LT1946A [Linear]

2.7MHz Boost DC/DC Converter with 1.5A Switch and Soft-Start; 2.7MHz升压型DC / DC转换器,具有1.5A开关和软启动
LT1946A
型号: LT1946A
厂家: Linear    Linear
描述:

2.7MHz Boost DC/DC Converter with 1.5A Switch and Soft-Start
2.7MHz升压型DC / DC转换器,具有1.5A开关和软启动

转换器 开关 软启动
文件: 总12页 (文件大小:314K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1946A  
2.7MHz Boost DC/DC  
Converter with 1.5A Switch  
and Soft-Start  
U
FEATURES  
DESCRIPTIO  
1.5A, 36V Internal Switch  
The LT®1946A is a fixed frequency step-up DC/DC con-  
verter containing an internal 1.5A, 36V switch. Capable of  
generating 12V at 430mA from a 5V input, the LT1946A is  
ideal for powering large TFT-LCD panels. The LT1946A  
switches at 2.7MHz, allowing the use of tiny, low profile  
inductors and low value ceramic capacitors. Loop com-  
pensationcanbeeitherinternalorexternal, givingtheuser  
flexibility in setting loop compensation and allowing opti-  
mized transient response with low ESR ceramic output  
capacitors.Soft-startiscontrolledwithanexternalcapaci-  
tor which determines the input current ramp rate during  
start up. The 8-lead MSOP package and high switching  
frequency ensure a low profile overall solution less than  
1.1mm high.  
2.7MHz Switching Frequency  
Integrated Soft-Start Function  
Adjustable Output from VIN to 35V  
Low VCESAT Switch: 300mV at 1.5A (Typical)  
12V at 430mA from a 5V Input  
Small Thermally Enhanced 8-Lead MSOP Package  
U
APPLICATIO S  
TFT-LCD Bias Supplies  
GPS Receivers  
DSL Modems  
Local Power Supply  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
L1  
D1  
Efficiency  
2.2µH  
V
OUT  
V
IN  
12V  
90  
5V  
430mA  
6
5
SW  
R1  
85  
80  
75  
70  
65  
60  
55  
50  
V
IN  
182k  
3
1
OFF ON  
SHDN  
LT1946A  
2
7
C1  
FB  
2.2µF  
C2  
2.2µF  
V
C
COMP  
GND*  
4
R
C
SS  
27.4k  
R2  
21k  
8
C
C
C
SS  
100nF  
270pF  
1946A TA01  
C1: 2.2µF, X5R or X7R, 6.3V  
C2: 2.2µF, X5R or X7R, 16V  
D1: MICROSEMI UPS120 OR EQUIVALENT  
L1: SUMIDA CR43-2R2  
* EXPOSED PAD MUST ALSO BE GROUNDED  
0
100  
200  
300  
400  
500  
LOAD CURRENT (mA)  
Figure 1. 5V to 12V, 430mA Step-Up DC/DC Converter  
1946A TA01  
sn1946a 1946afs  
1
LT1946A  
W W  
U W  
U W  
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
ORDER PART  
VIN Voltage .............................................................. 16V  
SW Voltage ................................................0.4V to 36V  
FB Voltage .............................................................. 2.5V  
Current into FB Pin ............................................... ±1mA  
SHDN Voltage .......................................................... 16V  
Maximum Junction Temperature .......................... 125°C  
Operating Temperature  
Range (Note 2) ....................................... 40°C to 85°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
TOP VIEW  
NUMBER  
V
1
2
3
4
8 SS  
7 COMP  
C
FB  
SHDN  
GND  
LT1946AEMS8E  
6 V  
5 SW  
IN  
MS8E PACKAGE  
8-LEAD PLASTIC MSOP  
EXPOSED PAD IS GROUND  
(MUST BE SOLDERED TO PCB)  
MS8E PART  
MARKING  
LTYZ  
TJMAX = 125°C, θJA = 40°C/W,  
θJC = 10°C/W  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 3V, VSHDN = VIN unless otherwise noted. (Note 2)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
2.6  
UNITS  
Minimum Operating Voltage  
Maximum Operating Voltage  
Feedback Voltage  
2.45  
V
V
16  
1.23  
1.22  
1.25  
1.27  
1.27  
V
V
FB Pin Bias Current  
V
= 1.25V (Note 3)  
20  
