN  
SHDN  
Quiescent Current in Shutdown  
Reference Line Regulation  
Switching Frequency  
= 0V, V = 3V  
0.01  
0.01  
1.2  
1
0.01  
0.01  
2.2  
1
IN  
2.6V V 16V  
0.05  
0.05  
%/V  
IN  
1
0.85  
1.4  
1.6  
1.8  
1.6  
2.6  
2.9  
MHz  
MHz  
Maximum Duty Cycle  
Switch Current Limit  
84  
1
90  
1.2  
75  
1
82  
1.2  
%
A
(Note 3)  
2
600  
1
2.5  
600  
1
Switch V  
I
= 1A  
= 5V  
400  
0.01  
400  
0.01  
mV  
µA  
V
CESAT  
SW  
Switch Leakage Current  
SHDN Input Voltage, High  
SHDN Input Voltage, Low  
SHDN Pin Bias Current  
V
SW  
2.4  
2.4  
0.5  
0.5  
V
V
SHDN  
V
SHDN  
= 3V  
= 0V  
16  
0
32  
0.1  
35  
0
70  
0.1  
µA  
µA  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
operating temperature range are assured by design, characterization and  
correlation with statistical process controls.  
Note 2: The LT1931E/LT1931AE are guaranteed to meet performance  
specifications from 0°C to 70°C. Specifications over the 40°C to 85°C  
Note 3: Current limit guaranteed by design and/or correlation to static test.  
2
LT1931/LT1931A  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Quiescent Current  
Feedback Pin Voltage  
Shutdown Pin Current  
–1.28  
–1.27  
–1.26  
–1.25  
–1.24  
–1.23  
–1.22  
7.0  
6.5  
6.0  
5.5  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
NOT SWITCHING  
T
= 25°C  
A
LT1931A  
LT1931A  
LT1931  
50  
5.0  
4.5  
LT1931  
4.0  
3.5  
3.0  
–10  
–50  
0
25  
50  
75  
100  
–25  
–25  
0
–50  
75  
100  
25  
0
1
3
4
5
6
2
TEMPERATURE (°C)  
SHDN PIN VOLTAGE (V)  
TEMPERATURE (°C)  
1931 G02  
1931 G01  
1931 G03  
Current Limit  
Switch Saturation Voltage  
Oscillator Frequency  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
2.5  
2.3  
2.1  
1.9  
1.7  
1.5  
1.3  
1.1  
0.9  
0.7  
0.5  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
T
= 25°C  
T
= 25°C  
A
A
LT1931A  
LT1931  
0
–50  
–25  
25  
50  
75  
100  
0
50 60  
0
0.2  
0.4  
0.6  
1.2  
10 20 30 40  
70 80 90  
0.8  
1.0  
TEMPERATURE (°C)  
SWITCH CURRENT (A)  
DUTY CYCLE (%)  
1931 G06  
1931 G04  
1931 G05  
U
U
U
PI FU CTIO S  
SW (Pin 1): Switch Pin. Connect inductor/diode here.  
| VOUT | 1.255  
For LT1931A: R1=  
Minimize trace area at this pin to keep EMI down.  
1.255  
+ 8 10–6  
(
)
R2  
GND (Pin 2): Ground. Tie directly to local ground plane.  
SHDN(Pin4):ShutdownPin.Tieto2.4Vormoretoenable  
NFB (Pin 3): Feedback Pin. Reference voltage is –1.255V.  
Connect resistive divider tap here. Minimize trace area.  
The NFB bias current flows out of the pin. Set R1 and R2  
according to:  
device. Ground to shut down.  
VIN (Pin 5): Input Supply Pin. Must be locally bypassed.  
| VOUT | 1.255  
For LT1931: R1=  
1.255  
+ 4 10–6  
(
)
R2  
3
LT1931/LT1931A  
W
BLOCK DIAGRA  
V
V
IN  
5
IN  
R5  
80k  
R6  
80k  
1
SW  
+
COMPARATOR  
A2  
+
A1  
m
DRIVER  
g
LATCH  
S
Q3  
R
Q
R
C
RAMP  
Q1  
Q2  
Σ
GENERATOR  
x10  
C
+
C
V
OUT  
R3  
30k  
0.01Ω  
1.2MHz  
OSCILLATOR  
R1  
C
PL  
(EXTERNAL)  
R4  
150k  
(OPTIONAL)  
NFB  
SHDN  
4
SHUTDOWN  
3
NFB  
2
GND  
R2  
1931 BD  
(EXTERNAL)  
Figure 2  
U
OPERATIO  
The LT1931 uses a constant frequency, current mode  
