LT1999CS8-10#PBF [Linear]

LT1999 - High Voltage, Bidirectional Current Sense Amplifier; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C;
LT1999CS8-10#PBF
型号: LT1999CS8-10#PBF
厂家: Linear    Linear
描述:

LT1999 - High Voltage, Bidirectional Current Sense Amplifier; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C

放大器 光电二极管
文件: 总28页 (文件大小:1455K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1999-10/LT1999-20/  
LT1999-50  
High Voltage, Bidirectional  
Current Sense Amplifier  
FEATURES  
DESCRIPTION  
The LT®1999 is a high speed precision current sense  
amplifier, designed to monitor bidirectional currents over  
a wide common mode range. The LT1999 is offered in  
three gain options: 10V/V, 20V/V, and 50V/V.  
n
Buffered Output with 3 Gain Options:  
10V/V, 20V/V, 50V/V  
Gain Accuracy: 0.5% Max  
Input Common Mode Voltage Range: –5V to 80V  
AC CMRR > 80dB at 100kHz  
Input Offset Voltage: 1.5mV Max  
–3dB Bandwidth: 2MHz  
Smooth, Continuous Operation Over Entire Common  
n
n
n
The LT1999 senses current via an external resistive shunt  
and generates an output voltage, indicating both mag-  
nitude and direction of the sensed current. The output  
voltage is referenced halfway between the supply voltage  
and ground, or an external voltage can be used to set  
the reference level. With a 2MHz bandwidth and a com-  
mon mode input range of –5V to 80V, the LT1999 is suit-  
able for monitoring currents in H-Bridge motor controls,  
switching power supplies, solenoid currents, and battery  
charge currents from full charge to depletion.  
n
n
n
Mode Range  
4kV HBM Tolerant and 1kV CDM Tolerant  
Low Power Shutdown <10µA  
–55°C to 150°C Operating Temperature Range  
8-Lead MSOP and 8-Lead SO (Narrow) Packages  
8-Lead MSOP Pinout Option Engineered for FMEA  
AEC-Q100 Qualified for Automotive Applications  
n
n
n
n
n
n
The LT1999 operates from an independent 5V supply and  
draws 1.55mA. A shutdown mode is provided for mini-  
mizing power consumption.  
APPLICATIONS  
n
High Side or Low Side Current Sensing  
H-Bridge Motor Control  
Solenoid Current Sense  
High Voltage Data Acquisition  
PWM Control Loops  
Fuse/MOSFET Monitoring  
The LT1999 is available in an 8-lead SOP, an 8-lead MSOP  
(original pinout), or an 8-lead pinout option engineered  
for FMEA.  
n
n
n
All registered trademarks and trademarks are the property of their respective owners.  
n
n
TYPICAL APPLICATION  
Full Bridge Armature Current Monitor  
ꢀꢁꢂꢃꢃꢃ  
ꢌꢍ  
ꢉꢊꢋ  
SHDN  
SHDN  
ꢌ.ꢍꢊ  
R
ꢄꢅ  
ꢎꢘꢙ  
ꢑꢘꢙ  
R
ꢕꢖꢁ  
REꢔ  