40  
120  
nA  
µmhos  
V/V  
FB  
Error Amp Transconductance  
Error Amp Voltage Gain  
Quiescent Current  
I = 2µA  
300  
3.6  
0
V
V
= 2.5V, Not Switching  
5
1
mA  
SHDN  
SHDN  
Quiescent Current in Shutdown  
Reference Line Regulation  
Switching Frequency  
= 0V, V = 3V  
µA  
IN  
2.6V V 16V  
0.01  
2.7  
0.05  
%/V  
IN  
2.4  
2.3  
3
3.1  
MHz  
MHz  
Switching Frequency in Foldback  
Maximum Duty Cycle  
V
= 0V  
0.85  
80  
MHz  
%
FB  
73  
Switch Current Limit  
(Note 4)  
1.5  
2.1  
240  
0.01  
4
3.1  
340  
1
A
Switch V  
I
= 1A  
SW  
mV  
µA  
µA  
V
CESAT  
Switch Leakage Current  
Soft-Start Charging Current  
SHDN Input Voltage High  
SHDN Input Voltage Low  
SHDN Pin Bias Current  
V
V
= 5V  
SW  
SS  
= 0.5V  
2.5  
2.4  
6
0.5  
V
V
V
= 3V  
= 0V  
16  
0
32  
0.1  
µA  
µA  
SHDN  
SHDN  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
temperature range are assured by design, characterization and correlation  
with statistical process controls.  
Note 2: The LT1946AE is guaranteed to meet performance specifications  
from 0°C to 70°C. Specifications over the –40°C to 85°C operating  
Note 3: Current flows out of the FB pin.  
Note 4: Current limit guaranteed by design and/or correlation to static test.  
Current limit is independent of duty cycle and is guaranteed by design.  
sn1946a 1946afs  
2
LT1946A  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Feedback Pin Voltage  
Oscillator Frequency  
Current Limit  
1.28  
3000  
2700  
2400  
2100  
1800  
1500  
1200  
900  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.27  
1.26  
1.25  
1.24  
1.23  
1.22  
1.21  
1.20  
T
= –30°C  
T
T
= 100°C  
= 25°C  
A
A
A
600  
300  
0
–50 –25  
0
25  
50  
75 100 125  
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
FEEDBACK VOLTAGE (V)  
TEMPERATURE (°C)  
1946A G01  
1946A G02  
1946A G03  
Switching Waveforms for  
Figure 1 Circuit  
Switch Saturation Voltage  
Quiescent Current  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
4.0  
3.8  
3.6  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
VOUT  
100mV/DIV  
AC COUPLED  
VSW  
10V/DIV  
0V  
ILI  
0.5A/DIV  
100ns/DIV  
1946A G06  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6  
–50 –25  
0
25  
50  
75 100 125  
SWITCH CURRENT (A)  
TEMPERATURE (°C)  
1946A G04  
1946A G05  
Transient Response for  
Figure 1 Circuit  
Start-Up Waveforms for  
Figure 1 Circuit  
VOUT  
100mV/DIV  
AC COUPLED  
VOUT  
2V/DIV  
IIN  
200mA/DIV  
0A  
ILI  
0.5A/DIV  
250mA  
ILOAD  
5V  
0V  
VSHDN  
150mA  
50µs/DIV  
1946A G07  
RLOAD = 250Ω  
1ms/DIV  
1946A G08  
sn1946a 1946afs  
3
LT1946A  
U
U
U
PI FU CTIO S  
VC (Pin 1): Error Amplifier Output Pin. Tie external com-  
pensation network to this pin or use the internal compen-  
sation network by shorting the VC pin to the COMP pin.  
External compensation consists of placing a resistor and  
capacitor in series from VC to GND. Typical capacitor  
rangeisfrom90pFto270pF.Typicalresistorrangeisfrom  
25k to 120k.  
SW (Pin 5): Switch Pin. This is the collector of the internal  
NPN power switch. Minimize the metal trace area con-  
nected to this pin to minimize EMI.  
VIN (Pin 6): Input Supply Pin. Must be locally bypassed.  
COMP (Pin 7): Internal Compensation Pin. Provides an  
internal compensation network. Tie directly to the VC pin  
for internal compensation. Tie to GND if not used.  
FB (Pin 2): Feedback Pin. Reference voltage is 1.25V.  