control scheme to provide excellent line and load regula-  
tion. Operation can be best understood by referring to the  
Block Diagram in Figure 2. At the start of each oscillator  
cycle, the SR latch is set, turning on the power switch Q3.  
A voltage proportional to the switch current is added to a  
stabilizing ramp and the resulting sum is fed into the  
positive terminal of the PWM comparator A2. When this  
voltageexceedsthelevelatthenegativeinputofA2,theSR  
latch is reset, turning off the power switch. The level at the  
negative input of A2 is set by the error amplifier (gm) and  
is simply an amplified version of the difference between  
thefeedbackvoltageandthereferencevoltageof1.255V.  
In this manner, the error amplifier sets the correct peak  
current level to keep the output in regulation. If the error  
amplifier’s output increases, more current is taken from  
the output; if it decreases, less current is taken. One  
function not shown in Figure 2 is the current limit. The  
switch current is constantly monitored and not allowed to  
exceed the nominal value of 1.2A. If the switch current  
reaches 1.2A, the SR latch is reset regardless of the state  
of comparator A2. This current limit protects the power  
switch as well as various external components connected  
to the LT1931.  
TheBlockDiagramfortheLT1931Aisidenticalexceptthat  
theoscillatoris2.2MHzandresistorsR3toR6areone-half  
the LT1931 values.  
4
LT1931/LT1931A  
W U U  
APPLICATIO S I FOR ATIO  
U
LT1931A AND LT1931 DIFFERENCES:  
corelossesatfrequenciesabove1MHzaremuchlowerfor  
ferrite cores than for powdered-iron units. When using  
coupled inductors, choose one that can handle at least 1A  
of current without saturating, and ensure that the inductor  
has a low DCR (copper-wire resistance) to minimize I2R  
powerlosses. Ifusinguncoupledinductors, eachinductor  
need only handle one-half of the total switch current so  
that 0.5A per inductor is sufficient. A 4.7µH to 15µH  
coupled inductor or a 15µH to 22µH uncoupled inductor  
will usually be the best choice for most LT1931 designs.  
For the LT1931A, a 2.2µH to 4.7µH coupled inductor or a  
3.3µH to 10µH uncoupled inductor will usually suffice. In  
certain applications such as the “Charge Pump” inverting  
DC/DC converter, only a single inductor is used. In this  
case, the inductor must carry the entire 1A switch current.  
Switching Frequency  
The key difference between the LT1931A and LT1931 is  
thefasterswitchingfrequencyoftheLT1931A.At2.2MHz,  
the LT1931A switches at nearly twice the rate of the  
LT1931. Care must be taken in deciding which part to use.  
The high switching frequency of the LT1931A allows  
smaller cheaper inductors and capacitors to be used in a  
given application, but with a slight decrease in efficiency  
and maximum output current when compared to the  
LT1931. Generally, if efficiency and maximum output  
current are critical, the LT1931 should be used. If applica-  
tion size and cost are more important, the LT1931A will be  
the better choice. In many applications, tiny inexpensive  
chip inductors can be used with the LT1931A, reducing  
