LT1963 [Linear]

500mA, Low Voltage, Very Low Dropout Linear Regulator; 500mA,低压电压,非常低压差线性稳压器
LT1963
型号: LT1963
厂家: Linear    Linear
描述:

500mA, Low Voltage, Very Low Dropout Linear Regulator
500mA,低压电压,非常低压差线性稳压器

稳压器
文件: 总16页 (文件大小:236K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3021/LT3021-1.2/  
LT3021-1.5/LT3021-1.8  
500mA, Low Voltage,  
Very Low Dropout  
Linear Regulator  
U
DESCRIPTIO  
FEATURES  
The LT®3021 is a very low dropout voltage (VLDOTM) linear  
regulator that operates from input supplies down to 0.9V.  
This device supplies 500mA of output current with a  
typical dropout voltage of 160mV. The LT3021 is ideal for  
low input voltage to low output voltage applications,  
providing comparable electrical efficiency to that of a  
switching regulator.  
VIN Range: 0.9V to 10V  
Dropout Voltage: 160mV Typical  
Output Current: 500mA  
Adjustable Output (VREF = VOUT(MIN) = 200mV)  
Fixed Output Voltages: 1.2V, 1.5V, 1.8V  
Stable with Low ESR, Ceramic Output Capacitors  
(3.3µF Minimum)  
0.2% Load Regulation from 0mA to 500mA  
The LT3021 regulator optimizes stability and transient  
response with low ESR, ceramic output capacitors as  
small as 3.3µF. Other LT3021 features include 0.05%  
typical line regulation and 0.2% typical load regulation. In  
shutdown, quiescent current typically drops to 3µA.  
Quiescent Current: 120µA (Typ)  
3µA Typical Quiescent Current in Shutdown  
Current Limit Protection  
Reverse-Battery Protection  
No Reverse Current  
Internal protection circuitry includes reverse-battery pro-  
tection, current limiting, thermal limiting with hysteresis,  
andreverse-currentprotection. TheLT3021isavailableas  
an adjustable output device with an output range down to  
the 200mV reference. Three fixed output voltages, 1.2V,  
1.5V and 1.8V, are also available.  
Thermal Limiting with Hysteresis  
16-Pin DFN (5mm × 5mm) and 8-Lead  
SO Packages  
U
APPLICATIO S  
Low Current Regulators  
The LT3021 regulator is available in the low profile  
(0.75mm) 16-pin (5mm × 5mm) DFN package with ex-  
posed pad and the 8-lead SO package.  
, LTC and LT are registered trademarks of Linear Technology Corporation. VLDO is a  
trademark of Linear Technology Corporation. All other trademarks are the property of their  
respective owners.  
Battery-Powered Systems  
Cellular Phones  
Pagers  
Wireless Modems  
U
TYPICAL APPLICATIO  
Minimum Input Voltage  
1.8V to 1.5V, 500mA VLDO Regulator  
1.1  
I
L
= 500mA  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
OUT  
V
IN  
IN  
OUT  
LT3021-1.5  
1.5V  
1.8V  
500mA  
3.3µF  
3.3µF  
SHDN SENSE  
GND  
3021 TA01  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
3021 TA02  
3021fa  
1
LT3021/LT3021-1.2/  
LT3021-1.5/LT3021-1.8  
W W  
U W  
ABSOLUTE AXI U RATI GS  
(Note 1)  
IN Pin Voltage........................................................ ±10V  
OUT Pin Voltage .................................................... ±10V  
Input-to-Output Differential Voltage....................... ±10V  
ADJ/SENSE Pin Voltage ........................................ ±10V  
SHDN Pin Voltage................................................. ±10V  
Output Short-Circut Duration.......................... Indefinite  
Operating Junction Temperature Range  
(Notes 2, 3) .......................................... 40°C to 125°C  
Storage Temperature Range  
DH .................................................... 65°C to 125°C  
S8..................................................... 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
U W  
U
PACKAGE/ORDER I FOR ATIO  
TOP VIEW  
TOP VIEW  
ORDER PART  
NUMBER  
DH PART  
MARKING  
NC  
NC  
1
2
3
4
5
6
7
8
16 NC  
15 NC  
14 IN  
NC  
NC  
1
2
3
4
5
6
7
8
16 NC  
15 NC  
14 IN  
3021  
LT3021EDH  
OUT  
OUT  
NC  
OUT  
OUT  
NC  
13 NC  
12 IN  
13 NC  
12 IN  
17  
17  
NC  
11 NC  
10 PGND  
NC  
11 NC  
10 PGND  
ADJ  
AGND  
SENSE  
AGND  
ORDER PART  
NUMBER  
DH PART  
MARKING  
9
SHDN  
9
SHDN  
LT3021-ADJ  
DH PACKAGE  
16-LEAD (5mm × 5mm) PLASTIC DFN  
LT3021-FIXED  
DH PACKAGE  
16-LEAD (5mm × 5mm) PLASTIC DFN  
LT3021EDH-1.2  
LT3021EDH-1.5  
LT3021EDH-1.8  
302112  
302115  
302118  
TJMAX = 125°C, θJA = 35°C/ W*, θJC = 3°C/ W**  
EXPOSED PAD IS GND (PIN 17) CONNECT TO PINS 8, 10 EXPOSED PAD IS GND (PIN 17) CONNECT TO PINS 8, 10  
*SEE THE APPLICATIONS INFORMATION SECTION  
**MEASURED JUNCTION TO PIN 17  
TJMAX = 125°C, θJA = 35°C/ W*, θJC = 3°C/ W**  
*SEE THE APPLICATIONS INFORMATION SECTION  
**MEASURED JUNCTION TO PIN 17  
ORDER PART  
NUMBER  
S8 PART  
TOP VIEW  
TOP VIEW  
MARKING  
NC  
OUT  
1
2
3
4
8
7
6
5
IN  
NC  
OUT  
1
2
3
4
8
7
6
5
IN  
3021  
LT3021ES8  
NC  
NC  
ADJ  
PGND  
SHDN  
SENSE  
AGND  
PGND  
SHDN  
AGND  
ORDER PART  
NUMBER  
S8 PART  
MARKING  
LT3021-ADJ  
LT3021-FIXED  
S8 PACKAGE  
S8 PACKAGE  
8-LEAD PLASTIC SO  
8-LEAD PLASTIC SO  
TJMAX = 150°C, θJA = 125°C/ W*, θJC = 40°C/ W**  
*SEE THE APPLICATIONS INFORMATION SECTION  
**MEASURED JUNCTION TO PIN 6  
TJMAX = 150°C, θJA = 125°C/ W*, θJC = 40°C/ W**  
*SEE THE APPLICATIONS INFORMATION SECTION  
**MEASURED JUNCTION TO PIN 6  
LT3021ES8-1.2  
LT3021ES8-1.5  
LT3021ES8-1.8  
302112  
302115  
302118  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult factory for parts specified with wider operating temperature ranges.  
3021fa  
2
LT3021/LT3021-1.2/  
LT3021-1.5/LT3021-1.8  
ELECTRICAL CHARACTERISTICS  
The  
denotes specifications which apply over the full operating temperature range, otherwise specifications are T = 25°C.  
J
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Minimum Input Voltage  
(Notes 5,14)  
I
I
= 500mA, T > 0°C  
0.9  
0.9  
1.05  
1.10  
V
V
LOAD  
LOAD  
J
= 500mA, T < 0°C  
J
ADJ Pin Voltage (Notes 4, 5)  
V
= 1.5V, I  
= 1mA  
LOAD  
196  
193  
200  
200  
204  
206  
mV  
mV  
IN  
1.15V < V < 10V, 1mA < I  
< 500mA  
IN  
LOAD  
Regulated Output Voltage  
(Note 4)  
LT3021-1.2  
LT3021-1.5  
LT3021-1.8  
V
IN  
= 1.5V, I  
= 1mA  
LOAD  
1.176  
1.157  
1.200  
1.200  
1.224  