Connect resistive divider tap here. Minimize trace area at  
FB. Set VOUT according to VOUT = 1.25 • (1+R1/R2).  
SS (Pin 8): Soft-Start Pin. Place a soft-start capacitor  
here. Upon start-up, 4µA of current charges the capacitor  
to 1.5V. Use a larger capacitor for slower start-up. Leave  
floating if not in use.  
SHDN(Pin3):ShutdownPin.Tieto2.4Vormoretoenable  
device. Ground to shut down. Do not float this pin.  
GND (Pin 4, Exposed Pad): Ground. Tie both Pin 4 and  
the exposed pad directly to local ground plane. The  
ground metal to the exposed pad should be wide for better  
heat dissipation. Multiple vias (local ground plane ↔  
ground backplane) placed close to the exposed pad can  
further aid in reducing thermal resistance.  
sn1946a 1946afs  
4
LT1946A  
W
BLOCK DIAGRA  
SS  
8
V
COMP  
7
C
1
4µA  
120k  
90pF  
5
SW  
COMPARATOR  
A2  
+
DRIVER  
R
Q
Q1  
S
1.25V  
6
+
V
IN  
+
REFERENCE  
A1  
A3  
0.01Ω  
Σ
V
OUT  
RAMP  
GENERATOR  
R1 (EXTERNAL)  
FB  
+
4
GND  
0.5V  
R2 (EXTERNAL)  
÷ 3  
2.7MHz  
OSCILLATOR  
EXPOSED  
PAD  
SHDN  
3
2
SHUTDOWN  
1946A F02  
FB  
Figure 2. Block Diagram  
sn1946a 1946afs  
5
LT1946A  
U
OPERATIO  
a nominal value of 0.5V. This is accomplished via com-  
parator A3. This feature reduces the minimum duty cycle  
thatthepartcanachievethusallowingbettercontrolofthe  
switch current during start-up. When the FB pin voltage  
goes above 0.5V, the oscillator returns to the normal  
frequencyof2.7MHz.Asoft-startfunctionisalsoprovided  
by the LT1946A. When the part is brought out of shut-  
down, 4µA of current is sourced out of the SS pin. By  
connecting an external capacitor to the SS pin, the rate of  
voltage rise on the pin can be set. Typical values for the  
soft-start capacitor range from 10nF to 200nF. The SS pin  
directly limits the rate of rise on the VC pin, which in turn  
limits the peak switch current. Current limit is not shown  
inFigure2.Theswitchcurrentisconstantlymonitoredand  
not allowed to exceed the nominal value of 2.1A. If the  
switch current reaches 2.1A, the SR latch is reset regard-  
less of the output of comparator A2. This current limit  
protects the power switch as well as various external  
components connected to the LT1946A.  
The LT1946A uses a constant frequency, current mode  
control scheme to provide excellent line and load regula-  
tion. Please refer to Figure 2 for the following description  
of the part’s operation. At the start of the oscillator cycle,  
the SR latch is set, turning on the power switch Q1. The  
switch current flows through the internal current sense  
resistor generating a voltage. This voltage is added to a  
stabilizing ramp and the resulting sum is fed into the  
positive terminal of the PWM comparator A2. When this  
voltageexceedsthelevelatthenegativeinputofA2,theSR  
latch is reset, turning off the power switch. The level at the  
negative input of A2 (VC pin) is set by the error amplifier  
(A1) and is simply an amplified version of the difference  
between the feedback voltage and the reference voltage of  
1.250V. In this manner, the error amplifier sets the correct  
peak current level to keep the output in regulation.  
Two functions are provided to enable a very clean start-up  
for the LT1946A. Frequency foldback is used to reduce the  
oscillator frequency by one-third when the FB pin is below  
W U U  
U
APPLICATIO S I FOR ATIO  
Inductor Selection  
Table 1. Recommended Inductors - LT1946A  
MAX  
DCR  