solution cost.  
Table 1. Recommended Inductors—LT1931  
L
Size  
PART  
(µH) (L × W × H) mm  
VENDOR  
Duty Cycle  
CLS62-100  
CR43-150  
CR43-220  
10  
15  
22  
6.8 × 6.6 × 2.5  
4.5 × 4.0 × 3.2  
Sumida  
(847) 956-0666  
www.sumida.com  
The maximum duty cycle (DC) of the LT1931A is 75%  
compared to 84% for the LT1931. The duty cycle for a  
given application using the dual inductor inverting topol-  
ogy is given by:  
CTX10-1  
CTX15-1  
10  
15  
8.9 × 11.4 × 4.2  
3.2 × 2.5 × 2.0  
Coiltronics  
(407) 241-7876  
www. coiltronics.com  
LQH3C100K24  
LQH4C150K04  
10  
15  
Murata  
(404) 436-1300  
www.murata.com  
| VOUT  
|
DC =  
| V | + | VOUT  
|
IN  
Table 2. Recommended Inductors—LT1931A  
Size  
(µH) (L × W × H) mm  
For a 5V to –5V application, the DC is 50% indicating that  
the LT1931A can be used. A 5V to –16V application has a  
DC of 76.2% making the LT1931 the right choice. The  
LT1931A can still be used in applications where the DC, as  
calculated above, is above 75%. However, the part must  
beoperatedinthediscontinuousconductionmodesothat  
the actual duty cycle is reduced.  
L
PART  
VENDOR  
ELJPC3R3MF  
ELJPC4R7MF  
3.3  
4.7  
2.5 × 2.0 × 1.6  
7.6 × 4.8 × 1.8  
2.0 × 1.6 × 1.6  
3.2 × 2.5 × 2.0  
Panasonic  
(408) 945-5660  
www.panasonic.com  
1
2
CLQ4D10-4R7  
CLQ4D10-6R8  
4.7  
6.8  
Sumida  
(847) 956-0666  
www.sumida.com  
LB20164R7M  
LB20163R3M  
4.7  
3.3  
Taiyo Yuden  
(408) 573-4150  
www.t-yuden.com  
INDUCTOR SELECTION  
SeveralinductorsthatworkwellwiththeLT1931arelisted  
in Table 1 and those for the LT1931A are listed in Table 2.  
Besides these, there are many other inductors that can be  
used. Consult each manufacturer for detailed information  
and for their entire selection of related parts. Ferrite core  
inductors should be used to obtain the best efficiency, as  
LQH3C4R7K24  
LQH4C100K24  
4.7  
10  
Murata  
(404) 436-1300  
www.murata.com  
1
Use drawing #5382-T039  
Use drawing #5382-T041  
2
5
LT1931/LT1931A  
W U U  
U
APPLICATIO S I FOR ATIO  
The inductors shown in Table 2 for use with the LT1931A  
were chosen for their small size. For better efficiency, use  
similar valued inductors with a larger volume. For in-  
stance, the Sumida CR43 series, in values ranging from  
3.3µH to 10µH, will give a LT1931A application a few  
percentage points increase in efficiency.  
zero to the system. For the tantalum and OS-CON capaci-  
tors, this zero is located at a lower frequency due to the  
higher value of the ESR, while the zero of a ceramic  
capacitor is at a much higher frequency and can generally  
be ignored.  
A phase lead zero can be intentionally introduced by  
placing a capacitor (C4) in parallel with the resistor (R1)  
between VOUT and VNFB as shown in Figure 1. The  
frequency of the zero is determined by the following  
equation.  
CAPACITOR SELECTION  
Low ESR (equivalent series resistance) capacitors should  
beusedattheoutputtominimizetheoutputripplevoltage.  
Multilayer ceramic capacitors are an excellent choice, as  
they have an extremely low ESR and are available in very  
small packages. X5R dielectrics are preferred, followed by  