ꢆ.ꢇꢅ  
ꢆ.ꢇꢅ  
ꢐꢁꢑ  
ꢂꢈꢆꢅ  
ꢂꢈꢆꢅ  
ꢄꢅ  
ꢌꢍ  
ꢆ.ꢂꢊꢔ  
ꢄꢒꢒꢒ ꢀꢓꢅꢄꢔ  
ꢀꢁꢂE ꢃꢄꢅꢆꢇꢈꢉꢁꢊꢋ  
ꢆ.ꢂꢊꢔ  
ꢂꢃꢃꢃ ꢁꢋꢆꢂꢐ  
Rev. E  
1
Document Feedback  
For more information www.analog.com  
LT1999-10/LT1999-20/  
LT1999-50  
ABSOLUTE MAXIMUM RATINGS  
Differential Input Voltage  
(Note 1)  
Specified Temperature Range (Note 6)  
+IN to –IN (Notes 1, 3)................................. 60V, 10ms  
+IN to GND, –IN to GND (Note 2)............. –5.25V to 88V  
LT1999C .................................................. 0°C to 70°C  
LT1999I................................................–40°C to 85°C  
LT1999H ............................................ –40°C to 125°C  
LT1999MP ......................................... –55°C to 150°C  
Junction Temperature ........................................... 150°C  
Storage Temperature Range .................. –65°C to 150°C  
+
Total Supply Voltage (V to GND)................................6V  
+
Input Voltage Pins 6 and 8 ...................V + 0.3V, –0.3V  
Output Short-Circuit Duration (Note 4) ............ Indefinite  
Operating Ambient Temperature (Note 5)  
LT1999C ..............................................–40°C to 85°C  
LT1999I................................................–40°C to 85°C  
LT1999H ............................................ –40°C to 125°C  
LT1999MP ......................................... –55°C to 150°C  
PIN CONFIGURATION  
ORIGINAL MSOP PINOUT  
MSOP PINOUT ENGINEERED FOR FMEA  
ꢐꢎꢔ ꢉꢅEꢕ  
ꢈꢉꢊ ꢋꢌEꢍ  
SHDN  
ꢉꢎꢈ  
REꢏ  
ꢏꢍꢓ ꢄꢆEꢔ  
ꢓꢌꢑ  
ꢔꢌꢑ  
SHDN  
ꢊ ꢍꢎꢏ  
ꢋ REꢐ  
ꢄꢅꢆ ꢀ  
ꢇꢅꢆ ꢁ  
SHDN  
ꢋ ꢎꢏꢐ  
ꢌ REꢑ  
ꢅꢆꢇ ꢁ  
ꢈꢆꢇ  
ꢆꢈ  
ꢌ ꢑꢇꢒ  
ꢍ ꢒꢆꢓ  
ꢐꢑꢒ  
ꢕꢖꢉ ꢓꢗꢘꢙꢗꢑE  
ꢉꢚꢛEꢗꢒ ꢓꢛꢗꢖꢏꢆꢘ ꢕꢖꢍꢓ  
ꢖꢗꢊ ꢔꢘꢈꢙꢘꢒE  
ꢊꢚꢛEꢘꢓ ꢔꢛꢘꢗꢐꢅꢈ ꢖꢗꢎꢔ  
ꢕꢄ ꢊꢖꢗꢘꢖꢐE  
ꢄꢙꢚEꢖꢒ ꢊꢚꢖꢕꢈꢌꢗ ꢕꢉ  
ꢞ ꢀꢌꢟꢠꢘꢡ θ ꢞ ꢂꢟꢟꢠꢘꢢꢔ  
ꢐ ꢞ ꢀꢍꢟꢠꢈꢡ θ ꢞ ꢂꢟꢟꢠꢈꢢꢕ  
ꢜꢖꢘꢝ ꢜꢘ  
ꢜꢕꢗꢝ  
ꢜꢗ  
ꢞ ꢀꢇꢟꢠꢗꢡ θ ꢞ ꢀꢢꢟꢠꢗꢣꢍ  
ꢛꢜꢖꢝ  
ꢛꢖ  
ORDER INFORMATION  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING*  
LTFPB  
PACKAGE DESCRIPTION  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead MSOP FMEA Pinout  
8-Lead MSOP FMEA Pinout  
8-Lead MSOP FMEA Pinout  
8-Lead MSOP FMEA Pinout  
8-Lead Plastic SO  
SPECIFIED TEMPERATURE RANGE  
0°C to 70°C  
LT1999CMS8-10#PBF  
LT1999IMS8-10#PBF  
LT1999HMS8-10#PBF  
LT1999MPMS8-10#PBF  
LT1999CMS8-10F#PBF  
LT1999IMS8-10F#PBF  
LT1999HMS8-10F#PBF  
LT1999CMS8-10#TRPBF  
LT1999IMS8-10#TRPBF  
LT1999HMS8-10#TRPBF  
LTFPB  
–40°C to 85°C  
–40°C to 125°C  
–55°C to 150°C  
0°C to 70°C  
LTFPB  
LT1999MPMS8-10#TRPBF LTFQP  
LT1999CMS8-10F#TRPBF  
LT1999IMS8-10F#TRPBF  
LT1999HMS8-10F#TRPBF  
LTGVB  
LTGVB  
LTGVB  
–40°C to 85°C  
–40°C to 125°C  
–55°C to 150°C  
0°C to 70°C  
LT1999MPMS8-10F#PBF LT1999MPMS8-10F#TRPBF LTGVB  
LT1999CS8-10#PBF  
LT1999IS8-10#PBF  
LT1999HS8-10#PBF  
LT1999MPS8-10#PBF  
LT1999CMS8-20#PBF  
LT1999IMS8-20#PBF  
LT1999HMS8-20#PBF  
LT1999CS8-10#TRPBF  
LT1999IS8-10#TRPBF  
LT1999HS8-10#TRPBF  
LT1999MPS8-10#TRPBF  
LT1999CMS8-20#TRPBF  
LT1999IMS8-20#TRPBF  
LT1999HMS8-20#TRPBF  
199910  
199910  
199910  
99MP10  
LTFNZ  
8-Lead Plastic SO  
–40°C to 85°C  
–40°C to 125°C  
–55°C to 150°C  
0°C to 70°C  
8-Lead Plastic SO  
8-Lead Plastic SO  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
LTFNZ  
–40°C to 85°C  
–40°C to 125°C  
LTFNZ  
Rev. E  
2
For more information www.analog.com  
LT1999-10/LT1999-20/  
LT1999-50  
ORDER INFORMATION  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING*  
PACKAGE DESCRIPTION  
SPECIFIED TEMPERATURE RANGE  
–55°C to 150°C  
0°C to 70°C  
LT1999MPMS8-20#PBF  
LT1999CMS8-20F#PBF  
LT1999IMS8-20F#PBF  
LT1999HMS8-20F#PBF  
LT1999MPMS8-20#TRPBF LTFQQ  
8-Lead Plastic MSOP  
8-Lead MSOP FMEA Pinout  
8-Lead MSOP FMEA Pinout  
8-Lead MSOP FMEA Pinout  
8-Lead MSOP FMEA Pinout  
8-Lead Plastic SO  
LT1999CMS8-20F#TRPBF  
LT1999IMS8-20F#TRPBF  
LT1999HMS8-20F#TRPBF  
LTGVC  
LTGVC  
LTGVC  
–40°C to 85°C  
–40°C to 125°C  
–55°C to 150°C  
0°C to 70°C  
LT1999MPMS8-20F#PBF LT1999MPMS8-20F#TRPBF LTGVC  
LT1999CS8-20#PBF  
LT1999IS8-20#PBF  
LT1999CS8-20#TRPBF  
LT1999IS8-20#TRPBF  
LT1999HS8-20#TRPBF  
LT1999MPS8-20#TRPBF  
LT1999CMS8-50#TRPBF  
LT1999IMS8-50#TRPBF  
LT1999HMS8-50#TRPBF  
199920  
199920  
199920  
99MP20  
LTFPC  
8-Lead Plastic SO  
–40°C to 85°C  
–40°C to 125°C  
–55°C to 150°C  
0°C to 70°C  
LT1999HS8-20#PBF  
LT1999MPS8-20#PBF  
LT1999CMS8-50#PBF  
LT1999IMS8-50#PBF  
LT1999HMS8-50#PBF  
LT1999MPMS8-50#PBF  
LT1999CMS8-50F#PBF  
LT1999IMS8-50F#PBF  
LT1999HMS8-50F#PBF  
8-Lead Plastic SO  
8-Lead Plastic SO  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead MSOP FMEA Pinout  
8-Lead MSOP FMEA Pinout  
8-Lead MSOP FMEA Pinout  
8-Lead MSOP FMEA Pinout  
8-Lead Plastic SO  
LTFPC  
–40°C to 85°C  
–40°C to 125°C  
–55°C to 150°C  
0°C to 70°C  
LTFPC  
LT1999MPMS8-50#TRPBF LTFQR  
LT1999CMS8-50F#TRPBF  
LT1999IMS8-50F#TRPBF  
LT1999HMS8-50F#TRPBF  
LTGVD  
LTGVD  
LTGVD  
–40°C to 85°C  
–40°C to 125°C  
–55°C to 150°C  
0°C to 70°C  
LT1999MPMS8-50F#PBF LT1999MPMS8-50F#TRPBF LTGVD  
LT1999CS8-50#PBF  
LT1999IS8-50#PBF  
LT1999CS8-50#TRPBF  
LT1999IS8-50#TRPBF  
LT1999HS8-50#TRPBF  
LT1999MPS8-50#TRPBF  
199950  
199950  
199950  
99MP50  
8-Lead Plastic SO  
–40°C to 85°C  
–40°C to 125°C  
–55°C to 150°C  
LT1999HS8-50#PBF  
LT1999MPS8-50#PBF  
AUTOMOTIVE PRODUCTS**  
8-Lead Plastic SO  
8-Lead Plastic SO  
LT1999HMS8-10F#WPBF LT1999HMS8-10F#WTRPBF LTGVB  
LT1999HMS8-20F#WPBF LT1999HMS8-20F#WTRPBF LTGVC  
LT1999HMS8-50F#WPBF LT1999HMS8-50F#WTRPBF LTGVD  
8-Lead MSOP FMEA Pinout  
8-Lead MSOP FMEA Pinout  
8-Lead MSOP FMEA Pinout  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
Contact the factory for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Tape and reel specifications. Some packages are available in 500 unit reels through designated sales channels with #TRMPBF suffix.  
**Versions of this part are available with controlled manufacturing to support the quality and reliability requirements of automotive applications. These  
models are designated with a #W suffix. Only the automotive grade products shown are available for use in automotive applications. Contact your  
local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for  
these models.  
Rev. E  
3
For more information www.analog.com  
LT1999-10/LT1999-20/  
LT1999-50  
The ldenotes the specifications which apply over the full operating  
ELECTRICAL CHARACTERISTICS  
temperature range, 0°C < TA < 70°C for C-grade parts, –40°C < TA < 85°C for I-grade parts, and –40°C < TA < 125°C for H-grade parts, otherwise  
specifications are at TA = 25°C. V+ = 5V, GND = 0V, VCM = 12V, VREF = floating, VSHDN = floating, unless otherwise specified. See Figure 2.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
l
V
Full-Scale Input Sense Voltage (Note 7)  
SENSE  
LT1999-10  
LT1999-20  
LT1999-50  
–0.35  
–0.2  
–0.08  
0.35  
0.2  
0.08  
V
V
V
SENSE  
V
= V – V  
+IN –IN  
l
l
V
CM Input Voltage Range  
Differential Input Impedance  
CM Input Impedance  
–5  
80  
V
CM  
R
R
ΔV  
=
2V/Gain  
6.4  
8
9.6  
kΩ  
IN(DIFF)  
INDIFF  
l
l
ΔV = 5.5V to 80V  
5
3.6  
20  
4.8  
MΩ  
kΩ  
INCM  
CM  
ΔV = –5V to 4.5V  
6
CM  
V
Input Referred Voltage Offset  
–750  
–1500  
500  
750  
1500  
μV  
μV  
OSI  
l
ΔV /ΔT  
Input Referred Voltage Offset Drift  
Gain  
5
μV/°C  
OSI  
l
l
l
A
LT1999-10  
LT1999-20  
LT1999-50  
9.95  
19.9  
49.75  
10  
20  
50  
10.05  
20.1  
50.25  
V/V  
V/V  
V/V  
V
l
A Error  
V
Gain Error  
ΔV  
OUT  
=
2V  
–0.5  
0.2  
0.5  
%
l
l
l
I
Input Bias Current  
I(+IN) = I(–IN)  
(Note 8)  
V
V
V
> 5.5V  
= –5V  
SHDN  
100  
–2.35  
137.5  
–1.95  
0.001  
175  
–1.5  
2.5  
μA  
mA  
μA  
B
CM  
CM  
= 0.5V, 0V < V < 80V  
CM  
l
l
l
I
Input Offset Current  
OS  
(Note 8)  
V
V
V
> 5.5V  
–1  
1
10  
2.5  
μA  
μA  
μA  
OS  
CM  
CM  
SHDN  
+
I
= I(+IN) – I(–IN)  
= –5V  
–10  
–2.5  
= 0.5V, 0V < V < 80V  
CM  
l
PSRR  
CMRR  
Supply Rejection Ratio  
Sense Input Common Mode Rejection  
V = 4.5V to 5.5V  
68  
77  
dB  
l
l
l
l
V
V
V
V
= –5V to 80V  
= –5V to 5.5V  
96  
96  
75  
80  
105  
120  
90  
dB  
dB  
dB  
dB  
CM  
CM  
CM  
CM  
= 12V, 7V , f = 100kHz,  
P-P  
P-P  
= 0V, 7V , f = 100kHz  
100  
e
n
Differential Input Referred Noise Voltage Density  
f = 10kHz  
f = 0.1Hz to 10Hz  
97  
8
nV/√Hz  
μV  
P-P  
+
REF  
REF Pin Rejection, V = 5.5V  
RR  
l
l
l
ΔV = 3.0V  
LT1999-10  
LT1999-20  
LT1999-50  
62  
62  
62  
70  
70  
70  
dB  
dB  
dB  
REF  
REF  
REF  
ΔV = 3.25V  
ΔV = 3.25V  
l
l
R
REF Pin Input Impedance  
60  
80  
100  
kΩ  
REF  
V
V
= 0.5V  
= 0.5V  
0.15  
0.4  
0.65  
MΩ  
SHDN  
l
l
V
V
Open Circuit Voltage  
2.45  
1
2.5  
2.5  
2.55  
2.75  
V
V
REF  
SHDN  
+
+
+
l
l
l
REF Pin Input Range (Note 9)  
LT1999-10  
LT1999-20  
LT1999-50  
1.25  
1.125  
1.125  
V – 1.25  
V
V
V
REFR  
V – 1.125  
V – 1.125  
Rev. E  
4
For more information www.analog.com  
LT1999-10/LT1999-20/  
LT1999-50  
ELECTRICAL CHARACTERISTICS The ldenotes the specifications which apply over the full operating  
temperature range, 0°C < TA < 70°C for C-grade parts, –40°C < TA < 85°C for I-grade parts, and –40°C < TA < 125°C for H-grade parts, otherwise  
specifications are at TA = 25°C. V+ = 5V, GND = 0V, VCM = 12V, VREF = floating, VSHDN = floating, unless otherwise specified. See Figure 2.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
l
l
l
I
Pin Pull-Up Current  
SHDN Pin Input High  
SHDN Pin Input Low  
Small Signal Bandwidth  
V = 5.5V, V  
= 0V  
SHDN  
–6  
–2  
μA  
V
SHDN  
+
V
V
V – 0.5  
IH  
IL  
0.5  
V
f
LT1999-10  
LT1999-20  
LT1999-50  
2
2
1.2  
MHz  
MHz  
MHz  
3dB  
SR  
Slew Rate  
3
V/μs  
μs  
t
t
Settling Time due to Input Step, ΔV  
=
2V  
0.5% Settling  
2.5  
s
r
OUT  
Common Mode Step Recovery Time  
ΔV 50V, 20ns  
(Note 10)  
LT1999-10  
LT1999-20  
LT1999-50  
0.8  
1
1.3  
μs  
μs  
μs  
=
CM  
l
V
Supply Voltage (Note 11)  
Supply Current  
4.5  
5
5.5  
V
S
l
l
l
I
V
V
> 5.5V  
= –5V  
1.55  
5.8  
3
1.9  
7.1  
10  
mA  
mA  
μA  
S
CM  
CM  
+
V = 5.5V, V  
= 0.5V, V > 0V  
CM  
SHDN  
R
Output Impedance  
ΔI = 2mA  
0.15  
31  
Ω
mA  
mA  
O
O
l
l
I
I
Sourcing Output Current  
Sinking Output Current  
R
LOAD  
R
LOAD  
= 50Ω to GND  
6
40  
40  
SRC  
SNK  
+
= 50Ω to V  