(µH) (m)  
Size  
LxWxH  
(mm)  
L
Several inductors that work well with the LT1946A are  
listed in Table 1. This table is not complete, and there are  
many other manufacturers and devices that can be used.  
Consult each manufacturer for more detailed information  
and for their entire selection of related parts, as many  
differentsizesandshapesareavailable.Ferritecoreinduc-  
tors should be used to obtain the best efficiency, as core  
losses at 2.7MHz are much lower for ferrite cores than for  
the cheaper powdered-iron ones. Choose an inductor that  
can handle at least 1.5A without saturating, and ensure  
that the inductor has a low DCR (copper-wire resistance)  
to minimize I2R power losses. A 1.5µH to 4.7µH inductor  
will be the best choice for most LT1946A designs. Note  
that in some applications, the current handling require-  
ments of the inductor can be lower, such as in the SEPIC  
topology where each inductor only carries one-half of the  
total switch current.  
PART  
VENDOR  
RLF5018-1R5M2R1  
RLF5018-2R7M1R8  
RLF5018-4R7M1R4  
RLF5018-100MR94  
1.5  
2.7  
4.7  
25  
33  
45  
67  
5.2x5.6x1.8 TDK  
(847) 803-6100  
www.tdk.com  
10.0  
LPO1704-122MC  
LPO1704-222MC  
1.2  
2.2  
80  
120  
5.5x6.6x1.0 Coilcraft  
(800) 322-2645  
www.coilcraft.com  
CR43-2R2  
CR43-3R3  
2.2  
3.3  
71  
86  
4.5x4.0x3.2 Sumida  
(847) 956-0666  
www.sumida.com  
Capacitor Selection  
Low ESR (equivalent series resistance) capacitors should  
beusedattheoutputtominimizetheoutputripplevoltage.  
Multilayer ceramic capacitors are an excellent choice, as  
they have an extremely low ESR and are available in very  
small packages. X5R dielectrics are preferred, followed by  
X7R, as these materials retain the capacitance over wide  
TheinductorsshowninTable1werechosenforsmallsize.  
For better efficiency, use similar valued inductors with a  
larger volume.  
voltage and temperature ranges. A 2.2µF to 20µF output  
sn1946a 1946afs  
6
LT1946A  
W U U  
APPLICATIO S I FOR ATIO  
U
capacitor is sufficient for most applications, but systems  
with very low output currents may need only a 1µF or  
smaller output capacitor. Solid tantalum or OSCON ca-  
pacitorscanbeused,buttheywilloccupymoreboardarea  
than a ceramic and will have a higher ESR. Always use a  
capacitor with a sufficient voltage rating.  
V
OUT  
200mV/DIV  
AC COUPLED  
I
L1  
Ceramic capacitors also make a good choice for the input  
decoupling capacitor, which should be placed as close as  
possible to the LT1946A. A 2.2µF to 4.7µF input capacitor  
is sufficient for most applications. Table 2 shows a list of  
several ceramic capacitor manufacturers. Consult the  
manufacturers for detailed information on their entire  
selection of ceramic parts.  
0.5A/DIV  
1946A F03a  
R
= 2.5k  
C
50µs/DIV  
Figure 3a. Transient Response Shows Excessive Ringing  
Table 2. Ceramic Capacitor Manufacturers  
V
OUT  
200mV/DIV  
Taiyo Yuden  
AVX  
(408) 573-4150  
(803) 448-9411  
(714) 852-2001  
www.t-yuden.com  
www.avxcorp.com  
www.murata.com  
AC COUPLED  
Murata  
I
L1  
0.5A/DIV  
Compensation  
1946A F03b  
TocompensatethefeedbackloopoftheLT1946A, aseries  
resistor-capacitor network should be connected from the  
COMPpintoGND.Formostapplications,acapacitorinthe  
range of 90pF to 470pF will suffice. A good starting value  
for the compensation capacitor, CC, is 270pF. The com-  
pensation resistor, RC, is usually in the range of 20k to  