X7R, as these materials retain their capacitance over wide  
voltage and temperature ranges. A 10µF to 22µF output  
capacitor is sufficient for most LT1931 applications while  
a 4.7µF to 10µF capacitor will suffice for the LT1931A.  
Solid tantalum or OS-CON capacitors can be used, but  
they will occupy more board area than a ceramic and will  
haveahigherESR. Alwaysuseacapacitorwithasufficient  
voltage rating.  
1
ƒZ =  
2π R1•C4  
By choosing the appropriate values for the resistor and  
capacitor, the zero frequency can be designed to improve  
the phase margin of the overall converter. The typical  
target value for the zero frequency is between 20kHz to  
60kHz. Figure 3 shows the transient response of the  
inverting converter from Figure 1 without the phase lead  
capacitor C4. The phase margin is reduced as evidenced  
by more ringing in both the output voltage and inductor  
current. A 220pF capacitor for C4 results in better phase  
margin, which is revealed in Figure 4 as a more damped  
responseandlessovershoot. Figure5showsthetransient  
response when a 22µF tantalum capacitor with no phase  
lead capacitor is used on the output. The higher output  
voltage ripple is revealed in the upper waveform as a  
thicker line. The transient response is adequate which  
implies that the ESR zero is improving the phase margin.  
Ceramic capacitors also make a good choice for the input  
decoupling capacitor, which should be placed as close as  
possible to the LT1931/LT1931A. A 1µF to 4.7µF input  
capacitorissufficientformostapplications.Table3shows  
a list of several ceramic capacitor manufacturers. Consult  
the manufacturers for detailed information on their entire  
selection of ceramic parts.  
Table 3. Ceramic Capacitor Manufacturers  
Taiyo Yuden  
(408) 573-4150  
www.t-yuden.com  
VOUT  
20mV/DIV  
AC COUPLED  
AVX  
(803) 448-9411  
www.avxcorp.com  
Murata  
(714) 852-2001  
www.murata.com  
I
L1A + IL1B  
0.5A/DIV  
AC COUPLED  
200mA  
100mA  
LOAD  
CURRENT  
ThedecisiontouseeitherlowESR(ceramic)capacitorsor  
the higher ESR (tantalum or OS-CON) capacitors can  
effect the stability of the overall system. The ESR of any  
capacitor, along with the capacitance itself, contributes a  
100µs/DIV  
1931 F03  
Figure 3. Transient Response of Inverting Converter  
Without Phase Lead Capacitor  
6
LT1931/LT1931A  
W U U  
APPLICATIO S I FOR ATIO  
U
VOUT  
20mV/DIV  
AC COUPLED  
VOUT  
2V/DIV  
IL1A + IL1B  
0.5A/DIV  
AC COUPLED  
IIN  
0.5A/DIV  
AC COUPLED  
200mA  
100mA  
LOAD  
CURRENT  
5V  
0V  
VSHDN  
100µs/DIV  
1931 F04  
500µs/DIV  
1931 F06  
Figure 4. Transient Response of Inverting Converter  
with 220pF Phase Lead Capacitor  
Figure 6. Start-Up Waveforms for 5V to 5V Application  
(Figure 1). No Soft-Start Circuit. VOUT Reaches 5V in  
500µs; Input Current Peaks at 800mA  
VOUT  
0.1V/DIV  
regulatortriestochargeuptheoutputcapacitorasquickly  
as possible, which results in a large inrush current. Fig-  
ure 6 shows a typical oscillograph of the start-up wave-  
form for the application of Figure 1 starting into a load of  
33. The lower waveform shows SHDN being pulsed  
