LT1995CDD [Linear]

32MHz, 1000V/μs Gain Selectable Amplifier; 32MHz的, 1000V / μs增益可选放大器
LT1995CDD
型号: LT1995CDD
厂家: Linear    Linear
描述:

32MHz, 1000V/μs Gain Selectable Amplifier
32MHz的, 1000V / μs增益可选放大器

仪表放大器 放大器电路
文件: 总20页 (文件大小:353K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1995  
32MHz, 1000V/µs  
Gain Selectable Amplifier  
U
FEATURES  
DESCRIPTIO  
Internal Gain Setting Resistors  
The LT®1995 is a high speed, high slew rate, gain select-  
able amplifier with excellent DC performance. Gains from  
7to8withagainaccuracyof0.2%canbeachievedusing  
no external components. The device is particularly well  
suitedforuseasadifferenceamplifier, wheretheexcellent  
resistor matching results in a typical common mode  
rejection ratio of 79dB.  
Pin Configurable as a Difference Amplifier,  
Inverting and Noninverting Amplifier  
Difference Amplifier:  
Gain Range 1 to 7  
CMRR > 65dB  
Noninverting Amplifier:  
Gain Range 1 to 8  
The amplifier is a single gain stage design similar to the  
LT1363 and features superb slewing and settling charac-  
teristics. Input offset of the internal operational amplifier  
is less than 2.5mV and the slew rate is 1000V/µs. The  
output can drive a 150load to ±2.5V on ±5V supplies,  
making it useful in cable driver applications.  
Inverting Amplifier:  
Gain Range –1 to –7  
Gain Error: <0.2%  
Slew Rate: 1000V/µs  
Bandwidth: 32MHz (Gain = 1)  
Op Amp Input Offset Voltage: 2.5mV Max  
The resistors have excellent matching, 0.2% maximum at  
room temperature and 0.3% from –40°C to 85°C. The  
temperature coefficient of the resistors is typically  
–30ppm/°C. The resistors are extremely linear with volt-  
age, resulting in a gain nonlinearity of 10ppm.  
Quiescent Current: 9mA Max  
Wide Supply Range: ±2.5V to ±15V  
Available in 10-Lead MSOP and  
10-Lead (3mm × 3mm) DFN Packages  
U
The LT1995 is fully specified at ±2.5V, ±5V and ±15V sup-  
plies and from –40°C to 85°C. The device is available in  
space saving 10-lead MSOP and 10-Lead (3mm × 3mm)  
DFN packages. For a micropower precision amplifier with  
precision resistors, see the LT1991 and LT1996.  
APPLICATIO S  
Instrumentation Amplifier  
Current Sense Amplifier  
Video Difference Amplifier  
Automatic Test Equipment  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
U
TYPICAL APPLICATIO  
High Slew Rate Differential Gain of 1  
Large-Signal Transient (G = 1)  
M1 M2 M4  
15V  
OUT  
1k  
2k  
4k  
4k  
+
INPUT  
RANGE  
4k  
2k  
1k  
–15V TO 15V  
+
LT1995  
4k  
1995 TA01b  
REF  
P1 P2 P4  
–15V  
1995 TA01a  
1995fb  
1
LT1995  
ABSOLUTE MAXIMUM RATINGS  
W W  
U W  
(Note 1)  
Total Supply Voltage (V+ to V) .............................. 36V  
Input Current (Note 2) ....................................... ±10mA  
Output Short-Circuit Duration (Note 3)........... Indefinite  
Operating Temperature Range (Note 4) .. – 40°C to 85°C  
Specified Temperature Range (Note 5)... – 40°C to 85°C  
Storage Temperature Range  
MS Package .................................... 65°C to 150°C  
DD Package ..................................... 65°C to 125°C  
Maximum Junction Temperature  
MS Package ..................................................... 150°C  
DD Package ..................................................... 125°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
U
W U  
PACKAGE/ORDER INFORMATION  
ORDER PART  
NUMBER  
ORDER PART  
NUMBER  
TOP VIEW  
TOP VIEW  
P1  
P2  
1
2
3
4
5
10 M1  
P1  
P2  
1
2
3
4
5
10 M1  
9
8
7
6
M2  
LT1995CDD  
LT1995IDD  
LT1995CMS  
LT1995IMS  
9
8
7
6
M2  
M4  
S
OUT  
+
P4  
M4  
+
P4  
+
+
V
S
V
S
V
S
V
REF  
REF  
OUT  
DD PART  
MARKING*  
MS PART  
MARKING*  
MS PACKAGE  
10-LEAD PLASTIC MSOP  
DD PACKAGE  
10-LEAD (3mm × 3mm) PLASTIC DFN  
TJMAX = 150°C, θJA = 160°C/W (NOTE 6)  
LBJF  
LBJF  
LTBJD  
LTBJD  
TJMAX = 125°C, θJA = 160°C/W (NOTE 6)  
EXPOSED PAD INTERNALLY CONNECTED TO VS  
PCB CONNECTION OPTIONAL  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grades are identified by a label on the shipping container.  
ELECTRICAL CHARACTERISTICS  
Difference Amplifier Configuration. T = 25°C, V  
= V = 0V and unused gain pins are unconnected, unless otherwise noted.  
CM  
A
REF  
SYMBOL PARAMETER  
CONDITIONS  
V
MIN  
TYP  
MAX  
UNITS  
SUPPLY  
GE  
Gain Error  
V
V
V
V
V
V
= ±12V, R = 1k, G = 1  
±15V  
±15V  
±15V  
±15V  
±5V  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.2  
0.2  
0.2  
0.25  
0.2  
%
%
%
%
%
%
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
L
= ±12V, R = 1k, G = 2  
L
= ±12V, R = 1k, G = 4  
L
= ±5V, R = 150, G = 1  
L
= ±2.5V, R = 500, G = 1  
L
= ±2.5V, R = 150, G = 1  
±5V  
0.25  
L
GNL  
Gain Nonlinearity  
V
= ±12V, R = 1k, G = 1  
±15V  
10  
ppm  
OUT  
L
V
Input Offset Voltage  
Referred to Input (Note 7)  
G = 1 (MS10)  
G = 1 (DD10)  
G = 2 (MS10)  
G = 2 (DD10)  
G = 4 (MS10)  
G = 4 (DD10)  
G = 1 (MS10)  
G = 1 (DD10)  
G = 1 (MS10)  
G = 1 (DD10)  
±15V  
±15V  
±15V  
±15V  
±15V  
±15V  
±5V  
1
5
9
4
6.8  
3.75  
5.6  
5
9
5
9
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
OS  
1.5  
0.7  
1.2  
0.6  
0.9  
1
1.4  
1
1.3  
±5V  
±2.5V  
±2.5V  
1995fb  
2
LT1995  
ELECTRICAL CHARACTERISTICS  
Difference Amplifier Configuration. T = 25°C, V  
= V = 0V and unused gain pins are unconnected, unless otherwise noted.  
CM  
A
REF  
SYMBOL PARAMETER  
CONDITIONS  
V
MIN  
TYP  
MAX  
UNITS  
SUPPLY  
V
Op Amp Input Offset Voltage  
(Note 10)  
G = 1 (MS10)  
G = 1 (DD10)  
±2.5V, ±5V, ±15V  
±2.5V, ±5V, ±15V  
0.5  
0.75  
2.5  
4.5  
mV  
mV  
OS_OA  
e
n
Input Noise Voltage  
G = 1, f = 10kHz  
G = 2, f = 10kHz  
G = 4, f = 10kHz  
±2.5V to ±15V  
±2.5V to ±15V  
±2.5V to ±15V  
27  
18  
14  
nV/Hz  
nV/Hz  
nV/Hz  
R
Common Mode Input Resistance  
Input Capacitance  
V
CM  
= ±15V, G = 1  
±15V  
±15V  
4
kΩ  
IN  
C
IN  
2.5  
pF  
Input Voltage Range  
G = 1  
±15V  
±5V  
±2.5V  
±15  
±5  
±1  
±15.5  
±5.5  
±1.5  
V
V
V
CMRR  
Common Mode Rejection Ratio  
Referred to Input  
G = 1, V = ±15V  
±15V  
±15V  
±15V  
±5V  
65  
71  
75  
65  
61  
79  
84  
87  
73  
68  
dB  
dB  
dB  
dB  
dB  
CM  
G = 2, V = ±15V  
CM  
G = 4, V = ±15V  
CM  
G = 1, V = ±5V  
CM  
G = 1, V = ±1V  
±2.5V  
CM  
PSRR  
Power Supply Rejection Ratio  
Output Voltage Swing  
P1 = M1 = 0V, G = 1, V = ±2.5V to ±15V  
78  
87  
dB  
S
V
OUT  
R = 1k  
±15V  
±15V  
±5V  
±13.5  
±13  
±3.5  
±1.3  
±14  
±13.5  
±4  
V
V
V
V
L
R = 500Ω  
L
R = 500Ω  
L
R = 500Ω  
±2.5V  
±2  
L
I
Short-Circuit Current  
Slew Rate  
G = 1  
±15V  
±15V  
±70  
±120  
mA  
SC  
SR  
G = –2, V  
Measured at V  
G = –2, V  
Measured at V  
= ±12V, P2 = 0V  
OUT  
750  
1000  
V/µs  
OUT  
= ±10V  
= ±3.5V, P2 = 0V  
±5V  
450  
V/µs  
OUT  
= ±2V  
OUT  
FPBW  
HD  
Full Power Bandwidth  
10V Peak, G = –2 (Note 8)  
3V Peak, G = –2 (Note 8)  
±15V  
±5V  
16  
24  
MHz  
MHz  
Total Harmonic Distortion  
–3dB Bandwidth  
G = 1, f = 1MHz, R = 1k, V  
= 2V  
P-P  
±15V  
–81  
dB  
L
OUT  
G = 1  
±15V  
±5V  
±2.5V  
32  
25  
21  
MHz  
MHz  
MHz  
t , t  
Rise Time, Fall Time  
Overshoot  
10% to 90%, 0.1V, G = 1  
±15V  
±5V  
10  
15  
ns  
ns  
r
f
OS  
0.1V, G = 1, C = 10pF  
±15V  
±5V  
30  
30  
%
%
L
t
t
Propagation Delay  
Settling Time  
50% V to 50% V , 0.1V, G = 1  
±15V  
±5V  
9
11  
ns  
ns  
pd  
s
IN  
OUT  
10V Step, 0.1%, G = 1  
5V Step, 0.1%, G = 1  
±15V  
±5V  
100  
110  
ns  
ns  
G  
Differential Gain  
Differential Phase  
Output Resistance  
Supply Current  
G = 2, R = 150Ω  
±15V  
±15V  
±15V  
0.06  
0.15  
1.5  
%
Deg  
L
∆θ  
G = 2, R = 150Ω  
L
R
OUT  
f = 1MHz, G = 1  
G = 1  
I
±15V  
±5V  
7.1  
6.7  
9.0  
8.5  
mA  
mA  
S
1995fb  
3
LT1995  
ELECTRICAL CHARACTERISTICS  
The  
denotes the specifications which apply over the 0°C T 70°C.  
A
Difference Amplifier Configuration. V  
= V = 0V and unused gain pins are unconnected, unless otherwise noted.  
CM  
REF  
SYMBOL PARAMETER  
CONDITIONS  
V
MIN  
TYP  
MAX  
UNITS  
SUPPLY  
GE  
Gain Error  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
= ±12V, R = 1k, G = 1  
±15V  
±15V  
±15V  
±5V  
0.05  
0.05  
0.05  
0.05  
0.05  
0.25  
0.25  
0.25  
0.25  
0.35  
%
%
%
%
%
L
= ±12V, R = 1k, G = 2  
L
= ±12V, R = 1k, G = 4  
L
= ±2.5V, R = 500, G = 1  
L
= ±2.5V, R = 150, G = 1  
±5V  
L
V
OS  
Input Offset Voltage  
Referred to Input (Note 7)  
G = 1 (MS10)  
G = 1 (DD10)  
G = 2 (MS10)  
G = 2 (DD10)  
G = 4 (MS10)  
G = 4 (DD10)  
G = 1 (MS10)  
G = 1 (DD10)  
G = 1 (MS10)  
G = 1 (DD10)  
±15V  
±15V  
±15V  
±15V  
±15V  
±15V  
±5V  
1.1  
1.5  
0.8  
1.2  
0.7  
0.9  
1
1.4  
1
1.3  
6.5  
11.5  
5.5  
9
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
5
7.5  
6.5  
11.5  
6.5  
11.5  
±5V  
±2.5V  
±2.5V  
V
V
TC  
Input Offset Voltage Drift  
Referred to Input (Note 9)  
G = 1 (MS10)  
G = 1 (DD10)  
±15V  
±15V  
10  
10  
26  
35  
µV/°C  
µV/°C  
OS  
Op Amp Input Offset Voltage  
(Note 10)  
G = 1 (MS10)  
G = 1 (DD10)  
±2.5V, ±5V, ±15V  
±2.5V, ±5V, ±15V  
0.55  
0.75  
3.25  
5.75  
mV  
mV  
OS_OA  
Input Voltage Range  
G = 1  
±15V  
±5V  
±2.5V  
±15  
±5  
±1  
±15.5  
±5.5  
±1.5  
V
V
V
CMRR  
PSRR  
Common Mode Rejection Ratio  
Referred to Input  
V
V
V
V
V
= ±15V, G = 1  
= ±15V, G = 2  
= ±15V, G = 4  
= ±5V, G = 1  
= ±1V, G = 1  
±15V  
±15V  
±15V  
±5V  
63  
69  
73  
62  
59  
77  
83  
86  
72  
66  
dB  
dB  
dB  
dB  
dB  
CM  
CM  
CM  
CM  
CM  
±2.5V  
Power Supply Rejection Ratio  
Output Voltage Swing  
P1 = M1 = 0V, G = 1, V = ±2.5V to ±15V  
76  
86  
dB  
S
V
OUT  
R = 1k  
±15V  
±15V  
±5V  
±13.1  
±12.6  
±3.4  
±14  
±13.5  
±4  
V
V
V
V
L
R = 500Ω  
L
R = 500Ω  
L
R = 500Ω  
±2.5V  
±1.2  
±2  
L
I
Short-Circuit Current  
Slew Rate  
G = 1  
±15V  
±15V  
±55  
±115  
mA  
SC  
SR  
G = –2, V  
Measured at V  
= ±12V, P2 = 0V  
OUT  
600  
900  
V/µs  
OUT  
= ±10V  
I
Supply Current  
G = 1  
±15V  
±5V  
7.9  
7.4  
10.5  
9.9  
mA  
mA  
S
The  
denotes the specifications which apply over the –40°C T 85°C.  
A
Difference Amplifier Configuration. V  
= V = 0V and unused gain pins are unconnected, unless otherwise noted.  
CM  
REF  
SYMBOL PARAMETER  
CONDITIONS  
V
MIN  
TYP  
MAX  
UNITS  
SUPPLY  
GE  
Gain Error  
V
V
V
V
V
= ±12V, R = 1k, G = 1  
±15V  
±15V  
±15V  
±5V  
0.05  
0.05  
0.05  
0.05  
0.05  
0.3  
0.35  
0.35  
0.3  
%
%
%
%
%
OUT  
OUT  
OUT  
OUT  
OUT  
L
= ±12V, R = 1k, G = 2  
L
= ±12V, R = 1k, G = 4  
L
= ±2.5V, R = 500, G = 1  
L
= ±2.5V R = 150, G = 1  
±5V  
0.5  
L
1995fb  
4
LT1995  
ELECTRICAL CHARACTERISTICS  
The  
denotes the specifications which apply over the –40°C T 85°C.  
A
Difference Amplifier Configuration. V  
SYMBOL PARAMETER  
= V = 0V and unused gain pins are unconnected, unless otherwise noted.  
REF  
CM  
CONDITIONS  
V
MIN  
TYP  
MAX  
UNITS  
SUPPLY  
V
OS  
Input Offset Voltage  
Referred to Input (Note 7)  
G = 1 (MS10)  
G = 1 (DD10)  
G = 2 (MS10)  
G = 2 (DD10)  
G = 4 (MS10)  
G = 4 (DD10)  
G = 1 (MS10)  
G = 1 (DD10)  
G = 1 (MS10)  
G = 1 (DD10)  
±15V  
±15V  
±15V  
±15V  
±15V  
±15V  
±5V  
1.2  
1.6  
0.9  
1.2  
0.7  
0.9  
1.1  
1.4  
1.1  
1.5  
7.5  
13  
6
10  
5.5  
8.5  
7.5  
13  
7.5  
13  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
±5V  
±2.5V  
±2.5V  
V
V
TC  
Input Offset Voltage Drift  
Referred to Input (Note 9)  
G = 1 (MS10)  
G = 1 (DD10)  
±15V  
±15V  
10  
10  
26  
35  
µV/°C  
µV/°C  
OS  
Op Amp Input Offset Voltage  
(Note 10)  
G = 1 (MS10)  
G = 1 (DD10)  
±2.5V, ±5V, ±15V  
±2.5V, ±5V, ±15V  
0.6  
0.8  
3.75  
6.5  
mV  
mV  
OS_OA  
Input Voltage Range  
G = 1  
±15V  
±5V  
±2.5V  
±15  
±5  
±1  
±15.5  
±5.5  
±1.5  
V
V
V
CMRR  
PSRR  
Common Mode Rejection Ratio  
Referred to Input  
V
V
V
V
V
= ±15V, G = 1  
= ±15V, G = 2  
= ±15V, G = 4  
= ±5V, G = 1  
= ±1V, G = 1  
±15V  
±15V  
±15V  
±5V  
62  
68  
72  
61  
57  
77  
83  
86  
72  
66  
dB  
dB  
dB  
dB  
dB  
CM  
CM  
CM  
CM  
CM  
±2.5V  
Power Supply Rejection Ratio  
Output Voltage Swing  
P1 = M1 = 0V, G = 1, V = ±2.5V to ±15V  
74  
86  
dB  
S
V
OUT  
R = 1k  
±15V  
±15V  
±5V  
±13  
±12.5  
±3.3  
±1.1  
±14  
±13.5  
±4  
V
V
V
V
L
R = 500Ω  
L
R = 500Ω  
L
R = 500Ω  
±2.5V  
±2  
L
I
Short-Circuit Current  
Slew Rate  
G = 1  
±15V  
±15V  
±50  
±105  
mA  
SC  
SR  
G = –2, V  
Measured at V  
= ±12V, P2 = 0V  
OUT  
550  
900  
V/µs  
OUT  
= ±10V  
I
Supply Current  
G = 1  
±15V  
±5V  
8.0  
7.6  
11.0  
10.4  
mA  
mA  
S
Note 1: Absolute Maximum Ratings are those values beyond which the life  
Note 6: Thermal resistance (θ ) varies with the amount of PC board metal  
JA  
of a device may be impaired.  
Note 2: The inputs are protected by diodes connected to V and V  
connected to the leads. The specified values are for short traces connected  