100k. A good technique to compensate a new application  
is to use a 100k potentiometer in place of RC, and use a  
270pF capacitor for CC. By adjusting the potentiometer  
while observing the transient response, the optimum  
value for RC can be found. Figures 3a-3c illustrate this  
process for the circuit of Figure 1. Figure 3a shows the  
transient response with RC equal to 2.5k. The phase  
marginispoorasevidencedbytheexcessiveringinginthe  
output voltage and inductor current. In Figure 3b the value  
of RC is increased to 6.5k, which results in a more damped  
response. Figure 3c shows the results when RC is in-  
creased further to 27.4k. The transient response is nicely  
damped and the compensation procedure is complete.  
The COMP pin provides access to an internal resistor  
(120k) and capacitor (90pF). For some applications, these  
values will suffice and no external RC and CC will be  
needed.  
R
= 6.5k  
C
50µs/DIV  
Figure 3b. Transient Response is Better  
V
OUT  
200mV/DIV  
AC COUPLED  
I
L1  
0.5A/DIV  
1946A F03c  
R
= 27.4k  
C
50µs/DIV  
Figure 3c. Transient Response is Well Damped  
Compensation-Theory  
Like all other current mode switching regulators, the  
LT1946A needs to be compensated for stable and efficient  
operation. Two feedback loops are used in the LT1946A:  
a fast current loop which does not require compensation,  
and a slower voltage loop which does. Standard bode plot  
analysis can be used to understand and adjust the voltage  
feedback loop.  
sn1946a 1946afs  
7
LT1946A  
W U U  
U
APPLICATIO S I FOR ATIO  
1
As with any feedback loop, identifying the gain and phase  
contribution of the various elements in the loop is critical.  
Figure 4 shows the key equivalent elements of a boost  
converter. Because of the fast current control loop, the  
power stage of the IC, inductor, and diode have been  
replaced by the equivalent transconductance amplifier  
Z2 =  
ESR Zero:  
RHP Zero:  
2• π ESR•COUT  
V
IN  
2 RL  
2• π VOUT2 L  
Z3 =  
GMP. GMP acts as a current source where the output  
current is proportional to the VC voltage. Note that the  
maximumoutputcurrentofGMP isfiniteduetothecurrent  
limit in the IC.  
FS  
3
P >  
3
High Frequency Pole:  
From Figure 4, the DC gain, poles and zeroes can be  
calculated as follows:  
Using the circuit of Figure 1 as an example, Table 3 shows  
the parameters used to generate the bode plot shown in  
Figure 5.  
2
Table 3. Bode Plot Parameters  
P =  
1
Output Pole:  
2• π RL COUT  
Parameter  
Value  
28  
Units  
Comment  
R
L
Application Specific  
Application Specific  
Not Adjustable  
Adjustable  
1
C
2.2  
10  
µF  
OUT  
P =  
Error Amp Pole:  
Error Amp Zero:  
2
R
MΩ  
pF  
2• π RO CC  
O
C
C
270  
27.4  
12  
R
C
kΩ  
Adjustable  
1
Z1 =  
V
V
V
Application Specific  
Application Specific  
Not Adjustable  
Not Adjustable  
Application Specific  
Not Adjustable  
Not Adjustable  
OUT  
IN  
2• π RC CC  
5
V
G
MA  
G
MP  
L
40  
µmho  
mho  
µH  
1.25  
VOUT  
A =  
•GMA RO •GMP RL  
5
DC Gain:  
2.2  
2.7  
10  
F
MHz  
mΩ  
S
ESR  
+
G
V
MP  
OUT  
From Figure 5, the phase when the gain reaches 0dB is  
122° giving a phase margin of 58°. This is more than  
adequate. The cross-over frequency is 90kHz, which is  
about 30 times lower than the frequency of the right half  
planezeroZ2.Itisimportantthatthecross-overfrequency  
beatleast3timeslowerthanthefrequencyoftheRHPzero  
to achieve adequate phase margin.  
ESR  
R
L
C
+
OUT  
1.250V  
REFERENCE  
V
C
R
R
1
2
G
MA  
R
C
R
O
C
C
G
G
OUT  
: TRANSCONDUCTANCE AMPLIFIER INSIDE IC  
MA  
MP  
: POWER STAGE TRANSCONDUCTANCE AMPLIFIER  
C
: OUTPUT CAPACITOR  
R : OUTPUT RESISTANCE DEFINED AS V  
DIVIDED BY I  
(MAX)  
LOAD  
L
OUT  
R1, R2: FEEDBACK RESISTOR DIVIDER NETWORK  
R : OUTPUT RESISTANCE OF G  
O
MA  
R : COMPENSATION RESISTOR  
C
C : COMPENSATION CAPACITOR  
C
Figure 4. Boost Converter Equivalent Model  
sn1946a 1946afs  
8
LT1946A  
W U U  
APPLICATIO S I FOR ATIO  
U
100  
Setting Output Voltage  
To set the output voltage, select the values of R1 and R2  
(see Figure 1) according to the following equation:  
50  
VOUT  
1.25V  
R1= R2  
– 1  
0
A good range for R2 is from 5k to 30k.  
–50  
Layout Hints  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
ThehighspeedoperationoftheLT1946Ademandscareful  
attention to board layout. You will not get advertised  
performance with careless layouts. Figure 6 shows the  
recommended component placement for a boost con-  
verter.  
1946A FO5a  
0
–100  
GROUND PLANE  
CSS  
C1  
58°  
+
C
C
C
V
IN  
R
–180  
–200  
1
2
3
4
8
7
6
5
R1  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
L1  
LT1946A  
1946A FO5b  
R2  
SHUTDOWN  
Figure 5. Gain and Phase Plots of Figure 1 Circuit  
MULTIPLE  
VIAs  
Diode Selection  
C2  
GND  
ASchottkydiodeisrecommendedforusewiththeLT1946A.  
The Microsemi UPS120 is a very good choice. Where the  
input to output voltage differential exceeds 20V, use the  
UPS140(a40Vdiode).Thesediodesareratedtohandlean  
average forward current of 1A. For applications where the  
average forward current of the diode is less than 0.5A, an  
ON Semiconductor MBR0520 diode can be used.  
V
OUT  
19949 F04  
NOTE: DIRECT HIGH CURRENT PATHS USING WIDE PC TRACES. MINIMIZE TRACE AREA AT  
PIN 1(VC) AND PIN 2(FB). USE MULTIPLE VIAS TO TIE PIN 4 COPPER TO GROUND PLANE. USE  
VIAS AT ONE LOCATION ONLY TO AVOID INTRODUCING SWITCHING CURRENTS INTO THE  
GROUND PLANE.  
Figure 6. Recommended Component  
Placement for Boost Converter  
sn1946a 1946afs  
9
LT1946A  
U
TYPICAL APPLICATIO S  
Low Profile (<1.1mm Tall) Triple Output TFT Supply (10V, –10V, 20V)  
D2  
D3  
V
ON  
20V  
5mA  
C5  
0.1µF  
L1  
1.5µH  
D1  
A
VDD  
V
IN  
10V  
5V  
475mA  
6
5
R1  
75k  
V
SW  
IN  
3
8
7
OFF ON  
SHDN  
2
SS LT1946A FB  
COMP  
+
C2  
20µF  
C3  
1µF  
C1  
4.7µF  
V
GND*  
4
C
1
R2  
10.5k  
C
SS  
R
59k  
C
C
100nF  
C
150pF  
C6  
0.1µF  
C1–C6: X5R or X7R  
C1: 4.7µF, 6.3V  
C2: 2× 10µF, 10V  
C3: 1µF, 25V  
D4  
D5  
C4  
2.2µF  
C4: 2.2µF, 10V  
C5–C6: 0.1µF, 10V  
V
OFF  
D1: MICROSEMI UPS120 OR EQUIVALENT  
D2–D5: ZETEX BAT54S OR EQUIVALENT  
L1: COILCRAFT LP01704-152MC  
–10V  
10mA  
1946A TA02  
* EXPOSED PAD MUST ALSO BE GROUNDED  
Transient Response  
Efficiency  
90  
85  
80  
75  
70  
65  
60  
55  
50  
AVDD  
50mV/DIV  
AC COUPLED  
ILI  
0.5A/DIV  
V
V
LOAD = 5mA  
LOAD = 10mA  
ON  
OFF  
350mA  
200mA  
AVDD LOAD  
0
100  
200  
300  
400  
500  
A
VDD  
LOAD CURRENT (mA)  
100µs/DIV  
1946A TA03  
1946A TA04  
sn1946a 1946afs  
10  
LT1946A  
U
TYPICAL APPLICATIO S  
Triple Output TFT Supply Uses SEPIC Topology for Output Disconnect  
D2  
V
ON  
23V  
C4  
10mA  
0.22µF  
D3  
V
OFF  
–12V  
C5  
0.22µF  
10mA  
L1  
10µH  
D1  
A
VDD  
V
IN  
12V  
12V ± 10%  
250mA  
6
5
SW  
C3  
1µF  
L2  
10µH  
R1  
V
IN  
3
8
1
84.5k  
OFF ON  
SHDN  
SS LT1946A FB  
2
+
C2  
C1  
V
C
20µF  
2.2µF  
COMP  
7
GND*  
4
R2  