from 0V to 5V. The middle waveform shows the input  
current, which reaches as high as 0.8A. The total time  
required for the output to reach its final value is approxi-  
mately 500µs. For some applications, this initial inrush  
current may not be acceptable. If a longer start-up time is  
acceptable, a soft-start circuit consisting of RSS and CSS,  
as shown in Figure 7, can be used to limit inrush current  
to a lower value. Figure 8 shows the relevant waveforms  
with RSS = 15k and CSS = 33nF. Input current, measured  
atVIN,islimitedtoapeakvalueof0.5Aasthetimerequired  
to reach final value increases to 1ms. In Figure 9, CSS is  
AC COUPLED  
IL1A + IL1B  
0.5A/DIV  
AC COUPLED  
200mA  
100mA  
LOAD  
CURRENT  
50µs/DIV  
1931 F05  
Figure 5. Transient Response of Inverting Converter with 22µF  
Tantalum Output Capacitor and No Phase Lead Capacitor  
START-UP/SOFT-START  
For most LT1931/LT1931A applications, the start-up in-  
rush current can be high. This is an inherent feature of  
switching regulators in general since the feedback loop is  
saturated due to VOUT being far from its final value. The  
C2  
CURRENT  
PROBE  
L1A  
10µH  
L1B  
1µF  
10µH  
V
IN  
5V  
D1  
+
V
IN  
SW  
C1  
4.7µF  
V
OUT  
–5V  
R1  
29.4k  
C4  
220pF  
R
LT1931  
SS  
15k  
C3  
22µF  
V
SS  
SHDN  
NFB  
GND  
R2  
10k  
D2  
1N4148  
C
SS  
C1: TAIYO YUDEN X5R JMK212BJ475MG  
C2: TAIYO YUDEN X5R LMK212BJ105MG  
C3: TAIYO YUDEN XR5 JMK325BJ226MM  
D1: ON SEMICONDUCTOR MBR0520  
L1: SUMIDA CLS62-100  
33nF/68nF  
1931 F07  
V
OUT  
Figure 7. RSS and CSS at SHDN Pin Provide Soft-Start to LT1931 Inverting Converter  
7
LT1931/LT1931A  
W U U  
U
APPLICATIO S I FOR ATIO  
DIODE SELECTION  
VOUT  
2V/DIV  
ASchottkydiodeisrecommendedforusewiththeLT1931/  
LT1931A. The Motorola MBR0520 is a very good choice.  
Wheretheinputtooutputvoltagedifferentialexceeds20V,  
use the MBR0530 (a 30V diode). These diodes are rated to  
handleanaverageforwardcurrentof0.5A. Inapplications  
where the average forward current of the diode exceeds  
0.5A, a Microsemi UPS5817 rated at 1A is recommended.  
IIN  
0.5A/DIV  
AC COUPLED  
5V  
0V  
VSS  
200µs/DIV  
1931 F08  
Figure 8. RSS = 15k, CSS = 33nF; VOUT Reaches 5V in 1ms;  
Input Current Peaks at 500mA  
LAYOUT HINTS  
The high-speed operation of the LT1931/LT1931A de-  
mands careful attention to board layout. You will not get  
advertised performance with careless layout. Figure 10  
shows the recommended component placement. The  
ground cut at the cathode of D1 is essential for low noise  
operation.  
VOUT  
2V/DIV  
IIN  
0.5A/DIV  
AC COUPLED  
5V  
0V  
VSS  
500µs/DIV  
1931 F09  
Figure 9. RSS = 15k, CSS = 68nF; VOUT Reaches 5V in 1.6ms;  
Input Current Peaks at 350mA  
L1A  
L1B  
C2  
C1  
–V  
+
OUT  
increased to 68nF, resulting in a lower peak input current  
of 350mA with a VOUT ramp time of 1.6ms. CSS or RSS can  
be increased further for an even slower ramp, if desired.  
Diode D2 serves to quickly discharge CSS when VSS is  
driven low to shut down the device. D2 can be omitted,  
resulting in a “soft-stop” slow discharge of the output  