1.236  
V
V
1.5V < V < 10V, 1mA < I  
< 500mA  
< 500mA  
< 500mA  
IN  
LOAD  
LOAD  
LOAD  
V
IN  
= 1.8V, I  
= 1mA  
LOAD  
1.470  
1.447  
1.500  
1.500  
1.530  
1.545  
V
V
1.8V < V < 10V, 1mA < I  
IN  
V
IN  
= 2.1V, I  
= 1mA  
LOAD  
1.764  
1.737  
1.800  
1.800  
1.836  
1.854  
V
V
2.1V < V < 10V, 1mA < I  
IN  
Line Regulation (Note 6)  
Load Regulation (Note 6)  
Dropout Voltage (Notes 7, 12)  
LT3021  
V = 1.15V to 10V, I  
= 1mA  
–1.75  
–10.5  
–13  
0
0
0
0
+1.75  
10.5  
13  
mV  
mV  
mV  
mV  
IN  
LOAD  
LT3021-1.2  
LT3021-1.5  
LT3021-1.8  
V = 1.5V to 10V, I  
= 1mA  
= 1mA  
= 1mA  
IN  
LOAD  
LOAD  
LOAD  
V = 1.8V to 10V, I  
IN  
V = 2.1V to 10V, I  
–15.8  
15.8  
IN  
LT3021  
V
IN  
V
IN  
V
IN  
V
IN  
= 1.15V, I  
= 1mA to 500mA  
LOAD  
–2  
–6  
–7.5  
–9  
0.4  
1
1.5  
2
2
6
7.5  
9
mV  
mV  
mV  
mV  
LT3021-1.2  
LT3021-1.5  
LT3021-1.8  
= 1.5V, I  
= 1.8V, I  
= 2.1V, I  
= 1mA to 500mA  
= 1mA to 500mA  
= 1mA to 500mA  
LOAD  
LOAD  
LOAD  
I
I
= 10mA  
= 10mA  
45  
75  
110  
mV  
mV  
LOAD  
LOAD  
I
I
= 500mA  
= 500mA  
155  
190  
285  
mV  
mV  
LOAD  
LOAD  
GND Pin Current  
I
I
I
I
= 0mA  
110  
920  
2.25  
6.20  
250  
µA  
µA  
mA  
mA  
LOAD  
LOAD  
LOAD  
LOAD  
V
IN  
= V  
+ 0.4V  
= 10mA  
= 100mA  
= 500mA  
OUT(NOMINAL)  
(Notes 8, 12)  
10  
Output Voltage Noise  
ADJ Pin Bias Current  
Shutdown Threshold  
C
V
= 4.7µF, I  
= 500mA, BW = 10Hz to 100kHz, V  
= 1.2V  
300  
20  
µV  
RMS  
OUT  
ADJ  
LOAD  
OUT  
= 0.2V, V = 1.2V (Notes 6, 9)  
50  
nA  
IN  
V
OUT  
V
OUT  
= Off to On  
= On to Off  
0.61  
0.61  
0.9  
V
V
0.25  
SHDN Pin Current (Note 10)  
V
V
= 0V, V = 10V  
±1  
µA  
µA  
µA  
SHDN  
SHDN  
IN  
= 10V, V = 10V  
3
3
9.5  
IN  
Quiescent Current in Shutdown  
Ripple Rejection (Note 6)  
V
IN  
= 6V, V  
= 0V  
9
SHDN  
LT3021  
V
IN  
– V  
= 1V, V = 0.5V , f = 120Hz,  
P-P RIPPLE  
70  
dB  
OUT  
RIP  
I
= 500mA  
LOAD  
LT3021-1.2  
LT3021-1.5  
LT3021-1.8  
V
– V  
= 500mA  
= 1V, V  
= 0.5V , f = 120Hz,  
P-P RIPPLE  
60  
58  
56  
dB  
dB  
dB  
IN  
OUT  
RIPPLE  
RIPPLE  
RIPPLE  
I
LOAD  
V
IN  
– V  
= 500mA  
= 1V, V  
= 0.5V , f  
P-P RIPPLE  
= 120Hz,  
= 120Hz,  
OUT  
I
LOAD  
V
IN  
– V  
= 500mA  
= 1V, V  
= 0.5V , f  
P-P RIPPLE  
OUT  
I
LOAD  
3021fa  
3
LT3021/LT3021-1.2/  
LT3021-1.5/LT3021-1.8  
ELECTRICAL CHARACTERISTICS  
The  
denotes specifications which apply over the full operating temperature range, otherwise specifications are T = 25°C.  
J
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Current Limit (Note 12)  
V
V
= 10V, V  
= V  
= 0V  
1.8  
A
mA  
IN  
IN  
OUT  
OUT(NOMINAL)  
+ 0.5V, V  
= –5%  
550  
OUT  
Input Reverse Leakage Current  
V
= –10V, V = 0V  
OUT  
1
20  
µA  
IN  
Reverse Output Current  
(Notes 11, 13)  
LT3021  
V
V
V
V
= 1.2V, V = 0V  
0.5  
10  
10  
10  
5
µA  
µA  
µA  
µA  
OUT  
OUT  
OUT  
OUT  
IN  
LT3021-1.2  
LT3021-1.5  
LT3021-1.8  
= 1.2V, V = 0V  
15  
15  
15  
IN  
= 1.5V, V = 0V  
IN  
= 1.8V, V = 0V  
IN  
Note 7: Dropout voltage is the minimum input to output voltage differential  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
needed to maintain regulation at a specified output current. In dropout the  
of a device may be impaired.  
output voltage equals: (V – V  
).  
IN  
DROPOUT  
Note 2: The LT3021 regulators are tested and specified under pulse load  
Note 8: GND pin current is tested with V = V  
+ 0.4V and a  
OUT(NOMINAL)  
conditions such that T T . The LT3021 is 100% production tested at  
IN  
J
A
current source load. GND pin current will increase in dropout. See GND  
pin current curves in the Typical Performance Characteristics section.  
T = 25°C. Performance at –40°C and 125°C is assured by design,  
A
characterization and correlation with statistical process controls.  
Note 9: Adjust pin bias current flows out of the ADJ pin.  
Note 10: Shutdown pin current flows into the SHDN pin.  
Note 11: Reverse output current is tested with IN grounded and OUT  
forced to the rated output voltage. This current flows into the OUT pin and  
out of the GND pin. For fixed voltage devices this includes the current in  
the output resistor divider.  
Note 3: This IC includes overtemperature protection that is intended to  
protect the device during momentary overload conditions. Junction  
temperature will exceed 125°C when overtemperature protection is active.  
Continuous operation above the specified maximum operating junction  
temperature may impair device reliability.  
Note 4: Maximum junction temperature limits operating conditions. The  
regulated output voltage specification does not apply for all possible  
combinations of input voltage and output current. Limit the output current  
range if operating at maximum input voltage. Limit the input voltage range  
if operating at maximum output current.  
Note 12: The LT3021 is tested and specified for these conditions with an  
external resistor divider (20k and 100k) setting V  
to 1.2V. The external  
OUT  
resistor divider adds 10µA of load current.  
Note 13: Reverse current is higher for the case of (rated_output) < V  
<
OUT  
Note 5: Typically the LT3021 supplies 500mA output current with a 1V  
input supply. The guranteed minimum input voltage for 500mA output  
current is 1.10V.  
V
because the no-load recovery circuitry is active in this region and is  
IN,  
trying to restore the output voltage to its nominal value.  
Note 14: Minimum input voltage is the minimum voltage required by the  
control circuit to regulate the output voltage and supply the full 500mA  
Note 6: The LT3021 is tested and specified for these conditions with an  
external resistor divider (20k and 30.1k) setting V  
to 0.5V. The external  
OUT  
rated current. This specification is tested at V  
= 0.5V. At higher output  
OUT  
resistor divider adds 10µA of output load current. The line regulation and  
load regulation specifications refer to the change in the 0.2V reference  
voltage, not the 0.5V output voltage. Specifications for fixed output voltage  
devices are referred to the output voltage.  
voltages the minimum input voltage required for regulation will be equal to  
the regulated output voltage V  
plus the dropout voltage.  
OUT  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Dropout Voltage  
Dropout Voltage  
Minimum Input Voltage  
250  
225  
200  
175  
150  
125  
100  
75  
250  
225  
200  
175  
150  
125  
100  
75  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
V
= 1.2V  
I
L
= 500mA  
OUT  
I
= 500mA  
L
T
= 125°C  
J
I
I
= 250mA  
= 100mA  
L
L
T
J
= 25°C  
I
= 50mA  
I = 10mA  
L
L
50  
50  
25  
25  
I
= 1mA  
L
0
0
0
100  
200  
300  
400  
500  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
OUTPUT CURRENT (mA)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3021 G01  
3021 G02  
3021 G16  
3021fa  
4
LT3021/LT3021-1.2/  
LT3021-1.5/LT3021-1.8  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
ADJ Pin Voltage  
ADJ Pin Bias Current  
Quiescent Current  
206  
204  
202  
200  
198  
196  
194  
25  
20  
15  
10  
5
250  
V
V
I
= 6V  
OUT  
= 0  
IN  
= 1.2V  
225  
200  
175  
150  
125  
100  
75  
L
V
= V  
IN  
SHDN  
50  
25  
V
= 0V  
SHDN  
0
0
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3021 G04  
3021 G11  
3021 G05  
Output Voltage  
Output Voltage  
Output Voltage  
1.53  
1.52  
1.51  
1.50  
1.49  
1.48  
1.47  
1.83  
1.82  
1.81  
1.80  
1.79  
1.78  
1.77  
1.23  
1.22  
1.21  
1.20  
1.19  
1.18  
1.17  
I
= 1mA  
I
= 1mA  
I
= 1mA  
LOAD  
LOAD  
LOAD  
50  
TEMPERATURE (°C)  
100 125  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
–50 –25  
0
25  
75  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
3021 G23  
3021 G22  
3021 G28  
Quiescent Current  
Quiescent Current  
Quiescent Current  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
I
= 1.8V  
V
I
J
= 1.2V  
V
I
J
= 1.5V  
OUT  
= 0  
OUT  
= 0  
OUT  
= 0  
L
L
L
T = 25°C  
J
T
= 25°C  
T
= 25°C  
V
= V  
IN  
V
SHDN  
= V  
IN  
V
= V  
SHDN  
SHDN  
IN  
V
= 0V  
7
V
= 0V  
7
SHDN  
6
V
= 0V  
SHDN  
6
SHDN  
0
1
2
3
4
5
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
8
9
10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
3021 G03  
3021 G27  
3021 G26  
3021fa  
5
LT3021/LT3021-1.2/  
LT3021-1.5/LT3021-1.8  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
GND Pin Current  
GND Pin Current  
GND Pin Current  
8
7
6
5
4
3
2
1
0
8
7
6
5
4
3
2
1
0
9
8
7
6
5
4
3
2
1
0
V
T
= 1.5V  
V
T
= 1.2V  
V
T
= 1.8V  
OUT  
J
OUT  
J
OUT  
J
R
L
= 2.4  
= 25°C  
L
= 25°C  
R
L
= 3  
L
= 25°C  
I
= 500mA  
I
= 500mA  
R
L
= 3.6  
L
I
= 500mA  
R
= 4.8Ω  
= 250mA  
L
R
L
= 6Ω  
= 250mA  
L
R
L
= 7.2Ω  
L
I
L
I
R
L
= 24Ω  
R
L
= 30Ω  
L
R
L
= 36Ω  
I
= 250mA  
L
L
R
= 120Ω  
= 10mA  
R = 150Ω  
L
= 10mA  
L
R
L
= 180Ω  
I
= 50mA  
I
= 50mA  
I
= 50mA  
L
I
L
I
L
I
= 10mA  
R
L
= 12Ω  
= 100mA  
R
L
= 18Ω  
L
L
R
L
= 15Ω  
L
I
I
= 100mA  
I
= 100mA  
R
= 1.5k, I = 1mA  
L
L
R
= 1.8k, I = 1mA  
L
R
= 1.2k, I = 1mA  
L
L
L
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
3021 G06  
3021 G24  
3021 G25  
GND Pin Current vs I  
SHDN Pin Threshold  
SHDN Pin Input Current  
LOAD  
10  
9
8
7
6
5
4
3
2
1
0
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 10V  
I = 1mA  
L
SHDN  
0
100  
200  
300  
400  
500  
–50 –25  
0
25  
50  
75 100 125  
0
1
2
3
4
5
6
7
8
9
10  
LOAD CURRENT (mA)  
TEMPERATURE (°C)  
SHDN PIN VOLTAGE (V)  
3021 G07  
3021 G08  
3021 G09  
Reverse Output Current  
SHDN Pin Input Current  
Current Limit  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
5
4
3
2
1
0
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
V
= 0V  
V
= 10V  
V
V
= 0V  
OUT  
SHDN  
IN  
OUT  
= 1.2V  
V
= 10V  
IN  
V
= 1.7V  
IN  
0
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3021 G12  
3021 G10  
3021 G13  
3021fa  
6
LT3021/LT3021-1.2/  
LT3021-1.5/LT3021-1.8  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Load Regulation  
L
Input Ripple Rejection  
Input Ripple Rejection  
I = 1mA to 500mA  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
2.5  
2.0  
1.5  
C
= 22µF  
= 4.7µF  
OUT  
1.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
C
OUT  
V
V
= 1.15V  
OUT  
IN  
= 0.5V  
V
V
I
= 1.5V + 0.5V RIPPLE AT 120Hz  
P-P  
V
V
I
= 1.5V + 50mV  
= 0.5V  
RIPPLE  
10k  
IN  
OUT  
L
IN  
OUT  
RMS  
*LOAD REGULATION NUMBER REFERS  
TO CHANGE IN THE 200mV REFERENCE  
VOLTAGE  
= 0.5V  
= 500mA  
= 500mA  
L
10  
100  
1k  
100k  
1M  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3021 G14  
3021 G15  
3021 G17  
Output Noise Spectral Density  
No-Load Recovery Threshold  
10  
1
18  
16  
14  
12  
10  
8
V
L
C
= 1.2V  
OUT  
I
= 500mA  
= 4.7µF  
OUT  
0.1  
6
4
2
0.01  
0
10  
100  
1k  
10k  
100k  
1M  
0
5
10  
15  
20  
FREQUENCY (Hz)  
OUTPUT OVERSHOOT (%)  
3021 G20  
3021 G18  
RMS Output Noise vs Load  
Current (10Hz to 100kHz)  
Transient Response  
300  
250  
200  
150  
100  
50  
V
C
= 1.2V  
= 4.7µF  
OUT  
OUT  
V
OUT  
50mV/DIV  
I
OUT  
500mA/DIV  
50µs/DIV  
3021 G21  
I
= 50mA TO 500mA  
= 1.5V  
OUT  
IN  
V
V
C
0
0.01  
0.1  
1
10  
100  
= 1.2V  
OUT  
OUT  
LOAD CURRENT (mA)  
= 22µF  
3021 G19  
3021fa  
7
LT3021/LT3021-1.2/  
LT3021-1.5/LT3021-1.8  
U
U
U
PI FU CTIO S  
(DH Package/S8 Package)  
OUT(Pins3,4/Pin2):Thesepinssupplypowertotheload.  
Use a minimum output capacitor of 3.3µF to prevent oscil-  
lations.Applicationswithlargeloadtransientsrequirelarger  
output capacitors to limit peak voltage transients. See the  
Applications Information section for more information on  
output capacitance and reverse output characteristics.  
resistor supplies the pull-up current to the open collector/  
drainlogic,normallyseveralmicroamperes,andtheSHDN  
pin current, typically 2.5µA. If unused, connect the SHDN  
pin to VIN. The LT3021 does not function if the SHDN pin  
is not connected.  
IN (Pins 12, 14/Pin 8): These pins supply power to the  
device. The LT3021 requires a bypass capacitor at IN if it  
is more than six inches away from the main input filter  
capacitor.Theoutputimpedanceofabatteryriseswithfre-  
quency, so include a bypass capacitor in battery-powered  
circuits. A bypass capacitor in the range of 3.3µF to 10µF  
suffices. The LT3021 withstands reverse voltages on the  
IN pin with respect to ground and the OUT pin. In the case  
of a reversed input, which occurs if a battery is plugged in  
backwards, the LT3021 acts as if a diode is in series with  
its input. No reverse current flows into the LT3021 and no  
reversevoltageappearsattheload.Thedeviceprotectsitself  
and the load.  
SENSE(Pin7/Pin3, FixedVoltageDeviceOnly):Thispin  
is the sense point for the internal resistor divider. It should  
be tied directly to the OUT pins (1, 2) for best results.  
ADJ (Pin 7/Pin 3): This pin is the inverting terminal to the  
error amplifier. Its typical input bias current of 20nA flows  
out of the pin (see curve of ADJ Pin Bias Current vs  
Temperature in the Typical Performance Characteristics).  
TheADJpinreferencevoltageis200mV(referredtoGND).  
AGND (Pin 8/Pin 4): Ground.  
PGND (Pins 10, 17/Pin 6): Ground.  
SHDN (Pin 9/Pin 5): The SHDN pin puts the LT3021 into  
a low power state. Pulling the SHDN pin low turns the  
output off. Drive the SHDN pin with either logic or an open  
collector/drain device with a pull-up resistor. The pull-up  
EXPOSED PAD (Pin 17, DH16 Package Only): Ground.  
Solder Pin 17 to the PCB ground. Connect directly to Pins  
5, 8, 10 for best performance.  
NC (Pins 1, 2, 5, 6, 11, 15, 16/Pins 1, 7)  
W
BLOCK DIAGRA  
(DH Package/S8 Package)  
IN  
(12, 14/8)  
R3  
THERMAL  
SHUTDOWN  
SHDN  
(9/5)  
SHUTDOWN  
D1  
Q3  
CURRENT  
Q1  
ERROR AMP  
+
GAIN  
200mV  
BIAS CURRENT  
AND  
REFERENCE  
GENERATOR  
OUT  
D2  
(3,4/2)  
OUT SENSE  
(7/3)  
212mV  
NO-LOAD  
RECOVERY  
Q2  
R2  
+
ADJ  
(7/3)  
25k  
R1  
FIXED  
OUT  
NOTE:  
V
R1  
R2  
FOR LT3021 ADJUST PIN (7/3) IS CONNECTED TO  
THE ADJUST PIN, R1 AND R2 ARE EXTERNAL.  
FOR LT3021-1.X PIN (7/3) IS CONNECTED TO THE  
OUTPUT SENSE PIN, R1 AND R2 ARE INTERNAL.  
1.2V 20k 100k  
1.5V 20k 130k  
1.8V 20k 160k  
GND  
(8,10,17/4,6)  
3021 BD  
3021fa  
8
LT3021/LT3021-1.2/  
LT3021-1.5/LT3021-1.8  
W U U  
APPLICATIO S I FOR ATIO  
U
The LT3021 is a very low dropout linear regulator capable  
of 1V input supply operation. Devices supply 500mA of  
output current and dropout voltage is typically 155mV.  
Quiescent current is typically 120µA and drops to 3µA in  
shutdown. The LT3021 incorporates several protection  
features, making it ideal for use in battery-powered sys-  
tems. The device protects itself against reverse-input and  
reverse-output voltages. In battery backup applications  
where the output is held up by a backup battery when the  
input is pulled to ground, the LT3021 acts as if a diode is  
in series with its output which prevents reverse current  
flow. In dual supply applications where the regulator load  
is returned to a negative supply, the output can be pulled  
below ground by as much as 10V without affecting start-  
up or normal operation.  
0.4mVatVADJ=200mV. AtVOUT =1.5V, loadregulationis:  
(1.5V/200mV) • (0.4mV) = 3mV  
Output Capacitance and Transient Response  
The LT3021’s design is stable with a wide range of output  
capacitors, but is optimized for low ESR ceramic capaci-  
tors. The output capacitor’s ESR affects stability, most  
notably with small value capacitors. Use a minimum  
output capacitor of 3.3µF with an ESR of 0.2or less to  
prevent oscillations. The LT3021 is a low voltage device,  
and output load transient response is a function of output  
capacitance.Largervaluesofoutputcapacitancedecrease  
the peak deviations and provide improved transient re-  
sponse for larger load current changes. For output capaci-  
torvaluesgreaterthan22µFasmallfeedforwardcapacitor  
with a value of 300pF across the upper divider resistor (R2  
in Figure 1) is required. Under extremely low output  
current conditions (ILOAD < 30µA) a low frequency small  
signal oscillation (200Hz/8mVP-P at 1.2V output) can  
occur. A minimum load of 100µA is recommended to  
prevent this instability.  
Adjustable Operation  
The LT3021’s output voltage range is 0.2V to 9.5V. Figure  
1 shows that the output voltage is set by the ratio of two  
external resistors. The device regulates the output to  
maintain the ADJ pin voltage at 200mV referenced to  
ground. The current in R1 equals 200mV/R1 and the  
current in R2 is the current in R1 minus the ADJ pin bias  
current. The ADJ pin bias current of 20nA flows out of the  
pin.UsetheformulainFigure1tocalculateoutputvoltage.  
An R1 value of 20k sets the resistor divider current to  
10µA. Note that in shutdown the output is turned off and  
the divider current is zero. Curves of ADJ Pin Voltage vs  
Temperature and ADJ Pin Bias Current vs Temperature  
appearintheTypicalPerformanceCharacteristicssection.  
Give extra consideration to the use of ceramic capacitors.  
Manufacturers make ceramic capacitors with a variety of  
dielectrics, each with a different behavior across tempera-  
tureandappliedvoltage.Themostcommondielectricsare  
Z5U, Y5V, X5R and X7R. The Z5U and Y5V dielectrics  
provide high C-V products in a small package at low cost,  
but exhibit strong voltage and temperature coefficients.  
The X5R and X7R dielectrics yield highly stable  
characterisiticsandaremoresuitableforuseastheoutput  
capacitor at fractionally increased cost. The X5R and X7R  
dielectrics both exhibit excellent voltage coefficient char-  
acteristics. The X7R type works over a larger temperature  
range and exhibits better temperature stability whereas  
X5R is less expensive and is available in higher values.  
Figures 2 and 3 show voltage coefficient and temperature  
coefficient comparisons between Y5V and X5R material.  
IN  
OUT  
ADJ  
V
OUT  
+
V
LT3021  
SHDN  
GND  
IN  
R2  
R1  
3021 F01  
(R2)  
R2  
V
= 200mV 1 +  
– I  
ADJ  
OUT  
ADJ  
(
)
R1  
V
= 200mV  
I
= 20nA AT 25°C  
ADJ  
Voltage and temperature coefficients are not the only  
sources of problems. Some ceramic capacitors have a  
piezoelectric response. A piezoelectric device generates  
voltageacrossitsterminalsduetomechanicalstress,simi-  
lartothewayapiezoelectricaccelerometerormicrophone  
works. For a ceramic capacitor, the stress can be induced  
by vibrations in the system or thermal transients. The re-  
OUTPUT RANGE = 0.2V TO 9.5V  
Figure 1. Adjustable Operation  
Specifications for output voltages greater than 200mV are  
proportional to the ratio of desired output voltage to  
200mV; (VOUT/200mV). For example, load regulation for  
an output current change of 1mA to 500mA is typically  
sultingvoltagesproducedcancauseappreciableamounts  
3021fa  
9
LT3021/LT3021-1.2/  
LT3021-1.5/LT3021-1.8  
W U U  
U
APPLICATIO S I FOR ATIO  
20  
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10µF  
0
X5R  
–20  
1mV/DIV  
–40  
–60  
Y5V  
–80  
–100  
V
C
LOAD  
= 1.3V  
= 10µF  
= 0  
1ms/DIV  
3021 F04  
OUT  
OUT  
0
8
12 14  
2
4
6
10  
16  
DC BIAS VOLTAGE (V)  
I
3021 F02  
Figure 4. Noise Resulting from Tapping on a Ceramic Capacitor  
Figure 2. Ceramic Capacitor DC Bias Characteristics  
To eliminate this problem, the LT3021 incorporates a  
no-load or light-load recovery circuit. This circuit is a  
voltage-controlledcurrentsinkthatsignificantlyimproves  
the light load transient response time by discharging the  
output capacitor quickly and then turning off. The current  
sink turns on when the output voltage exceeds 6% of the  
nominal output voltage. The current sink level is then  
proportional to the overdrive above the threshold up to a  
maximum of approximately 15mA. Consult the curve in  
the Typical Performance Characteristics for the No-Load  
Recovery Threshold.  
40  
20  
X5R  
0
–20  
–40  
Y5V  
–60  
–80  
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10µF  
–100  
–50 –25  
0
25  
50  
75  
100 125  
TEMPERATURE (°C)  
3021 F03  
If external circuitry forces the output above the no load  
recoverycircuit’sthreshold, thecurrentsinkturnsoninan  
attempt to restore the output voltage to nominal. The  
currentsinkremainsonuntiltheexternalcircuitryreleases  
the output. However, if the external circuitry pulls the  
output voltage above the input voltage, or the input falls  
belowtheoutput,theLT3021turnsthecurrentsinkoffand  
shuts down the bias current/reference generator circuitry.  
Figure 3. Ceramic Capacitor Temperature Characteristics  
of noise. A ceramic capacitor produced Figure 4’s trace in  
response to light tapping from a pencil. Similar vibration  
induced behavior can masquerade as increased output  
voltage noise.  
No-Load/Light-Load Recovery  
Thermal Considerations  
A transient load step occurs when the output current  
changes from its maximum level to zero current or a very  
small load current. The output voltage responds by over-  
shooting until the regulator lowers the amount of current it  
delivers to the new level. The regulator loop response time  
andtheamountofoutputcapacitancecontroltheamountof  
overshoot. Once the regulator has decreased its output  
current, the current provided by the resistor divider (which  
sets VOUT) is the only current remaining to discharge the  
output capacitor from the level to which it overshot. The  
amount of time it takes for the output voltage to recover  
easilyextendstomillisecondswithmicroamperesofdivider  
current and a few microfarads of output capacitance.  
The LT3021’s power handling capability is limited by its  
maximumratedjunctiontemperatureof125°C.Thepower  
dissipated by the device is comprised of two components:  
1. Output current multiplied by the input-to-output volt-  
age differential: (IOUT)(VIN – VOUT) and  
2. GND pin current multiplied by the input voltage:  
(IGND)(VIN).  
GND pin current is found by examining the GND pin  
currentcurvesintheTypicalPerformanceCharacteristics.  
Power dissipation is equal to the sum of the two compo-  
nents listed above.  
3021fa  
10  
LT3021/LT3021-1.2/  
LT3021-1.5/LT3021-1.8  
W U U  
APPLICATIO S I FOR ATIO  
U
The LT3021 regulator has internal thermal limiting (with  
hysteresis)designedtoprotectthedeviceduringoverload  
conditions. For normal continuous conditions, do not  
exceedthemaximumjunctiontemperatureratingof125°C.  
Carefully consider all sources of thermal resistance from  
junction to ambient including other heat sources mounted  
in proximity to the LT3021.  
Calculating Junction Temperature  
Example: Given an output voltage of 1.2V, an input voltage  
range of 1.8V ±10%, an output current range of 1mA to  
500mA, and a maximum ambient temperature of 70°C,  
what will the maximum junction temperature be for an  
application using the DH package?  
The power dissipated by the device is equal to:  
TheundersideoftheLT3021DHpackagehasexposedmetal  
(14mm2) from the lead frame to where the die is attached.  
This allows heat to directly transfer from the die junction  
to the printed circuit board metal to control maximum  
operating junction temperature. The dual-in-line pin ar-  
rangement allows metal to extend beyond the ends of the  
package on the topside (component side) of a PCB. Con-  
nectthismetaltoGNDonthePCB.ThemultipleINandOUT  
pinsoftheLT3021alsoassistinspreadingheattothePCB.  
IOUT(MAX)(VIN(MAX) – VOUT) + IGND(VIN(MAX)  
where  
)
IOUT(MAX) = 500mA  
VIN(MAX) = 1.98V  
IGND at (IOUT = 500mA, VIN = 1.98V) = 10mA  
so  
The LT3021 S8 package has pin 4 fused with the lead  
frame. This also allows heat to transfer from the die to the  
printedcircuitboardmetal, thereforereducingthethermal  
resistance. Copper board stiffeners and plated through-  
holes can also be used to spread the heat generated by  
power devices.  
P = 500mA(1.98V – 1.2V) + 10mA(1.98V) = 0.41W  
The thermal resistance is in the range of 35°C/W to  
70°C/W depending on the copper area. So the junction  
temperatureriseaboveambientisapproximatelyequalto:  
0.41W(52.5°C/W) = 21.5°C  
The maximum junction temperature equals the maximum  
junction temperature rise above ambient plus the maxi-  
mum ambient temperature or:  
The following tables list thermal resistance for several  
different board sizes and copper areas for two different  
packages. Measurements were taken in still air on 3/32"  
FR-4 board with one ounce copper.  
TJMAX = 21.5°C + 70°C = 91.5°C  
Table 1. Measured Thermal Resistance For DH Package  
Protection Features  
COPPER AREA  
THERMAL RESISTANCE  
TOPSIDE*  
2500mm2  
900mm2  
225mm2  
100mm2  
50mm2  
BACKSIDE BOARD AREA (JUNCTION-TO-AMBIENT)  
The LT3021 incorporates several protection features that  
make it ideal for use in battery-powered circuits. In addi-  
tion to the normal protection features associated with  
monolithic regulators, such as current limiting and ther-  
mal limiting, the device also protects against reverse-  
input voltages, reverse-output voltages and reverse  
output-to-input voltages.  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
30°C/W  
35°C/W  
50°C/W  
55°C/W  
65°C/W  
Table 2. Measured Thermal Resistance For S8 Package  
Current limit protection and thermal overload protection  
protect the device against current overload conditions at  
the output of the device. For normal operation, do not  
exceed a junction temperature of 125°C.  
COPPER AREA  
TOPSIDE* BACKSIDE  
THERMAL RESISTANCE  
BOARD AREA (JUNCTION-TO-AMBIENT)  
2500mm2  
1000mm2  
225mm2  
100mm2  
50mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
70°C/W  
70°C/W  
78°C/W  
84°C/W  
96°C/W  
The IN pins of the device withstand reverse voltages of  
10V. The LT3021 limits current flow to less than 1µA and  
no negative voltage appears at OUT. The device protects  
both itself and the load against batteries that are plugged  
*Device is mounted on topside.  
in backwards.  
3021fa  
11  
LT3021/LT3021-1.2/  
LT3021-1.5/LT3021-1.8  
W U U  
U
APPLICATIO S I FOR ATIO  
The LT3021 incurs no damage if OUT is pulled below  
ground. If IN is left open circuit or grounded, OUT can be  
pulled below ground by 10V. No current flows from the  
pass transistor connected to OUT. However, current flows  
in(butislimitedby)theresistordividerthatsetstheoutput  
voltage. Current flows from the bottom resistor in the  
divider and from the ADJ pin’s internal clamp through the  
top resistor in the divider to the external circuitry pulling  
OUT below ground. If IN is powered by a voltage source,  
OUT sources current equal to its current limit capability  
and the LT3021 protects itself by thermal limiting. In this  
case, grounding SHDN turns off the LT3021 and stops  
OUT from sourcing current.  
circuit. In the case where the input is grounded, there is  
less than 1µA of reverse output current.  
IftheLT3021INpinisforcedbelowtheOUTpinortheOUT  
pin is pulled above the IN pin, input current drops to less  
than 10µA typically. This occurs if the LT3021 input is  
connected to a discharged (low voltage) battery and either  
a backup battery or a second regulator circuit holds up the  
output. The state of the SHDN pin has no effect on the  
reverse output current if OUT is pulled above IN.  
Input Capacitance and Stability  
The LT3021 is designed to be stable with a minimum  
capacitance of 3.3µF placed at the IN pin. Ceramic capaci-  
tors with very low ESR may be used. However, in cases  
where a long wire is used to connect a power supply to the  
input of the LT3021 (and also from the ground of the  
LT3021 back to the power supply ground), use of low  
value input capacitors combined with an output load  
current of 20mA or greater may result in an unstable  
application. This is due to the inductance of the wire  
forming an LC tank circuit with the input capacitor and not  
a result of the LT3021 being unstable.  
The LT3021 incurs no damage if the ADJ pin is pulled  
above or below ground by 10V. If IN is left open circuit or  
grounded and ADJ is pulled above ground, ADJ acts like a  
25k resistor in series with a 1V clamp (one Schottky diode  
in series with one diode). ADJ acts like a 25k resistor in  
series with a Schottky diode if pulled below ground. If IN  
is powered by a voltage source and ADJ is pulled below its  
reference voltage, the LT3021 attempts to source its  
current limit capability at OUT. The output voltage in-  
creases to VIN – VDROPOUT with VDROPOUT set by whatever  
load current the LT3021 supports. This condition can  
potentially damage external circuitry powered by the  
LT3021 if the output voltage increases to an unregulated  
high voltage. If IN is powered by a voltage source and ADJ  
is pulled above its reference voltage, two situations can  
occur. If ADJ is pulled slightly above its reference voltage,  
theLT3021turnsoffthepasstransistor, nooutputcurrent  
is sourced and the output voltage decreases to either the  
voltage at ADJ or less. If ADJ is pulled above its no load  
recovery threshold, the no load recovery circuitry turns on  
and attempts to sink current. OUT is actively pulled low  
and the output voltage clamps at a Schottky diode above  
ground. Please note that the behavior described above  
applies to the LT3021 only. If a resistor divider is con-  
nected under the same conditions, there will be additional  
V/R current.  
The self-inductance, or isolated inductance, of a wire is  
directly proportional to its length. However, the diameter  
of a wire does not have a major influence on its self-  
inductance. For example, the self inductance of a 2-AWG  
isolated wire with a diameter of 0.26 in. is about half the  
inductance of a 30-AWG wire with a diameter of 0.01 in.  
One foot of 30-AWG wire has 465nH of self inductance.  
The overall self-inductance of a wire can be reduced in two  
ways. One is to divide the current flowing towards the  
LT3021 between two parallel conductors and flows in the  
same direction in each. In this case, the farther the wires  
are placed apart from each other, the more inductance will  
be reduced, up to a 50% reduction when placed a few  
inches apart. Splitting the wires basically connects two  
equal inductors in parallel. However, when placed in close  
proximity from each other, mutual inductance is added to  
the overall self inductance of the wires. The most effective  
way to reduce overall inductance is to place the forward  
and return-current conductors (the wire for the input and  
the wire for ground) in very close proximity. Two 30-AWG  
wires separated by 0.02 in. reduce the overall self-induc-  
tance to about one-fifth of a single isolated wire.  
In circuits where a backup battery is required, several  
different input/output conditions can occur. The output  
voltage may be held up while the input is either pulled to  
ground, pulledtosomeintermediatevoltageorisleftopen  
3021fa  
12  
LT3021/LT3021-1.2/  
LT3021-1.5/LT3021-1.8  
W U U  
APPLICATIO S I FOR ATIO  
U
If the LT3021 is powered by a battery mounted in close  
proximity on the same circuit board, a 3.3µF input capaci-  
tor is sufficient for stability. However, if the LT3021 is  
powered by a distant supply, use a larger value input  
capacitor following the guideline of roughly 1µF (in addi-  
tion to the 3.3µF minimum) per 8 inches of wire length. As  
power supply output impedance may vary, the minimum  
input capacitance needed to stabilize the application may  
alsovary. Extracapacitancemayalsobeplaceddirectlyon  
the output of the power supply; however, this will require  
an order of magnitude more capacitance as opposed to  
placingextracapacitanceincloseproximitytotheLT3021.  
Furthermore, seriesresistancemaybeplacedbetweenthe  
supply and the input of the LT3021 to stabilize the appli-  
cation; as little as 0.1to 0.5will suffice.  
3021fa  
13  
LT3021/LT3021-1.2/  
LT3021-1.5/LT3021-1.8  
U
PACKAGE DESCRIPTIO  
DH Package  
16-Lead Plastic DFN (5mm × 5mm)  
(Reference LTC DWG # 05-08-1709)  
0.70 ±0.05  
5.50 ±0.05  
4.10 ±0.05  
3.45 ±0.05  
(2 SIDES)  
PACKAGE  
OUTLINE  
0.25 ± 0.05  
0.50 BSC  
4.10 ±0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
R = 0.115  
TYP  
0.40 ± 0.05  
5.00 ±0.10  
9
16  
R = 0.20  
TYP  
3.45 ± 0.10  
(2 SIDES)  
5.00 ±0.10  
PIN 1  
PIN 1  
TOP MARK  
NOTCH  
(SEE NOTE 6)  
(DH16) DFN 0204  
8
1
0.25 ± 0.05  
0.75 ±0.05  
0.200 REF  
0.50 BSC  
4.10 ±0.10  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING PROPOSED TO BE MADE VARIATION OF VERSION (WJJD-1) IN JEDEC  
PACKAGE OUTLINE MO-229  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
3021fa  
14  
LT3021/LT3021-1.2/  
LT3021-1.5/LT3021-1.8  
U
PACKAGE DESCRIPTIO  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.189 – .197  
(4.801 – 5.004)  
.045 ±.005  
NOTE 3  
.050 BSC  
7
5
8
6
.245  
MIN  
.160 ±.005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.030 ±.005  
TYP  
1
3
4
2
RECOMMENDED SOLDER PAD LAYOUT  
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
SO8 0303  
3021fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LT3021/LT3021-1.2/  
LT3021-1.5/LT3021-1.8  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1121/LT1121HV  
150mA, Micropower LDOs  
V : 4.2V to 30V/36V, V : 3.75V to 30V, V = 0.42V, I = 30µA,  
SD  
IN  
OUT  
DO  
Q
I
= 16µA, Reverse-Battery Protection, SOT-223, S8, Z Packages  
LT1129  
LT1761  
700mA, Micropower LDO  
V : 4.2V to 30V, V : 3.75V to 30V, V = 0.4V, I = 50µA, I = 16µA,  
IN OUT DO Q SD  
DD, SOT-223, S8, TO220-5, TSSOP20 Packages  
100mA, Low Noise Micropower LDO  
V : 1.8V to 20V, V : 1.22V to 20V, V = 0.3V, I = 20µA, I < 1µA,  
IN OUT DO Q SD  
Low Noise: < 20µV  
ThinSOT Package  
, Stable with 1µF Ceramic Capacitor,  
RMSP-P  
LT1762  
150mA, Low Noise Micropower LDO  
500mA, Low Noise Micropower LDO  
3A, Low Noise, Fast Transient Response LDOs  
V : 1.8V to 20V, V : 1.22V to 20V, V = 0.3V, I = 25µA, I < 1µA,  
IN  
OUT  
DO  
Q
SD  
Low Noise: <20µV  
, MS8 Package  
RMSP-P  
LT1763  
V : 1.8V to 20V, V : 1.22V to 20V, V = 0.3V, I = 30µA, I < 1µA,  
IN  
OUT  
RMSP-P  
DO  
Q
SD  
Low Noise: < 20µV  
, S8 Package  
LT1764/LT1764A  
V : 2.7V to 20V, V : 1.21V to 20V, V = 0.34V, I = 1mA, I < 1µA,  
IN  
OUT  
RMSP-P  
DO  
Q
SD  
Low Noise: <40µV  
DD, TO220-5 Packages  
, “A” Version Stable with Ceramic Capacitors,  
LTC1844  
150mA, Low Noise, Micropower VLDO  
300mA, Low Noise Micropower LDO  
V : 1.6V to 6.5V, V  
= 1.25V, V = 0.09V, I = 35µA,  
OUT(MIN) DO Q  
IN  
I
< 1µA, Low Noise: < 30µV  
, ThinSOT Package  
SD  
RMS  
LT1962  
V : 1.8V to 20V, V : 1.22V to 20V, V = 0.27V, I = 30µA, I < 1µA,  
IN  
OUT  
DO  
Q
SD  
Low Noise: < 20µV  
, MS8 Package  
RMSP-P  
LT1963/LT1963A  
1.5A, Low Noise, Fast Transient Response LDOs  
V : 2.1V to 20V, V : 1.21V to 20V, V = 0.34V, I = 1mA, I < 1µA,  
IN  
OUT  
DO  
Q
SD  
Low Noise: < 40µV  
, “A” Version Stable with Ceramic Capacitors,  
RMSP-P  
DD, TO220-5, SOT223, S8 Packages  
LT3010  
LT3020  
50mA, High Voltage, Micropower LDO  
100mA, Low Voltage LDO  
V : 3V to 80V, V : 1.275V to 60V, V = 0.3V, I = 30µA, I < 1µA,  
IN OUT DO Q SD  
Low Noise: <100µV  
, Stable with 1µF Output Capacitor, Exposed  
RMSP-P  
MS8 Package  
V : 0.9V to 10V, V : 0.2V to 5V (min), V = 0.15V, I = 120µA,  
IN  
OUT  
DO  
Q
Noise: <250µV  
DFN-8, MS8 Packages  
, Stable with 2.2µF Ceramic Capacitors,  
RMSP-P  
LTC3025  
LTC3026  
300mA, Low Voltage Micropower LDO  
1.5A, Low Input Voltage VLDO Regulator  
V : 0.9V to 5.5V, V : 0.4V to 3.6V (min), V = 0.05V, I = 54µA,  
IN OUT DO Q  
Stable with 1µF Ceramic Capacitors, DFN-6 Package  
V : 1.14V to 3.5V (Boost Enabled), 1.14V to 5.5V (with External 5V),  
IN  
DO  
V
= 0.1V, I = 950µA, Stable with 10µF Ceramic Capacitors, 10-Lead  
Q
MSOP and DFN-10 Packages  
LT3150  
Low V , Fast Transient Response, VLDO Controller V : 1.1V to 10V, V : 1.21V to 10V, V = Set by External MOSFET  
IN  
IN  
R
OUT  
DO  
, 1.4MHz Boost Converter Generates Gate Drive, SSOP16 Package  
DS(ON)  
3021fa  
LT/TP 0705 500 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
© LINEAR TECHNOLOGY CORPORATION 2005  

相关型号:

LT1963/

45V VIN, Micropower, Low Noise, 100mA Low Dropout, Linear Regulator
Linear

LT1963A

1.5A, Low Noise, Fast Transient Response LDO Regulators
Linear

LT1963A-1.5

1.5A, Low Noise, Fast Transient Response LDO Regulators
Linear

LT1963A-1.8

1.5A, Low Noise, Fast Transient Response LDO Regulators
Linear

LT1963A-2.5

1.5A, Low Noise, Fast Transient Response LDO Regulators
Linear

LT1963A-3.3

1.5A, Low Noise, Fast Transient Response LDO Regulators
Linear

LT1963AEFE

1.5A, Low Noise,Fast Transient Response LDO Regulators
Linear

LT1963AEFE#PBF

LT1963A Series - 1.5A, Low Noise, Fast Transient Response LDO Regulators; Package: TSSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1963AEFE#TRPBF

LT1963A Series - 1.5A, Low Noise, Fast Transient Response LDO Regulators; Package: TSSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1963AEFE-1.5

1.5A, Low Noise,Fast Transient Response LDO Regulators
Linear

LT1963AEFE-1.5#TR

LT1963A Series - 1.5A, Low Noise, Fast Transient Response LDO Regulators; Package: TSSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1963AEFE-1.5PBF

1.5A, Low Noise,Fast Transient Response LDO Regulators
Linear