9.76k  
C
SS  
100nF  
D1: MICROSEMI UPS120 OR EQUIVALENT  
D2–D3: CENTRAL SEMI CMDSH-3  
L1–L2: TDK RLF5018-100MR94  
C1–C5: X5R or X7R  
C1: 2.2µF, 6.3V  
C2: 2× 10µF, 16V  
C3: 1µF, 25V  
1946A TA09  
* EXPOSED PAD MUST ALSO BE GROUNDED  
C4: 0.22µF, 25V  
C5: 0.22µF, 16V  
MS8E Package  
8-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1662)  
BOTTOM VIEW OF  
EXPOSED PAD OPTION  
2.06 ± 0.102  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 3)  
0.889 ± 0.127  
(.035 ± .005)  
2.794 ± 0.102  
(.110 ± .004)  
0.52  
(.206)  
REF  
(.080 ± .004)  
1
8
7 6  
5
1.83 ± 0.102  
(.072 ± .004)  
5.23  
(.206)  
MIN  
3.2 – 3.45  
(.126 – .136)  
3.00 ± 0.102  
(.118 ± .004)  
NOTE 4  
2.083 ± 0.102  
(.082 ± .004)  
4.88 ± 0.1  
(.192 ± .004)  
DETAIL “A”  
0.254  
(.010)  
0° – 6° TYP  
GAUGE PLANE  
0.65  
(.0256)  
BSC  
0.42 ± 0.04  
1
2
3
4
(.0165 ± .0015)  
8
TYP  
0.53 ± 0.015  
(.021 ± .006)  
1.10  
(.043)  
MAX  
0.86  
(.34)  
REF  
RECOMMENDED SOLDER PAD LAYOUT  
DETAIL “A”  
0.18  
(.077)  
SEATING  
PLANE  
NOTE:  
0.22 – 0.38  
(.009 – .015)  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
0.13 ± 0.05  
(.005 ± .002)  
0.65  
(.0256)  
BCS  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
MSOP (MS8E) 1001  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
sn1946a 1946afs  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LT1946A  
U
TYPICAL APPLICATIO S  
Low Profile (<1.1mm Tall) Triple Output TFT Supply (8V, 8V, 24V)  
D2  
D3  
D4  
D5  
V
ON  
23V  
5mA  
C5  
0.1µF  
C6  
0.1µF  
C7  
0.1µF  
Efficiency  
L1  
90  
85  
80  
75  
70  
65  
60  
55  
50  
D1  
1.2µH  
AV  
8V  
DD  
V
IN  
3.3V  
375mA  
6
5
R2  
V
SW  
IN  
3
8
7
28.7k  
OFF ON  
SHDN  
2
SS LT1946A FB  
COMP  
+
C2  
C4  
1µF  
C1  
20µF  
4.7µF  
V
GND*  
4
C
1
R3  
5.23k  
C
SS  
100nF  
V
V
LOAD = 5mA  
ON  
OFF  
LOAD = 10mA  
C8  
0.1µF  
C1–C8: X5R or X7R  
C1: 4.7µF, 6.3V  
C2: 2× 10µF, 10V  
C3: 2.2µF, 10V  
C4: 1µF, 25V  
D7  
D6  
0
100  
200  
300  
400  
C3  
2.2µF  
A
LOAD CURRENT (mA)  
VDD  
1946A TA06  
C5, C6, C8: 0.1µF, 10V  
C7: 0.1µF, 16V  
V
OFF  
–8V  
D1: MICROSEMI UPS120 OR EQUIVALENT  
D2–D7: ZETEX BAT54S OR EQUIVALENT  
L1: COILCRAFT LP01704-122MC  
10mA  
1946A TA05  
* EXPOSED PAD MUST ALSO BE GROUNDED  
Transient Response  
Start-Up Waveforms  
AVDD  
5V/DIV  
AVDD  
50mV/DIV  
AC COUPLED  
VON  
10V/DIV  
ILI  
0.5A/DIV  
VOFF  
5V/DIV  
350mA  
ILOAD  
200mA  
IIN  
0.5A/DIV  
1946A TA07  
1946A TA08  
1ms/DIV  
50µs/DIV  
RELATED PARTS  
PART NUMBER  
LT1613  
DESCRIPTION  
550mA (I ), 1.4MHz, Step-Up DC/DC Converter  
COMMENTS  
V
V
= 0.9V to 10V, V  
to 34V, I = 3mA, I < 1µA, ThinSOTTM  
OUT Q SD  
SW  
IN  
IN  
LT1615/LT1615-1  
300mA/0.75mA (I ), Constant Off-Time Step-Up  
= 1V to 15V, V  
to 34V, I = 20µA, I < 1µA, ThinSOT  
OUT Q SD  
SW  
DC/DC Converter  
LT1930/LT1930A  
LT1946  
1A (I ), 1.2MHz/2.2MHz, Step-Up DC/DC Converter  
V
V
V
= 2.6V to 16V, V  
to 34V, I = 4.2mA/5.5mA, I < 1µA, ThinSOT  
OUT Q SD  
SW  
IN  
IN  
IN  
1.5A (I ), 1.2MHz, Step-Up DC/DC Converter  
= 2.45V to 16V, V  
to 34V, I = 3.2mA, I < 1µA, MS8  
OUT Q SD  
SW  
LT1961  
1.5A (I ), 1.25MHz, Step-Up DC/DC Converter  
= 3V to 25V, V  
to 35V, I = 0.9mA, I < 6µA, MS8E  
SW  
OUT Q SD  
ThinSOT is a trademark of Linear Technology Corporation.  
sn1946a 1946afs  
LT/TP 1102 2K • PRINTED IN USA  
12 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
LINEAR TECHNOLOGY CORPORATION 2001  