capacitor.  
D1  
V
IN  
C3  
+
1
2
3
5
4
SHUTDOWN  
R2  
R1  
GND  
1931 F10  
Figure 10. Suggested Component Placement.  
Note Cut in Ground Copper at D1’s Cathode  
8
LT1931/LT1931A  
U
TYPICAL APPLICATIO S  
5V to –12V Inverting Converter  
Efficiency  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
C2  
L1A  
1µF  
L1B  
10µH  
10µH  
V
IN  
5V  
D1  
V
V
SW  
OUT  
IN  
–12V  
SHDN  
LT1931  
150mA  
R1  
84.5k  
C1  
4.7µF  
C3  
10µF  
NFB  
GND  
R2  
10k  
C1: TAIYO YUDEN X5R JMK212BJ475MG  
C2: TAIYO YUDEN X5R TMK316BJ105ML  
C3: TAIYO YUDEN X5R EMK325BJ106MM  
D1: ON SEMICONDUCTOR MBR0520  
L1: SUMIDA CLS62-100  
1931 TA02  
0
25  
75  
100  
125  
150  
50  
LOAD CURRENT (mA)  
1931 TA03  
5V to 5V Inverting Converter Using Uncoupled Inductors  
C2  
1µF  
L1  
10µH  
L2  
10µH  
V
IN  
5V  
D1  
V
V
SW  
OUT  
IN  
–5V  
SHDN  
300mA  
R1  
29.4k  
220pF  
LT1931  
C1  
4.7µF  
C3  
22µF  
NFB  
GND  
R2  
10k  
C1: TAIYO YUDEN X5R JMK212BJ475MG  
C2: TAIYO YUDEN X5R LMK212BJ105MG  
C3: TAIYO YUDEN X5R JMK212BJ226MM  
D1: ON SEMICONDUCTOR MBR0520  
L1, L2: MURATA LQH3C100K04  
1931 TA04  
2.2MHz, 5V to 5V Inverting Converter  
Efficiency  
C2  
80  
75  
70  
65  
60  
55  
50  
L1  
L2  
4.7µH  
1µF  
4.7µH  
V
IN  
5V  
D1  
V
V
IN  
SW  
OUT  
–5V  
SHDN  
300mA  
R1  
C4  
180pF  
LT1931A  
28.7k  
C1  
4.7µF  
C3  
4.7µF  
NFB  
GND  
R2  
10k  
C1: TAIYO YUDEN X5R JMK212BJ475MG  
C2: TAIYO YUDEN X5R LMK212BJ105MG  
C3: TAIYO YUDEN X5R JMK212BJ475MG  
D1: ON SEMICONDUCTOR MBR0520  
L1, L2: MURATA LQH3C4R7M24  
1931 TA05a  
0
100 150 200 250 300 350  
LOAD CURRENT (mA)  
50  
1931 TA05b  
9
LT1931/LT1931A  
TYPICAL APPLICATIO S  
U
2.2MHz, 5V to –5V Converter Uses Tiny Chip Inductors  
Efficiency  
C2  
1µF  
80  
75  
L1  
3.3µH  
L2  
3.3µH  
V
IN  
5V  
D1  
V
V
SW  
70  
65  
OUT  
IN  
–5V  
SHDN  
200mA  
R1  
28.7k  
C4  
68pF  
LT1931A  
C1  
2.2µF  
C3  
4.7µF  
NFB  
60  
55  
50  
GND  
R2  
10k  
C1: TAIYO YUDEN X5R JMK212BJ225MG  
C2: TAIYO YUDEN X5R LMK212BJ105MG  
C3: TAIYO YUDEN X5R JMK212BJ475MG  
D1: ON SEMICONDUCTOR MBR0520  
L1, L2: PANASONIC ELJPC3R3MF  
1931 TA06a  
0
50  
100  
150  
200  
250  
LOAD CURRENT (mA)  
1931 TA06b  
SLIC Power Supply with 33V and 68V Outputs, Uses Soft-Start  
L1  
22µH  
R1  
1Ω  
V
IN  
12V  
C2  
C1  
4.7µF  
16V  
1µF  
V
SW  
35V  
IN  
D1  
R
SS  
LT1931  
3
2
1
COM  
C4  
15k  
SHDN  
NFB  
V
SS  
4.7µF  
GND  
35V  
V
OUT1  
–33V  
R2  
1k  
R3  
25.5k  
C
SS  
100mA*  
68nF  
C3  
1µF  
35V  
C6  
1000pF  
R4  
2.7k  
D2  
3
2
1
C5  
4.7µF  
35V  
*TOTAL OUTPUT POWER NOT TO EXCEED 3.3W  
C1 TO C5: X5R OR X7R  
D1, D2: BAV99 OR EQUIVALENT  
L1: SUMIDA CR43-220  
V
OUT2  
–66V  
1931 TA08  
48mA*  
10  
LT1931/LT1931A  
U
TYPICAL APPLICATIO S  
SLIC Power Supply with 21.6V and 65V Outputs, Uses Soft-Start  
L1  
10µH  
R1  
1Ω  
V
IN  
5V  
C1  
C2  
1µF  
35V  
4.7µF  
16V  
V
SW  
IN  
D1  
R
SS  
3
2
1
LT1931  
SHDN  
COM  
15k  
C5  
NFB  
V
SS  
4.7µF  
GND  
25V  
V
OUT1  
–21.6V  
48mA*  
R2  
1k  
R3  
16.2k  
C3  
1µF  
35V  
C8  
1000pF  
C
R4  
2.7k  
SS  
68nF  
D2  
D3  
3
2
1
C6  
4.7µF  
25V  