to the leads. If desired, the thermal resistance can be reduced slightly in  
the MS package to about 130°C/W by connecting the used leads to a  
larger metal area. A substantial reduction in thermal resistance down to  
about 50°C/W can be achieved by connecting the Exposed Pad on the  
+
.
S
S
If an input goes beyond the supply range, the input current should be  
limited to 10mA.  
Note 3: A heat sink may be required to keep the junction temperature  
below absolute maximum.  
bottom of the DD package to a large PC board metal area which is either  
open-circuited or connected to V  
.
S
Note 4: The LT1995C and LT1995I are guaranteed functional over the  
operating temperature range of –40°C to 85°C.  
Note 5: The LT1995C is guaranteed to meet specified performance from  
0°C to 70°C. The LT1995C is designed, characterized and expected to  
meet specified performance from –40°C to 85°C but is not tested or QA  
sampled at these temperatures. The LT1995I is guaranteed to meet  
specified performance from –40°C to 85°C.  
Note 7: Input offset voltage is pulse tested and is exclusive of warm-up  
drift. V and V TC refer to the input offset of the difference amplifier  
OS  
OS  
configuration. The equivalent input offset of the internal op amp can be  
calculated from V = V • G/(G +1).  
OS_OA  
OS  
Note 8: Full Power bandwidth is calculated from the slew rate measure-  
ment: FPBW = SR/2πV .  
P
Note 9: This parameter is not 100% tested.  
Note 10: The input offset of the internal op amp is calculated from the  
input offset voltage: V  
= V • G/(G +1).  
OS_OA  
OS  
1995fb  
5
LT1995  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS (Difference Amplifier Configuration)  
Supply Current vs Supply Voltage  
and Temperature  
V
Distribution  
Input Noise Spectral Density  
OS  
25  
20  
15  
10  
5
1000  
100  
10  
10  
8
V
= ±15V  
CM  
V
T
= ±15V  
= 25°C  
S
S
A
V
= 0V  
G = 1  
MS PACKAGE  
T
= 125°C  
= 25°C  
A
T
A
6
G = 1  
G = 4  
G = 2  
T
= –55°C  
A
4
G = 7  
2
0
1
0.01  
0
–3.5  
–1.5 –0.5 0.5  
INPUT OFFSET VOLTAGE (mV)  
1.5 2.5 3.5  
–2.5  
0
5
10  
15  
20  
0.1  
1
10  
100  
FREQUENCY (kHz)  
SUPPLY VOLTAGE (±V)  
1995 G01  
1995 G03  
1995 G02  
Change in Gain Error  
vs Resistive Load  
Output Voltage Swing vs Supply  
Voltage  
Output Voltage Swing vs Load  
Current  
+
+
0.05  
0.04  
0.03  
0.02  
0.01  
0
V
V
V
T
= ±15V  
S
A
T
A
= 25°C  
V = ±5V  
S
= 25°C  
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
V
= ±12V  
OUT  
R
L
= 1k  
25°C  
G = 7  
G = 4  
–40°C  
R
L
= 500  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
85°C  
85°C  
25°C  
G = 2  
G = 1  
–0.01  
–0.02  
–0.03  
–0.04  
–0.05  
R
L
= 500Ω  
1.5  
1.0  
0.5  
–40°C  
R
L
= 1k  
15  
V
V
0
1
2
3
4
5
6
7
8
9
10  
10  
–50  
–25  
OUTPUT CURRENT (mA)  
0
25  
50  
0
5
20  
RESISTIVE LOAD (k)  
SUPPLY VOLTAGE (±V)  
1995 G04  
1995 G05  
1995 G06  
Output Short-Circuit Current  
vs Temperature  
Warm-Up Drift vs Time  
Output Impedance vs Frequency  
120  
100  
80  
1000  
100  
10  
300  
V
= ±15V  
= 25°C  
V = ±5V  
S
S
A
V
= ±15V  
= 25°C  
S
A
T
T
250  
MS PACKAGE  
200  
150  
G = 7  
SOURCE  
G = 1  
G = 7  
60  
SINK  
G = 1  
40  
20  
0
100  
50  
0
1
0.1  
50  
TEMPERATURE (°C)  
100 125  
10k  
100k  
1M  
FREQUENCY (Hz)  
10M  
100M  
–50 –25  
0
25  
75  
0
1
2
3
4
5
TIME AFTER POWER ON (MINUTES)  
1995 G09  
1995 G08  
1995 G07  
1995fb  
6
LT1995  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS (Difference Amplifier Configuration)  
Settling Time vs Output Step  
(Non-Inverting)  
Settling Time vs Output Step  
(Inverting)  
Gain vs Frequency  
20  
18  
16  
14  
12  
10  
8
6
4
2
0
–2  
–4  
–6  
–8  
–10  
10  
8
10  
8
V
T
= ±15V  
= 25°C  
= 1k  
V
T
= ±15V  
= 25°C  
= 1k  
S
S
G = 7  
A
A
R
L
R
L
6
6
G = –1  
G = 4  
G = 2  
G = 1  
G = 1  
4
4
10mV  
10mV  
1mV  
10mV  
1mV  
1mV  
2
2
0
0
–2  
–4  
–6  
–8  
–10  
–2  
–4  
–6  
–8  
–10  
1mV  
10mV  
V
= ±15V  
= 25°C  
= 1k  
S
A
L
T
R
10k  
100k  
1M  
10M  
100M  
0
20 40 60 80 100 120 140 160  
0
20 40 60 80 100 120 140 160 180  
FREQUENCY (Hz)  
SETTLING TIME (ns)  
SETTLING TIME (ns)  
1995 G10  
1995 G12  
1995 G11  
Settling Time vs Gain  
(Non-Inverting)  
–3dB Bandwidth and Overshoot  
vs Supply Voltage  
–3dB Bandwidth and Overshoot  
vs Temperature  
35  
30  
25  
20  
40  
35  
30  
25  
20  
140  
120  
G = –1  
T
= 25°C  
A
G = –1  
V
= ±15V  
S
–3dB BANDWIDTH  
V
= ±5V  
S
100  
–3dB BANDWIDTH  
80  
60  
40  
20  
42  
41  
40  
50  
45  
40  
OVERSHOOT  
OVERSHOOT  
C
= 15pF  
L
C
L
= 15pF  
V
= ±15V  
= 25°C  
OUT  
= 1k  
S
A
V
S
= ±15V  
= ±5V  
T
V  
R
L
= 10V  
V
S
0.1% SETTLING  
35  
0
50  
0
TEMPERATURE (°C)  
100 125  
–50 –25  
25  
75  
8
10  
0
2
4
6
12 14 16 18  
1
3
4
5
6
7
8
2
GAIN (V/V)  
SUPPLY VOLTAGE (±V)  
1995 G15  
1995 G14  
1995 G13  
Frequency Response vs Supply  
Voltage (G = 1, G = –1)  
Frequency Response  
vs Capacitive Load  
Common Mode Rejection Ratio  
vs Frequency  
20  
15  
10  
5
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
10  
8
V
T
= ±15V  
= 25°C  
V
T
= ±15V  
= 25°C  
=  
T
= 25°C  
= 1k  
S
A
G = 1  
S
A
L
C = 200pF  
R
A
R
L
6
G = –1  
4
C = 100pF  
C = 50pF  
±2.5V  
±15V  
±5V  
2
0
0
–2  
–4  
–5  
–10  
–15  
C = 0pF  
–6  
–8  
–10  
1
100  
1k  
10k  
1M  
10M  
100M  
10  
100k  
100k  
1M  
10M  
100M  
FREQUENCY (MHz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1995 G16  
1995 G17  
1995 G18  
1995fb  
7
LT1995  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS (Difference Amplifier Configuration)  
Power Supply Rejection Ratio  
vs Frequency  
Slew Rate vs Supply Voltage  
Slew Rate vs Temperature  
1800  
1600  
1400  
1200  
1000  
800  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1600  
1400  
1200  
1000  
G = –2  
V
T
= ±15V  
= 25°C  
T
= 25°C  
S
A
G = 1  
A
G = –1  
= V – V – 3V  
P-P  
+
V
OUT  
S
S
+PSRR  
V
V
= ±15V  
OUT  
S
= 27V  
P-P  
P-P  
–PSRR  
800  
600  
V
V
= ±5V  
OUT  
S
600  
= 7V  
400  
200  
0
400  
200  
0
–10  
1k  
10k  
100k  
1M  
10M  
100M  
0
5
10  
15  
–50 –25  
0
25  
125  
50  
75 100  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
SUPPLY VOLTAGE (±V)  
1995 G19  
1995 G20  
1995 G21  
Total Harmonic Distortion vs  
Frequency  
Undistorted Output Swing vs  
Slew Rate vs Input Level  
Frequency (±15V)  
0.01  
0.001  
30  
25  
20  
15  
10  
5
1400  
1200  
T
= 25°C  
= ±15V  
T = 25°C  
A
A
S
V
V
= 3V  
o RMS  
G = –1  
R = 500Ω  
L
G = 1  
1000  
800  
600  
400  
200  
G = –1  
G = 1  
G = –1  
V
= ±15V  
= 25°C  
S
A
T
HD <2%  
0
0.0001  
0
0
6
10 12 14 16 18 20  
0.1  
1
10  
2
4
8
0.01  
0.1  
1
10  
100  
FREQUENCY (MHz)  
INPUT LEVEL (V  
)
P-P  
FREQUENCY (kHz)  
1995 G24  
1995 G23  
1995 G22  
Undistorted Output Swing vs  
Frequency (±5V)  
2nd and 3rd Harmonic Distortion  
vs Frequency  
Differential Gain and Phase  
vs Supply Voltage  
10  
9
8
7
6
5
4
3
2
1
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
–40  
–50  
–60  
–70  
–80  
–90  
–100  
V
T
= ±5V  
T
A
= 25°C  
V
V
= ±15V  
S
A
S
= 25°C  
R
L
= 150Ω  
= 2V  
OUT  
P-P  
HD <2%  
G = 2  
R
= 500Ω  
L
G = 2  
DIFFERENTIAL  
GAIN  
G = 1  
1.0  
0.8  
0.6  
0.4  
0.2  
2ND HARMONIC  
G = –1  
DIFFERENTIAL  
PHASE  
3RD HARMONIC  
0
0.1  
1
10  
0.1  
1
10  
0
30  
5
10  
15  
20  
25  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
SUPPLY VOLTAGE (V)  
1995 G25  
1995 G26  
1995 G27  
1995fb  
8
LT1995  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS (Difference Amplifier Configuration)  
Capacitive Load Handling  
Capacitive Load Handling  
100  
90  
100  
90  
V
T
= ±5V  
= 25°C  
= ∞  
V
T
= ±15V  
= 25°C  
= ∞  
S
S
A
A
G = 4  
G = 7  
G = 4  
G = 2  
G = 2  
R
L
R
L
80  
80  
G = 1  
70  
70  
G = 7  
G = 1  
60  
50  
60  
50  
40  
30  
20  
10  
0
40  
30  
20  
10  
0
10pF  
100pF 1000pF 0.01µF 0.1µF  
1µF  
10pF  
100pF 1000pF 0.01µF 0.1µF  
1µF  
CAPACITIVE LOAD  
CAPACITIVE LOAD  
1995 G29  
1995 G28  
Small-Signal Transient  
(Noninverting, G = 1, C = 100pF)  
Small-Signal Transient (G = 1)  
Small-Signal Transient (G = –1)  
L
VS = ±15V  
RL = 1k  
100ns/DIV  
1995 G30  
V
S = ±15V  
100ns/DIV  
1995 G31  
V
S = ±15V  
100ns/DIV  
1995 G32  
RL = 1k  
RL = 1k  
Large-Signal Transient  
(Noninverting, G = 1, C = 100pF)  
Large-Signal Transient (G = 1)  
Large-Signal Transient (G = –1)  
L
V
S = ±15V  
100ns/DIV  
1995 G34  
VS = ±15V  
RL = 1k  
100ns/DIV  
1995 G33  
VS = ±15V  
RL = 1k  
100ns/DIV  
1995 G35  
RL = 1k  
1995fb  
9
LT1995  
U
U
U
PI FU CTIO S (Difference Amplifier Configuration)  
OUT (Pin 6): Output Voltage. VOUT = VREF + 1 • (VP1 – VM1  
+ 2 • (VP2 – VM2) + 4 • (VP4 – VM4).  
)
P1 (Pin 1): Noninverting Gain-of-1 Input. Connects a 4k  
internal resistor to the op amp’s noninverting input.  
VS+ (Pin 7): Positive Supply Voltage.  
P2 (Pin 2): Noninverting Gain-of-2 Input. Connects a 2k  
internal resistor to the op amp’s noninverting input.  
M4 (Pin 8): Inverting Gain-of-4 Input. Connects a 1k  
internal resistor to the op amp’s inverting input.  
P4 (Pin 3): Noninverting Gain-of-4 Input. Connects a 1k  
internal resistor to the op amp’s noninverting input.  
VS(Pin 4): Negative Supply Voltage.  
M2 (Pin 9): Inverting Gain-of-2 Input. Connects a 2k  
internal resistor to the op amp’s inverting input.  
M1 (Pin 10): Inverting Gain-of-1 Input. Connects a 4k  
internal resistor to the op amp’s inverting input.  
REF(Pin5):ReferenceVoltage.Setstheoutputlevelwhen  
the difference between the inputs is zero. Connects a 4k  
internal resistor to the op amp’s non inverting input.  
1995fb  
10  
LT1995  
W
BLOCK DIAGRA  
+
V
S
7
R
R
R
= 4k  
R
= 4k  
P1  
FB  
P1  
REF  
1
2
5
0.5pF  
0.3pF  
= 2k  
P2  
P4  
P2  
= 1k  
= 1k  
= 2k  
P4  
3
+
R
R
M4  
M4  
M2  
M1  
8
M2  
9
0.3pF  
0.5pF  
R
= 4k  
R
= 4k  
FB  
M1  
OUT  
10  
6
V
S
4
1995 BD  
W U U  
U
APPLICATIO S I FOR ATIO  
Configuration Flexibility  
the rails, which in low supply voltage and high gain  
configurations will create a limitation on the usable input  
range.Itshouldbenotedthatwhiletheinternalopampcan  
withstand transient differential input voltages of up to 10V  
without damage, this does generate large supply current  
increases (tens of mA) as required for high slew rates. If  
the device is used with sustained differential input across  
the internal op amp (such as when the output is clipping),  
the average supply current will increase, excessive power  
dissipation will result, and the part may be damaged (i.e.,  
the LT1995 is not recommended for use in comparator  
applications or with the output clipped).  
The LT1995 combines a high speed precision operational  
amplifier with eight ratio-matched on-chip resistors. The  
resistor configuration and pinout of the device is shown in  
theBlockDiagram.Thetopologyisextremelyversatileand  
provides for simple realizations of most classic functional  
configurations including difference amplifiers, inverting  
gain stages, noninverting gain stages (including Hi-Z  
input buffers) and summing amplifiers. The LT1995 deliv-  
ersloadcurrentsofatleast30mA, makingitidealforcable  
driving applications as well.  
The input voltage range depends on gain and configura-  
tion. ESD diodes will clamp any input voltage that exceeds  
the supply potentials by more than several tenths of a volt;  
and the internal op amp input ports must remain at least  
1.75V within the rails to assure normal operation of the  
part. The output will swing to within one and a half volts of  
Difference Amplifier  
The LT1995 can be connected as a classic difference  
amplifier with an output function given by:  
V
OUT = G • (VIN+ – VIN) + VREF  
1995fb  
11  
LT1995  
W U U  
U
APPLICATIO S I FOR ATIO  
As shown in Figure 1, the options for fixed gain G include:  
1, 1.33, 1.67, 2, 3, 4, 5, 6 and 7, all achieved by pin-  
strapping alone. With split-supply applications where the  
outputistobegroundreferenced, theVREF inputissimply  
tied to ground. The input common mode voltage is  
rejected by the high CMRR of the part within the usable  
input range.  
Noninverting Gain Amplifier Input Attenuation  
The LT1995 can also be connected as a noninverting gain  
amplifier having an input attenuation network to provide a  
wide range of additional noninverting gain options. In  
combination with the feedback configurations for gains of  
G shown in Figure 2 (connections to the M inputs), the P  
and REF inputs may be connected to form several resistor  
divider attenuation ratios A, so that a compound output  
function is given by:  
Inverting Gain Amplifier  
The LT1995 can be connected as an inverting gain ampli-  
fier with an output function given by:  
V
OUT = A • G • VIN  
As shown in Figure 3, the options for fixed attenuation A  
include0.875,0.857,0.833,0.8,0.75,0.714,0.667,0.625  
and 0.571, all achieved by pin strapping alone. With just  
the attenuation configurations of Figure 3 and the feed-  
back configurations of Figure 2, seventy-three unique  
composite gains in the range of 1 to 8 are available (many  
options for gain below unity also exist). Figure 3 does not  
include the additional pin-strap configurations offering A  
valuesof0.5, 0.429, 0.375, 0.333, 0.286, 0.25, 0.2, 0.167,  
0.143 and 0.125, as these values tend to compromise the  
low noise performance of the part and don’t generally  
contribute many more unique gain options. It should be  
noted that with these configurations some degree of  
imbalance will generally exist between the effective resis-  
tances RP and RM seen by the internal op amp input ports,  
noninverting and inverting, respectively. Depending on  
the specific combination of A and G, the following DC  
offseterrorduetoopampinputbiascurrent(IB)shouldbe  
anticipated: The IB of the internal op amp is typically 0.6µA  
and is prepackage tested to a limit of 2µA. Additional  
output-referred offset = IB • (RP – RM) • G. In some  
configurations, this could be as much as 1.7mV • G  
additional output offset. The IOS of the internal op amp is  
typically 120nA and is prepackage tested to a limit of  
350nA. The Electrical Characteristics table includes the  
effects of IB and IOS.  
V
OUT = –(G • VIN) + VREF  
As shown in Figure 1, the options for fixed gain G include:  
1, 1.33, 1.67, 2, 3, 4, 5, 6 and 7, all achieved by pin  
strapping alone. The VIN connection used in the differ-  
ence amp configuration is simply tied to ground (or a low  
impedancepotentialequaltotheinputsignalbiastocreate  
an input “virtual ground”). With split-supply applications  
wheretheoutputistobegroundreferenced,theVREF input  
is simply tied to ground as well.  
+
Noninverting Gain Buffer Amplifier  
The LT1995 can be connected as a high input impedance  
noninverting gain buffer amplifier with an output function  
given by:  
VOUT = G • VIN  
As shown in Figure 2, the options for fixed gain G include:  
1, 1.14, 1.2, 1.33, 1.4, 1.6, 2, 2.33, 2.66, 3, 4, 5, 6, 7 and  
8, all achieved by pin strapping alone. With single supply  
applications, the grounded M input pins may be tied to a  
low impedance potential equal to the input signal bias to  
create a “virtual ground” for both the input and output  
signals. While there is no input attenuation from VIN to the  
internal noninverting op amp port in these configurations,  
the P connections vary to minimize offset by providing  
balanced input resistances to the internal op amp.  
1995fb  
12  
LT1995  
W U U  
APPLICATIO S I FOR ATIO  
U
+V  
+V  
+V  
8
9
8
9
8
9
+
V
V
V
M4  
M2  
M1  
M4  
M2  
M1  
M4  
M2  
M1  
IN  
IN  
7
7
7
10  
10  
10  
+
V
V
6
6
6
IN  
IN  
LT1995  
V
LT1995  
V
LT1995  
V
OUT  
OUT  
OUT  
1
2
3
1
2
3
1
2
3
P1  
P2  
P4  
REF  
5
P1  
P2  
P4  
REF  
5
P1  
P2  
P4  
REF  
5
+
V
4
4
4
IN  
IN  
V
REF  
–V  
–V  
–V  
V
V
REF  
REF  
G = 1.00  
G = 1.33  
G = 1.67  
+V  
7
+V  
7
+V  
7
8
9
8
9
8
9
M4  
M2  
M1  
M4  
M2  
M1  
V
M4  
M2  
M1  
IN  
IN  
+
V
V
V
IN  
IN  
10  
10  
10  
6
6
6
LT1995  
V
LT1995  
V
LT1995  
V
OUT  
OUT  
OUT  
1
2
3
1
2
3
1
2
3
P1  
P2  
P4  
REF  
P1  
P2  
P4  
REF  
P1  
P2  
P4  
REF  
+
5
V
5
5
IN  
IN  
+
V
4
4
4
V
V
V
REF  
REF  
REF  
–V  
–V  
–V  
G = 2.00  
G = 3.00  
G = 4.00  
+V  
7
+V  
7
+V  
7
8
9
8
9
8
9
+
+
M4  
M2  
M1  
M4  
M2  
M1  
M4  
M2  
M1  
V
V
V
V
V
IN  
IN  
IN  
IN  
10  
10  
10  
6
6
6
LT1995  
V
LT1995  
V
LT1995  
V
OUT  
1995 F01  
OUT  
OUT  
1
2
3
1
2
3
1
2
3
P1  
P2  
P4  
REF  
P1  
P2  
P4  
REF  
P1  
P2  
P4  
REF  
5
5
5
+
V
4
4
4
IN  
IN  
V
V
V
REF  
REF  
REF  
–V  
G = 5.00  
–V  
G = 6.00  
–V  
G = 7.00  
Figure 1. Difference (and Inverting) Amplifier Configurations  
Table 1. Pin Use, Input Range, Input Resistance, Bandwidth in Difference Amplifier Configuration  
GAIN  
1
2
3
4
5
6
7
Use of P1/M1  
Use of P2/M2  
Use of P4/M4  
V
Open  
V
Open  
Open  
V
Open  
V
IN  
IN  
IN  
IN  
IN  
IN  
IN  
Open  
Open  
±15V  
±5V  
±1.5V  
8k  
V
V
Open  
V
IN  
V
IN  
V
V
IN  
Open  
±15V  
±4.88V  
±1.13V  
6k  
Open  
±15V  
±4.33V  
±1V  
V
V
IN  
IN  
Positive Input Range: V = 0V, V = ±15V  
±15V  
±4.06V  
±0.94V  
5k  
±15V  
±3.9V  
±0.9V  
4.8k  
±15V  
±3.79V  
±0.88V  
4.67k  
±15V  
±3.71V  
±0.86V  
4.57k  
REF  
S
Positive Input Range: V = 0V, V = ±5V  
REF  
S
Positive Input Range: V = 0V, V = ±2.5V  
REF  
S
Positive Input Resistance  
5.33k  
1.33k  
5.33k  
2.67k  
2.67k  
27MHz  
Minus Input Resistance  
Ref Input Resistance  
4k  
2k  
1k  
800Ω  
4.8k  
667Ω  
4.67k  
571Ω  
4.57k  
8k  
6k  
5k  
Input Common Mode Resistance, V = 0V  
4k  
3k  
2.5k  
2k  
2.4k  
2.33k  
2.29k  
REF  
Input Differential Mode Resistance, V = 0V  
8k  
4k  
1.6k  
1.33k  
1.14k  
REF  
–3dB Bandwidth  
32MHz  
27MHz  
23MHz  
18MHz  
16MHz  
15MHz  
1995fb  
13  
LT1995  
W U U  
U
APPLICATIO S I FOR ATIO  
+V  
+V  
+V  
8
8
9
8
9
M4  
M4  
M2  
M1  
M4  
M2  
M1  
7
7
7
9
M2  
M1  
10  
10  
10  
6
6
6
LT1995  
V
OUT  
LT1995  
V
LT1995  
V
OUT  
OUT  
1
2
3
1
2
3
1
2
3
P1  
P2  
P4  
REF  
5
P1  
P2  
P4  
REF  
5
P1  
P2  
P4  
REF  
5
4
4
4
–V  
–V  
–V  
V
IN  
V
IN  
V
IN  
G = 1.00  
G = 1.14  
G = 1.20  
+V  
7
+V  
7
+V  
7
8
9
8
9
8
9
M4  
M2  
M1  
M4  
M2  
M1  
M4  
M2  
M1  
10  
10  
10  
6
6
6
LT1995  
V
OUT  
LT1995  
V
LT1995  
V
OUT  
OUT  
1
2
3
1
2
3
1
2
3
P1  
P2  
P4  
REF  
P1  
P2  
P4  
REF  
P1  
P2  
P4  
REF  
5
5
5
4
4
4
–V  
–V  
–V  
1995 F02  
V
IN  
V
IN  
V
IN  
G = 1.33  
G = 1.40  
G = 1.60  
+V  
7
+V  
7
+V  
7
8
9
8
9
8
9
M4  
M4  
M2  
M1  
M4  
M2  
M1  
M2  
M1  
10  
10  
10  
6
6
6
LT1995  
V
OUT  
LT1995  
V
LT1995  
V
OUT  
OUT  
1
2
3
1
2
3
1
2
3
P1  
P2  
P4  
REF  
P1  
P2  
P4  
REF  
P1  
P2  
P4  
REF  
5
5
5
4
4
4
–V  
–V  
–V  
V
IN  
V
IN  
V
IN  
G = 2.00  
G = 2.33  
G = 2.66  
+V  
7
+V  
7
+V  
7
8
9
8
9
8
9
M4  
M2  
M1  
M4  
M2  
M1  
M4  
M2  
M1  
10  
10  
10  
6
6
6
LT1995  
V
OUT  
LT1995  
V
LT1995  
V
OUT  
OUT  
1
2
3
1
2
3
1
2
3
P1  
P2  
P4  
REF  
P1  
P2  
P4  
REF  
P1  
P2  
P4  
REF  
5
5
5
4
4
4
–V  
–V  
–V  
V
IN  
V
IN  
V
IN  
G = 3.00  
G = 4.00  
G = 5.00  
+V  
7
+V  
7
+V  
7
8
9
8
9
8
9
M4  
M2  
M1  
M4  
M2  
M1  
M4  
M2  
M1  
10  
10  
10  
6
6
6
LT1995  
V
OUT  
LT1995  
V
OUT  
LT1995  
V
OUT  
1
2
3
1
2
3
1
2
3
P1  
P2  
P4  
REF  
P1  
P2  
P4  
REF  
P1  
P2  
P4  
REF  
5
5
5
4
4
4
–V  
G = 6.00  
–V  
G = 7.00  
–V  
G = 8.00  
1995 F02b  
V
IN  
V
IN  
V
IN  
Figure 2. Noninverting Buffer Amplifier Configurations (Hi-Z Input)  
1995fb  
14  
LT1995  
W U U  
APPLICATIO S I FOR ATIO  
U
+V  
+V  
+V  
8
9
8
9
8
9
M4  
M2  
M1  
M4  
M2  
M1  
M4  
M2  
M1  
7
7
7
*
*
*
10  
10  
10  
6
6
6
LT1995  
V
OUT  
LT1995  
V
OUT  
LT1995  
V
OUT  
1
2
3
1
2
3
1
2
3
V
V
IN  
P1  
P2  
P4  
REF  
P1  
P2  
P4  
REF  
5
P1  
P2  
P4  
REF  
5
IN  
5
V
IN  
4
4
4
–V  
–V  
–V  
A = 0.875  
A = 0.857  
A = 0.833  
+V  
7
+V  
7
+V  
7
8
9
8
9
8
9
M4  
M2  
M1  
M4  
M2  
M1  
M4  
M2  
M1  
*
*
*
10  
10  
10  
6
6
6
LT1995  
REF  
V
OUT  
LT1995  
REF  
V
OUT  
LT1995  
REF  
V
OUT  
1
2
3
1
2
3
1
2
3
V
IN  
V
IN  
P1  
P2  
P4  
P1  
P2  
P4  
P1  
P2  
P4  
5
5
5
4
4
4
V
IN  
–V  
–V  
–V  
A = 0.800  
A = 0.750  
A = 0.714  
+V  
7
+V  
7
+V  
7
8
9
8
9
8
9
M4  
M2  
M1  
M4  
M2  
M1  
M4  
M2  
M1  
*
*
*
10  
10  
10  
6
6
6
LT1995  
REF  
V
OUT  
LT1995  
REF  
V
OUT  
LT1995  
REF  
V
OUT  
1
2
3
1
2
3
1
2
3
V
IN  
P1  
P2  
P4  
P1  
P2  
P4  
P1  
P2  
P4  
1995 F03  
5
5
5
V
IN  
4
4
4
V
IN  
–V  
A = 0.667  
–V  
A = 0.625  
–V  
A = 0.571  
*CONFIGURE M INPUTS FOR DESIRED G PARAMETER; REFER TO FIGURE 2 FOR CONNECTIONS  
Figure 3. Noninverting Amplifier Input Attenuation Configurations (A > 0.5)  
8
AC-Coupling Methods for Single Supply Operation  
7
6
TheLT1995canbeusedinmanysingle-supplyapplications  
using AC-coupling without additional biasing circuitry.  
5
4
3
2
AC-coupling the LT1995 in a difference amplifier configu-  
ration(asinFigure1)isasimplematterofaddingcoupling  
capacitors to each input and the output as shown in the  
exampleofFigure5. TheinputvoltageVBIAS appliedtothe  
REF pin establishes the quiescent voltage on the input and  
output pins. The VBIAS signal should have a low source  
impedance to avoid degrading the CMRR (0.5for  
1dB CMRR change typically).  
1
1
73  
GAIN COMBINATION  
1995 F04  
Figure 4. Unique Noninverting Gain Configurations  
1995fb  
15  
LT1995  
W U U  
U
APPLICATIO S I FOR ATIO  
Using the LT1995 as an AC-coupled inverting gain stage,  
theREFpinandtherelevantPinputsmayallbedrivenfrom  
a VBIAS source as depicted in the example of Figure 6, thus  
establishing the quiescent voltage on the input and output  
pins. The VBIAS signal will only have to source the bias  
current(IB)ofthenoninvertinginputoftheinternalopamp  
(0.6µA typically), so a high VBIAS source impedance (RS)  
will cause the quiescent level of the amplifier output to  
deviate from the intended VBIAS level by IB • RS.  
In operation as a noninverting gain stage, the P and REF  
inputs may be configured as a “supply splitter,” thereby  
providing a convenient mid-supply operating point. Fig-  
ure 7 illustrates the three attenuation configurations that  
generate 50% mid-supply biasing levels with no external  
components aside from the desired coupling capacitors.  
As with the DC-coupled input attenuation ratios, A, a  
compound output function including the feedback gain  
parameter G is given by:  
V
OUT = A • G • VIN  
+V  
+V  
8
8
M4  
M4  
M2  
M1  
7
7
9
9
C
C
C
IN  
IN  
IN  
M2  
M1  
C
C
OUT  
OUT  
10  
10  
+
V
V
V
IN  
IN  
IN  
6
6
LT1995  
V
OUT  
LT1995  
4
V
OUT  
1
2
3
1
2
3
P1  
P2  
P4  
REF  
5
P1  
P2  
P4  
REF  
5
4
1995 F05  
1995 F06  
V
V
BIAS  
BIAS  
Figure 5. AC-Coupled Difference Amplifier  
General Configuation (G = 5 Example)  
Figure 6. AC-Coupled Inverting Gain Amplifier  
General Configuration (G = 5 Example)  
+V  
+V  
+V  
8
8
9
8
M4  
M4  
M2  
M1  
M4  
7
7
7
9
9
M2  
M1  
M2  
M1  
C
C
C
OUT  
*
*
*
OUT  
OUT  
10  
10  
10  
6
6
6
LT1995  
V
LT1995  
4
V
LT1995  
V
OUT  
OUT  
OUT  
1
2
3
1
2
3
1
2
3
P1  
P2  
P4  
REF  
P1  
P2  
P4  
REF  
P1  
P2  
P4  
REF  
5
5
5
V
V
IN  
IN  
4
V
4
IN  
C
C
IN  
IN  
C
IN  
1995 F07  
A = 0.750  
A = 0.667  
A = 0.500  
*CONFIGURE M INPUTS FOR DESIRED G PARAMETER; REFER TO FIGURE 2 FOR CONNECTIONS. ANY M  
INPUTS SHOWN GROUNDED IN FIGURE 2 SHOULD INSTEAD BE CAPACITIVELY COUPLED TO GROUND  
Figure 7. AC-Coupled Noninverting Amplifier Input Attenuation Configurations (Supply Splitting)  
1995fb  
16  
LT1995  
W U U  
APPLICATIO S I FOR ATIO  
U
If one of the A parameter configurations in Figure 3 is  
preferred, or the use of an external biasing source is  
desired,thePandREFinputconnectionsshowngrounded  
in a Figure 3 circuit may be instead driven by a VBIAS  
voltage to establish a quiescent operating point for the  
input and output pins. The VIN connections of the Figure 3  
circuit are then driven via a coupling capacitor. Any  
grounded M inputs for the desired G configuration (refer  
to Figure 2) must be individually or collectively  
AC-coupled to ground. Figure 8 illustrates a complete  
example circuit of an externally biased AC-coupled nonin-  
verting amplifier. The VBIAS source impedance should be  
low(afewohms)toavoiddegradingtheinherentaccuracy  
of the LT1995. 0.013% of additional Gain Error for each  
ohm of resistance on the REF pin is typical.  
at room temperature, and to within 0.3% over tempera-  
ture. The temperature coefficient of the resistors is typi-  
cally –30ppm/°C. The resistors have been sized to accom-  
modate 15V across each resistor, or in terms of power,  
225mWinthe1kresistors,113mWinthe2kresistors,and  
56mW in the 4k resistors.  
Power Supply Considerations  
As with any high speed amplifier, the LT1995 printed  
circuitlayoutshouldutilizegoodpowersupplydecoupling  
practices. Good decoupling will typically consist of one or  
more capacitors employing the shortest practical inter-  
connection traces and direct vias to a ground plane. This  
practice minimizes inductance at the supply pins so the  
impedance is low at the operating frequencies of the part,  
thereby suppressing feedback or crosstalk artifacts that  
might otherwise lead to extended settling times, fre-  
quency response anomalies, or even oscillation. For high  
speed parts like the LT1995, 10nF ceramics are suitable  
close-in bypass capacitors, and if high currents are being  
delivered to a load, additional 4.7µF capacitors in parallel  
can help minimize induced power supply transients.  
+V  
8
M4  
7
9
C
BYP  
M2  
M1  
C
OUT  
10  
6
LT1995  
V
OUT  
1
2
3
P1  
P2  
P4  
REF  
5
C
IN  
CONFIGURATION EXAMPLE:  
A = 0.625  
V
4
IN  
G = 6.00  
Because unused input pins are connected via resistors to  
the input of the op amp, excessive capacitances on these  
pins will degrade the rise time, slew rate, and step re-  
sponse of the output. Therefore, these pins should not be  
connected to large traces which would add capacitance  
when not in use.  
(V /V = 3.75V)  
OUT IN  
V
BIAS  
1995 F08  
Figure 8. AC-Coupled Noninverting Amplifier  
with External Bias Source (Example)  
Resistor Considerations  
Since the LT1995 has a wide operating supply voltage  
range, it is possible to place the part in situations of  
relativelyhighpowerdissipationthatmaycauseexcessive  
die temperatures to develop. Maximum junction tempera-  
ture (TJ) is calculated from the ambient temperature (TA)  
The resistors in the LT1995 are very well matched, low  
temperaturecoefficientthinfilmbasedelements.Although  
their absolute tolerance is fairly wide (typically ±5% but  
±25% worst case), the resistor matching is to within 0.2%  
1995fb  
17  
LT1995  
W U U  
U
APPLICATIO S I FOR ATIO  
and power dissipation (PD) as follows for a nominal PCB  
layout:  
Frequency Compensation  
TheLT1995comfortablydrivesheavyresistiveloadssuch  
as back-terminated cables and provides nicely damped  
responses for all gain configurations when doing so.  
Small capacitances are included in the on-chip resistor  
networktooptimizebandwidthinthebasicdifferencegain  
configurationsofFigure1. Forthenoninvertingconfigura-  
tions of Figure 2, where the gain parameter G is 2 or less,  
significant overshoot can occur when driving light loads.  
For these low gain cases, providing an RC output network  
as shown in Figure 9 to create an artificial load at high  
frequency will assure good damping behavior.  
TJ = TA + (PD θJA)  
For example, in order to maintain a maximum junction  
temperature of 150°C at 85°C ambient in an MS10 pack-  
age, the power must be limited to 0.4W. It is important to  
note that when operating at ±15V supplies, the quiescent  
current alone will typically account for 0.24W, so careful  
thermal management may be required if high load cur-  
rents and high supply voltages are involved. By additional  
copper area contact to the supply pins or effective thermal  
coupling to extended ground plane(s), the thermal imped-  
ance can be reduced to 130°C/W in the MS10 package. A  
substantial reduction in thermal impedance of the DD10  
package down to about 50°C/W can be achieved by  
connecting the Exposed Pad on the bottom of the package  
to a large PC board metal area which is either open-  
circuited or connected to VS .  
+V  
8
M4  
7
9
M2  
M1  
10  
6
LT1995  
V
OUT  
1
2
3
P1  
P2  
P4  
REF  
5
10nF  
47Ω  
4
–V  
V
IN  
1995 F09  
CONFIGURATION EXAMPLE:  
G = 1.14  
Figure 10. Step Response of Circuit in Figure 9  
Figure 9. Optional Frequency Compensation  
Network for (1 G 2)  
1995fb  
18  
LT1995  
U
PACKAGE DESCRIPTIO  
MS Package  
10-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1661)  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 3)  
0.889 ± 0.127  
(.035 ± .005)  
0.497 ± 0.076  
(.0196 ± .003)  
REF  
10 9  
8
7 6  
DETAIL “A”  
0.254  
5.23  
3.20 – 3.45  
(.206)  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 4)  
(.010)  
4.90 ± 0.152  
(.193 ± .006)  
0° – 6° TYP  
(.126 – .136)  
MIN  
GAUGE PLANE  
0.53 ± 0.152  
(.021 ± .006)  
0.50  
(.0197)  
BSC  
0.305 ± 0.038  
(.0120 ± .0015)  
TYP  
1
2
3
4 5  
DETAIL “A”  
RECOMMENDED SOLDER PAD LAYOUT  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
0.18  
(.007)  
SEATING  
PLANE  
NOTE:  
0.17 – 0.27  
(.007 – .011)  
TYP  
0.127 ± 0.076  
(.005 ± .003)  
MSOP (MS) 0603  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
0.50  
(.0197)  
BSC  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
DD Package  
10-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1699)  
R = 0.115  
0.38 ± 0.10  
TYP  
6
10  
0.675 ±0.05  
3.50 ±0.05  
2.15 ±0.05 (2 SIDES)  
1.65 ±0.05  
3.00 ±0.10  
(4 SIDES)  
1.65 ± 0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(SEE NOTE 6)  
PACKAGE  
OUTLINE  
(DD10) DFN 1103  
5
1
0.25 ± 0.05  
0.50 BSC  
0.75 ±0.05  
0.200 REF  
0.25 ± 0.05  
0.50  
BSC  
2.38 ±0.10  
(2 SIDES)  
2.38 ±0.05  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-2).  
CHECK THE LTC WEBSITE DATA SHEET FOR CURRENT STATUS OF VARIATION ASSIGNMENT  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
1995fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
19  
LT1995  
U
TYPICAL APPLICATIO S  
Tracking Negative Reference  
High Input Impedance Precision Gain of 2 Configuration  
3V  
+V  
8
M4  
1.25V  
LT1790-1.25  
7
9
M2  
M1  
10  
6
LT1995  
V
OUT  
M1  
1
2
3
P1  
P2  
P4  
REF  
LT1995  
G = –1  
P1  
1µF  
–1.25V  
5
REF  
I
= 600nA  
IN  
4
1995 TA03  
–V  
1995 TA02  
V
IN  
–3V  
0A to 2A Current Source  
Current Sense with Alarm  
15V  
15V TO –15V  
15V  
I
LT6700-3  
15V  
10nF  
M4  
M1  
P1  
LT1995  
G = 1  
M1  
10k  
10k  
1k  
+
R
LT1995  
S
0.1  
0.2  
G = 5  
REF  
SENSE  
OUTPUT  
100mV/A  
REF  
P1  
P4  
LT1880  
–15V  
FLAG  
OUTPUT  
4A LIMIT  
+
–15V  
–15V  
100Ω  
V
IN  
400mV  
IRF9530  
1995 TA05  
1995 TA04  
V
5 • R  
IN  
10nF  
I
=
OUT  
I
OUT  
S
Single Supply Video Line Driver  
5V  
8
9
M4  
7
+
47µF  
M2  
10  
75  
M1  
6
LT1995  
4
V
–3dB  
R
OUT  
1
2
3
P1  
P2  
P4  
f
= 27MHz  
220µF  
47µF  
= 75Ω  
5
L
10k  
V
IN  
1995 TA06  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
50ns Settling Time to 0.1%, C  
LT1363  
70MHz, 1000V/µs Op Amp  
Stable  
LOAD  
LT1990  
High Voltage Difference Amplifier  
Precision Gain Selectable Amplifier  
Fully Differential Amplifier  
±250V Common Mode Voltage, Micropower, Pin Selectable G = 1, 10  
LT1991  
Micropower, Precision, Pin Selectable G = –13 to 14  
LTC1992  
Differential Input and Output, Rail-to-Rail Output, I = 1.2mA, C  
Stable  
LOAD  
S
to 10,000pF, Adjustable Common Mode Voltage  
LTC6910-x  
Programmable Gain Amplifiers  
3 Gain Configurations, Rail-to-Rail Input and Output  
1995fb  
LT/LT 0805 REV B • PRINTED IN THE USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
© LINEAR TECHNOLOGY CORPORATION 2004  

相关型号:

LT1995CDD#PBF

LT1995 - 30MHz, 1000V/&#181;s Gain Selectable Amplifier; Package: DFN; Pins: 10; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1995CDD#TR

LT1995 - 30MHz, 1000V/&#181;s Gain Selectable Amplifier; Package: DFN; Pins: 10; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1995CDD#TRPBF

LT1995 - 30MHz, 1000V/&#181;s Gain Selectable Amplifier; Package: DFN; Pins: 10; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1995CMS

32MHz, 1000V/μs Gain Selectable Amplifier
Linear

LT1995IDD

32MHz, 1000V/μs Gain Selectable Amplifier
Linear

LT1995IDD#PBF

LT1995 - 30MHz, 1000V/&#181;s Gain Selectable Amplifier; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1995IDD#TR

LT1995 - 30MHz, 1000V/&#181;s Gain Selectable Amplifier; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1995IMS

32MHz, 1000V/μs Gain Selectable Amplifier
Linear

LT1995IMS#PBF

LT1995 - 30MHz, 1000V/&#181;s Gain Selectable Amplifier; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1996

Precision, 100uA Gain Selectable Amplifier
Linear

LT1996ACDD

Precision, 100uA Gain Selectable Amplifier
Linear

LT1996ACDD#TR

暂无描述
Linear