LT1935 [Linear]

1.2MHz Boost DC/DC Converter in ThinSOT with 2A Switch; 采用ThinSOT封装具有2A开关的1.2MHz升压型DC / DC转换器
LT1935
型号: LT1935
厂家: Linear    Linear
描述:

1.2MHz Boost DC/DC Converter in ThinSOT with 2A Switch
采用ThinSOT封装具有2A开关的1.2MHz升压型DC / DC转换器

转换器 开关
文件: 总8页 (文件大小:186K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1935  
1.2MHz Boost DC/DC  
Converter in ThinSOT  
with 2A Switch  
U
FEATURES  
DESCRIPTIO  
The LT®1935 is the industry’s highest power SOT-23  
switching regulator. Its unprecedented 2A, 40V internal  
switch allows high output currents to be generated in a  
small footprint. Intended for space-conscious applica-  
tions, the LT1935 switches at 1.2MHz, allowing the use of  
tiny, low profile inductors and capacitors 2mm or less in  
height. The NPN switch achieves a VCESAT of just 180mV  
at 2A independent of supply voltage, resulting in high  
efficiency even at maximum power levels from a 3V input.  
1.2MHz Switching Frequency  
High Output Voltage: Up to 38V  
Wide Input Range: 2.3V to 16V  
Low VCESAT Switch: 180mV at 2A  
Soft-Start  
Uses Small Surface Mount Components  
5V at 1A from 3.3V Input  
12V at 600mA from 5V Input  
Low Shutdown Current: <1µA  
Pin-for-Pin Compatible with the LT1613 and LT1930  
A constant frequency, internally compensated, current  
mode PWM architecture results in low, predictable output  
noisethatiseasytofilter.LowESRceramiccapacitorscan  
be used on the output, further reducing noise to the  
millivolt level. The high voltage switch on the LT1935 is  
rated at 40V, making the device ideal for boost converters  
up to 38V as well as for single-ended primary inductance  
converter (SEPIC) and flyback designs. The device can  
generate5Vatupto1Afroma3.3Vsupplyor5Vat550mA  
from four alkaline cells in a SEPIC design.  
Low Profile (1mm) SOT-23 (ThinSOTTM) Package  
U
APPLICATIO S  
Digital Cameras  
Battery Backup  
LCD Bias  
Local 5V or 12V Supply  
PC Cards  
xDSL Power Supply  
TFT-LCD Bias Supply  
The LT1935 is available in a 5-lead SOT-23 package.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
ThinSOT is a trademark of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
Efficiency, VOUT = 12V  
90  
L1  
D1  
4.2µH  
V
OUT  
V
IN  
V
= 5V  
85  
80  
75  
70  
65  
60  
55  
50  
IN  
12V  
5V  
600mA  
V
= 3.3V  
IN  
V
SW  
IN  
84.5k  
10k  
4.7µF  
LT1935  
10µF  
ON OFF  
SHDN  
FB  
GND  
D1: ON SEMI MBRM120  
L1: SUMIDA CDRH5D28-4R2  
1935 F01  
Figure 1. 5V to 12V, 600mA Step-Up DC/DC Converter  
100 200 300 400 500  
LOAD CURRENT (mA)  
700  
0
600  
1935 F01b  
1935f  
1
LT1935  
W W U W  
U W  
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
ORDER PART  
NUMBER  
VIN Voltage .............................................................. 16V  
SW Voltage ................................................0.4V to 40V  
FB Voltage ................................................................. 6V  
Current Into FB Pin .............................................. ±1mA  
SHDN Voltage ......................................................... 16V  
Maximum Junction Temperature ......................... 125°C  
Operating Ambient Temperature Range  
TOP VIEW  
SW 1  
GND 2  
FB 3  
5 V  
LT1935ES5  
IN  
4 SHDN  
S5 PACKAGE  
5-LEAD PLASTIC TSOT-23  
S5 PART MARKING  
LTRX  
TJMAX = 125°C, θJA = 113°C/ W,  
(Note 2) .............................................. 40°C to 85°C  
Storage Temperature Range ................. 65°C to 150°C  
Strict adherence to JDEC 020B solder attach and rework  
for assemblies containing lead is recommended.  
Consult LTC marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating temperature range, otherwise specifications are TA = 25°C.  
VIN = 3V, VSHDN = VIN unless otherwise noted. (Note 2)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
1.265  
0.01  
12  
MAX  
UNITS  
V
Feedback Voltage  
Measured at the FB Pin  
1.240  
1.280  
Feedback Voltage Line Regulation  
FB Pin Bias Current  
2.5V V 16V  
%/V  
nA  
V
IN  
V
= V  
60  
2.3  
16  
FB  
REF  
Undervoltage Lockout Threshold  
Maximum Input Voltage  
Switching Frequency  
2.1  
V
1
85  
2
1.2  
93  
1.4  
MHz  
%
Maximum Duty Cycle  
Switch Current Limit  
(Note 3)  
3.2  
180  
0.01  
14  
A
Switch Saturating Voltage  
Switch Leakage Current  
SHDN Pin Input Current  
I
= 2A  
= 5V  
280  
1
mV  
µA  
µA  
µA  
mA  
µA  
V
SW  
V
V
V
V
V
SW  
= 1.8V  
= 0V  
40  
0.1  
SHDN  
SHDN  
Operating Supply Current  
SHDN Supply Current  
= 1.5V  
3
FB  
= 0V  
0.1  
1
SHDN  
SHDN Input High Voltage  
SHDN Input Low Voltage  
1.8  
0.5  
V
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
temperature range are assured by design, characterization and correlation  
with statistical process controls.  
Note 2: The LT1935ES5 is guaranteed to meet performance specifications  
from 0°C to 70°C. Specifications over the 40°C to 85°C operating  
Note 3: Current limit guaranteed by design and/or correlation to static test.  
1935f  
2
LT1935  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Undervoltage Lockout  
FB Pin Voltage  
Oscillator Frequency  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.28  
1.27  
1.26  
1.25  
1.24  
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
–25  
0
25  
50  
75  
125  
–25  
0
25  
50  
75  
125  
–50  
100  
–50  
100  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1935 G02  
1935 G01  
1935 G03  
Peak Switch Current vs SHDN Pin  
Voltage (Soft-Start)  
Current Limit  
Switch Saturation Voltage  
4
3
2
1
0
400  
300  
200  
100  
0
4
3
2
1
0
50% DUTY CYCLE  
A
T
= 25°C  
A
T
= 25°C  
TYP  
MIN  
T
= 85°C  
A
T
= 25°C  
A
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
1.0  
1.5  
0
2.0  
0.5  
0
20  
40  
60  
80  
100  
SWITCH CURRENT (A)  
SHDN VOLTAGE (V)  
DUTY CYCLE (%)  
1935 G05  
1935 G06  
1935 G04  
SHDN Pin Current  
Frequency Foldback  
80  
60  
40  
20  
0
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
T
= 25°C  
T
= 25°C  
A
A
4
8
10 12 14  
SHDN PIN VOLTAGE (V)  
0
0.2  
1.2 1.4  
0
2
6
16  
0.4 0.6 0.8 1.0  
FEEDBACK VOLTAGE (V)  
1935 G07  
1935 G08  
1935f  
3
LT1935  
U
U
U
PI FU CTIO S  
SW (Pin 1): Switch Pin. Connect inductor/diode here.  
SHDN(Pin4):ShutdownPin.Tieto1.8Vormoretoenable  
device.Groundtoshutdown.Thispinalsoprovidesasoft-  
start function; see Applications Information section.  
Minimize trace area at this pin to reduce EMI.  
GND (Pin 2): Ground. Tie directly to local ground plane.  
VIN (Pin 5): Input Supply Pin. Must be locally bypassed.  
FB (Pin 3): Feedback Pin. Reference voltage is 1.265V.  
Connect resistive divider tap here. Minimize trace area at  
FB. Set VOUT according to VOUT = 1.265V(1 + R1/R2).  
W
BLOCK DIAGRA  
1
SW  
1.265V  
REFERENCE  
COMPARATOR  
V
5
+
IN  
DRIVER  
A1  
FB  
3
4
Q1  
A2  
R
Q
R
C
+
C
S
C
SHDN  
+
0.01  
x15  
Σ
V
RAMP  
GENERATOR  
OUT  
R1 (EXTERNAL)  
2
GND  
FB  
1.2MHz  
OSCILLATOR  
R2 (EXTERNAL)  
1935 BD  
Figure 2. Block Diagram  
U
OPERATIO  
The LT1935 uses a constant frequency, current mode  
control scheme to provide excellent line and load regula-  
tion. Operation can be best understood by referring to the  
Block Diagram in Figure 2. At the start of each oscillator  
cycle, the SR latch is set, turning on the power switch Q1.  
A voltage proportional to the switch current is added to a  
stabilizing ramp and the resulting sum is fed into the  
positive terminal of the PWM comparator, A2. When this  
voltage exceeds the level at the negative input of A2, the  
SR latch is reset, turning off the power switch. The level  
at the negative input of A2 is set by error amplifier A1, and  
is simply an amplified version of the difference between  
the feedback voltage and the reference voltage of 1.265V.  
In this manner, the error amplifier sets the correct peak  
current level to keep the output in regulation. If the error  
amplifier’s output increases, more current is delivered to  
the output; if it decreases, less current is delivered.  
A
clamp on the output of A1 (not shown) limits the switch  
current to 3A. A1’s output is also clamped to the voltage  
on the SHDN pin, providing a soft-start function by con-  
trolling the peak switch current during start-up.  
1935f  
4
LT1935  
U
W U U  
APPLICATIONS INFORMATION  
Inductor Selection  
Use a 4.7µF ceramic capacitor to bypass the input of the  
LT1935. Be aware that the switching regulators require a  
low impedance input supply. Additional bulk capacitance  
may be required if the LT1935 circuit is more than a few  
inches away from the power source. If there are low ESR  
capacitors nearby, the input bypass capacitor can be  
reduced to 2.2µF.  
Use inductors that are intended for high frequency power  
applications. The saturation current rating should be at  
least 2A. The RMS current rating, which is usually based  
on heating of the inductor, should be higher than the  
average current in the inductor in your application. For  
best efficiency, the DC resistance should be less than  
100m.  
The output capacitor supports the output under transient  
loads and stabilizes the control loop of the LT1935. Look  
at the typical application circuits as a starting point to  
choose a value. Generally, a higher output capacitance is  
required at higher load currents and lower input voltages.  
A good first choice for the inductor value results in a ripple  
current that is 1/3 of the maximum switch current:  
L = 3 (VIN/VOUT) (VOUT – VIN)/(IMAX • f)  
IMAX is the maximum switch current of 2A and f is the  
switchingfrequency.Atlowerdutycycles(lessthan70%),  
this value can be lowered somewhat in order to use a  
physically smaller inductor.  
Figure 3 shows transient response of the circuit in Fig-  
ure 1.Theloadissteppedfrom200mAto400mAandback  
to 200mA. The transient performance can be improved by  
increasing the output capacitance, but may require a  
phase lead capacitor between the output and the FB pin.  
Figure 4 shows the transient response with the output  
capacitor increased to 20µF. Figure 5 shows the additional  
improvement resulting from the phase lead capacitor.  
Table 1 lists several inductor manufacturers, along with  
part numbers for inductors that are a good match to the  
LT1935.  
Table 1. Inductor Suppliers  
Supplier  
Model Prefix  
Sumida  
CDRH4D18, CDRH4D28,  
CDRH5D18, CDRH5D28, CR43  
V
OUT  
100mV/DIV  
Coiltronics/Cooper  
SD10, SD12, SD18, SD20  
..  
Wurth Elektronik  
WE-PD2S, WE-PD3S, WE-PD4S  
MSS5131, MSS6132, DO1608  
Coilcraft  
I
LOAD  
200mA/DIV  
Diode Selection  
0
Use a Schottky rectifier with a 1A or higher current rating,  
suchastheOnSemiconductorMBRM120.Its20Vreverse  
voltage rating is adequate for most applications. Higher  
output voltages may require a 30V of 40V diode.  
1935 F03  
50µs/DIV  
Figure 3. Transient Response of the Circuit in Figure 1,  
COUT = 10µF  
Capacitor Selection  
V
OUT  
100mV/DIV  
Use capacitors with low ESR (equivalent series resis-  
tance). In most cases, multilayer ceramic capacitors are  
the best choice. They offer high performance (very low  
ESR) in a small package. Use only X5R or X7R types; they  
maintain their capacitance over temperature and applied  
voltage. Other suitable capacitor types include low-ESR  
tantalum capacitors that are specified for power applica-  
tions, and newer types of capacitors such as Sanyo’s  
POSCAP and Panasonic’s SP CAP.  
I
LOAD  
200mA/DIV  
1935 F04  
50µs/DIV  
Figure 4. Transient Response with COUT = 20µF  
1935f  
5
LT1935  
U
W U U  
APPLICATIONS INFORMATION  
Soft Start  
V
OUT  
The SHDN pin can be used to soft start the LT1935,  
reducing the maximum input current during start up. The  
SHDN pin is driven through an external RC filter to create  
a ramp at this pin. Figure 6 shows the start-up waveforms  
with and without the soft start circuit. Without soft start,  
the input current peaks at ~3A. With soft start, the peak  
current is reduced to 1A. By choosing a large RC time  
constant, the peak start-up current can be reduced to the  
current that is required to regulate the output, with no  
overshoot. Choose the value of the resistor so that it can  
supply 100µA when the SHDN pin reaches 1.8V.  
100mV/DIV  
I
LOAD  
200mA/DIV  
1935 F05  
50µs/DIV  
84.5k 68pF  
OUT  
20µF  
FB  
10k  
Figure 5. Transient Response with a 68pF Phase-Lead Capacitor  
RUN  
5V/DIV  
RUN  
5V/DIV  
V
V
OUT  
2V/DIV  
OUT  
2V/DIV  
I
IN  
1A/DIV  
I
IN  
1A/DIV  
1935 F06a  
1935 F06b  
20µs/DIV  
200µs/DIV  
10k  
SHDN  
GND  
SHDN  
GND  
RUN  
RUN  
0.22µF  
Figure 6. Adding a Resistor and Capacitor to the SHDN Pin  
Reduces the Peak Input Current During Start-Up. VIN = 3.3V,  
VOUT = 5V, C2 = 20µF, Output Load = 10.  
Layout Hints  
ThehighspeedoperationoftheLT1935demandscareful  
attention to board layout. You will not get advertised  
performance with careless layout. Figure 7 shows the  
recommended component placement. Make the ground  
pin copper area large. This helps to lower the die  
temperature.  
L1  
D1  
C1  
V
OUT  
V
IN  
+
C2  
SHDN  
R2  
R1  
C3  
GND  
1935 F03  
Figure 7. Suggested Layout  
1935f  
6
LT1935  
U
TYPICAL APPLICATIO S  
Efficiency, VOUT = 5V  
90  
85  
80  
75  
70  
65  
60  
55  
50  
5V Boost Converter  
L1  
1.8µH  
D1  
V
V
= 3.3V  
OUT  
5V  
1A, V = 3.3V  
IN  
= 2.5V  
V
IN  
2.3V TO 4.8V  
V
IN  
IN  
0.6A, V = 2.5V  
IN  
C3  
150pF  
V
SW  
C1  
R1  
IN  
4.7µF  
29.4k  
LT1935  
SHDN  
C2  
20µF  
ON OFF  
FB  
R2  
10k  
GND  
C1, C2: X5R OR X7R 6.3V  
D1: ON SEMI MBRM120  
L1: SUMIDA CR43-1R8  
1935 TA01  
0
200  
400  
600  
800 1000 1200  
LOAD CURRENT (mA)  
3.3V to 12V Boost Converter  
L1  
4.2µH  
D1  
V
OUT  
V
IN  
3.3V  
12V  
320mA  
V
SW  
C1  
IN  
R1  
84.5k  
4.7µF  
47pF  
LT1935  
SHDN  
C2  
22µF  
ON OFF  
FB  
R2  
10k  
GND  
D1: ON SEMI MBRM120  
L1: SUMIDA CDRH5D28-4R2  
1935 TA02  
U
PACKAGE DESCRIPTIO  
S5 Package  
5-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1635)  
0.62  
MAX  
0.95  
REF  
2.90 BSC  
(NOTE 4)  
1.22 REF  
1.50 – 1.75  
(NOTE 4)  
2.80 BSC  
1.4 MIN  
3.85 MAX 2.62 REF  
PIN ONE  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.30 – 0.45 TYP  
5 PLCS (NOTE 3)  
0.95 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
NOTE:  
S5 TSOT-23 0302  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
1935f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tation that the interconnection ofits circuits as described herein willnotinfringe on existing patentrights.  
7
LT1935  
TYPICAL APPLICATIO S  
U
8V, 16V and –8V TFT LCD Power Supply  
16V  
10mA  
C3  
1µF  
D2B  
D2A  
C5  
0.1µF  
L1  
2.2µH  
V
IN  
3.3V  
8V  
450mA  
D1  
V
SW  
C1  
4.7µF  
R1  
100k  
IN  
LT1935  
C2  
10µF  
ON OFF  
SHDN  
FB  
R2  
18.7k  
GND  
C1: X5R OR X7R 6.3V  
C2, C4, C5, C6: X5R OR X7R 10V  
C3: X5R OR X7R 25V  
D1: MBRM120 OR EQUIVALENT  
D2, D3: BAT-54S OR EQUIVALENT  
L1: SUMIDA CDRH4D28-2R2  
C6  
0.1µF  
C4  
D3A  
1µF  
D3B  
–8V  
10mA  
1935 TA03  
5V SEPIC Converter  
C3  
2.2µF  
L1  
4.7µH  
D1  
V
V
OUT  
IN  
3.2V TO 9V  
5V  
425mA, V >3.2V  
IN  
500mA, V >3.6V  
IN  
V
SW  
C1  
IN  
R1  
29.4k  
550mA, V >4V  
IN  
47pF  
4.7µF  
LT1935  
C2  
47µF  
ON OFF  
SHDN  
FB  
L2  
4.7µH  
R2  
10k  
GND  
C1, C3: X5R OR X7R 10V  
C2: X5R OR X7R 6.3V  
D1: ON SEMI MBRM120  
L1, L2: SUMIDA CDRH4D18-4R7  
1935 TA04  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
1.5A (I ), 1.25MHz, High Efficiency Step-Up DC/DC Converter  
COMMENTS  
LT1618  
V : 1.6V to 18V, V  
IN  
: 35V, I : 1.8mA,  
Q
: <1µA, MS, DFN Packages  
SW  
OUT(MAX)  
I
SD  
LT1930/LT1930A  
LT1943  
1A (I ), 1.2MHz/2.2MHz, High Efficiency Step-Up DC/DC Converter  
V : 2.6V to 16V, V  
: 34V, I : 4.2mA/5.5mA  
Q
SW  
IN  
OUT(MAX)  
I
: <1µA, ThinSOT Package  
SD  
Quad Output, 2.6A Buck, 2.6A Boost, 0.3A Boost,  
0.4A Inverter 1.2MHz TFT DC/DC Converter  
V : 4.5V to 22V, V  
: 40V, I : 10mA,  
IN  
OUT(MAX) Q  
I
: <35µA, TSSOP-28E Package  
SD  
LT1946/LT1946A  
1.5A (I ), 1.2MHz/2.7MHz, High Efficiency Step-Up DC/DC Converter  
V : 2.45V to 16V, V  
: 34V, I : 3.2mA,  
SW  
IN  
OUT(MAX) Q  
I
: <1µA, MS8 Package  
SD  
LTC3400/LTC3400B 600mA (I ), 1.2MHz, Synchronous Step-Up DC/DC Converter  
V : 0.85V to 5V, V  
: 5V, I : 19µA/300µA  
SW  
IN  
OUT(MAX) Q  
I
: <1µA, ThinSOT Package  
SD  
LTC3401/LT3402  
LTC3425  
1A/2A(I ), 3MHz, Synchronous Step-Up DC/DC Converter  
V : 0.5V to 5V, V  
: 6V, I : 38µA,  
SW  
IN  
OUT(MAX) Q  
I
: <1µA, MS Package  
SD  
5A (I ), 8MHz, Multi-Phase Synchronous Step-Up DC/DC Converter  
V : 0.5V to 4.5V, V  
: 5.25V, I : 12µA,  
OUT(MAX) Q  
SW  
IN  
I
: <1µA, QFN Package  
SD  
LT3436  
3A (I ), 1MHz, 34V Step-Up DC/DC Converter  
V : 3V to 25V, V  
: 34V, I : 0.9mA,  
SW  
IN  
OUT(MAX) Q  
I
: <6µA, TSSOP-16E Package  
SD  
LT3467/LT3467A  
1.1A (I ), 1.3MHz/2.1MHz, High Efficiency Step-Up DC/DC Converter  
V : 2.6V to 16V, V  
: 40V, I : 1.2mA,  
SW  
IN  
OUT(MAX) Q  
I
: <1µA, ThinSOT Package  
SD  
1935f  
LT/TP 0604 1K • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
8
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
© LINEAR TECHNOLOGY CORPORATION 2004  

相关型号:

LT1935ES5

1.2MHz Boost DC/DC Converter in ThinSOT with 2A Switch
Linear System

LT1935ES5

1.2MHz Boost DC/DC Converter in ThinSOT with 2A Switch
Linear

LT1935ES5#PBF

LT1935 - 1.2MHz Boost DC/DC Converter in ThinSOT with 2A Switch; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1935ES5#TRM

LT1935 - 1.2MHz Boost DC/DC Converter in ThinSOT with 2A Switch; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1935ES5#TRMPBF

暂无描述
Linear

LT1936

1.4A, 500kHz Step-Down Switching Regulator
Linear

LT1936EMS8E

1.4A, 500kHz Step-Down Switching Regulator
Linear

LT1936EMS8E#TR

LT1936 - 1.4A, 500kHz Step-Down Switching Regulator; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1936EMS8E#TRPBF

LT1936 - 1.4A, 500kHz Step-Down Switching Regulator; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1936EMS8E-PBF

1.4A, 500kHz Step-Down Switching Regulator
Linear

LT1936EMS8E-TR

1.4A, 500kHz Step-Down Switching Regulator
Linear

LT1936EMS8E-TRPBF

1.4A, 500kHz Step-Down Switching Regulator
Linear