*TOTAL OUTPUT POWER NOT TO EXCEED 1.3W  
C1 TO C7: X5R OR X7R  
D1, D2: BAV99 OR EQUIVALENT  
L1: SUMIDA CR43-100  
C4  
1µF  
35V  
3
2
1
C7  
4.7µF  
25V  
V
OUT2  
65V  
1931 TA09  
20mA*  
U
PACKAGE DESCRIPTIO  
S5 Package  
5-Lead Plastic SOT-23  
(LTC DWG # 05-08-1633)  
(LTC DWG # 05-08-1635)  
2.80 – 3.10  
(.110 – .118)  
(NOTE 3)  
.20  
(.008)  
A2  
A
2.60 – 3.00  
1.50 – 1.75  
DATUM ‘A’  
(.102 – .118) (.059 – .069)  
(NOTE 3)  
1.90  
(.074)  
REF  
L
.09 – .20  
(.004 – .008)  
(NOTE 2)  
A1  
NOTE:  
1. CONTROLLING DIMENSION: MILLIMETERS  
MILLIMETERS  
2. DIMENSIONS ARE IN  
(INCHES)  
SOT-23  
SOT-23  
PIN ONE  
(Original)  
(ThinSOT)  
.90 – 1.45  
1.00 MAX  
(.039 MAX)  
3. DRAWING NOT TO SCALE  
4. DIMENSIONS ARE INCLUSIVE OF PLATING  
5. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
6. MOLD FLASH SHALL NOT EXCEED .254mm  
7. PACKAGE EIAJ REFERENCE IS:  
SC-74A (EIAJ) FOR ORIGINAL  
JEDEL MO-193 FOR THIN  
A
A1  
A2  
L
.95  
(.037)  
REF  
(.035 – .057)  
.00 – .15  
.01 – .10  
(.0004 – .004)  
.25 – .50  
(.00 – .006)  
(.010 – .020)  
S5 SOT-23 0501  
.90 – 1.30  
.80 – .90  
(.031 – .035)  
(5PLCS, NOTE 2)  
(.035 – .051)  
.35 – .55  
.30 – .50 REF  
(.014 – .021)  
(.012 – .019 REF)  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LT1931/LT1931A  
U
TYPICAL APPLICATIO  
2.2MHz, 12V to 5V Converter Uses Low Profile Coupled Inductor  
C2  
0.1µF  
L1A  
4.7µH  
L1B  
4.7µH  
V
IN  
12V  
D1  
V
V
SW  
OUT  
IN  
–5V  
SHDN  
450mA  
R1  
28.7k  
LT1931A  
C1  
2.2µF  
C3  
4.7µF  
NFB  
GND  
R2  
10k  
C1: TAIYO YUDEN Y5V EMK212F225ZG  
C2: 0.1µF 25V X5R  
1931 TA07a  
C3: TAIYO YUDEN X5R JMK212BJ475MG  
D1: ON SEMICONDUCTOR MBR0520  
L1: SUMIDA CLQ4D10-4R7 DRAWING #5382-T039  
Efficiency  
80  
75  
70  
65  
60  
55  
50  
0
100  
200  
300  
400  
500  
LOAD CURRENT (mA)  
1931 TA07b  
RELATED PARTS  
PART NUMBER  
LT1307  
DESCRIPTION  
COMMENTS  
Single Cell Micropower 600kHz PWM DC/DC Converter  
3.3V at 75mA from One Cell, MSOP Package  
1.5V Minimum, Precise Control of Peak Current Limit  
3.3V at 200mA from Two Cells, 600kHz Fixed Frequency  
3V at 30mA from 1V, 1.7MHz Fixed Frequency  
–5V at 150mA from 5V Input. Tiny SOT-23 Package  
5V at 200mA from 3.3V Input. Tiny SOT-23 Package  
20V at 12mA from 2.5V. Tiny SOT-23 Package  
–15V at 12mA from 2.5V. Tiny SOT-23 Package  
5V at 450mA from 3.3V Input. Tiny SOT-23 Package  
LT1316  
Burst ModeTM Operation DC/DC with Programmable Current Limit  
2-Cell Micropower DC/DC with Low-Battery Detector  
Single Cell Micropower DC/DC Converter  
LT1317  
LT1610  
LT1611  
Inverting 1.4MHz Switching Regulator in 5-Lead ThinSOT  
1.4MHz Switching Regulator in 5-Lead ThinSOT  
LT1613  
LT1615  
Micropower Constant Off-Time DC/DC Converter in 5-Lead ThinSOT  
Micropower Inverting DC/DC Converter in 5-Lead ThinSOT  
1.2MHz/2.2MHz, 1A Switching Regulators in 5-Lead ThinSOT  
LT1617  
LT1930/LT1930A  
Burst Mode operation is a trademark of Linear Technology Corporation.  
1931f LT/TP 0601 2K • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
12  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  
LINEAR TECHNOLOGY CORPORATION 2000  

相关型号:

LT1931AES5#TR

LT1931 - 1.2MHz/2.2MHz Inverting DC/DC Converters in ThinSOT; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1931AES5#TRMPBF

LT1931 - 1.2MHz/2.2MHz Inverting DC/DC Converters in ThinSOT; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1931AIS5

1.2MHz/2.2MHz Inverting DC/DC Converters in ThinSOT
Linear

LT1931AIS5#PBF

暂无描述
Linear

LT1931AIS5#TR

LT1931 - 1.2MHz/2.2MHz Inverting DC/DC Converters in ThinSOT; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1931AIS5#TRMPBF

LT1931 - 1.2MHz/2.2MHz Inverting DC/DC Converters in ThinSOT; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1931AIS5#TRPBF

LT1931 - 1.2MHz/2.2MHz Inverting DC/DC Converters in ThinSOT; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1931A_15

1.2MHz/2.2MHz Inverting DC/DC Converters in ThinSOT
Linear

LT1931ES5#PBF

LT1931 - 1.2MHz/2.2MHz Inverting DC/DC Converters in ThinSOT; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1931IS5

LT1931 - 1.2MHz/2.2MHz Inverting DC/DC Converters in ThinSOT; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1931IS5#PBF

LT1931 - 1.2MHz/2.2MHz Inverting DC/DC Converters in ThinSOT; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear