LT1965EQ#PBF [Linear]

LT1965 - 1.1A, Low Noise, Low Dropout Linear Regulator; Package: DD PAK; Pins: 5; Temperature Range: -40°C to 85°C;
LT1965EQ#PBF
型号: LT1965EQ#PBF
厂家: Linear    Linear
描述:

LT1965 - 1.1A, Low Noise, Low Dropout Linear Regulator; Package: DD PAK; Pins: 5; Temperature Range: -40°C to 85°C

稳压器
文件: 总20页 (文件大小:584K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3030  
Dual 750mA/250mA  
Low Dropout, Low Noise,  
Micropower Linear Regulator  
FeaTures  
DescripTion  
n
Output Current: 750mA/250mA  
TheLT®3030isadual,micropower,lownoise,lowdropout  
linear regulator. The device operates with either common  
or independent input supplies for each channel, over a  
1.8V to 20V input voltage range. Output 1/Output 2 supply  
750mA/250mArespectivelywithatypicaldropoutvoltage  
of 300mV. With an external 10nF bypass capacitor, output  
n
Low Dropout Voltage: 300mV  
Low Noise: 20μV  
n
(10Hz to 100kHz)  
RMS  
n
n
n
n
n
n
Low Quiescent Current: 120μA/75μA  
Wide Input Voltage Range: 1.8V to 20V  
Adjustable Output: 1.220V Reference Voltage  
Shutdown Quiescent Current: <1μA  
Stable with 10µF/3.3µF Minimum Output Capacitor  
Stable with Ceramic, Tantalum or Aluminum  
Electrolytic Capacitors  
noise is only 20μV  
over a 10Hz to 100kHz bandwidth.  
RMS  
Designed for use in battery-powered systems, the low  
120μA/75μA quiescent current makes it an ideal choice.  
In shutdown, quiescent current drops to less than 1μA.  
n
n
n
Precision Threshold for Shutdown Logic or UVLO Function Shutdown control is independent for each channel and  
PWRGD Flag for each Output  
Reverse Battery and Reverse Output-to-Input  
Protection  
Current Limit with Foldback and Thermal Shutdown  
Thermally Enhanced 20-Lead TSSOP and  
28-Lead (4mm × 5mm) QFN Packages  
its precision logic threshold allows for voltage lockout  
functionality. The LT3030 includes a PWRGD flag for each  
channel to indicate output regulation.  
n
n
TheLT3030optimizesstabilityandtransientresponsewith  
low ESR ceramic output capacitors, requiring a minimum  
of only 10μF/3.3μF.  
applicaTions  
Internal circuitry provides reverse-battery protection,  
reverse-current protection, current limiting with foldback  
and thermal shutdown with hysteresis. The adjustable  
output voltage device has a 1.220V reference voltage.  
The LT3030 is offered in the thermally enhanced 20-lead  
TSSOP and 28-lead, low profile (4mm × 5mm × 0.75mm)  
QFN packages.  
n
General Purpose Linear Regulator  
n
Battery-Powered Systems  
n
Microprocessor Core/Logic Supplies  
n
Post Regulator for Switching Supplies  
Tracking/Sequencing Power Supplies  
n
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and  
ThinSOT is a trademark of Linear Technology Corporation. All other trademarks are the property  
of their respective owners.  
Typical applicaTion  
2.5VIN to 1.8V/1.5V Application  
Dropout Voltage vs Load Current  
500  
V
IN  
2.5V  
V
OUT1  
T
= 25°C  
IN1  
OUT1  
J
1.8V  
450  
400  
350  
300  
250  
200  
150  
100  
50  
10nF  
10µF  
750mA  
3.3µF  
IN2  
LT3030  
113k  
1%  
SHDN1  
SHDN2  
BYP1  
ADJ1  
237k  
1%  
OUT2  
1M  
1M  
PWRGD1  
PWRGD2  
OUT1  
V
OUT2  
OUT2  
1.5V  
10nF  
3.3µF  
250mA  
54.9k  
1%  
BYP2  
ADJ2  
0
GND  
0
75 150 225 300 375 450 525 600 675 750  
237k  
1%  
3030 TA01a  
OUTPUT CURRENT (mA)  
3030 TA01b  
3030f  
1
For more information www.linear.com/3030  
LT3030  
absoluTe MaxiMuM raTings  
(Note 1)  
IN1, IN2 Pin Voltage................................................±22V  
OUT1, OUT2 Pin Voltage .........................................±22V  
Input-to-Output Differential Voltage........................±22V  
ADJ1, ADJ2 Pin Voltage............................................±±V  
BYP1, BYP2 Pin Voltage ........................................±0.6V  
SHDN1, SHDN2 Pin Voltage....................................±22V  
PWRGD1, PWRGD2 Pin Voltage ....................22V, –0.3V  
Output Short-Circuit Duration.......................... Indefinite  
Operating Junction Temperature (Notes 2, 12)  
E-/I-Grade.......................................... –40°C to 125°C  
H-Grade ............................................. –40°C to 150°C  
MP-Grade .......................................... –55°C to 150°C  
Storage Temperature Range  
QFN/TSSOP Package............................. –65°C to 150°C  
Lead Temperature (Soldering, 10 sec)  
(TSSOP Only)........................................................300°C  
pin conFiguraTion  
TOP VIEW  
TOP VIEW  
ADJ1  
BYP1  
OUT1  
OUT1  
GND  
1
2
3
4
5
6
7
8
9
20  
19  
18  
17  
16  
15  
14  
SHDN1  
PWRGD1  
IN1  
28 27 26 25 24 23  
OUT1  
OUT1  
GND  
1
2
3
4
5
6
7
8
22  
21  
20  
19  
18  
17  
16  
15  
PWRGD1  
IN1  
IN1  
IN1  
GND  
GND  
GND  
GND  
21  
GND  
29  
GND  
GND  
GND  
GND  
OUT2  
OUT2  
BYP2  
IN2  
GND  
IN2  
OUT2  
OUT2  
IN2  
13 IN2  
PWRGD2  
12  
11  
PWRGD2  
SHDN2  
9
10 11 12 13 14  
UFD PACKAGE  
ADJ2 10  
FE PACKAGE  
20-LEAD PLASTIC TSSOP  
T
= 150°C, θ = 28°C/W, , θ = 10°C/W  
JA JC  
EXPOSED PAD (PIN 21) IS GND, MUST BE SOLDERED TO PCB  
JMAX  
28-LEAD (4mm × 5mm) PLASTIC QFN  
T
= 125°C, θ = 33°C/W, , θ = 3.4°C/W  
JMAX  
JA  
JC  
EXPOSED PAD (PIN 2±) IS GND, MUST BE SOLDERED TO PCB  
orDer inForMaTion  
LEAD FREE FINISH  
LT3030EUFD#PBF  
LT3030IUFD#PBF  
LT3030EFE#PBF  
LT3030IFE#PBF  
TAPE AND REEL  
PART MARKING*  
3030  
PACKAGE DESCRIPTION  
28-Lead (4mm × 5mm) Plastic QFN  
TEMPERATURE RANGE  
–40°C to 125°C  
LT3030EUFD#TRPBF  
LT3030IUFD#TRPBF  
LT3030EFE#TRPBF  
LT3030IFE#TRPBF  
LT3030HFE#TRPBF  
LT3030MPFE#TRPBF  
3030  
28-Lead (4mm × 5mm) Plastic QFN  
20-Lead Plastic TSSOP  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 150°C  
–55°C to 150°C  
LT3030FE  
LT3030FE  
LT3030FE  
LT3030FE  
20-Lead Plastic TSSOP  
LT3030HFE#PBF  
LT3030MPFE#PBF  
20-Lead Plastic TSSOP  
20-Lead Plastic TSSOP  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
3030f  
2
For more information www.linear.com/3030  
LT3030  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C (Note 2).  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
Minimum Input Voltage (Notes 3, 11)  
Output 1, I  
Output 2, I  
= 750mA  
= 250mA  
1.7  
1.7  
2.2  
2.2  
V
V
LOAD  
LOAD  
ADJ1, ADJ2 Pin Voltage (Notes 3, 4)  
V
= 2V, I  
= 1mA  
IN1  
IN2  
1.208  
1.1±6  
1.1±6  
1.220  
1.220  
1.220  
1.232  
1.244  
1.244  
V
V
V
IN  
LOAD  
l
l
Output 1, 2.2V < V < 20V, 1mA < I  
< 750mA  
< 250mA  
LOAD  
LOAD  
Output 2, 2.2V < V < 20V, 1mA < I  
l
l
l
l
l
l
l
l
l
l
l
Line Regulation (Note 3)  
Load Regulation (Note 3)  
∆V = 2V to 20V, I  
= 1mA  
0.5  
2
5
mV  
IN  
LOAD  
Output 1, V = 2.2V, ∆I  
= 1mA to 750mA  
= 1mA to 750mA  
6
10  
mV  
mV  
IN1  
IN1  
LOAD  
LOAD  
V
= 2.2V, ∆I  
Output 2, V = 2.2V, ∆I  
= 1mA to 250mA  
= 1mA to 250mA  
2
6
10  
mV  
mV  
IN2  
IN2  
LOAD  
LOAD  
V
= 2.2V, ∆I  
Dropout Voltage (Output 1)  
I
I
= 10mA  
= 10mA  
0.13  
0.17  
0.27  
0.3  
0.20  
0.28  
V
V
LOAD  
LOAD  
V
= V  
OUT1(NOMINAL)  
IN1  
(Notes 5, 6, 11)  
I
I
= 100mA  
= 100mA  
0.23  
0.33  
V
V
LOAD  
LOAD  
I
I
= 500mA  
= 500mA  
0.32  
0.43  
V
V
LOAD  
LOAD  
I
I
= 750mA  
= 750mA  
0.36  
0.48  
V
V
LOAD  
LOAD  
Dropout Voltage (Output 2)  
I
I
= 10mA  
= 10mA  
0.14  
0.18  
0.22  
0.3  
0.20  
0.28  
V
V
LOAD  
LOAD  
V
= V  
OUT2(NOMINAL)  
IN2  
(Notes 5, 6, 11)  
I
I
= 50mA  
= 50mA  
0.24  
0.32  
V
V
LOAD  
LOAD  
I
I
= 100mA  
= 100mA  
0.28  
0.38  
V
V
LOAD  
LOAD  
I
I
= 250mA  
= 250mA  
0.36  
0.48  
V
V
LOAD  
LOAD  
l
l
l
l
l
GND Pin Current (Output 1)  
I
I
I
I
I
= 0mA  
120  
420  
2
300  
800  
3.8  
17  
μA  
μA  
mA  
mA  
mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
V
= V  
= 10mA  
= 100mA  
= 500mA  
= 750mA  
IN1  
OUT1(NOMINAL)  
(Notes 5, 7)  
±
15  
27  
l
l
l
l
l
GND Pin Current (Output 2)  
I
I
I
I
I
= 0mA  
75  
330  
1
1.8  
5
200  
600  
1.8  
3.4  
±
μA  
μA  
mA  
mA  
mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
V
= V  
= 10mA  
= 50mA  
= 100mA  
= 250mA  
IN2  
OUT2(NOMINAL)  
(Notes 5, 7)  
Output Voltage Noise  
C
= 10μF, C  
= 10nF, I  
= Full Current (Note 13)  
20  
μV  
RMS  
OUT  
BYP  
LOAD  
BW = 10Hz to 100kHz  
ADJ1/ADJ2 Pin Bias Current (Notes 3, 8)  
Shutdown Threshold  
30  
100  
nA  
l
l
V
V
= Off to On  
= On to Off  
1.0±  
0.5  
1.21  
0.83  
0.38  
1.33  
V
V
V
OUT  
OUT  
Hysteresis (Note 2)  
l
l
SHDN1/SHDN2 Pin Current (Note 10)  
V
V
, V  
= 0V  
= 20V  
0
0.85  
0.5  
3
μA  
μA  
SHDN1 SHDN2  
, V  
SHDN1 SHDN2  
Quiescent Current in Shutdown (per Channel)  
PWRGD Trip Point  
V
= 20V, V  
= 0V, V = 0V  
SHDN2  
0.3  
±0  
2
μA  
%
IN  
SHDN1  
l
% of Nominal Output Voltage, Output Rising  
% of Nominal Output Voltage, Output Falling  
86  
±4  
PWRGD Trip Point Hysteresis (Note 2)  
PWRGD Output Low Voltage  
PWRGD Leakage Current  
1.6  
15  
%
l
l
I
= 100μA  
150  
1
mV  
μA  
PWRGD  
V
SHDN  
= 0V, V  
= 20V  
PWRGD  
3030f  
3
For more information www.linear.com/3030  
LT3030  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C (Note 2).  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Ripple Rejection  
V
= 2.72V (Avg), V  
= 0.5V ,  
P-P  
50  
60  
dB  
IN  
RIPPLE  
f
= 120Hz, I  
= Full Current (Note 13)  
RIPPLE  
LOAD  
V
= V  
+ 1V, V  
LOAD  
= 50mV  
RMS  
50  
1.4  
420  
dB  
IN  
OUT(NOMINAL)  
RIPPLE  
f
= 1MHz, I  
= Full Current (Note 13)  
RIPPLE  
l
l
Current Limit (Note ±)  
Output 1, V = 6V, V  
= 0V  
OUT1  
1.1  
1.7  
A
mA  
IN1  
IN1  
OUT1  
V
= 2.2V, ∆V  
= –0.1V  
800  
l
l
Output 2, V = 6V, V  
= 0V  
= –0.1V  
350  
270  
4±0  
mA  
mA  
IN2  
IN2  
OUT2  
V
= 2.2V, ∆V  
OUT2  
l
Input Reverse Leakage Current  
Reverse Output Current  
V
V
= –20V, V  
= 0V  
OUT  
1
mA  
μA  
IN  
= 1.220V, V = 0V  
0.5  
10  
OUT  
IN  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 6: Dropout voltage is the minimum input to output voltage differential  
needed to maintain regulation at a specified output current. In dropout, the  
output voltage equals: V – V  
.
IN  
DROPOUT  
Note 7: GND pin current is tested with V = 2.447V and a current source  
IN  
Note 2: The LT3030 is tested and specified under pulse load conditions  
load. This means the device is tested while operating in its dropout region  
or at the minimum input voltage specification. This is the worst-case  
GND pin current. The GND pin current decreases slightly at higher input  
voltages. Total GND pin current equals the sum of output 1 and output 2  
GND pin currents.  
Note 8: ADJ1/ADJ2 pin bias current flows into the pin.  
Note 9: The LT3030 contains current limit foldback circuitry. See the  
such that T ≈ T . The LT3030E is 100% tested at T = 25°C and  
J
A
A
performance is guaranteed from 0°C to 125°C. Performance of the  
LT3030E over the full –40°C to 125°C operating junction temperature  
range is assured by design, characterization and correlation with statistical  
process controls. The LT3030I is guaranteed over the full –40°C to 125°C  
operating junction temperature range. The LT3030MP is 100% tested and  
guaranteed over the –55°C to 150°C operating junction temperature range.  
The LT3030H is tested at 150°C operating junction temperature. High  
junction temperatures degrade operating lifetimes. Operating lifetime is  
derated at junction temperatures greater than 125°C.  
Typical Performance Characteristics section for current limit as a function  
of the V – V  
differential voltage.  
IN  
OUT  
Note 10: SHDN1 and SHDN2 pin current flows into the pin.  
Note 11: The LT3030 minimum input voltage specification limits dropout  
voltage under some output voltage/load conditions. See the curve of  
Minimum Input Voltage in the Typical Performance Characteristics section.  
Note 12: The LT3030 includes overtemperature protection that is intended  
to protect the device during momentary overload conditions. Junction  
temperature exceeds the maximum operating junction temperature when  
overtemperature protection is active. Continuous operation above the  
specified maximum operating junction temperature may impair device  
reliability.  
Note 3: The LT3030 is tested and specified for these conditions with the  
ADJ1/ADJ2 pin connected to the corresponding OUT1/OUT2 pin.  
Note 4: Maximum junction temperature limits operating conditions. The  
regulated output voltage specification does not apply for all possible  
combinations of input voltage and output current. When operating at  
maximum input voltage, limit the output current range. When operating at  
maximum output current, limit the input voltage range.  
Note 5: To satisfy minimum input voltage requirements, the LT3030 is  
tested and specified for these conditions with an external resistor divider  
(two 243k resistors) for an output voltage of 2.447V. The external resistor  
divider adds 5μA of DC load on the output.  
Note 13: The Full Current for I  
is 750mA and 250mA for Output 1 and  
LOAD  
Output 2 respectively.  
3030f  
4
For more information www.linear.com/3030  
LT3030  
TJ = 25°C, unless otherwise noted.  
Typical perForMance characTerisTics  
OUT1 Dropout Voltage  
vs Temperature  
OUT1 Guaranteed Dropout  
OUT1 Typical Dropout Voltage  
Voltage  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
= TEST POINTS  
I
L
I
L
I
L
I
L
I
L
I
L
= 750mA  
= 500mA  
= 300mA  
= 100mA  
= 10mA  
= 1mA  
T = 150°C  
J
T = 150°C  
J
T = 125°C  
J
T = 25°C  
J
T = 25°C  
J
T = –55°C  
J
0
0
0
0
75 150 225 300 375 450 525 600 675 750  
0
75 150 225 300 375 450 525 600 675 750  
–75 –50 –25  
0
25 50 75 100 125 150 175  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
TEMPERATURE (°C)  
3030 G01  
3030 G02  
3030 G03  
OUT2 Guaranteed Dropout  
Voltage  
OUT2 Dropout Voltage  
vs Temperature  
OUT2 Typical Dropout Voltage  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
= TEST POINTS  
I
L
I
L
I
L
I
L
I
L
I
L
= 250mA  
= 175mA  
= 100mA  
= 50mA  
= 10mA  
= 1mA  
T = 150°C  
J
T = 150°C  
J
T = 125°C  
J
T = 25°C  
J
T = 25°C  
J
T = –55°C  
J
0
0
0
0
25 50 75 100 125 150 175 200 225 250  
0
25 50 75 100 125 150 175 200 225 250  
–75 –50 –25  
0
25 50 75 100 125 150 175  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
TEMPERATURE (°C)  
3030 G04  
3030 G05  
3030 G06  
Quiescent Current  
ADJ1/ADJ2 Pin Voltage  
Quiescent Current  
300  
250  
200  
150  
100  
50  
1.244  
1.238  
1.232  
1.226  
1.220  
1.214  
1.208  
1.202  
1.196  
300  
250  
200  
150  
100  
50  
V
R
= V = 6V  
IN2  
L2  
I
= I = 1mA  
L1 L2  
T
= 25°C  
J
IN1  
L1  
= R = 243k; I = I = 5µA  
R
= R = 243k; I = I = 5µA  
L1 L2  
L1  
L2  
= V  
L1 L2  
V
= 1.220V  
OUT2  
OUT1  
ADJ2  
ADJ1  
OUTPUT 1  
= V  
V
SHDN1  
IN1  
OUTPUT 1, V  
OUTPUT 2, V  
= V  
= V  
SHDN1  
IN1  
SHDN2  
IN2  
OUTPUT 2  
= V  
V
SHDN2  
IN2  
OUTPUT 1; V  
OUTPUT 2; V  
= 0V  
= 0V  
SHDN1  
SHDN2  
0
0
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
0
2
4
6
8
10 12 14 16 18 20  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
3030 G07  
3030 G08  
3030 G09  
3030f  
5
For more information www.linear.com/3030  
LT3030  
TJ = 25°C, unless otherwise noted.  
Typical perForMance characTerisTics  
Quiescent Current in Shutdown  
(per Output)  
OUT1 GND Pin Current  
OUT1 GND Pin Current  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0
27  
T = 25°C  
J
T = 25°C  
J
T = 25°C  
J
24  
R
= R = 243k; I = I = 5µA  
FOR V  
= 1.220V  
OUT1  
FOR V  
= 1.220V  
L1  
L2  
L1 L2  
OUT1  
V
V
= V  
= 1.220V  
OUT2  
OUT1  
SHDN1  
21  
18  
15  
12  
9
= V  
= 0V  
SHDN2  
I
L1  
= 100mA  
I
= 750mA  
L1  
I
I
= 500mA  
= 250mA  
L1  
L1  
I
= 1mA  
8
6
L1  
I
= 10mA  
4
L1  
3
0
0
2
4
6
8
10 12 14 16 18 20  
0
1
2
3
5
6
7
9
0
1
2
3
4
5
6
7
8
9
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
3030 G10  
3030 G11  
3030 G12  
OUT1 GND Pin Current  
OUT2 GND Pin Current  
OUT2 GND Pin Current  
9
8
7
6
5
4
3
2
1
0
27  
24  
21  
18  
15  
12  
9
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
T = 25°C  
J
T = 25°C  
J
T = 25°C  
J
FOR V  
= 1.220V  
V
= V  
+ 1V  
FOR V  
= 1.220V  
OUT2  
OUT2  
IN1  
OUT1(NOMINAL)  
I
= 250mA  
L2  
I
= 25mA  
L1  
I
I
= 10mA  
= 1mA  
L1  
L1  
I
= 50mA  
L2  
6
I
L2  
= 100mA  
3
0
0
1
2
3
4
5
6
7
8
9
0
75 150 225 300 375 450 525 600 675 750  
0
1
2
3
4
5
6
7
8
9
INPUT VOLTAGE (V)  
OUTPUT CURRENT (mA)  
INPUT VOLTAGE (V)  
3030 G15  
3030 G13  
3030 G14  
SHDN1 or SHDN2 Pin Input  
Current  
OUT2 GND Pin Current  
SHDN1 or SHDN2 Pin Threshold  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
9
8
7
6
5
4
3
2
1
0
T = 25°C  
J
T = 25°C  
J
IN2  
OFF TO ON  
V
= V  
+ 1V  
OUT2(NOMINAL)  
ON TO OFF  
V
V
= 2.2V  
= 20V  
IN  
IN  
V
= 2.2V  
IN  
–75 –50 –25  
0
25 50 75 100 125 150 175  
0
2
4
6
8
10 12 14 16 18 20  
0
25 50 75 100 125 150 175 200 225 250  
TEMPERATURE (°C)  
SHDN PIN VOLTAGE (V)  
OUTPUT CURRENT (mA)  
3030 G17  
3030 G18  
3030 G16  
3030f  
6
For more information www.linear.com/3030  
LT3030  
TJ = 25°C, unless otherwise noted.  
Typical perForMance characTerisTics  
SHDN1 or SHDN2 Pin Input  
Current  
ADJ1 or ADJ2 Pin Bias Current  
PWRGD1 or PWRGD2 Trip Point  
94  
93  
92  
91  
90  
89  
88  
87  
86  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
150  
135  
120  
105  
90  
OUTPUT RISING  
V
V
= 2.2V,  
IN  
SHDN  
75  
= 20V  
60  
45  
OUTPUT FALLING  
30  
V
V
= 20V  
= 2.2V  
IN  
SHDN  
15  
0
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3030 G21  
3030 G19  
3030 G20  
PWRGD1 or PWRGD2 Output Low  
Voltage  
OUT1 Current Limit  
OUT1 Current Limit  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
150  
135  
120  
105  
90  
I
= 100µA  
V
= 0V  
OUT  
V
= 0V  
PWRGD  
OUT  
V
= 6V  
IN  
T = –55°C  
J
T = 25°C  
J
75  
T = 125°C  
J
60  
T = 150°C  
J
45  
V
= 18V  
30  
IN  
15  
0
0
2
4
6
8
10 12 14 16 18 20  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3030 G23  
3030 G24  
3030 G22  
OUT2 Current Limit  
OUT2 Current Limit  
Reverse Current  
0.60  
0.54  
0.48  
0.42  
0.36  
0.30  
0.24  
0.18  
0.12  
0.06  
0
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0.60  
0.54  
0.48  
0.42  
0.36  
0.30  
0.24  
0.18  
0.12  
0.06  
0
V
= 0V  
V
= 0V  
T = 25°C  
J
OUT  
OUT  
V
V
V
= V = 0V  
IN1  
IN2  
= V  
= V  
ADJ1  
ADJ2  
OUT1  
OUT2  
V
= 6V  
IN  
T = –55°C  
J
T = 25°C  
J
I
OR I  
ADJ2  
ADJ1  
T = 125°C  
J
V
= 18V  
IN  
T = 150°C  
J
I
OR I  
7
OUT1  
6
OUT2  
0
2
4
6
8
10 12 14 16 18 20  
0
1
2
3
4
5
8
9
–75 –50 –25  
0
25 50 75 100 125 150 175  
INPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
TEMPERATURE (°C)  
3030 G25  
3030 G27  
3030 G26  
I
I
= FLOWS INTO ADJ PIN TO GND PIN  
= FLOWS INTO OUT PIN TO IN PIN  
ADJ  
OUT  
3030f  
7
For more information www.linear.com/3030  
LT3030  
TJ = 25°C, unless otherwise noted.  
Typical perForMance characTerisTics  
Reverse Current  
OUT1 Input Ripple Rejection  
OUT1 Input Ripple Rejection  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
V
V
= V = 0V  
IN1  
IN2  
= V  
= V  
= 1.220V  
= 1.220V  
ADJ1  
ADJ2  
OUT1  
OUT2  
C
= 10nF  
BYP1  
C
= 47µF  
C
= 1000pF  
OUT1  
BYP1  
C
= 22µF  
OUT1  
C
= 100pF  
BYP1  
I
OR I  
ADJ2  
ADJ1  
C
= 10µF  
OUT1  
I
OUT1  
T = 25°C  
T = 25°C  
J
J
I
= 750mA, C  
= V  
= 0  
I
= 750mA, C  
V = V  
IN1  
= 22µF  
+ 1V  
OUT1(NOMINAL)  
L1  
V
BYP1  
L1  
OUT1  
I
+ 1V  
OUT2  
IN1  
OUT1(NOMINAL)  
+ 50mV  
RIPPLE  
+ 50mV  
RIPPLE  
RMS  
RMS  
0
10  
100  
1k  
10k 100k  
1M  
10M  
10  
100  
1k  
10k 100k  
1M  
10M  
–75 –25  
0
25 50 75 100 125 150 175  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
3030 G28  
3030 G29  
3030 G30  
I
I
= FLOWS INTO ADJ PIN TO GND PIN  
= FLOWS INTO OUT PIN TO IN PIN  
ADJ  
OUT  
OUT1 Input Ripple Rejection  
OUT2 Input Ripple Rejection  
OUT2 Input Ripple Rejection  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
C
= 10µF  
OUT2  
C
BYP2  
= 10nF  
C
= 1000pF  
BYP2  
C
= 22µF  
OUT2  
C
= 100pF  
BYP2  
C
= 3.3µF  
OUT2  
V
= V  
+ 1.5V  
T = 25°C  
T = 25°C  
J
IN1  
OUT1(NOMINAL)  
J
+ 500mV RIPPLE  
I
= 250mA, C  
= 0  
I
= 250mA, C  
= 10µF  
OUT2  
P-P  
L2  
IN2  
BYP2  
L2  
f = 120Hz  
= 750mA  
V
= V  
+ 1V  
V
= V  
+ 1V  
OUT2(NOMINAL)  
OUT2(NOMINAL)  
IN2  
I
+ 50mV  
RIPPLE  
+ 50mV  
RIPPLE  
L1  
RMS  
RMS  
–75 –50 –25  
0
25 50 75 100 125 150 175  
10  
100  
1k  
10k 100k  
1M  
10M  
10  
100  
1k  
10k 100k  
1M  
10M  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
3030 G31  
3030 G32  
3030 G33  
OUT2 Input Ripple Rejection  
Channel-to-Channel Isolation  
Channel-to-Channel Isolation  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
CHANNEL 1  
CHANNEL 2  
V
OUT1  
100mV/DIV  
V
OUT2  
100mV/DIV  
GIVEN CHANNEL IS TESTED WITH  
50mV  
SIGNAL ON OPPOSING  
V
= V  
+ 1.5V  
OUT2(NOMINAL)  
RMS  
IN2  
CHANNEL, BOTH CHANNELS  
DELIVERING FULL CURRENT  
+ 500mV RIPPLE  
P-P  
3030 G36  
50µs/DIV  
f = 120Hz  
= 250mA  
C
OUT1  
C
OUT2  
C
BYP1  
= 10µF  
= 3.3µF  
BYP2  
∆I = 50mA TO 750mA  
T = 25°C  
J
I
L1  
L2  
∆I = 50mA TO 250mA  
L2  
10  
100  
1k  
10k 100k  
1M  
10M  
–75 –50 –25  
0
25 50 75 100 125 150 175  
= C  
= 0.01µF  
V
IN  
= 6V, V  
= V  
= 5V  
OUT1  
OUT2  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
3030 G35  
3030 G34  
3030f  
8
For more information www.linear.com/3030  
LT3030  
TJ = 25°C, unless otherwise noted.  
Typical perForMance characTerisTics  
OUT1 or OUT2 Load Regulation  
OUT1 or OUT2 Line Regulation  
Output Noise Spectral Density  
10  
8
5
4
10  
1
T = 25°C  
∆I = 1mA TO FULL LOAD  
L
∆V = 2V TO 20V  
IN  
J
OUT  
BYP  
C
C
= 10µF  
= 0  
6
3
I
= FULL LOAD  
L
V
= 5V  
OUT  
4
2
2
1
V
OUT  
= V  
ADJ  
0
0
–2  
–4  
–6  
–8  
–10  
–1  
–2  
–3  
–4  
–5  
0.1  
0.01  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
0.01  
0.1  
1
FREQUENCY (kHz)  
10  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3030 G37  
3030 G38  
3030 G39  
RMS Output Noise vs Bypass  
Capacitor  
OUT1 RMS Output Noise  
Output Noise Spectral Density  
vs Output Current (10Hz to 100kHz)  
160  
140  
120  
100  
80  
10  
1
160  
140  
120  
100  
80  
T = 25°C  
J
T = 25°C  
J
T = 25°C  
J
OUT  
L
BW  
C
= 10µF  
C
L
= 10µF  
OUT  
OUT  
C
I
f
= 10µF  
V
= 5V  
OUT  
I
= FULL LOAD  
= FULL LOAD  
= 10Hz TO 100kHz  
V
C
= 5V  
= 0  
V
= 5V  
OUT1  
BYP1  
OUT  
OUTPUT2  
OUTPUT1  
C
= 100pF  
BYP  
V
C
= V  
ADJ1  
= 0  
OUT1  
BYP1  
V
= 1.220V  
OUT  
60  
V
= V  
60  
OUT  
ADJ  
0.1  
40  
40  
V
= V  
ADJ1  
C
= 0.01µF  
OUT1  
BYP  
OUTPUT1  
20  
20  
OUTPUT2  
V
= 5V  
1
OUT1  
C
= 1000pF  
BYP  
C
= 10nF  
BYP1  
0
0.01  
0
0.01  
0.1  
10  
100  
1000  
0.01  
0.1  
1
10  
100  
10  
100  
1000  
10000  
OUTPUT CURRENT (mA)  
FREQUENCY (Hz)  
C
(pF)  
BYP  
3030 G42  
3030 G40  
3030 G41  
Start-Up Time from Shutdown  
CBYP = 0pF  
Start-Up Time from Shutdown  
CBYP = 0.01µF  
OUT2 RMS Output Noise  
vs Output Current (10Hz to 100kHz)  
160  
140  
120  
100  
80  
T = 25°C  
OUT  
J
C
= 10µF  
V
OUT  
V
V
C
= 5V  
= 0  
OUT  
OUT2  
BYP2  
1V/DIV  
1V/DIV  
V
C
= V  
= 0  
OUT2  
BYP2  
ADJ2  
SHDN  
VOLTAGE  
2V/DIV  
SHDN  
VOLTAGE  
2V/DIV  
60  
40  
3030 G45  
3030 G44  
C
= 10nF  
BYP2  
1ms/DIV  
1ms/DIV  
20  
V
= 5V  
OUT2  
V
C
C
= 2.5V  
= 10µF  
OUT  
I = FULL LOAD  
V
= 2.5V  
= 10µF  
I = FULL LOAD  
IN  
IN  
L
J
IN  
L
V
= V  
ADJ2  
OUT2  
T = 25°C  
V
C
C
T = 25°C  
J
V
0
IN  
OUT  
0.01  
0.1  
1
10  
100  
1000  
= 10µF  
= 1.5V  
OUT  
= 10µF  
= 1.5V  
OUT  
OUTPUT CURRENT (mA)  
3030 G43  
3030f  
9
For more information www.linear.com/3030  
LT3030  
TJ = 25°C, unless otherwise noted.  
Typical perForMance characTerisTics  
OUT1 or OUT2 Minimum Input  
Voltage  
10Hz to 100kHz Output Noise,  
10Hz to 100kHz Output Noise,  
CBYP = 100pF  
CBYP = 0pF  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
V
= V  
= 1.220V  
OUT2  
OUT1  
I
= FULL LOAD  
L
V
V
OUT  
100µV/DIV  
OUT  
I
= 1mA  
L
100µV/DIV  
3030 G47  
3030 G48  
1ms/DIV  
1ms/DIV  
C
L
V
= 10µF  
C
= 10µF  
OUT  
OUT  
I
= FULL LOAD  
I = FULL LOAD  
L
= 5V  
V
= 5V  
OUT  
OUT  
–75 –50 –25  
0
25 50 75 100 125 150 175  
TEMPERATURE (°C)  
3030 G46  
10Hz to 100kHz Output Noise,  
10Hz to 100kHz Output Noise,  
CBYP = 0.01µF  
OUT1 Transient Response  
CBYP = 0pF  
C
BYP = 1000pF  
V
DEVIATION  
OUT  
200mV/DIV  
500mA/DIV  
V
V
OUT  
OUT  
100µV/DIV  
100µV/DIV  
LOAD CURRENT DEVIATION  
3030 G50  
3030 G51  
3030 G49  
1ms/DIV  
200µs/DIV  
1ms/DIV  
C
I
= 10µF  
= FULL LOAD  
= 5V  
C
L
V
= 10µF  
= FULL LOAD  
= 5V  
OUT  
L
OUT  
OUT  
V
C
C
= 6V  
I
= 100mA TO 750mA  
IN  
IN  
L
I
= 22µF  
T = 25°C  
J
V
OUT  
= 22µF  
V
= 5V  
OUT  
OUT  
OUT1 Transient Response  
CBYP = 0.01µF  
OUT2 Transient Response  
CBYP = 0pF  
OUT2 Transient Response  
CBYP = 0.01µF  
V
DEVIATION  
V
DEVIATION  
OUT  
OUT  
V
DEVIATION  
OUT  
50mV/DIV  
200mV/DIV  
100mA/DIV  
50mV/DIV  
LOAD CURRENT DEVIATION  
LOAD CURRENT DEVIATION  
LOAD CURRENT DEVIATION  
500mA/DIV  
100mA/DIV  
3030 G52  
3030 G53  
3030 G54  
20µs/DIV  
200µs/DIV  
= 100mA TO 250mA  
20µs/DIV  
V
C
C
= 6V  
I
= 100mA TO 750mA  
V
C
C
= 6V  
I
V
C
C
= 6V  
I = 100mA TO 250mA  
IN  
IN  
L
IN  
IN  
L
IN  
IN  
L
= 22µF  
T = 25°C  
= 10µF  
T = 25°C  
= 10µF  
T = 25°C  
J
J
J
= 22µF  
V
= 5V  
= 10µF  
V
= 5V  
= 10µF  
V
= 5V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
3030f  
10  
For more information www.linear.com/3030  
LT3030  
pin FuncTions (QFN/TSSOP)  
OUT1, OUT2 (Pins 1, 2, 7, 8/Pins 3, 4, 7, 8): Output. The  
OUT1/OUT2 pins supply power to the loads. A minimum  
10μF/3.3μF output capacitor prevents oscillations on  
OUT1/OUT2.Applicationswithlargeoutputloadtransients  
require larger values of output capacitance to limit peak  
voltage transients. See the Applications Information sec-  
tion for more on output capacitance and on reverse output  
characteristics.  
changes state from an open-collector pull-down to high  
impedance after the output increases above ±0% of the  
nominal voltage. The maximum pull-down current of the  
PWRGD pin in the low state is 100μA.  
SHDN1, SHDN2 (Pins 23, 14/Pins 20, 11): Shutdown.  
Pulling the SHDN1 or SHDN2 pin low puts its correspond-  
ing LT3030 channel into a low power state and turns its  
output off. The SHDN1 and SHDN2 pins are completely  
independentofeachother,andeachSHDNpinonlyaffects  
operation on its corresponding channel. Drive the SHDN1  
andSHDN2pinswitheitherlogicoranopencollector/drain  
with pull-up resistors. The resistors supply the pull-up  
current to the open collectors/drains and the SHDN1 or  
SHDN2 current, typically less than 1μA. If unused, con-  
nect SHDN1 and SHDN2 to their corresponding IN pins.  
Each channel will be in its low power shutdown state if its  
corresponding SHDN pin is not connected.  
GND (Pins 3, 4, 5, 6, 11, 12, 13, 18, 19, 24, 25, 26,  
Exposed Pad Pin 29/Pins 5, 6, 15, 16, Exposed Pad Pin  
21): Ground. The exposed pad (backside) of the QFN and  
TSSOP packages is an electrical connection to GND. To  
ensure proper electrical and thermal performance, sol-  
der the exposed pad to the PCB ground and tie directly  
to GND pins. Connect the bottom of the output voltage  
setting resistor divider directly to GND for optimum load  
regulation performance.  
IN1, IN2 (Pins 20, 21, 16, 17/Pins 17, 18, 13, 14): In-  
put. The IN1/IN2 pins supply power to each channel. The  
LT3030 requires a bypass capacitor at the IN1/IN2 pins  
if located more than six inches away from the main input  
filter capacitor. Include a bypass capacitor in battery-  
powered circuits, as a battery’s output impedance rises  
with frequency. A bypass capacitor in the range of 1μF to  
10μF suffices. The LT3030’s design withstands reverse  
voltages on the IN pins with respect to ground and the  
OUT pins. In the case of a reversed input, which occurs  
if a battery is plugged in backwards, the LT3030 acts as  
if a diode is in series with its input. No reverse current  
flows into the LT3030 and no reverse voltage appears at  
the load. The device protects itself and the load.  
ADJ1, ADJ2 (Pins 27, 10/Pins 1, 10): Adjust Pin. These  
are the error amplifier inputs. These pins are internally  
clamped to ±±V. A typical input bias current of 30nA flows  
into the pins (see curve of ADJ1/ADJ2 Pin Bias Current vs  
Temperature in the Typical Performance Characteristics  
section). The ADJ1 and ADJ2 pin voltages are 1.220V  
referenced to ground and the output voltage range is  
1.220V to 1±.5V.  
BYP1, BYP2 (Pins 28, 9/Pins 2, 9): Bypass. Connecting  
a capacitor between OUT and BYP of a respective chan-  
nel bypasses the LT3030 reference to achieve low noise  
performance, improve transient response and soft-start  
the output. Internal circuitry clamps the BYP1/BYP2 pins  
to ±0.6V (one V ) from ground. A small capacitor from  
BE  
PWRGD1, PWRGD2 (Pins 22, 15/Pins 19, 12): Power  
Good.ThePWRGDflagisanopen-collectorflagtoindicate  
that the output voltage has increased above ±0% of the  
nominal output voltage. There is no internal pull-up on  
this pin; a pull-up resistor must be used. The PWRGD pin  
the corresponding output to this pin bypasses the refer-  
ence to lower the output voltage noise. Using a maximum  
value of 10nF reduces the output voltage noise to a typical  
20μV  
over a 10Hz to 100kHz bandwidth. If not used,  
RMS  
this pin must be left unconnected.  
3030f  
11  
For more information www.linear.com/3030  
LT3030  
applicaTions inForMaTion  
LT3030  
TheLT3030isadual750mA/250mAlowdropoutregulator  
with independent inputs, micropower quiescent current  
and shutdown. The device supplies up to 750mA/250mA  
fromtheoutputsofchannel1/channel2atatypicaldropout  
voltageof300mV.ThetworegulatorssharecommonGND  
pins and are thermally coupled. However, the two inputs  
and outputs of the LT3030 operate independently. Each  
channel can be shut down independently, but a thermal  
shutdown fault on either channel shuts off the output on  
bothchannels.Theadditionofa10nFreferencebypassca-  
R2  
R1⎠  
OUT1/OUT2  
V
OUT  
VOUT = 1.220V 1+  
+ I  
(
R2  
ADJ)( )  
V
IN1/IN2  
IN  
R2  
R1  
C
OUT  
V
ADJ = 1.220V  
ADJ = 30nA AT 25°C  
OUTPUT RANGE = 1.220V TO 19.5V  
ADJ1/ADJ2  
I
GND  
3030 F01  
Figure 1. Adjustable Operation  
For example, load regulation on OUT2 for an output cur-  
rent change of 1mA to full load current is typically –2mV  
pacitorlowersoutputvoltagenoiseto20μV  
overa10Hz  
at V  
= 1.220V. At V  
= 2.5V, load regulation is:  
RMS  
OUT2  
OUT2  
to 100kHz bandwidth. Additionally, the reference bypass  
capacitor improves transient response of the regulator,  
loweringthesettlingtimefortransientloadconditions.The  
low operating quiescent current (120μA/75μA for channel  
1/2) drops to typically less than 1μA in shutdown. In ad-  
dition to the low quiescent current, the LT3030 regulator  
incorporates several protection features that make it ideal  
for use in battery powered systems. Most importantly,  
the device protects itself against reverse input voltages.  
(2.5V/1.220V) • (–2mV) = –4.1mV  
Table 1 shows 1% resistor divider values for some com-  
mon output voltages with a resistor divider current of  
approximately 5μA.  
Table 1. Output Voltage Resistor Divider Values  
V
OUT  
(V)  
R1 (k)  
237  
237  
243  
232  
210  
200  
R2 (k)  
54.±  
113  
255  
340  
1.5  
1.8  
2.5  
3
3.3  
5
Adjustable Operation  
357  
61±  
EachoftheLT3030’schannelshasanoutputvoltagerange  
of 1.220V to 1±.5V. Figure 1 illustrates that the output  
voltage is set by the ratio of two external resistors. The  
device regulates the output to maintain the corresponding  
ADJ pin voltage at 1.220V referenced to ground. R1’s cur-  
rent equals 1.220V/R1. R2’s current equals R1’s current  
plus the ADJ pin bias current. The ADJ pin bias current,  
30nA at 25°C, flows through R2 into the ADJ pin. Use  
the formula in Figure 1 to calculate output voltage. Linear  
Technology recommends that the value of R1 be less than  
243k to minimize errors in the output voltage due to the  
ADJ pin bias current. In shutdown, the output turns off  
and the divider current is zero. Curves of ADJ Pin Voltage  
vs Temperature and ADJ Pin Bias Current vs Temperature  
appearintheTypicalPerformanceCharacteristicssection.  
Bypass Capacitance and Low Noise Performance  
Using a bypass capacitor connected between a channel’s  
BYP pin and its corresponding OUT pin significantly low-  
ers LT3030 output voltage noise, but is not required in  
all applications. Linear Technology recommends a good  
quality low leakage capacitor. This capacitor bypasses  
the regulator’s reference, providing a low frequency noise  
pole. A 10nF bypass capacitor introduces a noise pole that  
decreasesoutputvoltagenoisetoaslowas20μV  
.Using  
RMS  
a bypass capacitor provides the added benefit of improv-  
ing transient response. With no bypass capacitor and a  
10μF output capacitor, a 100mA to full load step settles to  
within 1% of its final value in approximately 400μs. With  
the addition of a 10nF bypass capacitor and evaluating  
the same load step, output voltage excursion stays within  
2% (see Transient Response in the Typical Performance  
Characteristics section). Using a bypass capacitor makes  
regulator start-up time proportional to the value of the  
bypass capacitor. For example, a 10nF bypass capacitor  
LinearTechnologytestsandspecifieseachLT3030channel  
with its ADJ pin tied to the corresponding OUT pin for a  
1.220V output voltage. Specifications for output voltages  
greaterthan1.220Vareproportionaltotheratioofdesired  
output voltage to 1.220V:  
V
/1.220V  
OUT  
and 10μF output capacitor slow start-up time to 15ms.  
3030f  
12  
For more information www.linear.com/3030  
LT3030  
applicaTions inForMaTion  
Input Capacitance and Stability  
LT3030’s output also helps. However, this requires an  
order of magnitude more capacitance in comparison with  
additional LT3030 input bypassing. Series resistance be-  
tween the supply and the LT3030 input also helps stabilize  
the application; as little as 0.1Ω to 0.5Ω suffices. This  
impedance dampens the LC tank circuit at the expense of  
dropout voltage. A better alternative is to use higher ESR  
tantalum or electrolytic capacitors at the LT3030 input in  
place of ceramic capacitors.  
Each LT3030 channel is stable with an input capacitor  
typically between 1µF and 10µF. Applications operating  
with smaller V to V  
differential voltages and that ex-  
IN  
OUT  
perience large load transients may require a higher input  
capacitor value to prevent input voltage droop and letting  
the regulator enter dropout.  
Very low ESR ceramic capacitors may be used. However,  
in cases where long wires connect the power supply to the  
LT3030’s input and ground, use of low value input capaci-  
tors combined with an output load current of greater than  
20mAmayresultininstability.TheresonantLCtankcircuit  
formed by the wire inductance and the input capacitor is  
the cause and not a result of LT3030 instability.  
Output Capacitance and Transient Response  
TheLT3030isstablewithawiderangeofoutputcapacitors.  
TheESRoftheoutputcapacitoraffectsstability,mostnota-  
blywithsmallcapacitors.LinearTechnologyrecommends  
a minimum output capacitor of 10μF/3.3μF (channel 1  
/channel 2) with an ESR of 3Ω, or less, to prevent oscil-  
lations. The LT3030 is a micropower device, and output  
transient response is a function of output capacitance.  
Larger values of output capacitance decrease the peak  
deviations and provide improved transient response for  
larger load current changes.  
The self-inductance, or isolated inductance, of a wire  
is directly proportional to its length. However, the wire  
diameter has less influence on its self inductance. For  
example, the self-inductance of a 2-AWG isolated wire  
with a diameter of 0.26" is about half the inductance of a  
30-AWG wirewithadiameterof0.01". Onefootof30-AWG  
wire has 465nH of self-inductance.  
Ceramic capacitors require extra consideration. Manufac-  
turersmakeceramiccapacitorswithavarietyofdielectrics,  
eachwithdifferentbehavioracrosstemperatureandapplied  
voltage. The most common dielectrics specify the EIA  
temperature characteristic codes of Z5U, Y5V, X5R and  
X7R. Z5U and Y5V dielectrics provide high C-V products  
in a small package at low cost, but exhibit strong voltage  
and temperature coefficients, as shown in Figure 2 and  
Figure 3. When used with a 5V regulator, a 16V 10μF Y5V  
capacitor can exhibit an effective value as low as 1μF to  
2μF for the applied DC bias voltage and over the operat-  
ing temperature range. X5R and X7R dielectrics result in  
more stable characteristics and are more suitable for use  
as the output capacitor. The X7R type has better stability  
across temperature, while the X5R is less expensive and  
is available in higher values.  
Several methods exist to reduce a wire’s self-inductance.  
OnemethoddividesthecurrentflowingtowardstheLT3030  
between two parallel conductors. In this case, placing the  
wires further apart reduces the inductance; up to a 50%  
reduction when placed only a few inches apart. Splitting  
the wires connects two equal inductors in parallel. How-  
ever, when placed in close proximity to each other, mutual  
inductance adds to the overall self inductance of the wires.  
Themosteffectivetechniquetoreducingoverallinductance  
is to place the forward and return current conductors (the  
input wire and the ground wire) in close proximity. Two  
30-AWG wires separated by 0.02" reduce the overall self  
inductance to about one-fifth of a single wire.  
Ifabattery,mountedincloseproximity,powerstheLT3030,  
a 1μF input capacitor suffices for stability. However, if a  
distantly located supply powers the LT3030, use a larger  
value input capacitor. Use a rough guideline of 1μF (in  
addition to the 1μF minimum) per 8 inches of wire length.  
The minimum input capacitance needed to stabilize the  
application also varies with power supply output imped-  
ance variations. Placing additional capacitance on the  
Exercise care even when using X5R and X7R capacitors;  
theX5RandX7Rcodesonlyspecifyoperatingtemperature  
rangeandmaximumcapacitancechangeovertemperature.  
Capacitance change due to DC bias (voltage coefficient)  
with X5R and X7R capacitors is better than with Y5V and  
Z5U capacitors, but can still be significant enough to drop  
3030f  
13  
For more information www.linear.com/3030  
LT3030  
applicaTions inForMaTion  
capacitor values below appropriate levels. Capacitor DC  
biascharacteristicstendtoimproveascasesizeincreases.  
LinearTechnologyrecommendsverifyingexpectedversus  
actual capacitance values at operating voltage in situ for  
an application.  
Voltage and temperature coefficients are not the only  
sources of problems. Some ceramic capacitors have a  
piezoelectric response. A piezoelectric device generates  
voltage across its terminals due to mechanical stress,  
similar to the way a piezoelectric accelerometer or micro-  
phone works. For a ceramic capacitor, the stress can be  
induced by vibrations in the system or thermal transients.  
The resulting voltages produced can cause appreciable  
amounts of noise, especially when a ceramic capacitor is  
used for noise bypassing. A ceramic capacitor produced  
the trace's response to light tapping from a pencil, as  
shown in Figure 4. Similar vibration induced behavior can  
masquerade as increased output voltage noise.  
20  
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10µF  
0
X5R  
–20  
–40  
–60  
Y5V  
–80  
Shutdown/UVLO  
–100  
TheSHDNpinisusedtoputtheLT3030intoamicropower  
shutdown state. The LT3030 has an accurate 1.21V  
threshold(duringturn-on)ontheSHDNpin.Thisthreshold  
can be used in conjunction with a resistor divider from the  
system input supply to define an accurate undervoltage  
lockout (UVLO) threshold for the regulator. The SHDN pin  
current (at the threshold) needs to be considered when  
determining the resistor divider network.  
0
8
12 14  
2
4
6
10  
16  
DC BIAS VOLTAGE (V)  
3030 F02  
Figure 2. Ceramic Capacitor  
DC Bias Characteristics  
40  
20  
X5R  
0
–20  
–40  
–60  
–80  
–100  
PWRGD Flag  
Y5V  
The PWRGD flag indicates that the ADJ pin voltage is  
within 10% of the regulated voltage. The PWRGD pin is an  
open-collectoroutput,capableofsinking100μAofcurrent  
when the ADJ pin voltage is below ±0% of the regulated  
voltage. There is no internal pull-up on the PWRGD pin;  
an external pull-up resistor must be used. As the ADJ  
pin voltage rises above ±0% of its regulated voltage, the  
PWRGD pin switches to a high impedance state and the  
external pull-up resistor pulls the PWRGD pin voltage up.  
During normal operation, an internal glitch filter prevents  
the PWRGD pin from switching to a low voltage state if  
the ADJ pin voltage falls below the regulated voltage by  
more than 10% in a short transient (<40μs typical) event.  
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10µF  
–50 –25  
0
25  
50  
TEMPERATURE (°C)  
75  
100 125  
3030 F03  
Figure 3. Ceramic Capacitor  
Temperature Characteristics  
C
C
I
= 10µF  
OUT  
= 0.01µF  
= 750mA  
BYP  
LOAD  
V
OUT  
500µV/DIV  
Thermal Considerations  
The LT3030’s power handling capability limits the maxi-  
mumratedjunctiontemperature(125°C,LT3030E/LT3030I  
or 150°C, LT3030H/LT3030MP). Two components com-  
3030 F04  
100ms/DIV  
Figure 4. Noise Resulting from Tapping on a Ceramic Capacitor  
prise the power dissipated by each channel:  
3030f  
14  
For more information www.linear.com/3030  
LT3030  
applicaTions inForMaTion  
Table 3. FE Package, 20-Lead TSSOP  
COPPER AREA  
1. Output current multiplied by the input/output voltage  
differential: (I )(V – V ), and  
OUT  
IN  
OUT  
THERMAL RESISTANCE  
TOPSIDE*  
BACKSIDE BOARD AREA (JUNCTION-TO-AMBIENT)  
2.GND pin current multiplied by the input voltage:  
(I )(V ).  
2
2
2
2
2
2
2
2
2
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
25°C/W  
27°C/W  
28°C/W  
32°C/W  
GND  
IN  
2
1000mm  
2
225mm  
Ground pin current is found by examining the GND Pin  
Current curves in the Typical Performance Characteristics  
section.  
2
100mm  
*Device is mounted on topside.  
Power dissipation for each channel equals the sum of the  
two components listed above. Total power dissipation for  
the LT3030 equals the sum of the power dissipated by  
each channel.  
The junction-to-case thermal resistance (θ ), measured  
JC  
at the exposed pad on the back of the die, is 3.4°C/W for  
the QFN package, and 10°C/W for the TSSOP package.  
The LT3030’s internal thermal shutdown circuitry  
protects both channels of the device if either channel  
experiences an overload or fault condition. Activation  
of the thermal shutdown circuitry turns both channels  
off. If the overload or fault condition is removed, both  
outputs are allowed to turn back on. For continu-  
ous normal conditions, do not exceed the maximum  
junctiontemperatureratingof125°C(LT3030E/LT3030I)  
or 150°C (LT3030H/LT3030MP).  
Calculating Junction Temperature  
Example: Channel 1’s output voltage is set to 1.8V.  
Channel 2’s output voltage is set to 1.5V. Each channel’s  
input voltage is 2.5V. Channel 1’s output current range  
is 0mA to 750mA. Channel 2’s output current range is  
0mA to 250mA. The application has a maximum ambient  
temperature of 50°C. What is the LT3030’s maximum  
junction temperature?  
The power dissipated by each channel equals:  
Carefully consider all sources of thermal resistance from  
junction-to-ambient, including additional heat sources  
mounted in proximity to the LT3030. For surface mount  
devices,usetheheatspreadingcapabilitiesofthePCboard  
and its copper traces to accomplish heat sinking. Copper  
board stiffeners and platedthrough-holes can also spread  
the heat generated by power devices.  
I
(V – V ) + I  
(V )  
GND IN  
OUT(MAX) IN  
OUT  
where for output 1:  
I
= 750mA  
OUT(MAX)  
V = 2.5V  
IN  
I
at (I  
= 750mA, V = 2.5V) = 13mA  
OUT IN  
GND  
For output 2:  
= 250mA  
The following tables list thermal resistance as a function of  
copper area in a fixed board size. All measurements were  
taken in still air on a four-layer FR-4 board with 1oz solid  
internal planes, and 2oz external trace planes with a total  
board thickness of 1.6mm. For further information on ther-  
malresistanceandusingthermalinformation,refertoJEDEC  
standard JESD51, notably JESD 51-7 and JESD 51-12.  
I
OUT(MAX)  
V = 2.5V  
IN  
GND  
I
at (I = 250mA, V = 2.5V) = 4.5mA  
OUT IN  
So, for output 1:  
P = 750mA (2.5V – 1.8V) + 13mA (2.5V) = 0.56W  
For output 2:  
Table 2. UFD Package, 28-Lead QFN  
COPPER AREA  
THERMAL RESISTANCE  
P = 250mA (2.5V – 1.5V) + 4.5mA (2.5V) = 0.26W  
TOPSIDE*  
BACKSIDE BOARD AREA (JUNCTION-TO-AMBIENT)  
2
2
2
2
2
2
2
2
2
Thethermalresistanceisintherangeof25°C/Wto35°C/W,  
dependingonthecopperarea.So,thejunctiontemperature  
rise above ambient temperature approximately equals:  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
30°C/W  
32°C/W  
33°C/W  
35°C/W  
2
1000mm  
2
225mm  
2
100mm  
(0.56W + 0.26W) 30°C/W = 24.6°C  
*Device is mounted on topside.  
3030f  
15  
For more information www.linear.com/3030  
LT3030  
applicaTions inForMaTion  
The maximum junction temperature then equals the maxi-  
mum ambient temperature plus the maximum junction  
temperature rise above ambient temperature, or:  
The LT3030 incurs no damage if either ADJ pin is pulled  
above or below ground by ±V. If the input is left open  
circuit or grounded, the ADJ pins perform like an open  
circuit down to –1.5V, and then like a 1.2k resistor down  
to –±V when pulled below ground. When pulled above  
ground, the ADJ pins perform like an open circuit up to  
0.5V, then like a 5.7k resistor up to 3V, then like a 1.8k  
resistor up to ±V.  
T
JMAX  
= 50°C + 24.6°C = 74.6°C  
Protection Features  
The LT3030 regulator incorporates several protection fea-  
tures that make it ideal for use in battery-powered circuits.  
Inadditiontothenormalprotectionfeaturesassociatedwith  
monolithicregulators,suchascurrentlimitingandthermal  
limiting,thedeviceprotectsitselfagainstreverseinputvolt-  
ages and reverse voltages from output to input. The two  
regulators have independent inputs, a common GND pin  
and are thermally coupled. However, the two channels of  
the LT3030 operate independently. Each channel’s output  
can be shut down independently, and a fault condition on  
one output does not affect the other output electrically,  
unless the thermal shutdown circuitry is activated.  
InsituationswhereanADJpinconnectstoaresistordivider  
that would pull the pin above its ±V clamp voltage if the  
output is pulled high, the ADJ pin input current must be  
limited to less than 5mA. For example, assume a resistor  
divider sets the regulated output voltage to 1.5V, and the  
output is forced to 20V. The top resistor of the resistor  
divider must be chosen to limit the current into the ADJ  
pin to less than 5mA when the ADJ pin is at ±V. The 11V  
difference between the OUT and ADJ pins divided by the  
5mA maximum current into the ADJ pin yields a minimum  
top resistor value of 2.2k.  
Current limit protection and thermal overload protection  
protect the device against current overload conditions at  
each output of the LT3030. For normal operation, do not  
allowthejunctiontemperaturetoexceed125°C(LT3030E/  
LT3030I) or 150°C (LT3030H/LT3030MP). The typical  
thermal shutdown temperature threshold is 165°C and  
thecircuitryincorporatesapproximately5°Cofhysteresis.  
In circuits where a backup battery is required, several  
different input/output conditions can occur. The output  
voltage may be held up while the input is either pulled  
to ground, pulled to some intermediate voltage or is left  
open-circuit. Current flow back into the output follows the  
curve shown in Figure 5.  
If either of the LT3030’s IN pins is forced below its cor-  
responding OUT pin, or the OUT pin is pulled above its  
correspondingINpin,inputcurrentforthatchanneltypically  
Each channel’s input withstands reverse voltages of 22V.  
Current flow into the device is limited to less than 1mA  
(typicallylessthan100μA)andnonegativevoltageappears  
at the respective channel’s output. The device protects  
both itself and the load against batteries that are plugged  
in backwards.  
5.0  
T = 25°C  
J
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
V
V
= V = 0V  
IN1  
IN2  
= V  
ADJ1  
ADJ2  
OUT1  
OUT2  
= V  
The LT3030 incurs no damage if either channel’s output  
is pulled below ground. If the input is left open-circuit,  
or grounded, the output can be pulled below ground by  
22V. The output acts like an open circuit, and no current  
flows from the output. However, current flows in (but is  
limitedby)theexternalresistordividerthatsetstheoutput  
voltage. If the input is powered by a voltage source, the  
output sources current equal to its current limit capabil-  
ity and the LT3030 protects itself by its thermal limiting  
circuitry. In this case, grounding the relevant SHDN1 or  
SHDN2 pin turns off its channel’s output and stops that  
output from sourcing current.  
I
OR I  
ADJ2  
ADJ1  
I
OR I  
7
OUT1  
6
OUT2  
8
0
1
2
3
4
5
9
OUTPUT VOLTAGE (V)  
3030 F05  
I
I
= FLOWS INTO ADJ PIN TO GND PIN  
= FLOWS INTO OUT PIN TO IN PIN  
ADJ  
OUT  
Figure 5. Reverse Output Current  
3030f  
16  
For more information www.linear.com/3030  
LT3030  
applicaTions inForMaTion  
drops to less than 2μA. This occurs if the IN pin is con-  
nected to a discharged (low voltage) battery, and either  
a backup battery or a second regulator circuit holds up  
the output. The state of that channel’s SHDN pin has no  
effect on the reverse output current if the output is pulled  
above the input.  
When power is first applied, as input voltage rises, the  
output follows the input, allowing the regulator to start-up  
into heavy loads. During start-up, as the input voltage is  
rising, the input-to-output voltage differential is small, al-  
lowing the regulator to supply large output currents. With  
a high input voltage, an event can occur wherein removal  
of an output short will not allow the output to recover. The  
eventoccurswithaheavyoutputloadwhentheinputvoltage  
is high and the output voltage is low. Common situations  
occur immediately after the removal of a short-circuit or if  
the shutdown pin is pulled high after the input voltage has  
already been turned on. The load line intersects the output  
current curve at two points creating two stable output oper-  
ating points for the regulator. With this double intersection,  
the input power supply may need to be cycled down to zero  
and brought up again to make the output recover.  
Overload Recovery  
Like many IC power regulators, the LT3030 has safe  
operating area (SOA) protection. The safe area protec-  
tion decreases current limit as input-to-output voltage  
increases and keeps the power transistor inside a safe  
operating region for all values of input-to-output voltage.  
The protective design provides some output current at  
all values of input-to-output voltage up to the specified  
maximum operational input voltage of 20V.  
Typical applicaTions  
Coincident Tracking Supply Application  
3.3V  
C
GATE  
V
OUT1  
0.1µF  
0.1µF  
V
GATE  
LTC2923  
1.8V  
CC  
IN1  
OUT1  
750mA  
LT3030  
10nF  
10µF  
113k  
1%  
3.3µF  
1M  
1M  
1M  
ON  
OFF ON  
RAMP  
PWRGD1  
BYP1  
ADJ1  
RAMPBUF FB1  
SHDN1  
113k  
237k  
1%  
1%  
TRACK1  
SDO  
90.9k  
1%  
54.9k  
1%  
2.5V  
V
IN2  
OUT2  
OUT2  
1.5V  
3.3µF  
10nF  
3.3µF  
TRACK2  
FB2  
250mA  
54.9k  
1%  
63.4k  
1%  
PWRGD2  
BYP2  
ADJ2  
GND  
SHDN2  
237k  
1%  
GND  
3030 TA02a  
V
V
OUT1  
OUT2  
500mV/DIV  
3030 TA02b  
20ms/DIV  
3030f  
17  
For more information www.linear.com/3030  
LT3030  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
UFD Package  
28-Lead (4mm × 5mm) Plastic QFN  
(Reference LTC DWG # 05-08-1712 Rev B)  
0.70 0.05  
4.50 0.05  
3.10 0.05  
2.50 REF  
2.65 0.05  
3.65 0.05  
PACKAGE OUTLINE  
0.25 0.05  
0.50 BSC  
3.50 REF  
4.10 0.05  
5.50 0.05  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
PIN 1 NOTCH  
R = 0.20 OR 0.35  
× 45° CHAMFER  
2.50 REF  
R = 0.115  
TYP  
R = 0.05  
TYP  
0.75 0.05  
4.00 0.10  
(2 SIDES)  
27  
28  
0.40 0.10  
PIN 1  
TOP MARK  
(NOTE 6)  
1
2
5.00 0.10  
(2 SIDES)  
3.50 REF  
3.65 0.10  
2.65 0.10  
(UFD28) QFN 0506 REV B  
0.25 0.05  
0.50 BSC  
0.200 REF  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING PROPOSED TO BE MADE A JEDEC PACKAGE OUTLINE MO-220 VARIATION (WXXX-X).  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
3030f  
18  
For more information www.linear.com/3030  
LT3030  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
FE Package  
20-Lead Plastic TSSOP (4.4mm)  
(Reference LTC DWG # 05-08-1663 Rev J)  
Exposed Pad Variation CB  
6.40 – 6.60*  
3.86  
(.152)  
(.252 – .260)  
3.86  
(.152)  
20 1918 17 16 15 14 1312 11  
6.60 ±0.10  
2.74  
(.108)  
4.50 ±0.10  
6.40  
(.252)  
BSC  
2.74  
(.108)  
SEE NOTE 4  
0.45 ±0.05  
1.05 ±0.10  
0.65 BSC  
5
7
8
1
2
3
4
6
9 10  
RECOMMENDED SOLDER PAD LAYOUT  
1.20  
(.047)  
MAX  
4.30 – 4.50*  
(.169 – .177)  
0.25  
REF  
0° – 8°  
0.65  
(.0256)  
BSC  
0.09 – 0.20  
(.0035 – .0079)  
0.50 – 0.75  
(.020 – .030)  
0.05 – 0.15  
(.002 – .006)  
0.195 – 0.30  
FE20 (CB) TSSOP REV J 1012  
(.0077 – .0118)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: MILLIMETERS 4. RECOMMENDED MINIMUM PCB METAL SIZE  
FOR EXPOSED PAD ATTACHMENT  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.150mm (.006") PER SIDE  
MILLIMETERS  
(INCHES)  
2. DIMENSIONS ARE IN  
3. DRAWING NOT TO SCALE  
3030f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
19  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
LT3030  
Typical applicaTion  
Sequencing Supply Application  
V
OUT1  
V
IN1  
1.8V  
IN1  
OUT1  
3.3V  
750mA  
LT3030  
10nF  
22µF  
1µF  
1µF  
113k  
1%  
1M  
SHDN1  
BYP1  
ADJ1  
V
OUT2  
1V/DIV  
PWRGD1  
IN2  
237k  
1%  
V
1.5V  
250mA  
OUT2  
V
OUT1  
V
IN2  
OUT2  
1V/DIV  
2.5V  
10nF  
10µF  
1M  
54.9k  
1%  
V
SHDN1  
PWRGD2  
BYP2  
ADJ2  
5V/DIV  
3030 TA03b  
SHDN2  
10ms/DIV  
237k  
1%  
GND  
3030 TA03a  
relaTeD parTs  
PART NUMBER DESCRIPTION  
COMMENTS  
V : 1.8V to 20V, V  
LT1761  
100mA, Low Noise Micropower LDO  
= 1.22V, V = 0.3V, I = 20μA, I <1μA, Low Noise < 20μV  
,
,
IN  
OUT  
DO  
Q
SD  
RMS  
Stable with 1μF Ceramic Capacitors, ThinSOT™ Package  
LT1763  
500mA, Low Noise Micropower LDO  
V : 1.8V to 20V, V  
= 1.22V, V = 0.3V, I = 30μA, I <1μA, Low Noise < 20μV  
DO Q SD  
IN  
OUT  
RMS  
S8 Package  
LT1 63/  
LT1 63A  
1.5A, Low Noise, Fast Transient Response V : 2.1V to 20V, V  
= 1.21V, V = 0.34V, I = 1mA, I < 1μA,  
IN  
OUT(MIN) DO Q SD  
LDOs  
Low Noise: < 40μV  
, “A” Version Stable with Ceramic Capacitors, DD, TO220-5, SOT223,  
RMS  
S8 Packages  
LT1 64  
LT1 65  
200mA, Low Noise Micropower, Negative V : –2.2V to –20V, V  
= 1.21V, V = 0.34V, I = 30μA, I = 3μA,  
IN  
OUT(MIN) DO Q SD  
LDO  
Low Noise: <30μV  
, Stable with Ceramic Capacitors, ThinSOT Package  
RMS  
1.1A, Low Noise, Fast Transient Response V : 1.8V to 20V, V  
= 1.20V, V = 0.3V, I = 0.5mA, I < 1μA,  
DO Q SD  
, Stable with Ceramic Capacitors, 3mm × 3mm DFN,  
IN  
OUT(MIN)  
LDO  
Low Noise: < 40μV  
RMS  
MS8E, DD-Pak, TO-220 Packages  
LT3023  
LT3024  
LT3027  
LT3028  
LT302  
Dual 100mA, Low Noise, Micropower  
LDO  
V : 1.8V to 20V, V  
= 1.22V, V = 0.30V, I = 40μA, I <1μA, DFN,  
DO Q SD  
IN  
OUT(MIN)  
MS10 Packages  
Dual 100mA/500mA, Low Noise,  
Micropower LDO  
V : 1.8V to 20V, V  
= 1.22V, V = 0.30V, I = 60μA, I <1μA, DFN,  
DO Q SD  
IN  
OUT(MIN)  
TSSOP-16E Packages  
Dual 100mA, Low Noise, Micropower  
LDO with Independent Inputs  
V : 1.8V to 20V, V  
= 1.22V, V = 0.30V, I = 40μA, I <1μA, DFN,  
DO Q SD  
IN  
OUT(MIN)  
MS10E Packages  
Dual 100mA/500mA, Low Noise,  
Micropower LDO with Independent Inputs TSSOP-16E Packages  
V : 1.8V to 20V, V  
= 1.22V, V = 0.30V, I = 60μA, I <1μA, DFN,  
DO Q SD  
IN  
OUT(MIN)  
Dual 500mA/500mA, Low Noise,  
Micropower LDO with Independent Inputs MSOP-16E Packages  
V : 1.8V to 20V, V  
= 1.215V, V = 0.30V, I = 55μA, I <1μA, DFN,  
IN  
OUT(MIN) DO Q SD  
LT3032  
Dual 150mA Positive/Negative Low  
Noise, Low Dropout Linear Regulator  
V : ±2.3V to ±20V, V  
= ±1.22V, V = 0.30V, I = 30μA, I <1μA,  
OUT(MIN) DO Q SD  
IN  
14-Lead DFN Package  
LT3080/  
LT3080-1  
1.1A, Parallelable, Low Noise LDO  
300mV Dropout Voltage (2-Supply Operation), Low Noise 40µV  
, V = 1.2V to 36V,  
RMS IN  
V
: 0V to 35.7V, Current-Based Reference with 1-Resistor V  
Set, Directly Parallelable  
OUT  
OUT  
(No Op Amp Required), Stable with Ceramic Capacitors, TO-220, SOT-223, MSOP and  
3mm × 3mm DFN  
3030f  
LT 0213 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 5035-7417  
20  
LINEAR TECHNOLOGY CORPORATION 2013  
(408)432-1 00 FAX: (408) 434-0507 www.linear.com/3030  

相关型号:

LT1965EQ-1.5#TRPBF

LT1965 - 1.1A, Low Noise, Low Dropout Linear Regulator; Package: DD PAK; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
ADI

LT1965EQ-2.5#TRPBF

LT1965 - 1.1A, Low Noise, Low Dropout Linear Regulator; Package: DD PAK; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
ADI

LT1965EQ-3.3#PBF

LT1965 - 1.1A, Low Noise, Low Dropout Linear Regulator; Package: DD PAK; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1965EQ-3.3#TRPBF

LT1965 - 1.1A, Low Noise, Low Dropout Linear Regulator; Package: DD PAK; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1965EQPBF

1.1A, Low Noise, Low Dropout Linear Regulator
Linear

LT1965EQTRPBF

1.1A, Low Noise, Low Dropout Linear Regulator
Linear

LT1965ET#PBF

LT1965 - 1.1A, Low Noise, Low Dropout Linear Regulator; Package: TO-220; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1965ET-2.5#PBF

LT1965 - 1.1A, Low Noise, Low Dropout Linear Regulator; Package: TO-220; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
ADI

LT1965ETPBF

1.1A, Low Noise, Low Dropout Linear Regulator
Linear

LT1965ETTRPBF

1.1A, Low Noise, Low Dropout Linear Regulator
Linear

LT1965IDD

1.1A, Low Noise, Low Dropout Linear Regulator
Linear System

LT1965IDD#PBF

暂无描述
Linear