相关型号:

LT1946AEMS8E

2.7MHz Boost DC/DC Converter with 1.5A Switch and Soft-Start
Linear

LT1946AEMS8E#PBF

LT1946A - 2.7MHz Boost DC/DC Converter with 1.5A Switch and Soft-Start; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1946AEMS8E#TR

暂无描述
Linear

LT1946AEMS8E#TRPBF

LT1946A - 2.7MHz Boost DC/DC Converter with 1.5A Switch and Soft-Start; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1946EMS8

1.2MHz Boost DC/DC Converter with 1.5A Switch and Soft-Start
Linear

LT1947

Adjustable Output TFT-LCD Triple Switching Regulator
Linear

LT1947EMS

Adjustable Output TFT-LCD Triple Switching Regulator
Linear

LT1947EMS#PBF

LT1947 - Adjustable Output TFT-LCD Triple Switching Regulator; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1947EMS#TRPBF

LT1947 - Adjustable Output TFT-LCD Triple Switching Regulator; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1947EMSE

Adjustable Output TFT-LCD Triple Switching Regulator
Linear

LT1947EMSE#PBF

LT1947 - Adjustable Output TFT-LCD Triple Switching Regulator; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1947EMSE#TR

LT1947 - Adjustable Output TFT-LCD Triple Switching Regulator; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear