LT1962EMS8-1.8#TRPBF [Linear]

LT1962 - 300mA, Low Noise, Micropower LDO Regulators; Package: MSOP; Pins: 8; Temperature Range: -40°C to 85°C;
LT1962EMS8-1.8#TRPBF
型号: LT1962EMS8-1.8#TRPBF
厂家: Linear    Linear
描述:

LT1962 - 300mA, Low Noise, Micropower LDO Regulators; Package: MSOP; Pins: 8; Temperature Range: -40°C to 85°C

光电二极管 输出元件 调节器
文件: 总18页 (文件大小:470K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1962 Series  
300mA, Low Noise,  
Micropower  
LDO Regulators  
FeaTures  
DescripTion  
TheLT®1962seriesaremicropower,lownoise,lowdropout  
regulators. The devices are capable of supplying 300mA  
of output current with a dropout voltage of 270mV. De-  
signed for use in battery-powered systems, the low 30µA  
quiescent current makes them an ideal choice. Quiescent  
current is well controlled; it does not rise in dropout as it  
does with many other regulators.  
n
Low Noise: 20µV  
Output Current: 300mA  
(10Hz to 100kHz)  
RMS  
n
n
n
n
n
n
n
n
n
n
Low Quiescent Current: 30µA  
Wide Input Voltage Range: 1.8V to 20V  
Low Dropout Voltage: 270mV  
Very Low Shutdown Current: < 1µA  
No Protection Diodes Needed  
Fixed Output Voltages: 1.5V, 1.8V, 2.5V, 3V, 3.3V, 5V  
Adjustable Output from 1.22V to 20V  
Stable with 3.3µF Output Capacitor  
Stable with Aluminum, Tantalum or  
Ceramic Capacitors  
A key feature of the LT1962 regulators is low output noise.  
With the addition of an external 0.01µF bypass capacitor,  
output noise drops to 20µV  
bandwidth. The LT1962 regulators are stable with output  
capacitors as low as 3.3µF. Small ceramic capacitors can  
be used without the series resistance required by other  
regulators.  
over a 10Hz to 100kHz  
RMS  
n
n
n
n
Reverse Battery Protection  
No Reverse Current  
Overcurrent and Overtemperature Protected  
8-Lead MSOP Package  
Internalprotectioncircuitryincludesreversebatteryprotec-  
tion, current limiting, thermal limiting and reverse current  
protection.Thepartscomeinfixedoutputvoltagesof1.5V,  
1.8V, 2.5V, 3V, 3.3V and 5V, and as an adjustable device  
with a 1.22V reference voltage. The LT1962 regulators are  
available in the 8-lead MSOP package.  
applicaTions  
n
Cellular Phones  
n
Battery-Powered Systems  
n
Noise-Sensitive Instrumentation Systems  
L, LT, LTC, LTM, Linear Technology, the Linear logo and Burst Mode are registered trademarks  
of Linear Technology Corporation. All other trademarks are the property of their respective  
owners.  
Typical applicaTion  
Dropout Voltage  
400  
3.3V Low Noise Regulator  
350  
300  
250  
200  
150  
100  
50  
3.3V AT 300mA  
20µV NOISE  
IN  
OUT  
V
IN  
RMS  
+
3.7V TO  
20V  
1µF  
SENSE  
10µF  
LT1962-3.3  
0.01µF  
SHDN  
GND  
BYP  
1962 TA01  
0
0
50  
100  
150  
200  
250  
300  
LOAD CURRENT (mA)  
1962 TA02  
1962fba  
1
For more information www.linear.com/LT1962  
LT1962 Series  
absoluTe MaxiMuM raTings  
pin conFiguraTion  
(Note 1)  
IN Pin Voltage ......................................................... 20V  
OUT Pin Voltage...................................................... 20V  
Input to Output Differential Voltage (Note 2)........... 20V  
SENSE Pin Voltage.................................................. 20V  
ADJ Pin Voltage ........................................................ 7V  
BYP Pin Voltage..................................................... 0.6V  
SHDN Pin Voltage ................................................... 20V  
Output Short-Circuit Duration.......................... Indefinite  
Operating Junction Temperature Range  
TOP VIEW  
OUT  
SENSE/ADJ*  
BYP  
1
2
3
4
8 IN  
7 NC  
6 NC  
5 SHDN  
GND  
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
T
JMAX  
= 150°C, θ = 125°C/W  
JA  
*PIN 2: SENSE FOR LT1962-1.5/LT1962-1.8/  
LT1962-2.5/LT1962-3/LT1962-3.3/  
LT1962-5. ADJ FOR LT1962  
(Note 3) ............................................. –40°C to 125°C  
Storage Temperature Range .................. –65°C to 150°C  
Lead Temperature (Soldering, 10 sec)...................300°C  
orDer inForMaTion  
LEAD FREE FINISH  
LT1962EMS8#PBF  
TAPE AND REEL  
PART MARKING*  
LTML  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
LT1962EMS8#TRPBF  
LT1962IMS8#TRPBF  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
LT1962IMS8#PBF  
LTML  
LT1962EMS8-1.5#PBF  
LT1962EMS8-1.8#PBF  
LT1962EMS8-2.5#PBF  
LT1962EMS8-3#PBF  
LT1962EMS8-3.3#PBF  
LT1962EMS8-5#PBF  
LT1962EMS8-1.5#TRPBF  
LT1962EMS8-1.8#TRPBF  
LT1962EMS8-2.5#TRPBF  
LT1962EMS8-3#TRPBF  
LT1962EMS8-3.3#TRPBF  
LT1962EMS8-5#TRPBF  
LTSZ  
LTTA  
LTPT  
LTPQ  
LTPS  
LTPR  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on nonstandard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
The ldenotes the specifications which apply over the full operating  
elecTrical characTerisTics  
temperature range, otherwise specifications are at TA = 25°C. (Note 3)  
PARAMETER  
CONDITIONS  
LT1962  
MIN  
TYP  
MAX  
UNITS  
l
l
l
l
l
l
l
Minimum Operating Voltage  
I
= 300mA (Notes 4, 12)  
1.8  
2.3  
V
LOAD  
Regulated Output Voltage  
(Notes 4, 5)  
LT1962-1.5  
V
= 2V, I  
= 1mA  
LOAD  
1.485  
1.462  
1.500  
1.500  
1.515  
1.538  
V
V
IN  
2.5V < V < 20V, 1mA < I  
< 300mA  
< 300mA  
< 300mA  
IN  
LOAD  
LOAD  
LOAD  
LT1962-1.8  
LT1962-2.5  
LT1962-3  
V
= 2.3V, I  
= 1mA  
LOAD  
1.782  
1.755  
1.800  
1.800  
1.818  
1.845  
V
V
IN  
2.8V < V < 20V, 1mA < I  
IN  
V
= 3V, I  
= 1mA  
LOAD  
2.475  
2.435  
2.500  
2.500  
2.525  
2.565  
V
V
IN  
3.5V < V < 20V, 1mA < I  
IN  
V
= 3.5V, I  
= 1mA  
LOAD  
2.970  
2.925  
3.000  
3.000  
3.030  
3.075  
V
V
IN  
4V < V < 20V, 1mA < I  
< 300mA  
IN  
LOAD  
LT1962-3.3  
LT1962-5  
V
= 3.8V, I  
= 1mA  
LOAD  
3.267  
3.220  
3.300  
3.300  
3.333  
3.380  
V
V
IN  
4.3V < V < 20V, 1mA < I  
< 300mA  
IN  
LOAD  
V
= 5.5V, I  
= 1mA  
LOAD  
4.950  
4.875  
5.000  
5.000  
5.050  
5.125  
V
V
IN  
6V < V < 20V, 1mA < I  
< 300mA  
IN  
LOAD  
1962fba  
2
For more information www.linear.com/LT1962  
LT1962 Series  
elecTrical characTerisTics The ldenotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 3)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ADJ Pin Voltage  
(Notes 4, 5)  
LT1962  
V
= 2V, I  
= 1mA  
LOAD  
1.208  
1.190  
1.220  
1.220  
1.232  
1.250  
V
V
IN  
l
2.3V < V < 20V, 1mA < I  
< 300mA  
LOAD  
IN  
l
l
l
l
l
l
l
Line Regulation  
LT1962-1.5  
LT1962-1.8  
LT1962-2.5  
LT1962-3  
∆V = 2V to 20V, I  
IN  
= 1mA  
1
1
1
1
1
1
1
5
5
5
5
5
5
5
mV  
mV  
mV  
mV  
mV  
mV  
mV  
IN  
LOAD  
∆V = 2.3V to 20V, I  
= 1mA  
LOAD  
∆V = 3V to 20V, I  
= 1mA  
IN  
LOAD  
∆V = 3.5V to 20V, I  
= 1mA  
IN  
LOAD  
LOAD  
LOAD  
LT1962-3.3  
LT1962-5  
∆V = 3.8V to 20V, I  
= 1mA  
= 1mA  
IN  
∆V = 5.5V to 20V, I  
IN  
LT1962 (Note 4) ∆V = 2V to 20V, I  
= 1mA  
IN  
LOAD  
Load Regulation  
LT1962-1.5  
LT1962-1.8  
LT1962-2.5  
LT1962-3  
V
V
= 2.5V, ∆I  
= 2.5V, ∆I  
= 1mA to 300mA  
= 1mA to 300mA  
3
8
mV  
mV  
IN  
IN  
LOAD  
LOAD  
l
l
l
l
l
l
l
l
l
l
l
15  
V
V
= 2.8V, ∆I  
= 2.8V, ∆I  
= 1mA to 300mA  
= 1mA to 300mA  
4
9
18  
mV  
mV  
IN  
IN  
LOAD  
LOAD  
V
V
= 3.5V, ∆I  
= 3.5V, ∆I  
= 1mA to 300mA  
= 1mA to 300mA  
5
12  
25  
mV  
mV  
IN  
IN  
LOAD  
LOAD  
V
V
= 4V, ∆I  
= 4V, ∆I  
= 1mA to 300mA  
= 1mA to 300mA  
7
15  
30  
mV  
mV  
IN  
IN  
LOAD  
LOAD  
LT1962-3.3  
LT1962-5  
V
V
= 4.3V, ∆I  
= 4.3V, ∆I  
= 1mA to 300mA  
= 1mA to 300mA  
7
17  
33  
mV  
mV  
IN  
IN  
LOAD  
LOAD  
V
V
= 6V, ∆I  
= 6V, ∆I  
= 1mA to 300mA  
= 1mA to 300mA  
12  
2
25  
50  
mV  
mV  
IN  
IN  
LOAD  
LOAD  
LT1962 (Note 4)  
V
V
= 2.3V, ∆I  
= 2.3V, ∆I  
= 1mA to 300mA  
= 1mA to 300mA  
6
12  
mV  
mV  
IN  
IN  
LOAD  
LOAD  
Dropout Voltage  
I
I
= 10mA  
= 10mA  
0.10  
0.15  
0.18  
0.27  
0.15  
0.21  
V
V
LOAD  
LOAD  
V
= V  
OUT(NOMINAL)  
IN  
(Notes 6, 7, 12)  
I
I
= 50mA  
= 50mA  
0.20  
0.28  
V
V
LOAD  
LOAD  
I
I
= 100mA  
= 100mA  
0.24  
0.33  
V
V
LOAD  
LOAD  
I
I
= 300mA  
= 300mA  
0.33  
0.43  
V
V
LOAD  
LOAD  
l
l
l
l
l
GND Pin Current  
I
I
I
I
I
= 0mA  
30  
65  
1.1  
2
75  
120  
1.6  
3
µA  
µA  
mA  
mA  
mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
V
= V  
= 1mA  
IN  
OUT(NOMINAL)  
(Notes 6, 8)  
= 50mA  
= 100mA  
= 300mA  
8
12  
Output Voltage Noise  
ADJ Pin Bias Current  
Shutdown Threshold  
C
= 10µF, C  
= 0.01µF, I  
= 300mA, BW = 10Hz to 100kHz  
20  
30  
µV  
RMS  
OUT  
BYP  
LOAD  
(Notes 4, 9)  
100  
2
nA  
l
l
V
V
= Off to On  
= On to Off  
0.8  
0.65  
V
V
OUT  
OUT  
0.25  
SHDN Pin Current  
(Note 10)  
V
SHDN  
V
SHDN  
= 0V  
= 20V  
0.01  
1
0.5  
5
µA  
µA  
Quiescent Current in Shutdown  
Ripple Rejection  
V
V
= 6V, V  
= 0V  
SHDN  
0.1  
65  
1
µA  
dB  
IN  
– V  
= 1.5V (Avg), V  
= 0.5V , f = 120Hz,  
P-P RIPPLE  
55  
IN  
OUT  
RIPPLE  
I
= 300mA  
LOAD  
Current Limit  
V
V
= 7V, V  
= 0V  
700  
mA  
mA  
IN  
IN  
OUT  
OUT(NOMINAL)  
l
l
= V  
+ 1V, ∆V  
= –0.1V  
320  
OUT  
Input Reverse Leakage Current  
V
= –20V, V  
= 0V  
OUT  
1
mA  
IN  
1962fba  
3
For more information www.linear.com/LT1962  
LT1962 Series  
elecTrical characTerisTics  
The ldenotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 3)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Reverse Output Current  
(Note 11)  
LT1962-1.5  
LT1962-1.8  
LT1962-2.5  
LT1962-3  
V
V
V
V
V
V
V
= 1.5V, V < 1.5V  
10  
10  
10  
10  
10  
10  
5
20  
20  
20  
20  
20  
20  
10  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
IN  
= 1.8V, V < 1.8V  
IN  
= 2.5V, V < 2.5V  
IN  
= 3V, V < 3V  
IN  
LT1962-3.3  
LT1962-5  
= 3.3V, V < 3.3V  
IN  
= 5V, V < 5V  
IN  
LT1962 (Note 4)  
= 1.22V, V < 1.22V  
IN  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 6: To satisfy requirements for minimum input voltage, the LT1962  
(adjustable version) is tested and specified for these conditions with an  
external resistor divider (two 250k resistors) for an output voltage of  
2.44V. The external resistor divider will add a 5µA DC load on the output.  
Note 2: Absolute maximum input to output differential voltage cannot  
be achieved with all combinations of rated IN pin and OUT pin voltages.  
With the IN pin at 20V, the OUT pin may not be pulled below 0V. The total  
measured voltage from in to out can not exceed 20V.  
Note 7: Dropout voltage is the minimum input to output voltage differential  
needed to maintain regulation at a specified output current. In dropout, the  
output voltage will be equal to: V – V  
.
IN  
DROPOUT  
Note 8: GND pin current is tested with V = V  
or V = 2.3V  
IN  
IN  
OUT(NOMINAL)  
Note 3: The LT1962 is tested and specified under pulse load conditions  
(whichever is greater) and a current source load. This means the device is  
tested while operating in its dropout region. This is the worst-case GND  
pin current. The GND pin current will decrease slightly at higher input  
voltages.  
Note 9: ADJ pin bias current flows into the ADJ pin.  
Note 10: SHDN pin current flows into the SHDN pin. This current is  
such that T ≈ T . The LT1962E is tested at T = 25°C and performance  
J
A
A
is guaranteed from 0°C to 125°C. Performance of the LT1962E over the  
full –40°C to 125°C operating temperature range is assured by design,  
characterization, and correlation with statistical process controls. The  
LT1962I is guaranteed over the full –40°C to 125°C operating junction  
temperature range.  
Note 4: The LT1962 (adjustable version) is tested and specified for these  
conditions with the ADJ pin connected to the OUT pin.  
Note 5: Operating conditions are limited by maximum junction  
temperature. The regulated output voltage specification will not apply  
for all possible combinations of input voltage and output current. When  
operating at maximum input voltage, the output current range must be  
limited. When operating at maximum output current, the input voltage  
range must be limited.  
included in the specification for GND pin current.  
Note 11: Reverse output current is tested with the IN pin grounded and the  
OUT pin forced to the rated output voltage. This current flows into the OUT  
pin and out the GND pin.  
Note 12: For the LT1962, LT1962-1.5 and LT1962-1.8 dropout voltage  
will be limited by the minimum input voltage specification under some  
output voltage/load conditions. See the curve of Minimum Input Voltage  
in the Typical Performance Characteristics section. For other fixed voltage  
versions of the LT1962, the minimum input voltage is limited by the  
dropout voltage.  
Typical perForMance characTerisTics  
Typical Dropout Voltage  
Guaranteed Dropout Voltage  
Dropout Voltage  
400  
350  
300  
250  
200  
150  
100  
50  
400  
350  
300  
250  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
= TEST POINTS  
T ≤ 125°C  
J
I
= 300mA  
L
T = 125°C  
J
T ≤ 25°C  
J
I
= 100mA  
L
200  
150  
T = 25°C  
J
I
L
= 50mA  
I
L
= 10mA  
100  
50  
0
I
L
= 1mA  
0
0
–25  
0
50  
75 100 125  
–50  
25  
50  
100  
200  
0
250  
300  
150  
0
50  
150  
200  
250  
300  
100  
OUTPUT CURRENT (mA)  
TEMPERATURE (°C)  
OUTPUT CURRENT (mA)  
1962 G03  
1962 G01  
1962 G02  
1962fba  
4
For more information www.linear.com/LT1962  
LT1962 Series  
Typical perForMance characTerisTics  
Quiescent Current  
LT1962-1.5 Output Voltage  
LT1962-1.8 Output Voltage  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
1.532  
1.524  
1.516  
1.508  
1.500  
1.492  
1.484  
1.476  
1.468  
1.836  
1.827  
1.818  
1.809  
1.800  
1.791  
1.782  
1.773  
1.764  
I
= 1mA  
I = 1mA  
L
L
V
V
= 6V  
IN  
SHDN  
L
= V  
IN  
R
= , I = 0 (LT1962-1.5/-1.8  
L
/2.5/-3/-3.3/-5)  
= 250k, I = 5µA (LT1962)  
R
L
L
0
–50  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75  
100 125  
–50 –25  
0
25  
50  
75  
100 125  
–25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1962 G04  
1962 G05  
1962 G06  
LT1962-2.5 Output Voltage  
LT1962-3 Output Voltage  
LT1962-3.3 Output Voltage  
2.54  
2.53  
2.52  
2.51  
2.50  
2.49  
2.48  
2.47  
2.46  
3.060  
3.045  
3.030  
3.015  
3.000  
2.985  
2.970  
2.955  
2.940  
3.360  
3.345  
3.330  
3.315  
3.300  
3.285  
3.270  
3.255  
3.240  
I
= 1mA  
I
= 1mA  
I = 1mA  
L
L
L
–25  
0
50  
75 100 125  
–25  
0
50  
75 100 125  
–25  
0
50  
75 100 125  
–50  
25  
–50  
25  
–50  
25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1962 G07  
1962 G08  
1962 G09  
LT1962-5 Output Voltage  
LT1962 ADJ Pin Voltage  
LT1962-1.5 Quiescent Current  
5.100  
5.075  
5.050  
5.025  
5.000  
4.975  
4.950  
4.925  
4.900  
1.240  
1.235  
1.230  
1.225  
1.220  
1.215  
1.210  
1.205  
1.200  
800  
700  
600  
500  
400  
300  
200  
100  
0
I
= 1mA  
I = 1mA  
L
T = 25°C  
L
J
L
R
= ∞  
V
= 0V  
8
SHDN  
V
= V  
5
SHDN  
IN  
–25  
0
50  
75 100 125  
–25  
0
50  
75 100 125  
–50  
25  
–50  
25  
0
1
2
3
4
6
7
9
10  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
1962 G10  
1962 G11  
1962 G12  
1962fba  
5
For more information www.linear.com/LT1962  
LT1962 Series  
Typical perForMance characTerisTics  
LT1962-1.8 Quiescent Current  
LT1962-2.5 Quiescent Current  
LT1962-3 Quiescent Current  
800  
700  
600  
500  
400  
300  
200  
100  
0
800  
700  
600  
500  
400  
300  
200  
100  
0
800  
700  
600  
500  
400  
300  
200  
100  
0
T = 25°C  
T = 25°C  
T = 25°C  
J
R = ∞  
L
J
L
J
L
R
= ∞  
R
= ∞  
V
= 0V  
8
V
= 0V  
8
V
= 0V  
8
SHDN  
SHDN  
SHDN  
V
= V  
5
V
= V  
5
V
= V  
5
SHDN  
IN  
SHDN  
IN  
SHDN  
IN  
0
1
2
3
4
6
7
9
10  
0
1
2
3
4
6
7
9
10  
0
1
2
3
4
6
7
9
10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
1962 G13  
1962 G14  
1962 G15  
LT1962-3.3 Quiescent Current  
LT1962-5 Quiescent Current  
LT1962 Quiescent Current  
800  
700  
600  
500  
400  
300  
200  
100  
0
800  
700  
600  
500  
400  
300  
200  
100  
0
40  
35  
30  
25  
20  
15  
10  
5
T = 25°C  
T = 25°C  
T = 25°C  
J
R = 250k  
L
J
L
J
R
= ∞  
R
= ∞  
L
V
= V  
IN  
SHDN  
V
= 0V  
9
V
= 0V  
8
SHDN  
SHDN  
V
= V  
V
= V  
SHDN  
IN  
SHDN  
IN  
V
= 0V  
SHDN  
0
0
1
2
3
4
5
6
7
9
10  
0
1
2
3
4
5
6
7
8
10  
0
2
4
6
8
10 12 14 16 18 20  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
1962 G16  
1962 G17  
1962 G18  
LT1962-1.5 GND Pin Current  
LT1962-1.8 GND Pin Current  
LT1962-2.5 GND Pin Current  
1500  
1250  
1500  
1250  
1500  
1250  
T
= 25°C  
= V  
T = 25°C  
J
T = 25°C  
J
J
IN  
V
V
= V  
V
= V  
IN SHDN  
SHDN  
IN  
SHDN  
OUT  
*FOR V  
= 1.5V  
*FOR V  
= 1.8V  
*FOR V  
= 2.5V  
OUT  
OUT  
R
L
= 30Ω  
L
R = 36Ω  
L
L
I
= 50mA*  
R
L
= 50Ω  
L
1000  
750  
1000  
750  
1000  
750  
I
= 50mA*  
I
= 50mA*  
R
L
= 250Ω  
L
500  
250  
0
500  
250  
0
500  
250  
0
I
= 10mA*  
R
L
= 150Ω  
R
L
= 1.5k  
L
R
L
= 180Ω  
R
L
= 1.8k  
R
L
= 2.5k  
L
L
L
L
I
= 10mA*  
I
= 1mA*  
I
= 10mA*  
I
= 1mA*  
I
= 1mA*  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
1962 G19  
1962 G20  
1962 G21  
1962fba  
6
For more information www.linear.com/LT1962  
LT1962 Series  
Typical perForMance characTerisTics  
LT1962-3 GND Pin Current  
LT1962-3.3 GND Pin Current  
LT1962-5 GND Pin Current  
1500  
1250  
1500  
1250  
1500  
1250  
T = 25°C  
T = 25°C  
T = 25°C  
J
J
IN  
*FOR V  
J
IN  
*FOR V  
V
= V  
V
= V  
V
= V  
IN SHDN  
SHDN  
OUT  
SHDN  
OUT  
= 3V  
= 3.3V  
*FOR V  
= 5V  
OUT  
R
L
= 66Ω  
L
R
L
= 60Ω  
L
R
L
= 100Ω  
1000  
750  
1000  
750  
1000  
750  
L
I
= 50mA*  
I
= 50mA*  
I
= 50mA*  
R
L
= 330Ω  
= 10mA*  
R = 500Ω  
L
I = 10mA*  
L
L
I
R
L
= 300Ω  
= 10mA*  
L
500  
250  
0
500  
250  
0
500  
250  
0
I
R
I
= 3k  
R
I
= 3.3k  
R = 5k  
L
I = 1mA*  
L
L
L
L
L
= 1mA*  
= 1mA*  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
1962 G22  
1962 G23  
1962 G24  
LT1962 GND Pin Current  
LT1962-1.5 GND Pin Current  
LT1962-1.8 GND Pin Current  
1500  
1250  
8
7
6
5
4
3
2
1
0
8
7
6
5
4
3
2
1
0
T = 25°C  
T = 25°C  
J
T = 25°C  
J
J
IN  
*FOR V  
V
= V  
V
= V  
V
