LT1990AHS8#TR [Linear]

LT1990 - ±250V Input Range G = 1, 10, Micropower, Difference Amplifier; Package: SO; Pins: 8; Temperature Range: -40°C to 125°C;
LT1990AHS8#TR
型号: LT1990AHS8#TR
厂家: Linear    Linear
描述:

LT1990 - ±250V Input Range G = 1, 10, Micropower, Difference Amplifier; Package: SO; Pins: 8; Temperature Range: -40°C to 125°C

放大器 光电二极管
文件: 总16页 (文件大小:231K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1990  
±250V Input Range  
G = 1, 10, Micropower,  
Difference Amplifier  
DESCRIPTIO  
U
FEATURES  
The LT®1990 is a micropower precision difference ampli-  
fier with a very high common mode input voltage range. It  
has pin selectable gains of 1 or 10. The LT1990 operates  
over a ±250V common mode voltage range on a ±15V  
supply. The inputs are fault protected from common  
mode voltage transients up to ±350V and differential  
voltagesupto±500V.TheLT1990isideallysuitedforboth  
high side and low side current or voltage monitoring.  
Pin Selectable Gain of 1 or 10  
High Common Mode Voltage Range:  
85V Window (VS = 5V, 0V)  
±250V (VS = ±15V)  
Common Mode Rejection Ratio: 70dB Min  
Input Protection to ±350V  
Gain Error: 0.28% Max  
PSRR: 82dB Min  
High Input Impedance: 2MDifferential,  
On a single 5V supply, the LT1990 has an adjustable 85V  
input range, 70dB min CMRR and draws less than 120µA  
supply current. The rail-to-rail output maximizes the dy-  
namic range, especially important for single supplies as  
low as 2.7V.  
500kCommon Mode  
Micropower: 120µA Max Supply Current  
Wide Supply Range: 2.7V to 36V  
–3dB Bandwidth: 100kHz  
Rail-to-Rail Output  
8-Pin SO PackagUe  
The LT1990 is specified for single 3V, 5V and ±15V  
suppliesoverbothcommercialandindustrialtemperature  
ranges. The LT1990 is available in the 8-pin SO package.  
APPLICATIO S  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
Battery Cell Voltage Monitoring  
High Voltage Current Sensing  
Signal Acquisition in Noisy Environments  
Input Protection  
Fault Protected Front Ends  
Level Sensing  
Isolation  
U
TYPICAL APPLICATIO  
Full-Bridge Load Current Monitor  
+V  
SOURCE  
5V  
LT1990  
900k  
10k  
8
6
5
7
2
100k  
1M  
1M  
+
R
S
V
OUT  
+
3
4
V
REF  
= 1.5V  
1nF  
I
L
10k  
OUT  
LT6650  
GND FB  
IN  
54.9k  
40k  
900k  
100k  
40k  
20k  
–12V V 73V  
CM  
OUT  
1
V
= V ± (10 • I • R )  
REF L S  
1990 TA01  
1µF  
1990fb  
1
LT1990  
W W  
U W  
U
W
U
ABSOLUTE AXI U RATI GS  
(Notes 1, 2)  
PACKAGE/ORDER I FOR ATIO  
TOP VIEW  
Total Supply Voltage (V+ to V)............................... 36V  
Input Voltage Range  
Continuous ...................................................... ±250V  
Transient (0.1s) ............................................... ±350V  
Differential ....................................................... ±500V  
Output Short-Circuit Duration (Note 3)............ Indefinite  
Operating Temperature Range (Note 4)  
REF  
–IN  
+IN  
1
2
3
4
8
7
6
5
GAIN1  
+
V
OUT  
V
GAIN2  
S8 PACKAGE  
8-LEAD PLASTIC SO  
TJMAX = 150°C, θJA = 190°C/W  
LT1990C.............................................. –40°C to 85°C  
LT1990I ............................................... –40°C to 85°C  
LT1990H ........................................... –40°C to 125°C  
Specified Temperature Range (Note 5)  
LT1990C.............................................. –40°C to 85°C  
LT1990I ............................................... –40°C to 85°C  
LT1990H ........................................... –40°C to 125°C  
Junction Temperature........................................... 150°C  
Storage Temperature Range ..................65°C to 150°C  
Lead Temperature (Soldering, 10 sec.)................. 300°C  
ORDER PART NUMBER  
S8 PART MARKING  
1990  
LT1990CS8  
LT1990IS8  
1990I  
LT1990HS8  
1990H  
LT1990ACS8  
1990A  
LT1990AIS8  
1990AI  
LT1990AHS8  
1990AH  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
3V/5V ELECTRICAL CHARACTERISTICS  
V = 3V, 0V; V = 5V, 0V; R = 10k, V = V  
= half supply, G = 1, 10, T = 25°C, unless otherwise noted. (Note 6)  
A
S
S
L
CM  
REF  
SYMBOL  
PARAMETER  
Gain  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
G
Pins 5 and 8 = Open  
Pins 5 and 8 = V  
1
10  
REF  
G  
Gain Error  
V
= 0.5V to (+Vs) –0.75V  
OUT  
LT1990, G = 1  
LT1990A, G = 1  
0.4  
0.07  
0.2  
0.6  
0.28  
0.8  
%
%
%
G = 10, V = 5V, 0V  
S
GNL  
Gain Nonlinearity  
V = 5V, 0V; V  
= 0.5V to 4.25V  
OUT  
S
G = 1  
0.001 0.005  
0.01  
%
%
G = 10  
V
Input Voltage Range  
Guaranteed by CMRR  
V = 3V, 0V; V = 1.25V  
CM  
–5  
–5  
–38  
25  
80  
47  
V
V
V
S
REF  
V = 5V, 0V; V = 1.25V  
S
REF  
V = 5V, 0V; V = 2.5V  
S
REF  
CMRR  
Common Mode Rejection Ratio  
RTI (Referred to Input)  
V = 3V, 0V (Note 7)  
S
V
= –5V to 25V, V = 1.25V  
CM  
REF  
LT1990  
LT1990A  
60  
70  
68  
75  
dB  
dB  
V = 5V, 0V  
S
V
CM  
= –5V to 80V, V = 1.25V  
REF  
LT1990  
60  
70  
68  
75  
dB  
dB  
LT1990A  
V = 5V, 0V (Note 7)  
S
V
CM  
= –38V to 47V, V = 2.5V  
REF  
LT1990  
60  
70  
68  
75  
dB  
dB  
LT1990A  
1990fb  
2
LT1990  
3V/5V ELECTRICAL CHARACTERISTICS  
V = 3V, 0V; V = 5V, 0V; R = 10k, V = V  
= half supply, G = 1, 10, T = 25°C, unless otherwise noted. (Note 6)  
A
S
S
L
CM  
REF  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
0.8  
22  
1
MAX  
UNITS  
V
Offset Voltage, RTI  
G = 1, 10  
3
mV  
OS  
e
Input Noise Voltage, RTI  
Noise Voltage Density, RTI  
Input Resistance  
f = 0.1Hz to 10Hz  
O
µV  
P-P  
n
f = 1kHz  
O
µV/Hz  
R
Differential  
Common Mode  
2
0.5  
MΩ  
MΩ  
IN  
PSRR  
Power Supply Rejection Ratio, RTI  
Minimum Supply Voltage  
Supply Current  
V = 2.7V to 12.7V, V = V = 1.25V  
80  
92  
2.4  
105  
30  
dB  
V
S
CM  
REF  
Guaranteed by PSRR  
2.7  
120  
50  
I
(Note 8)  
µA  
mV  
S
+
V
V
Output Voltage Swing LOW  
Output Voltage Swing HIGH  
–IN = V , +IN = Half Supply (Note 8)  
OL  
OH  
–IN = 0V, +IN = Half Supply  
+
V = 3V, 0V, Below V  
V = 5V, 0V, Below V  
S
100  
120  
150  
175  
mV  
mV  
S
+
I
Output Short-Circuit Current  
Bandwidth (–3dB)  
Short to GND (Note 9)  
Short to V (Note 9)  
4
13  
8
20  
mA  
mA  
SC  
+
BW  
SR  
G = 1  
G = 10  
100  
6.5  
kHz  
kHz  
Slew Rate  
G = 1, V = 5V, 0V, V  
= 0.5V to 4.5V  
OUT  
0.5  
45  
V/µs  
µs  
S
Settling Time to 0.01%  
Reference Gain to Output  
4V Step, G = 1, V = 5V, 0V  
S
AV  
G = 1  
G = 10  
1 ± 0.0007  
1 ± 0.007  
REF  
The  
CM  
denotes the specifications which apply over the temperature range of 0  
REF  
°C T 70°C. V = 3V, 0V; V = 5V, 0V; R = 10k,  
A S S L  
V
= V = half supply, G = 1, 10, unless otherwise noted. (Notes 4, 6)  
LT1990C/LT1990I  
SYMBOL  
PARAMETER  
CONDITIONS  
= 0.5V to (+V ) – 0.75V  
MIN  
TYP  
MAX  
UNITS  
G  
Gain Error  
V
OUT  
S
LT1990, G = 1  
LT1990A, G = 1  
G = 10  
0.65  
0.33  
0.90  
%
%
%
G/T  
Gain vs Temperature  
Input Voltage Range  
G = 1 (Note 10)  
G = 10 (Note 10)  
2
7
10  
20  
ppm/°C  
ppm/°C  
V
Guaranteed by CMRR  
CM  
V = 3V, 0V, V  
= 1.25V  
= 1.25V  
= 2.5V  
–5  
–5  
–37  
25  
80  
48  
V
V
V
S
REF  
REF  
REF  
V = 5V, 0V, V  
S
V = 5V, 0V, V  
S
CMRR  
Common Mode Rejection Ratio, RTI  
V = 3V, 0V (Note 7)  
S
V
= –5V to 25V, V = 1.25V  
CM  
REF  
LT1990  
LT1990A  
58  
68  
dB  
dB  
V = 5V, 0V  
S
V
= –5V to 80V, V = 1.25V  
CM  
REF  
LT1990  
LT1990A  
58  
68  
dB  
dB  
V = 5V, 0V (Note 7)  
S
V
= –38V to 47V, V = 2.5V  
CM  
REF  
LT1990  
LT1990A  
58  
68  
dB  
dB  
1990fb  
3
LT1990  
3V/5V ELECTRICAL CHARACTERISTICS  
The  
CM  
denotes the specifications which apply over the temperature range of 0°C T 70°C. V = 3V, 0V; V = 5V, 0V; R = 10k,  
A S S L  
V
= V  
= half supply, G = 1, 10, unless otherwise noted. (Notes 4, 6)  
REF  
LT1990C/LT1990I  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage, RTI  
V = 3V, 0V  
G = 1, 10  
OS  
S
4.1  
mV  
V = 5V, 0V  
S
G = 1, 10  
(Note 10)  
(Note 11)  
4.1  
22  
mV  
µV/°C  
µV  
V
V
/T  
Input Offset Voltage Drift, RTI  
5
OS  
Input Offset Voltage Hysteresis, RTI  
Power Supply Rejection Ratio, RTI  
230  
OSH  
PSRR  
V = 2.7V to 12.7V  
S
V
= V = 1.25V  
CM  
REF  
G = 1, 10  
78  
dB  
V
Minimum Supply Voltage  
Supply Current  
Guaranteed by PSRR  
2.7  
150  
60  
I
(Note 8)  
µA  
mV  
S
+
V
V
Output Voltage Swing LOW  
Output Voltage Swing HIGH  
–IN = V , +IN = Half Supply (Note 8)  
OL  
OH  
–IN = 0V, +IN = Half Supply  
+
V = 3V, 0V, Below V  
180  
205  
mV  
mV  
S
+
V = 5V, 0V, Below V  
S
I
Output Short-Circuit Current  
Short to GND (Note 9)  
Short to V (Note 9)  
3
11  
mA  
mA  
SC  
+
The  
CM  
denotes the specifications which apply over the temperature range of –40°C T 85°C. V = 3V, 0V; V = 5V, 0V; R = 10k,  
A S S L  
V
= V  
= half supply, G = 1, 10, unless otherwise noted. (Notes 4, 6)  
REF  
LT1990C/LT1990I  
SYMBOL  
PARAMETER  
CONDITIONS  
V = 0.5V to (+V ) – 0.75V  
OUT  
MIN  
TYP  
MAX  
UNITS  
G  
Gain Error  
S
LT1990, G = 1  
LT1990A, G = 1  
G = 10  
0.67  
0.35  
0.95  
%
%
%
G/T  
Gain vs Temperature  
Input Voltage Range  
G = 1 (Note 10)  
G = 10 (Note 10)  
2
7
10  
20  
ppm/°C  
ppm/°C  
V
Guaranteed by CMRR  
CM  
V = 3V, 0V, V = 1.25V  
–5  
–5  
–37  
25  
80  
48  
V
V
V
S
REF  
V = 5V, 0V, V = 1.25V  
S
REF  
V = 5V, 0V, V = 2.5V  
S
REF  
CMRR  
Common Mode Rejection Ratio, RTI  
V = 3V, 0V (Note 7)  
S
V
CM  
= –5V to 25V, V = 1.25V  
REF  
LT1990  
LT1990A  
57  
67  
dB  
dB  
V = 5V, 0V  
S
V
CM  
= –5V to 80V, V = 1.25V  
REF  
LT1990  
LT1990A  
57  
67  
dB  
dB  
V = 5V, 0V (Note 7)  
S
V
= –38V to 47V, V = 2.5V  
CM  
REF  
LT1990  
LT1990A  
57  
67  
dB  
dB  
1990fb  
4
LT1990  
3V/5V ELECTRICAL CHARACTERISTICS  
The  
L
denotes the specifications which apply over the temperature range of –40°C T 85°C. V = 3V, 0V; V = 5V, 0V;  
A S S  
R = 10k, V = V  
= half supply, G = 1, 10, unless otherwise noted. (Notes 4, 6)  
CM  
REF  
LT1990C/LT1990I  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage, RTI  
V = 3V, 0V  
G = 1, 10  
OS  
S
4.5  
mV  
V = 5V, 0V  
S
G = 1, 10  
(Note 10)  
(Note 11)  
4.5  
22  
mV  
µV/°C  
µV  
V
V
/T  
Input Offset Voltage Drift, RTI  
5
OS  
Input Offset Voltage Hysteresis, RTI  
Power Supply Rejection Ratio, RTI  
230  
OSH  
PSRR  
V = 2.7V to 12.7V  
S
V
CM  
= V = 1.25V  
76  
dB  
V
REF  
Minimum Supply Voltage  
Supply Current  
Guaranteed by PSRR  
(Note 8)  
2.7  
170  
70  
I
µA  
mV  
S
+
V
V
Output Voltage Swing LOW  
Output Voltage Swing HIGH  
–IN = V , +IN = Half Supply (Note 8)  
OL  
OH  
–IN = 0V, +IN = Half Supply  
+
V = 3V, 0V, Below V  
200  
275  
mV  
mV  
S
+
V = 5V, 0V, Below V  
S
I
Output Short-Circuit Current  
Short to GND (Note 9)  
Short to V (Note 9)  
2
8
mA  
mA  
SC  
+
3V/5V ELECTRICAL CHARACTERISTICS  
The  
denotes the specifications which apply over the temperature range of –40°C T 125°C. V = 3V, 0V; V = 5V, 0V; R = 10k,  
A
S
S
L
V
CM  
= V  
= half supply, G = 1, 10, unless otherwise noted. (Notes 4, 6)  
REF  
LT1990H  
TYP  
SYMBOL  
PARAMETER  
CONDITIONS  
V = 0.5V to (+V ) – 0.75V  
OUT  
MIN  
MAX  
UNITS  
G  
Gain Error  
S
LT1990, G = 1  
LT1990A, G = 1  
G = 10  
0.69  
0.37  
0.97  
%
%
%
G/T  
Gain vs Temperature  
Input Voltage Range  
G = 1 (Note 10)  
G = 10 (Note 10)  
2
7
10  
20  
ppm/°C  
ppm/°C  
V
Guaranteed by CMRR  
CM  
V = 3V, 0V, V = 1.25V  
–5  
–5  
–37  
25  
80  
48  
V
V
V
S
REF  
V = 5V, 0V, V = 1.25V  
S
REF  
V = 5V, 0V, V = 2.5V  
S
REF  
CMRR  
Common Mode Rejection Ratio, RTI  
V = 3V, 0V (Note 7)  
S
V
CM  
= –5V to 25V, V = 1.25V  
REF  
LT1990  
LT1990A  
56  
66  
dB  
dB  
V = 5V, 0V  
S
V
CM  
= –5V to 80V, V = 1.25V  
REF  
LT1990  
LT1990A  
56  
66  
dB  
dB  
V = 5V, 0V (Note 7)  
S
V
CM  
= –38V to 47V, V = 2.5V  
REF  
LT1990  
LT1990A  
56  
66  
dB  
dB  
1990fb  
5
LT1990  
3V/5V ELECTRICAL CHARACTERISTICS  
The  
denotes the specifications which apply over the temperature range of –40°C T 125°C. V = 3V, 0V; V = 5V, 0V; R = 10k,  
A
S
S
L
V
= V  
= half supply, G = 1, 10, unless otherwise noted. (Notes 4, 6)  
CM  
REF  
LT1990H  
TYP  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
MAX  
UNITS  
V
Input Offset Voltage, RTI  
V = 3V, 0V  
G = 1, 10  
OS  
S
5.2  
mV  
V = 5V, 0V  
S
G = 1, 10  
(Note 10)  
(Note 11)  
5.2  
22  
mV  
µV/°C  
µV  
V
V
/T  
Input Offset Voltage Drift, RTI  
5
OS  
Input Offset Voltage Hysteresis, RTI  
Power Supply Rejection Ratio, RTI  
250  
OSH  
PSRR  
V = 2.7V to 12.7V  
S
V
CM  
= V = 1.25V  
75  
dB  
V
REF  
Minimum Supply Voltage  
Supply Current  
Guaranteed by PSRR  
(Note 8)  
2.7  
200  
80  
I
µA  
mV  
S
+
V
V
Output Voltage Swing LOW  
Output Voltage Swing HIGH  
–IN = V , +IN = Half Supply (Note 8)  
OL  
OH  
–IN = 0V, +IN = Half Supply  
+
V = 3V, 0V, Below V  
230  
275  
mV  
mV  
S
+
V = 5V, 0V, Below V  
S
I
Output Short-Circuit Current  
Short to GND (Note 9)  
Short to V (Note 9)  
1
5
mA  
mA  
SC  
+
±15V ELECTRICAL CHARACTERISTICS  
V = ±15V, R = 10k, V = V  
= 0V, G = 1, 10, T = 25°C, unless otherwise noted. (Note 6)  
S
L
CM  
REF  
A
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
G
Gain  
Pins 5 and 8 = Open  
1
10  
Pins 5 and 8 = V  
REF  
G  
Gain Error  
V
= ±10V  
OUT  
LT1990, G = 1  
LT1990A, G = 1  
G = 10  
0.4  
0.07  
0.2  
0.6  
0.28  
0.8  
%
%
%
GNL  
Gain Nonlinearity  
V
= ±10V  
OUT  
G = 1  
G = 10  
Guaranteed by CMRR  
= –250V to 250V  
0.0008 0.002  
%
%
0.005  
0.02  
V
Input Voltage Range  
–250  
250  
V
CM  
CMRR  
Common Mode Rejection Ratio, RTI  
V
CM  
LT1990  
LT1990A  
60  
70  
68  
75  
dB  
dB  
V
Offset Voltage, RTI  
G = 1, 10  
0.9  
22  
1
5.2  
mV  
OS  
e
Input Noise Voltage, RTI  
Noise Voltage Density, RTI  
Input Resistance  
f = 0.1Hz to 10Hz  
O
µV  
P-P  
n
f = 1kHz  
O
µV/Hz  
R
Differential  
Common Mode  
2
0.5  
MΩ  
MΩ  
IN  
PSRR  
Power Supply Rejection Ratio, RTI  
Minimum Supply Voltage  
Supply Current  
V = ±1.35V to ±18V  
82  
100  
±1.2  
140  
dB  
V
S
Guaranteed by PSRR  
±1.35  
I
180  
µA  
V
S
V
Output Voltage Swing  
±14.5 ±14.79  
OUT  
1990fb  
6
LT1990  
±15V ELECTRICAL CHARACTERISTICS  
V = ±15V, R = 10k, V = V  
= 0V, G = 1, 10, T = 25°C, unless otherwise noted. (Note 6)  
S
L
CM  
REF  
A
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
Output Short-Circuit Current  
Bandwidth  
Short to V  
Short to V  
6
15  
9
22  
mA  
mA  
SC  
+
BW  
SR  
G = 1  
G = 10  
105  
7
kHz  
kHz  
Slew Rate  
G = 1, V  
= ±10V  
0.3  
0.55  
60  
V/µs  
µs  
OUT  
Settling Time to 0.01%  
Reference Gain to Output  
10V Step, G = 1  
AV  
G = 1  
G = 10  
1 ± 0.0007  
1 ± 0.007  
REF  
The  
denotes the specifications which apply over the temperature range of 0°C T 70°C. V = ±15V, R = 10k, V = V  
= 0V,  
A
S
L
CM  
REF  
G = 1, 10, unless otherwise noted. (Notes 4, 6)  
LT1990C/LT1990I  
SYMBOL  
PARAMETER  
CONDITIONS  
V = ±10V  
OUT  
MIN  
TYP  
MAX  
UNITS  
G  
Gain Error  
LT1990, G = 1  
LT1990A, G = 1  
G = 10  
0.65  
0.33  
0.9  
%
%
%
GNL  
G/T  
Gain Nonlinearity  
V
G = 1  
G = 10  
= ±10V  
OUT  
0.0025  
0.025  
%
%
Gain vs Temperature  
G = 1 (Note 10)  
G = 10 (Note 10)  
2
7
10  
20  
ppm/°C  
ppm/°C  
V
Input Voltage Range  
Guaranteed by CMRR  
–250  
250  
V
CM  
CMRR  
Common Mode Rejection Ratio, RTI  
V
= –250V to 250V  
CM  
LT1990  
LT1990A  
59  
68  
dB  
dB  
V
V
V
Input Offset Voltage, RTI  
Input Offset Voltage Drift, RTI  
Input Offset Voltage Hysteresis, RTI  
Power Supply Rejection Ratio, RTI  
Minimum Supply Voltage  
Supply Current  
G = 1, 10  
(Note 10)  
(Note 11)  
6.2  
22  
mV  
µV/°C  
µV  
OS  
OS  
/T  
5
250  
OSH  
PSRR  
V = ±1.35V to ±18V  
S
80  
dB  
Guaranteed by PSRR  
±1.35  
V
I
230  
µA  
S
V
Output Voltage Swing  
±14.4  
V
OUT  
I
Output Short-Circuit Current  
Short to V  
Short to V  
5
13  
mA  
mA  
SC  
+
SR  
Slew Rate  
G = 1, V  
= ±10V  
0.25  
V/µs  
OUT  
1990fb  
7
LT1990  
±15V ELECTRICAL CHARACTERISTICS  
G = 1, 10, unless otherwise noted. (Notes 4, 6)  
The  
denotes the specifications which apply over the temperature range of –40°C T 85°C. V = ±15V, R = 10k, V = V  
REF  
= 0V,  
UNITS  
A
S
L
CM  
LT1990C/LT1990I  
SYMBOL  
PARAMETER  
CONDITIONS  
V = ±10V  
OUT  
MIN  
TYP  
MAX  
G  
Gain Error  
LT1990, G = 1  
LT1990A, G = 1  
G = 10  
0.67  
0.35  
0.95  
%
%
%
GNL  
G/T  
Gain Nonlinearity  
V
G = 1  
G = 10  
= ±10V  
OUT  
0.003  
0.03  
%
%
Gain vs Temperature  
G = 1 (Note 10)  
G = 10 (Note 10)  
2
7
10  
20  
ppm/°C  
ppm/°C  
V
Input Voltage Range  
Guaranteed by CMRR  
–250  
250  
V
CM  
CMRR  
Common Mode Rejection Ratio, RTI  
V
= –250V to 250V  
CM  
LT1990  
LT1990A  
58  
67  
dB  
dB  
V
V
V
Input Offset Voltage, RTI  
Input Offset Voltage Drift, RTI  
Input Offset Voltage Hysteresis, RTI  
Power Supply Rejection Ratio, RTI  
Minimum Supply Voltage  
Supply Current  
G = 1, 10  
(Note 10)  
(Note 11)  
6.7  
22  
mV  
µV/°C  
µV  
OS  
OS  
/T  
5
250  
OSH  
PSRR  
V = ±1.35V to ±18V  
S
78  
dB  
Guaranteed by PSRR  
±1.35  
V
I
280  
µA  
S
V
Output Voltage Swing  
±14.3  
V
OUT  
I
Output Short-Circuit Current  
Short to V  
Short to V  
3
10  
mA  
mA  
SC  
+
SR  
Slew Rate  
G = 1, V  
= ±10V  
0.2  
V/µs  
OUT  
±15V ELECTRICAL CHARACTERISTICS  
G = 1, 10, unless otherwise noted. (Notes 4, 6)  
The  
denotes the specifications which apply over the temperature range of –40°C T 125°C. V = ±15V, R = 10k, V = V  
= 0V,  
A
S
L
CM  
REF  
LT1990H  
TYP  
SYMBOL  
PARAMETER  
CONDITIONS  
V = ±10V  
OUT  
MIN  
MAX  
UNITS  
G  
Gain Error  
LT1990, G = 1  
LT1990A, G = 1  
G = 10  
0.69  
0.37  
0.97  
%
%
%
GNL  
G/T  
Gain Nonlinearity  
V
G = 1  
G = 10  
= ±10V  
OUT  
0.0035  
0.035  
%
%
Gain vs Temperature  
G = 1 (Note 10)  
G = 10 (Note 10)  
2
7
10  
20  
ppm/°C  
ppm/°C  
V
Input Voltage Range  
Guaranteed by CMRR  
–250  
250  
V
CM  
CMRR  
Common Mode Rejection Ratio, RTI  
V
= –250V to 250V  
CM  
LT1990  
LT1990A  
57  
66  
dB  
dB  
V
V
Input Offset Voltage, RTI  
G = 1, 10  
(Note 10)  
7.4  
22  
mV  
OS  
OS  
/T  
Input Offset Voltage Drift, RTI  
5
µV/°C  
1990fb  
8
LT1990  
±15V ELECTRICAL CHARACTERISTICS  
G = 1, 10, unless otherwise noted. (Notes 4, 6)  
The  
denotes the specifications which apply over the temperature range of –40°C T 125°C. V = ±15V, R = 10k, V = V  
= 0V,  
A
S
L
CM  
REF  
LT1990H  
TYP  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
MAX  
UNITS  
µV  
dB  
V
V
Input Offset Voltage Hysteresis, RTI  
Power Supply Rejection Ratio, RTI  
Minimum Supply Voltage  
Supply Current  
(Note 11)  
250  
OSH  
PSRR  
V = ±1.35V to ±18V  
S
77  
Guaranteed by PSRR  
±1.35  
I
330  
µA  
V
S
V
Output Voltage Swing  
±14.2  
OUT  
I
Output Short-Circuit Current  
Short to V  
Short to V  
1.5  
7
mA  
mA  
SC  
+
SR  
Slew Rate  
G = 1, V  
= ±10V  
0.1  
V/µs  
OUT  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
sampled at these temperatures. The LT1990I is guaranteed to meet  
specified performance from –40°C to 85°C. The LT1990H is guaranteed to  
meet specified performance from –40°C to 125°C.  
Note 6: G = 10 limits are guaranteed by correlation to G = 1 tests and gain  
Note 2: ESD (Electrostatic Discharge) sensitive device. Extensive use of  
ESD protection devices are used internal to the LT1990, however, high  
electrostatic discharge can damage or degrade the device. Use proper ESD  
handling precautions.  
Note 3: A heat sink may be required to keep the junction temperature  
below absolute maximum.  
Note 4: The LT1990C/LT1990I are guaranteed functional over the  
operating temperature range of 40°C to 85°C. The LT1990H is  
guaranteed functional over the operating temperature range of –40°C  
to 125°C.  
Note 5: The LT1990C is guaranteed to meet the specified performance  
from 0°C to70°C and is designed, characterized and expected to meet  
specified performance from –40°C to 85°C but is not tested or QA  
error tests at G = 10.  
Note 7: Limits are guaranteed by correlation to –5V to 80V CMRR tests.  
Note 8: V = 3V limits are guaranteed by correlation to V = 5V and  
S
S
V = ±15V tests.  
S
Note 9: V = 5V limits are guaranteed by correlation to V = 3V and  
S
S
V = ±15V tests.  
S
Note 10: This parameter is not 100% tested.  
Note 11: Hysteresis in offset voltage is created by package stress that  
differs depending on whether the IC was previously at a higher or lower  
temperature. Offset voltage hysteresis is always measured at 25°C, but the  
IC is cycled to 85°C I-grade (70°C C-grade or 125°C H-grade) or –40°C  
I/H-grade (0°C C-grade) before successive measurement.  
1990fb  
9
LT1990  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Output Voltage Swing  
vs Load Current  
Supply Current  
Supply Current  
vs Temperature  
vs Supply Voltage  
+
220  
200  
180  
160  
140  
120  
100  
80  
– 0.01  
– 0.1  
–1  
150  
140  
130  
120  
110  
100  
90  
V
V
V
= V  
= 1.25V  
V = ±2.5V  
S
V
= 5V, 0V  
REF  
OUT  
S
T
= –55°C  
A
= 0V  
–IN = 0V  
G = 1  
T
= 125°C  
= 85°C  
A
T
SOURCING  
(+IN = 2.5V)  
T
= 125°C  
A
A
T
= 25°C  
T
= 25°C  
A
A
T
= 25°C  
A
T
T
= –40°C  
= –55°C  
A
A
+1  
+0.1  
T
= 125°C  
A
SINKING  
(+IN = –2.5V)  
80  
T
= –55°C  
A
60  
70  
40  
60  
+0.01  
V
V
0
5
15 20 25 30  
SUPPLY VOLTAGE (V)  
40  
10  
35  
0.001  
0.01  
0.1  
1
10  
100  
–50 –25  
0
25  
50  
125  
75 100  
OUTPUT CURRENT (mA)  
TEMPERATURE (°C)  
1990 G03  
1990 G01  
1990 G02  
Output Voltage vs  
Input Voltage, G = 1  
Output Voltage Swing vs  
Supply Voltage  
Output Voltage vs  
Input Voltage, G = 10  
+
+
+
V
–0.01  
–0.1  
–1  
V
–0.01  
–0.1  
–1  
–0.01  
–0.1  
T
= –55°C  
= 125°C  
V
= ±2.5V  
A
T
= –55°C  
V
= ±2.5V  
S
A
S
+
G = 1  
G = 1, V = V  
+IN  
G = 10  
NO LOAD  
T
NO LOAD  
A
T
A
= 125°C  
+
T
= 25°C  
G = 10, V = V /10  
A
T = 25°C  
A
+IN  
G = 1  
G = 10  
OUTPUT FULLY  
SATURATED  
V
V
= 0V  
= 0V  
–IN  
REF  
NO LOAD  
T
= 25°C  
A
OUTPUT FULLY  
SATURATED  
G = 10  
+1  
+0.1  
+1  
G = 1  
G = 10, V = V /10  
+IN  
+0.1  
T
= 25°C  
A
T
= 25°C  
A
G = 1, V = V  
+IN  
+0.1  
T
= 125°C  
A
T
= 125°C  
A
T
= –55°C  
A
T
= –55°C  
A
V
+0.01  
V
V
+0.01  
+0.01  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
DIFFERENTIAL INPUT VOLTAGE (±V)  
1990 G04  
0
0.2  
0.4  
0.6  
0.8  
1.0  
0
2
4
6
8
10 12 14 16  
DIFFERENTIAL INPUT VOLTAGE (±V)  
SUPPLY VOLTAGE (±V)  
1990 G05  
1990 G06  
Input Voltage Range vs Split  
Supply Voltage  
Output Short-Circuit Current  
vs Supply Voltage  
Input Voltage Range vs Single  
Supply Voltage  
25  
20  
250  
200  
150  
100  
50  
300  
200  
V
= 0V  
V
= 0V  
REF  
T
= –40°C TO 85°C  
T = –40°C TO 85°C  
A
A
SOURCE  
15  
T
= –55°C  
A
V
= 4V  
REF  
10  
T
= 25°C  
V
= 1.25V  
A
100  
REF  
5
T
= 125°C  
A
0
V
= 2.5V  
REF  
0
–5  
SINK  
–10  
–15  
–20  
–25  
–30  
T
= 125°C  
A
–100  
–200  
–300  
V
= 1.25V  
= 2.5V  
REF  
0
T
= –55°C  
V
A
REF  
–50  
–100  
T
= 25°C  
V
= 4V  
A
REF  
0
2
4
6
8
10 12 14 16  
3
7
9
11  
13  
15  
1
7
9
11  
13  
15  
5
3
5
POSITIVE SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (±V)  
SUPPLY VOLTAGE (±V)  
1990 G07  
1990 G08  
1990 G09  
1990fb  
10  
LT1990  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Common Mode Rejection Ratio  
vs Frequency  
Gain vs Frequency  
50  
40  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
T
= 5V, 0V  
= 25°C  
V
T
= 5V, 0V  
S
A
S
A
= 25°C  
G = 1 OR 10  
30  
REFERRED TO INPUT  
G = 10  
G = 1  
20  
10  
0
–10  
–20  
–30  
–40  
–50  
100  
1k  
10k  
100k  
1M  
10k  
1k  
FREQUENCY (Hz)  
100  
100k 200k  
FREQUENCY (Hz)  
1990 G10  
1990 G12  
–3dB Bandwidth vs Supply  
Voltage, G = 1  
Slew Rate vs Supply Voltage,  
G = 1  
–3dB Bandwidth vs Supply  
Voltage, G = 10  
1.0  
0.8  
0.6  
0.4  
0.2  
0
120  
115  
110  
105  
100  
95  
8
7
6
5
4
3
T
A
= 25°C  
T
A
= 25°C  
T = 25°C  
A
R
L
= 10k  
T
= –55°C  
= 125°C  
A
T
A
= –55°C  
T
A
–SR  
+SR  
T
A
= 125°C  
T
A
= 25°C  
T
A
= 25°C  
90  
85  
80  
75  
70  
6
8
6
8
8
0
2
4
10 12 14 16  
0
2
4
10 12 14 16  
0
2
4
6
10 12 14 16  
SUPPLY VOLTAGE (±V)  
SUPPLY VOLTAGE (±V)  
SUPPLY VOLTAGE (±V)  
1990 G13  
1990 G14  
1990 G15  
Slew Rate vs Supply Voltage,  
G = 10  
Slew Rate vs Temperature  
G = 1  
Slew Rate vs Temperature  
G = 10  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
T
= 25°C  
= 10k  
V
= ±15V  
= 10k  
V
= ±15V  
= 10k  
A
L
S
L
S
L
R
R
R
–SR  
–SR  
–SR  
+SR  
+SR  
+SR  
8
50  
TEMPERATURE (°C)  
100 125  
50  
TEMPERATURE (°C)  
100 125  
0
2
4
6
10 12 14 16  
–50 –25  
0
25  
75  
–50 –25  
0
25  
75  
SUPPLY VOLTAGE (±V)  
1990 G17  
1990 G18  
1990 G16  
1990fb  
11  
LT1990  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Power Supply Rejection Ratio  
Output Impedance vs Frequency  
vs Frequency  
Warm-Up Drift vs Time  
70  
60  
60  
40  
5k  
1k  
V
T
= 5V, 0V  
= 25°C  
V
T
= ±15V  
= 25°C  
S
S
A
A
G = 1  
REFERRED TO INPUT  
50  
G = 10  
40  
20  
30  
G = 10  
G = 1  
20  
100  
10  
1
0
10  
0
–20  
–40  
–60  
–10  
–20  
–30  
–40  
V
= 5V, 0V  
= 25°C  
S
A
T
0
10  
20  
30  
40  
50  
100  
1k  
10k  
100k 200k  
10  
100  
1k  
10k  
100k 200k  
TIME AFTER POWER-UP (S)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1990 G19  
1990 G20  
1990 G21  
Settling Time vs Output Step,  
G = 10  
Voltage Noise Density  
vs Frequency  
Settling Time vs Output Step,  
G = 1  
60  
50  
40  
30  
20  
320  
300  
280  
260  
240  
220  
200  
180  
160  
140  
10000  
1000  
100  
V
T
= ±1.5V TO ±15V  
= 25°C  
V
= ±15V  
= 10k  
S
A
V
= ±15V  
= 10k  
S
L
S
L
R
R
0.01% OF  
STEP  
0.01% OF  
STEP  
0.01% OF  
STEP  
0.01% OF  
STEP  
0.1% OF  
STEP  
0.1% OF  
STEP  
0.1% OF  
STEP  
0.1% OF  
STEP  
1
10  
100  
FREQUENCY (Hz)  
10000  
1000  
–10 –8 –6 –4 –2  
0
2
4
6
8
10  
–10 –8 –6 –4 –2  
0
2
4
6
8
10  
OUTPUT STEP (V)  
OUTPUT STEP (V)  
1990 G24  
1990 G22  
1990 G23  
0.1 to 10Hz Noise Voltage  
Overshoot vs Capacitive Load  
0.01 to 1Hz Noise Voltage  
30  
25  
20  
15  
10  
5
V
T
= ±1.5V TO ±15V  
= 25°C  
V
T
= ±1.5V TO ±15V  
= 25°C  
V
= ±50mV  
S
A
G = 1  
S
A
G = 1  
OUT  
GAIN = 1  
= 10k  
R
L
REF  
REF  
V
= 3V, 0V  
S
V
= ±15V  
S
0
1
2
3
4
5
6
7
8
9
10  
0
10 20 30 40 50 60 70 80 90 100  
10  
100  
1000  
10000  
CAPACITIVE LOAD (pF)  
TIME (S)  
TIME (S)  
1990 G27  
1990 G25  
1990 G26  
1990fb  
12  
LT1990  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Small Signal Transient Response  
Small Signal Transient Response  
Large Signal Transient Response  
GND  
GND  
1.5V  
1990 G30  
1990 G28  
1990 G29  
V
= ±15V  
50µs/DIV  
V
= ±15V  
V
= 3V, 0V  
50µs/DIV  
50µs/DIV  
S
S
S
G = 1, –1  
G = 1, –1  
G = 1, –1  
R
V
= 10k  
R
V
= 10k  
R
V
= 10k  
= 1.5V  
L
L
L
= GND  
= GND  
REF  
REF  
REF  
W
BLOCK DIAGRA  
R5  
900k  
R7  
10k  
8
6
GAIN1  
OUT  
+
V
7
2
R1  
R6  
100k  
1M  
–IN  
+IN  
+
R2  
1M  
3
4
V
R8  
900k  
R10  
10k  
R3  
40k  
5
GAIN2  
R4  
40k  
R9  
100k  
1
1990 SS  
REF  
U
U
U
PI FU CTIO S  
REF (Pin 1): Reference Input. Sets the output level when amplifier for a gain of 10 when connected to the GAIN1 pin  
the difference between the inputs is zero.  
and the REF pin. The gain is equal to one when both GAIN2  
and GAIN1 are open. See Applications section for addi-  
tional functions.  
–IN (Pin 2): Inverting Input. Connects a 1Mresistor to  
the op amp’s inverting input. Designed to permit high  
voltage operation.  
OUT (Pin 6): Output. VOUT = G • (V+IN – V–IN) + VREF, in the  
basic configuration.  
+IN (Pin 3): Noninverting Input. Connects a 1Mresistor  
to the op amp’s noninverting input. Designed to permit V+ (Pin 7): Positive Power Supply. Can range from 2.7V to  
high voltage operation.  
36V above the Vvoltage.  
V(Pin 4): Negative Power Supply. Can be either ground GAIN1 (Pin 8): Gain = 10 Select Input. Configures the  
(in single supply applications) or a negative voltage (in amplifier for a gain of 10 when connected to the GAIN2 pin  
split supply applications).  
and the REF pin. The gain is equal to one when both GAIN1  
and GAIN2 are open. See Applications section for addi-  
GAIN2 (Pin 5): Gain = 10 Select Input. Configures the  
tional functions.  
1990fb  
13  
LT1990  
U
W
U U  
APPLICATIO S I FOR ATIO  
VCM+ 27 • V+ – 26 • VREF – 23 – VGAIN  
VCM– 27 • V– 26 • VREF + 27 – VGAIN  
Primary Features  
The LT1990 is a complete gain-block solution for high  
inputcommonmodevoltageapplications, incorporatinga  
low power precision operational amplifier providing rail-  
to-rail output swing along with on-chip precision thin-film  
resistors for high accuracy. The Block Diagram shows the  
internal architecture of the part. The on-chip resistors  
form a modified difference amplifier including a reference  
port for introducing offset or other additive waveforms.  
With pin-strapping alone either unity gain or gain of 10 is  
produced with high precision. The resistor network is  
designed to produce internal common-mode voltage divi-  
sion of 27 so that a very large input range is available  
compared to the power supply voltage(s) used by the  
LT1990 itself. The LT1990 is ideally suited to situations  
where relatively small signals need to be extracted from  
high voltage circuits, as is the case in many current  
monitoringinstrumentationapplicationsforexample.With  
the ability to accept a range of input voltages well outside  
the limits of the local power rails and its greater than 1MΩ  
input impedances, development of precision low power  
over-the-top and under-the-bottom instrumentation de-  
signs is greatly simplified with the LT1990 single chip  
solution over conventional discrete implementations.  
Forsplitsuppliesoverabout±11V,thefull±250Vcommon  
mode range is normally available (with VREF a small  
fraction of the supply). With lower supply voltages, an  
appropriate selection of VREF can tailor the input common  
mode range to a specific requirement. As an example, the  
following low supply voltage scenarios are readily imple-  
mented with the LT1990:  
Supply  
+3V  
V
V
Range  
CM  
REF  
1.25V  
1.25V  
4.00V  
–5V to 25V (e.g. 12V automotive environment)  
–5V to 80V (e.g. 42V automotive environment)  
+5V  
+5V  
–77V to 8V (e.g. telecom environment;  
use downward signaling)  
Configuring Other Gains  
An intermediate gain G ranging between 1 and 10 may be  
produced by placing an adjustable resistance between the  
GAIN1 and GAIN2 pins according to the following nominal  
relationship:  
RGAIN (180k/(G – 1)) – 20k  
While the expression is exact, the value is approximate  
because the absolute resistance of the internal network  
could vary on a unit-to-unit basis by as much as ±30%  
from the nominal figures and the external gain resistance  
is required to accommodate that deviation. Once ad-  
justed, however, the gain stability is excellent by virtue of  
the –30ppm/°C typical temperature coefficient offered by  
the on-chip thin-film resistor process.  
Classic Difference Amplifier  
Used in the basic difference amplifier topology where the  
gain G is pin-strap configurable to be unity or ten, the  
following relationship is realized:  
VO = G • (V+IN – V–IN) + VREF  
To operate in unity gain, the GAIN1 and GAIN2 pins are left  
disconnected. For G = 10 operation, the GAIN1 and GAIN2  
pins are simply connected to the REF pin.  
Preserving and Enhancing Common Mode Rejection  
The basic difference amplifier topology of the LT1990  
requires that source impedances seen by the input pins  
+IN and –IN, should be matched to within a few tens of  
ohms to avoid increasing common mode induced errors  
beyond the basic production limits of the part. Known  
source imbalances beyond that level should be compen-  
sated for by the addition of series resistance to the lower-  
impedance source. Also the source impedance of a signal  
connected to the REF pin must be on the order of a few  
ohms or less to preserve the high accuracy of the LT1990.  
The input common mode range capability is up to ±250V,  
governed by the following relationships:  
For G = 1 and G = 10 where GAIN1 and GAIN2 are only tied  
together (not grounded,etc):  
VCM+ 27 • V+ – 26 • VREF – 23  
VCM– 27 • V– 26 • VREF + 27  
For G = 10 where GAIN1 and GAIN2 are tied to a common  
potential VGAIN  
:
1990fb  
14  
LT1990  
W U U  
APPLICATIO S I FOR ATIO  
U
following relationship:  
WhiletheLT1990comesfromthefactorywithanexcellent  
CMRR, some precision applications with a large applied  
common mode voltage may require a method to trim out  
residual common mode error. This is easily accomplished  
by adding series resistance to each input, +IN and –IN,  
such that an adjustable resistance difference of ±1kis  
provided. This is most easily realized by adding a fixed  
1kin series with one of the inputs, and a 2ktrimmer in  
series with the other as shown in Figure 1. The trim range  
of this configuration is ±0.1% for the internal gain resistor  
matching, so a much more finely resolved correction is  
available using the LT1990 than is realizable with ordinary  
discrete solutions. In applications where the input  
common mode voltage is relatively constant and large  
(perhaps at or beyond the supply range), this same  
configuration can be treated as an offset adjustment.  
VO = 10 • (V+IN – V–IN + VGAIN2 – VGAIN1) + VREF  
Unlike the main inputs, the GAIN1 and GAIN2 pins are  
clamped by substrate diodes and ESD structures, thus the  
operating voltage range of these pins is limited to V– 0.2V  
to V+ 36V. If the GAIN inputs are brought beyond the  
operating input range, care must be taken to limit the input  
currents to less than 10mA to prevent damage to the device.  
For best results in this mode of operation the common mode  
voltage of the GAIN1 and GAIN2 pins should be equal to the  
REF pin voltage. Also, since the gain setting resistors associ-  
ated with the GAIN1 and GAIN2 inputs are in the 10karea,  
lowsourceimpedancesareparticularlyimportanttopreserve  
the precision of the LT1990.  
Thisdualdifferentialinputmodeofoperationisusedinthe  
circuit as shown in Figure 2.  
1k  
LT1990  
ThiscircuitisahighefficiencyH-bridgedriverthatisPWM  
modulated to provide a controlled current to an electro-  
magnet coil. Since the common mode voltage of the  
current sense resistor RS varies with operating current  
and the coil properties, a differential feedback is required.  
In this application, it was desirable to allow the control  
inputtoutilizethewidecommonmoderangeport(+INand  
–IN) so that constraints on input referencing are elimi-  
nated. The GAIN1 and GAIN2 pins always operate within  
the supply range and both ports operate with a gain of 10  
to develop the loop error. The LTC1923 provides the loop  
integrator and PWM functions of the servo.  
2k  
+
Figure 1. Optional CMRR Trim  
Dual Differential-Input Arithmetic Block  
The internal resistor network topology of the LT1990  
allows the GAIN1 and GAIN2 pins to be used as another  
differential input in addition to the normal +IN and –IN  
port. This can be a very useful function for implementing  
servo-loop differential error amplifiers, for example. In  
this mode of operation, the output is governed by the  
10k  
PLLLPF  
R
C
T
330pF  
+
82k  
V
IN  
R
SLEW  
T
10nF  
1µF  
V
DD  
100k  
20k  
V
DD  
V
REF  
7
LT1990  
4
V
SDSYNC  
CNTRL  
EAOUT  
FB  
V
REF  
DD  
3
2
5
8
+
G2  
G1  
100k  
100k  
6
PDRVB  
NDRVB  
10µF  
10nF  
MPA*  
MPB**  
MNA*  
C3  
22µF  
L1  
100k  
L2  
1
REF  
10µH  
10µH  
V
DD  
V
IN  
LTC1923  
1µF  
C2  
22µF  
C1  
I
= (V + – V )/(10 • R )  
IN IN  
(i.e. ±1A FOR ±1V)  
COIL  
S
MNB** 22µF  
AGND  
PGND  
NDRVA  
PDRVA  
1µF  
SS  
I
LIM  
+
R
V
SET  
S
CS  
0.1  
0.1  
10k  
10k  
C1, C2, C3: TAIYO YUDEN JMK325BJ226MM-T (X7R)  
L1, L2: SUMIDA CDRH6D2B-220NC  
*MNA, MPA: SILICONIX Si9801  
FAULT  
CS  
I
V
THRM  
TEC  
+
**MNB, MPB: SILICONIX Si9801  
ELECTRO-  
MAGNET  
COIL  
H/C  
TEC  
I
COIL  
V
TEC  
TEC  
1990 F02  
Figure 2. PWM-Based ±1A Electromagnet Current Controller  
1990fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LT1990  
U
TYPICAL APPLICATIO  
Telecom Supply Current Monitor  
Selectable Gain Amplifier  
Boosted Bidirectional Controlled Current Source  
+V  
5V  
+
LOAD  
I
L
48V  
+V  
1k  
7
7
3
3
2
CZT751  
+
G2  
G1  
V
V
+
G2  
G1  
+
IN  
5
8
5
8
6
6
R
S
V
V
LT1990  
4
7
LT1990  
OUT  
3
OUT  
+
V
CTL  
2
IN  
6
4
LT1990  
+
1
1
2
–77V V 8V  
CM  
–V  
REF  
10µF  
REF  
4
V
= V  
– (10 • I • R )  
V
= 4V  
REF  
OUT  
REF  
L
S
R
SENSE  
1
2N7002  
4
5
OUT  
LT6650  
REF  
I
LOAD  
IN  
1nF  
174k  
1
1k  
GND FB  
CZT651  
GAIN_SEL  
(HI = 10X, LO = 1X)  
2N7002  
2
20k  
–V  
1990 AI01  
I
V
/R  
100mA  
=10,  
LOAD = CTL SENSE  
1µF  
1990 AI02  
EXAMPLE: FOR R  
SENSE  
1990 AI04  
OUTPUT IS 1mA PER 10mV INPUT  
Bidirectional Controlled Current Source  
+V  
7
3
2
+
V
CTL  
6
LT1990  
4
R
SENSE  
1
–V  
REF  
I
LOAD  
I
V
/R  
5mA  
=100,  
LOAD = CTL SENSE  
EXAMPLE: FOR R  
SENSE  
OUTPUT IS 1mA PER 100mV INPUT  
1990 AI03  
U
PACKAGE DESCRIPTIO  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.189 – .197  
(4.801 – 5.004)  
NOTE 3  
RECOMMENDED SOLDER PAD LAYOUT  
.010 – .020  
(0.254 – 0.508)  
7
5
8
6
× 45°  
.053 – .069  
(1.346 – 1.752)  
.045 ±.005  
.050 BSC  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
0°– 8° TYP  
(0.203 – 0.254)  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.016 – .050  
(0.406 – 1.270)  
.245  
MIN  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
.160 ±.005  
NOTE:  
1. DIMENSIONS IN  
INCHES  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
1
2
3
4
.030 ±.005  
TYP  
SO8 0303  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1787  
Precision High Side Current Sense Amplifier  
Micropower Instrumentation Amplifier  
Dual –48V Supply and Fuse Monitor  
On-Chip Precision Resistor Array  
Micropower, Precision, G = 1 to 1000  
Withstands ±200V Transients  
LT1789  
LTC1921  
LT1991  
High Accuracy Difference Amplifier  
Micropower, Precision, Pin Selectable G = –13 to 14  
Pin Selectable G = –7 to 8  
LT1995  
30MHz, 1000V/µs Gain Selectable Amplifier  
Single Supply Programmable Gain Amplifier  
LT6910  
Digitally Controlled, SOT-23, G = 0 to 100  
1990fb  
LT 0406 REV B • PRINTED IN USA  
16  
© LINEAR TECHNOLOGY CORPORATION 2004  

相关型号:

LT1990AHS8#TRPBF

LT1990 - ±250V Input Range G = 1, 10, Micropower, Difference Amplifier; Package: SO; Pins: 8; Temperature Range: -40°C to 125°C
Linear

LT1990AIS8

250V Input Range G = 1, 10, Micropower, Difference Amplifier
Linear

LT1990AIS8#PBF

暂无描述
Linear

LT1990AIS8#TR

LT1990 - ±250V Input Range G = 1, 10, Micropower, Difference Amplifier; Package: SO; Pins: 8; Temperature Range: -40°C to 85°C
Linear

LT1990AIS8#TRPBF

LT1990 - ±250V Input Range G = 1, 10, Micropower, Difference Amplifier; Package: SO; Pins: 8; Temperature Range: -40°C to 85°C
Linear

LT1990CS8

250V Input Range G = 1, 10, Micropower, Difference Amplifier
Linear

LT1990HS8

LT1990 - ±250V Input Range G = 1, 10, Micropower, Difference Amplifier; Package: SO; Pins: 8; Temperature Range: -40°C to 125°C
Linear

LT1990HS8#PBF

LT1990 - ±250V Input Range G = 1, 10, Micropower, Difference Amplifier; Package: SO; Pins: 8; Temperature Range: -40°C to 125°C
Linear

LT1990HS8#TR

LT1990 - ±250V Input Range G = 1, 10, Micropower, Difference Amplifier; Package: SO; Pins: 8; Temperature Range: -40°C to 125°C
Linear

LT1990HS8#TRPBF

LT1990 - ±250V Input Range G = 1, 10, Micropower, Difference Amplifier; Package: SO; Pins: 8; Temperature Range: -40°C to 125°C
Linear

LT1990IS8

250V Input Range G = 1, 10, Micropower, Difference Amplifier
Linear

LT1990IS8#TR

LT1990 - ±250V Input Range G = 1, 10, Micropower, Difference Amplifier; Package: SO; Pins: 8; Temperature Range: -40°C to 85°C
Linear