= V  
IN SHDN  
SHDN  
OUT  
IN  
SHDN  
OUT  
= 1.22V  
*FOR V  
= 1.5V  
*FOR V  
= 1.8V  
OUT  
R
= 6Ω  
L
R
= 5Ω  
R
L
= 24.4Ω  
L
L
I
L
= 300mA*  
I
L
= 300mA*  
I
= 50mA*  
1000  
750  
R
= 9Ω  
L
R
L
= 7.5Ω  
I
L
= 200mA*  
L
I
= 200mA*  
R
L
= 15Ω  
L
500  
250  
0
R
L
= 18Ω  
L
I
= 100mA*  
R
L
= 1.22k  
R
L
= 122Ω  
L
L
I
= 100mA*  
I
= 1mA*  
I
= 10mA*  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
1962 G25  
1962 G26  
1962 G27  
LT1962-2.5 GND Pin Current  
LT1962-3 GND Pin Current  
LT1962-3.3 GND Pin Current  
8
7
6
5
4
3
2
1
0
8
7
6
5
4
3
2
1
0
8
7
6
5
4
3
2
1
0
T = 25°C  
T = 25°C  
T = 25°C  
J
J
IN  
*FOR V  
J
IN  
*FOR V  
V
= V  
V
= V  
V
= V  
IN SHDN  
SHDN  
SHDN  
OUT  
= 2.5V  
= 3V  
*FOR V  
= 3.3V  
OUT  
OUT  
R
L
= 10Ω  
L
R
L
= 11Ω  
I
= 300mA*  
R
L
= 8.33Ω  
L
L
I
= 300mA*  
I
= 300mA*  
R
L
= 16.5Ω  
R
L
= 15Ω  
R
L
= 12.5Ω  
L
L
L
I
= 200mA*  
I
= 200mA*  
I
= 200mA*  
R
L
= 25Ω  
L
R = 33Ω  
L
I = 100mA*  
L
R
L
= 30Ω  
L
I
= 100mA*  
I
= 100mA*  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
1962 G28  
1962 G29  
1962 G30  
1962fba  
7
For more information www.linear.com/LT1962  
LT1962 Series  
Typical perForMance characTerisTics  
LT1962-5 GND Pin Current  
LT1962 GND Pin Current  
GND Pin Current vs ILOAD  
8
7
6
5
4
3
2
1
0
8
7
6
5
4
3
2
1
0
8
7
6
5
T = 25°C  
J
T = 25°C  
J
V
= V  
+ 1V  
OUT(NOMINAL)  
IN  
V
= V  
V
= V  
IN SHDN  
IN  
SHDN  
OUT  
*FOR V  
= 5V  
*FOR V  
= 1.22V  
OUT  
R
L
= 16.7Ω  
L
R
L
= 4.07Ω  
L
I
= 300mA*  
I
= 300mA*  
R
L
= 25Ω  
L
4
3
I
= 200mA*  
R
L
= 6.1Ω  
L
I
= 200mA*  
R
L
= 50Ω  
L
I
= 100mA*  
2
1
0
R
L
= 12.2Ω  
L
I
= 100mA*  
50  
100  
200  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
0
250  
300  
150  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
OUTPUT CURRENT (mA)  
1962 G31  
1962 G32  
1962 G33  
SHDN Pin Threshold (On-to-Off)  
SHDN Pin Threshold (Off-to-On)  
SHDN Pin Input Current  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.4  
I
= 1mA  
L
1.2  
1.0  
I
= 300mA  
L
0.8  
0.6  
0.4  
0.2  
I
= 1mA  
L
0
50  
75 100 125  
–50  
0
TEMPERATURE (°C)  
25  
50  
75 100 125  
0
3
5
6
7
8
9
10  
–50  
0
25  
TEMPERATURE (°C)  
1
2
4
–25  
–25  
SHDN PIN VOLTAGE (V)  
1962 G34  
1962 G35  
1962 G36  
SHDN Pin Input Current  
ADJ Pin Bias Current  
Current Limit  
1.6  
35  
30  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
= 0V  
V
= 20V  
OUT  
SHDN  
1.4  
1.2  
25  
20  
15  
10  
5
1.0  
0.8  
0.6  
0.4  
0.2  
0
0
–25  
0
50  
75 100 125  
50  
TEMPERATURE (°C)  
100 125  
–50  
25  
–50 –25  
0
25  
75  
0
2
3
4
5
6
7
1
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
1962 G37  
1962 G38  
1962 G39  
1962fba  
8
For more information www.linear.com/LT1962  
LT1962 Series  
Typical perForMance characTerisTics  
Current Limit  
Reverse Output Current  
Reverse Output Current  
100  
90  
80  
70  
60  
50  
1.2  
1.0  
0.8  
0.6  
30  
25  
20  
15  
T = 25°C  
J
V
V
= 7V  
V
V
V
V
V
V
V
V
= 0V  
IN  
LT1962  
IN  
OUT  
V
= 0V  
= 0V  
= 1.22V (LT1962)  
= 1.5V (LT1962-1.5)  
= 1.8V (LT1962-1.8)  
= 2.5V (LT1962-2.5)  
= 3V (LT1962-3)  
IN  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
CURRENT FLOWS  
INTO OUTPUT PIN  
V
= V  
(LT1962)  
OUT  
ADJ  
LT1962-1.5  
LT1962-1.8  
LT1962-2.5  
= 3.3V (LT1962-3.3)  
= 5V (LT1962-5)  
LT1962-1.5/-1.8/-2.5/-3/-3.3/-5  
40  
30  
LT1962-3  
LT1962-3.3  
0.4  
0.2  
0
10  
5
20  
10  
0
LT1962-5  
LT1962  
0
0
1
2
3
4
5
6
7
8
9
10  
50  
TEMPERATURE (°C)  
100 125  
50  
0
TEMPERATURE (°C)  
100 125  
–50 –25  
25  
75  
–50 –25  
0
25  
75  
OUTPUT VOLTAGE (V)  
1962 G41  
1962 G40  
1962 G42  
Input Ripple Rejection  
Input Ripple Rejection  
Ripple Rejection  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
68  
I
= 300mA  
C
= 0.01µF  
L
BYP  
V
= V  
+ 1V  
IN  
OUT(NOMINAL)  
66  
64  
+ 50mV  
C
RIPPLE  
= 10µF  
RMS  
C
= 1000pF  
BYP  
= 0  
BYP  
62  
60  
58  
56  
54  
C
OUT  
C
= 100pF  
BYP  
C
= 3.3µF  
OUT  
I
= 300mA  
L
V
= V  
+ 1V  
I
L
IN  
= 300mA  
= V  
IN  
OUT(NOMINAL)  
+ 50mV  
C
RIPPLE  
V
+ 1V  
OUT(NOMINAL)  
RMS  
= 10µF  
+ 0.5V RIPPLE AT f = 120Hz  
P-P  
OUT  
52  
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
–25  
0
50  
75 100 125  
–50  
25  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
1962 G43  
1962 G44  
1962 G45  
LT1962 Minimum Input Voltage  
Load Regulation  
Output Noise Spectral Density  
10  
1
5
0
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
I
C
C
= 300mA  
V
= 1.22V  
L
OUT  
= 10µF  
= 0  
OUT  
BYP  
LT1962-1.8  
LT1962  
LT1962-1.5  
LT1962-3  
LT1962-3.3  
LT1962-5  
I
= 300mA  
L
–5  
LT1962-3.3  
I
= 1mA  
L
–10  
LT1962-3  
LT1962-2.5  
LT1962  
LT1962-2.5  
LT1962-5  
0.1  
0.01  
–15  
–20  
–25  
LT1962-1.8  
LT1962-1.5  
V
= V  
+ 1V  
OUT(NOMINAL)  
IN  
∆I = 1mA TO 300mA  
L
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
10  
100  
1k  
10k  
100k  
–50  
0
25  
50  
75 100 125  
–25  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
1962 G48  
1962 G47  
1962 G46  
1962fba  
9
For more information www.linear.com/LT1962  
LT1962 Series  
Typical perForMance characTerisTics  
RMS Output Noise  
vs Bypass Capacitor  
RMS Output Noise  
vs Load Current (10Hz to 100kHz)  
Output Noise Spectral Density  
10  
1
160  
140  
120  
100  
80  
160  
140  
120  
100  
80  
I
= 300mA  
= 10µF  
C
= 10µF  
I
= 300mA  
= 10µF  
L
OUT  
OUT  
L
OUT  
C
C
BYP  
C
BYP  
= 0µF  
C
= 0.01µF  
f = 10Hz to 100kHz  
LT1962-5  
LT1962-5  
LT1962  
C
= 1000pF  
BYP  
LT1962-5  
LT1962-3  
LT1962-3.3  
LT1962-2.5  
LT1962-1.8  
LT1962-1.5  
C
= 100pF  
BYP  
60  
60  
C
= 0.01µF  
LT1962  
BYP  
0.1  
0.01  
40  
40  
LT1962  
LT1962-5  
20  
20  
LT1962  
100  
0
0
10  
100  
1k  
10k  
0.01  
0.1  
1
10  
1000  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
LOAD CURRENT (mA)  
C
(pF)  
BYP  
1962 G51  
1962 G50  
1962 G49  
LT1962-5 10Hz to 100kHz  
Output Noise (CBYP = 0)  
LT1962-5 10Hz to 100kHz  
Output Noise (CBYP = 100pF)  
LT1962-5 10Hz to 100kHz  
Output Noise (CBYP = 1000pF)  
V
V
OUT  
100µV/DIV  
V
OUT  
OUT  
100µV/DIV  
100µV/DIV  
1962 G52  
1962 G54  
1962 G53  
C
I
= 10µF  
1ms/DIV  
C
I
= 10µF  
OUT  
L
1ms/DIV  
C
I
= 10µF  
1ms/DIV  
OUT  
L
OUT  
L
= 300mA  
= 300mA  
= 300mA  
LT1962-5 10Hz to 100kHz  
Output Noise (CBYP = 0.01µF)  
LT1962-5 Transient Response  
LT1962-5 Transient Response  
V
C
C
C
= 6V  
V
C
C
C
= 6V  
IN  
IN  
IN  
IN  
0.4  
0.10  
= 10µF  
= 10µF  
= 10µF  
= 0  
= 10µF  
OUT  
BYP  
OUT  
BYP  
0.2  
0
0.05  
0
= 0.01µF  
V
OUT  
–0.2  
–0.4  
–0.05  
–0.10  
100µV/DIV  
300  
200  
100  
0
300  
200  
100  
0
1962 G55  
C
L
= 10µF  
1ms/DIV  
OUT  
I
= 300mA  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
0
50 100 150 200 250 300 350 400 450 500  
TIME (ms)  
TIME (µs)  
1962 G56  
1962 G57  
1962fba  
10  
For more information www.linear.com/LT1962  
LT1962 Series  
pin FuncTions  
OUT (Pin 1): Output. The output supplies power to the  
load. A minimum output capacitor of 3.3µF is required  
to prevent oscillations. Larger output capacitors will be  
required for applications with large transient loads to limit  
peak voltage transients. See the Applications Information  
section for more information on output capacitance and  
reverse output characteristics.  
BYP (Pin 3): Bypass. The BYP pin is used to bypass the  
referenceof the LT1962 to achieve low noise performance  
from the regulator. The BYP pin is clamped internally to  
0.6ꢀ (one ꢀ ). A small capacitor from the output to  
BE  
this pin will bypass the reference to lower the output volt-  
age noise. A maximum value of 0.01µF can be used for  
reducing output voltage noise to a typical 20µꢀ  
over  
RMS  
a 10Hz to 100kHz bandwidth. If not used, this pin must  
be left unconnected.  
SENSE (Pin 2): Sense. For fixed voltage versions of the  
LT1962(LT1962-1.5/LT1962-1.8/LT1962-2.5/LT1962-3/  
LT1962-3.3/LT1962-5), the SENSE pin is the input to the  
error amplifier. Optimum regulation will be obtained at the  
point where the SENSE pin is connected to the OUT pin of  
the regulator. In critical applications, small voltage drops  
GND (Pin 4): Ground.  
SHDN (Pin 5): Shutdown. The SHDN pin is used to put  
the LT1962 regulators into a low power shutdown state.  
The output will be off when the SHDN pin is pulled low.  
The SHDN pin can be driven either by 5ꢀ logic or open-  
collectorlogicwithapull-upresistor.Thepull-upresistoris  
requiredtosupplythepull-upcurrentoftheopen-collector  
gate, normally several microamperes, and the SHDN pin  
current, typically 1µA. If unused, the SHDN pin must be  
are caused by the resistance (R ) of PC traces between  
P
the regulator and the load. These may be eliminated by  
connecting the SENSE pin to the output at the load as  
shown in Figure 1 (Kelvin Sense Connection). Note that  
the voltage drop across the external PC traces will add to  
the dropout voltage of the regulator. The SENSE pin bias  
current is 10µA at the nominal rated output voltage. The  
SENSEpincanbepulledbelowground(asinadualsupply  
system where the regulator load is returned to a negative  
supply) and still allow the device to start and operate.  
connected to ꢀ . The device will not function if the SHDN  
IN  
pin is not connected.  
NC (Pins 6, 7): No Connect. These pins are not internally  
connected. For improved power handling capabilities,  
these pins can be connected to the PC board.  
R
P
8
5
1
2
IN (Pin 8): Input. Power is supplied to the device through  
the IN pin. A bypass capacitor is required on this pin if  
the device is more than six inches away from the main  
input filter capacitor. In general, the output impedance  
of a battery rises with frequency, so it is advisable to  
include a bypass capacitor in battery-powered circuits. A  
bypass capacitor in the range of 1µF to 10µF is sufficient.  
The LT1962 regulators are designed to withstand reverse  
voltages on the IN pin with respect to ground and the OUT  
pin. In the case of a reverse input, which can happen if  
a battery is plugged in backwards, the device will act as  
if there is a diode in series with its input. There will be  
no reverse current flow into the regulator and no reverse  
voltage will appear at the load. The device will protect both  
itself and the load.  
IN  
OUT  
LT1962  
+
+
SHDN SENSE  
LOAD  
V
IN  
GND  
4
R
P
1962 F01  
Figure 1. Kelvin Sense Connection  
ADJ (Pin 2): Adjust. For the adjustable LT1962, this is the  
input to the error amplifier. This pin is internally clamped  
to 7ꢀ. It has a bias current of 30nA which flows into the  
pin. The ADJ pin voltage is 1.22ꢀ referenced to ground  
and the output voltage range is 1.22ꢀ to 20ꢀ.  
1962fba  
11  
For more information www.linear.com/LT1962  
LT1962 Series  
applicaTions inForMaTion  
TheLT1962seriesare300mAlowdropoutregulatorswith  
micropowerquiescentcurrentandshutdown.Thedevices  
are capable of supplying 300mA at a dropout voltage of  
R1 plus the ADJ pin bias current. The ADJ pin bias cur-  
rent, 30nA at 25°C, flows through R2 into the ADJ pin.  
The output voltage can be calculated using the formula in  
Figure 2. The value of R1 should be no greater than 250k  
to minimize errors in the output voltage caused by the  
ADJ pin bias current. Note that in shutdown the output is  
turned off and the divider current will be zero.  
300mꢀ. Output voltage noise can be lowered to 20µꢀ  
RMS  
over a 10Hz to 100kHz bandwidth with the addition of a  
0.01µF reference bypass capacitor. Additionally, the refer-  
ence bypass capacitor will improve transient response of  
the regulator, lowering the settling time for transient load  
conditions. The low operating quiescent current (30µA)  
drops to less than 1µA in shutdown. In addition to the  
low quiescent current, the LT1962 regulators incorporate  
several protection features which make them ideal for use  
in battery-powered systems. The devices are protected  
against both reverse input and reverse output voltages.  
In battery backup applications where the output can be  
held up by a backup battery when the input is pulled to  
ground, the LT1962-X acts like it has a diode in series with  
its output and prevents reverse current flow. Additionally,  
in dual supply applications where the regulator load is  
returned to a negative supply, the output can be pulled  
below ground by as much as 20ꢀ and still allow the device  
to start and operate.  
The adjustable device is tested and specified with the ADJ  
pin tied to the OUT pin for an output voltage of 1.22ꢀ.  
Specifications for output voltages greater than 1.22ꢀ will  
be proportional to the ratio of the desired output voltage  
to 1.22ꢀ: ꢀ /1.22ꢀ. For example, load regulation for an  
OUT  
output current change of 1mA to 300mA is –2mꢀ typical  
at ꢀ  
= 1.22ꢀ. At ꢀ  
= 12ꢀ, load regulation is:  
OUT  
OUT  
(12ꢀ/1.22ꢀ)(–2mꢀ) = –19.7mꢀ  
Bypass Capacitance and Low Noise Performance  
The LT1962 regulators may be used with the addition  
of a bypass capacitor from ꢀ  
to the BYP pin to lower  
OUT  
output voltage noise. A good quality low leakage capacitor  
is recommended. This capacitor will bypass the reference  
of the regulator, providing a low frequency noise pole. The  
noise pole provided by this bypass capacitor will lower the  
Adjustable Operation  
outputvoltagenoisetoaslowas20µꢀ  
withtheaddition  
TheadjustableversionoftheLT1962hasanoutputvoltage  
range of 1.22ꢀ to 20ꢀ. The output voltage is set by the  
ratio of two external resistors as shown in Figure 2. The  
device servos the output to maintain the ADJ pin voltage  
at 1.22ꢀ referenced to ground. The current in R1 is then  
equal to 1.22ꢀ/R1 and the current in R2 is the current in  
RMS  
ofa0.01µFbypasscapacitor.Usingabypasscapacitorhas  
theaddedbenefitofimprovingtransientresponse.Withno  
bypass capacitor and a 10µF output capacitor, a 10mA to  
300mA load step will settle to within 1% of its final value  
in less than 100µs. With the addition of a 0.01µF bypass  
capacitor, the output will settle to within 1% for a 10mA  
to 300mA load step in less than 10µs, with total output  
voltage deviation of less than 2% (see LT1962-5 Transient  
Response in the Typical Performance Characteristics sec-  
tion). However, regulator start-up time is proportional to  
the size of the bypass capacitor, slowing to 15ms with a  
0.01µF bypass capacitor and 10µF output capacitor.  
IN  
OUT  
V
OUT  
+
V
IN  
LT1962  
GND  
R2  
R1  
ADJ  
1962 F02  
R2  
OUT = 1.22ꢀ 1+  
+ I  
(
R2  
ADJ)( )  
R1⎠  
Output Capacitance and Transient Response  
ADJ = 1.22ꢀ  
IADJ = 30nA at 25°C  
OUTPUT RANGE = 1.22ꢀ to 20ꢀ  
The LT1962 regulators are designed to be stable with a  
wide range of output capacitors. The ESR of the output  
capacitor affects stability, most notably with small capaci-  
tors. A minimum output capacitor of 3.3µF with an ESR  
of 3Ω or less is recommended to prevent oscillations.  
1962fba  
Figure 2. Adjustable Operation  
12  
For more information www.linear.com/LT1962  
LT1962 Series  
applicaTions inForMaTion  
The LT1962-X is a micropower device and output tran-  
sient response will be a function of output capacitance.  
Larger values of output capacitance decrease the peak  
deviations and provide improved transient response for  
larger load current changes. Bypass capacitors, used to  
decouple individual components powered by the LT1962,  
will increase the effective output capacitor value. With  
larger capacitors used to bypass the reference (for low  
noise operation), larger values of output capacitance are  
needed. For 100pF of bypass capacitance, 4.7µF of output  
capacitor is recommended. With a 1000pF bypass capaci-  
tor or larger, a 6.8µF output capacitor is recommended.  
Extra consideration must be given to the use of ceramic  
capacitors. Ceramic capacitors are manufactured with a  
variety of dielectrics, each with different behavior across  
temperature and applied voltage. The most common  
dielectrics used are Z5U, Y5ꢀ, X5R and X7R. The Z5U and  
Y5ꢀ dielectrics are good for providing high capacitance  
in a small package, but exhibit strong voltage and tem-  
perature coefficients as shown in Figures 4 and 5. When  
used with a 5ꢀ regulator, a 10µF Y5ꢀ capacitor can exhibit  
an effective value as low as 1µF to 2µF over the operating  
temperature range. The X5R and X7R dielectrics result in  
more stable characteristics and are more suitable for use  
as the output capacitor. The X7R type has better stability  
across temperature, while the X5R is less expensive and  
is available in higher values.  
The shaded region of Figure 3 defines the range over  
whichtheLT1962regulatorsarestable.TheminimumESR  
needed is defined by the amount of bypass capacitance  
used, while the maximum ESR is 3Ω.  
4.0  
3.5  
20  
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10µF  
0
3.0  
X5R  
STABLE REGION  
2.5  
–20  
2.0  
–40  
C
= 0  
BYP  
1.5  
1.0  
0.5  
0
–60  
C
= 100pF  
BYP  
Y5V  
C
= 330pF  
BYP  
C
≥ 1000pF  
BYP  
–80  
–100  
0
8
12 14  
1
3
6 9 10  
7 8  
2
4
6
10  
16  
2
4
5
DC BIAS VOLTAGE (V)  
OUTPUT CAPACITANCE (µF)  
1962 F03  
1962 F04  
Figure 3. Stability  
Figure 4. Ceramic Capacitor DC Bias Characteristics  
40  
20  
LT1962-5  
C
C
LOAD  
= 10µF  
= 0.01µF  
= 100mA  
OUT  
BYP  
X5R  
0
I
–20  
–40  
–60  
–80  
–100  
V
OUT  
Y5V  
500µV/DIV  
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10µF  
–50 –25  
0
25  
50  
TEMPERATURE (°C)  
75  
100 125  
1962 F06  
100ms/DIV  
1962 F05  
Figure 5. Ceramic Capacitor Temperature Characteristics  
Figure 6. Noise Resulting from Tapping on a Ceramic Capacitor  
1962fba  
13  
For more information www.linear.com/LT1962  
LT1962 Series  
applicaTions inForMaTion  
ꢀoltage and temperature coefficients are not the only  
sources of problems. Some ceramic capacitors have a  
piezoelectric response. A piezoelectric device generates  
voltage across its terminals due to mechanical stress,  
similar to the way a piezoelectric accelerometer or  
microphone works. For a ceramic capacitor the stress can  
beinducedbyvibrationsinthesystemorthermaltransients.  
The resulting voltages produced can cause appreciable  
amounts of noise, especially when a ceramic capacitor is  
used for noise bypassing. A ceramic capacitor produced  
Figure 6’s trace in response to light tapping from a pencil.  
Similar vibration induced behavior can masquerade as  
increased output voltage noise.  
The following table lists thermal resistance for several  
different board sizes and copper areas. All measurements  
were taken in still air on 1/16" FR-4 board with one ounce  
copper.  
Table 1. Measured Thermal Resistance  
COPPER AREA  
THERMAL RESISTANCE  
TOPSIDE*  
BACKSIDE BOARD AREA (JUNCTION-TO-AMBIENT)  
2
2
2
2
2
2
2
2
2
2
2
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
110°C/W  
115°C/W  
120°C/W  
130°C/W  
140°C/W  
2
1000mm  
2
225mm  
2
100mm  
2
50mm  
*Device is mounted on topside.  
Thermal Considerations  
Calculating Junction Temperature  
The power handling capability of the device will be limited  
by the maximum rated junction temperature (125°C). The  
power dissipated by the device will be made up of two  
components:  
Example: Given an output voltage of 3.3ꢀ, an input volt-  
age range of 4ꢀ to 6ꢀ, an output current range of 0mA  
to 100mA and a maximum ambient temperature of 50°C,  
what will the maximum junction temperature be?  
1. Output current multiplied by the input/output voltage  
The power dissipated by the device will be equal to:  
differential: (I )(ꢀ – ꢀ ), and  
OUT  
IN  
OUT  
I
(ꢀ  
– ꢀ ) + I (ꢀ  
)
OUT(MAX) IN(MAX)  
OUT  
GND IN(MAX)  
2. GND pin current multiplied by the input voltage:  
(I )(ꢀ ).  
where,  
GND  
IN  
I
= 100mA  
= 6ꢀ  
OUT IN  
OUT(MAX)  
The GND pin current can be found by examining the GND  
Pin Current curves in the Typical Performance Character-  
istics section. Power dissipation will be equal to the sum  
of the two components listed above.  
IN(MAX)  
I
at (I  
= 100mA, ꢀ = 6ꢀ) = 2mA  
GND  
So,  
The LT1962 series regulators have internal thermal  
limiting designed to protect the device during overload  
conditions. For continuous normal conditions, the maxi-  
mum junction temperature rating of 125°C must not be  
exceeded. It is important to give careful consideration to  
all sources of thermal resistance from junction to ambi-  
ent. Additional heat sources mounted nearby must also  
be considered.  
P = 100mA(6ꢀ – 3.3ꢀ) + 2mA(6ꢀ) = 0.28W  
The thermal resistance will be in the range of 110°C/W to  
140°C/W depending on the copper area. So the junction  
temperature rise above ambient will be approximately  
equal to:  
0.28W(125°C/W) = 35.3°C  
The maximum junction temperature will then be equal to  
the maximum junction temperature rise above ambient  
plus the maximum ambient temperature or:  
For surface mount devices, heat sinking is accomplished  
by using the heat spreading capabilities of the PC board  
and its copper traces. Copper board stiffeners and plated  
through-holes can also be used to spread the heat gener-  
ated by power devices.  
T
JMAX  
= 50°C + 35.3°C = 85.3°C  
1962fba  
14  
For more information www.linear.com/LT1962  
LT1962 Series  
applicaTions inForMaTion  
Protection Features  
divider is used to provide a regulated 1.5ꢀ output from the  
1.22ꢀ reference when the output is forced to 20ꢀ. The top  
resistor of the resistor divider must be chosen to limit the  
current into the ADJ pin to less than 5mA when the ADJ  
pin is at 7ꢀ. The 13ꢀ difference between OUT and ADJ pin  
divided by the 5mA maximum current into the ADJ pin  
yields a minimum top resistor value of 2.6k.  
The LT1962 regulators incorporate several protection  
featureswhichmakethemidealforuseinbattery-powered  
circuits. In addition to the normal protection features  
associated with monolithic regulators, such as current  
limiting and thermal limiting, the devices are protected  
against reverse input voltages, reverse output voltages  
and reverse voltages from output to input.  
In circuits where a backup battery is required, several  
different input/output conditions can occur. The output  
voltage may be held up while the input is either pulled  
to ground, pulled to some intermediate voltage or is left  
open circuit. Current flow back into the output will follow  
the curve shown in Figure 7.  
Current limit protection and thermal overload protection  
areintendedtoprotectthedeviceagainstcurrentoverload  
conditions at the output of the device. For normal opera-  
tion, the junction temperature should not exceed 125°C.  
The input of the device will withstand reverse voltages of  
20ꢀ. Current flow into the device will be limited to less  
than 1mA (typically less than 100µA) and no negative  
voltage will appear at the output. The device will protect  
both itself and the load. This provides protection against  
batteries which can be plugged in backward.  
When the IN pin of the LT1962 is forced below the OUT  
pin or the OUT pin is pulled above the IN pin, input cur-  
rent will typically drop to less than 2µA. This can happen  
if the input of the device is connected to a discharged  
(low voltage) battery and the output is held up by either  
a backup battery or a second regulator circuit. The state  
of the SHDN pin will have no effect on the reverse output  
current when the output is pulled above the input.  
The output of the LT1962 can be pulled below ground  
without damaging the device. If the input is left open cir-  
cuit or grounded, the output can be pulled below ground  
by 20ꢀ. For fixed voltage versions, the output will act like  
a large resistor, typically 500k or higher, limiting current  
flow to less than 40µA. For adjustable versions, the output  
will act like an open circuit; no current will flow out of the  
pin. If the input is powered by a voltage source, the output  
will source the short-circuit current of the device and will  
protect itself by thermal limiting. In this case, grounding  
the SHDN pin will turn off the device and stop the output  
from sourcing the short-circuit current.  
100  
T = 25°C  
IN  
LT1962  
J
V
90  
80  
70  
60  
50  
= 0V  
CURRENT FLOWS  
INTO OUTPUT PIN  
V
= V  
(LT1962)  
OUT  
ADJ  
LT1962-1.5  
LT1962-1.8  
LT1962-2.5  
40  
30  
LT1962-3  
LT1962-3.3  
20  
10  
0
LT1962-5  
The ADJ pin of the adjustable device can be pulled above  
or below ground by as much as 7ꢀ without damaging the  
device. If the input is left open circuit or grounded, the  
ADJ pin will act like an open circuit when pulled below  
ground and like a large resistor (typically 100k) in series  
with a diode when pulled above ground.  
0
1
2
3
4
5
6
7
8
9
10  
OUTPUT VOLTAGE (V)  
1962 F07  
Figure 7. Reverse Output Current  
In situations where the ADJ pin is connected to a resistor  
dividerthatwouldpulltheADJpinaboveits7clampvolt-  
age if the output is pulled high, the ADJ pin input current  
must be limited to less than 5mA. For example, a resistor  
1962fba  
15  
For more information www.linear.com/LT1962  
LT1962 Series  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
MS8 Package  
8-Lead Plastic MSOP  
(LTC DWG # 05-08-1660 Rev G)  
0.889 0.127  
(.035 .005)  
5.10  
3.20 – 3.45  
(.201)  
(.12ꢀ – .13ꢀ)  
MIN  
3.00 0.102  
(.118 .004)  
(NOTE 3)  
0.52  
(.0205)  
REF  
0.ꢀ5  
(.025ꢀ)  
BSC  
0.42 0.038  
(.01ꢀ5 .0015)  
TYP  
8
7 ꢀ 5  
RECOMMENDED SOLDER PAD LAYOUT  
3.00 0.102  
(.118 .004)  
(NOTE 4)  
4.90 0.152  
(.193 .00ꢀ)  
DETAIL “A”  
0.254  
(.010)  
0° – ꢀ° TYP  
GAUGE PLANE  
1
2
3
4
0.53 0.152  
(.021 .00ꢀ)  
1.10  
(.043)  
MAX  
0.8ꢀ  
(.034)  
REF  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.22 – 0.38  
0.101ꢀ 0.0508  
(.009 – .015)  
(.004 .002)  
0.ꢀ5  
(.025ꢀ)  
BSC  
TYP  
MSOP (MS8) 0213 REV G  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.00ꢀ") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.00ꢀ") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
1962fba  
16  
For more information www.linear.com/LT1962  
LT1962 Series  
revision hisTory (Revision history begins at Rev B)  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
B
5/15  
Clarified the Order Information table.  
Added I-grade option.  
2
2, 4  
1962fba  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
17  
LT1962 Series  
Typical applicaTion  
Adjustable Current Source  
Paralleling of Regulators for Higher Output Current  
R1  
0.1Ω  
R5  
0.1Ω  
3.3V  
IN  
OUT  
FB  
IN  
OUT  
LT1962-2.5  
SHDN FB  
GND  
300mA  
+
+
+
V
C1  
10µF  
C1  
10µF  
IN  
>2.7V  
C2  
10µF  
R1*  
1k  
LOAD  
V
IN  
> 3.7V  
C4  
0.01µF  
LT1962-3.3  
SHDN  
BYP  
R2  
40.2k  
R6  
2.2k  
R7  
100k  
LT1004-1.2  
GND  
R2  
0.1Ω  
R3  
2k  
R4  
2.2k  
IN  
OUT  
C5  
0.01µF  
C3  
0.33µF  
LT1962  
R6  
2k  
BYP  
ADJ  
*ADJUST R1 FOR 0mA TO 300mA  
CONSTANT CURRENT  
1/2 LT1490  
1962 TA04  
+
SHDN  
SHDN  
GND  
R7  
C2  
1µF  
1.21k  
R3  
2.2k  
R4  
2.2k  
8
3
2
R5  
10k  
+
1
1/2 LT1490  
4
1962 TA03  
C3  
0.01µF  
relaTeD parTs  
PART NUMBER  
LT1120  
DESCRIPTION  
125mA Low Dropout Regulator with 20µA I  
COMMENTS  
Includes 2.5ꢀ Reference and Comparator  
Q
LT1121  
150mA Micropower Low Dropout Regulator  
700mA Micropower Low Dropout Regulator  
30µA I , SOT-223 Package  
Q
LT1129  
50µA Quiescent Current  
LT1175  
500mA Negative Low Dropout Micropower Regulator  
300mA Low Dropout Micropower Regulator with Shutdown  
3A Low Dropout Regulator with 50µA I  
45µA I , 0.26ꢀ Dropout ꢀoltage, SOT-223 Package  
Q
LT1521  
15µA I , Reverse Battery Protection  
Q
LT1529  
500mꢀ Dropout ꢀoltage  
Q
LTC®1627  
High Efficiency Synchronous Step-Down Switching Regulator  
100mA, Low Noise, Low Dropout Micropower Regulator in SOT-23  
150mA, Low Noise, LDO Micropower Regulator  
Burst Mode™ Operation, Monolithic, 100% Duty Cycle  
LT1761  
20µA Quiescent Current, 20µꢀ  
25µA Quiescent Current, 20µꢀ  
30µA Quiescent Current, 20µꢀ  
Noise  
Noise  
Noise  
Noise  
RMS  
RMS  
RMS  
LT1762  
LT1763  
500mA, Low Noise, LDO Micropower Regulator  
LT1764  
3A, Fast Transient Response Low Dropout Regulator  
Constant Frequency Current Mode Step-Down DC/DC Controller  
1.5A, Fast Transient Response Low Dropout Regulator  
340mꢀ Dropout ꢀoltage, 40µꢀ  
RMS  
LTC1772  
LT1963  
Up to 94% Efficiency, SOT-23 Package, 100% Duty Cycle  
SO-8, SOT-223 Packages  
1962fba  
LT 0515 REV B • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
18  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LT1962  
LINEAR TECHNOLOGY CORPORATION 2000  

相关型号:

LT1962EMS8-2.5

300mA, Low Noise, Micropower LDO Regulators
Linear

LT1962EMS8-2.5#TR

LT1962 - 300mA, Low Noise, Micropower LDO Regulators; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear
Linear

LT1962EMS8-3

300mA, Low Noise, Micropower LDO Regulators
Linear

LT1962EMS8-3#PBF

LT1962 - 300mA, Low Noise, Micropower LDO Regulators; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1962EMS8-3.3

300mA, Low Noise, Micropower LDO Regulators
Linear

LT1962EMS8-3.3#PBF

LT1962 - 300mA, Low Noise, Micropower LDO Regulators; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1962EMS8-3.3#TR

LT1962 - 300mA, Low Noise, Micropower LDO Regulators; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1962EMS8-3.3#TRPBF

LT1962 - 300mA, Low Noise, Micropower LDO Regulators; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1962EMS8-5

300mA, Low Noise, Micropower LDO Regulators
Linear

LT1962EMS8-5#PBF

LT1962 - 300mA, Low Noise, Micropower LDO Regulators; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1962EMS8-5PBF

300mA, Low Noise, Micropower LDO Regulators
Linear