15  
26  
+
l
l
V
Swing Output High (with Respect to V )  
R
LOAD  
R
LOAD  
= 1kΩ to Mid-Supply  
= Open  
125  
5
250  
125  
mV  
mV  
OUT  
l
l
Swing Output Low (with Respect to V )  
R
LOAD  
R
LOAD  
= 1kΩ to Mid-Supply  
= Open  
250  
150  
400  
225  
mV  
mV  
t
t
Turn-On Time  
Turn-Off Time  
V
SHDN  
V
SHDN  
= 0V to 5V  
= 5V to 0V  
1
1
μs  
μs  
ON  
OFF  
Rev. E  
5
For more information www.analog.com  
LT1999-10/LT1999-20/  
LT1999-50  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, –55°C < TA < 150°C for MP-grade parts, otherwise specifications are at TA = 25°C. V+ = 5V, GND = 0V, VCM = 12V,  
VREF = floating, VSHDN = floating, unless otherwise specified. See Figure 2.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
l
V
Full-Scale Input Sense Voltage (Note 7)  
= V – V  
LT1999-10  
LT1999-20  
LT1999-50  
–0.35  
–0.2  
–0.08  
0.35  
0.2  
0.08  
V
V
V
SENSE  
V
SENSE  
+IN  
–IN  
l
l
V
CM Input Voltage Range  
Differential Input Impedance  
CM Input Impedance  
–5  
80  
V
CM  
R
R
ΔV  
=
2V/GAIN  
6.4  
8
9.6  
kΩ  
IN(DIFF)  
INDIFF  
l
l
ΔV = 5.5V to 80V  
5
3.6  
20  
4.8  
MΩ  
kΩ  
INCM  
CM  
ΔV = 5V to 4.5V  
6
CM  
V
Input Referred Voltage Offset  
–750  
–2000  
500  
750  
2000  
μV  
μV  
OSI  
l
ΔV /ΔT Input Referred Voltage Offset Drift  
OSI  
8
μV/°C  
l
l
l
A
Gain  
LT1999-10  
LT1999-20  
LT1999-50  
9.95  
19.9  
49.75  
10  
20  
50  
10.05  
20.1  
50.25  
V/V  
V/V  
V/V  
V
l
A Error  
V
Gain Error  
ΔV  
=
OUT  
2V  
–0.5  
0.2  
0.5  
%
l
l
l
I
Input Bias Current  
I(+IN) = I(–IN)  
(Note 8)  
V
V
V
> 5.5V  
= –5V  
SHDN  
100  
–2.35  
137.5  
–1.95  
0.001  
180  
–1.5  
10  
μA  
mA  
μA  
B
CM  
CM  
= 0.5V, 0V < V < 80V  
CM  
l
l
l
I
Input Offset Current  
OS  
(Note 8)  
V
V
V
> 5.5V  
–1  
1
10  
10  
μA  
μA  
μA  
OS  
CM  
CM  
SHDN  
+
I
= I(+IN) – I(–IN)  
= –5V  
–10  
–10  
= 0.5V, 0V < V < 80V  
CM  
l
PSRR  
CMRR  
Supply Rejection Ratio  
Sense Input Common Mode Rejection  
V = 4.5V to 5.5V  
68  
77  
dB  
l
l
l
l
V
V
V
V
= –5V to 80V  
= –5V to 5.5V  
96  
96  
75  
80  
105  
120  
90  
dB  
dB  
dB  
dB  
CM  
CM  
CM  
CM  
= 12V, 7V , f = 100kHz,  
P-P  
P-P  
= 0V, 7V , f = 100kHz  
100  
e
n
Differential Input Referred Noise Voltage Density f= 10kHz  
f = 0.1Hz to 10Hz  
97  
8
nV/√Hz  
μV  
P-P  
+
REF  
REF Pin Rejection, V = 5.5V  
ΔV = 2.75V  
RR  
l
l
l
LT1999-10  
LT1999-20  
LT1999-50  
62  
62  
62  
70  
70  
70  
dB  
dB  
dB  
REF  
ΔV = 3.25V  
ΔV = 3.25V  
REF  
REF  
l
l
R
REF  
REF Pin Input Impedance  
60  
0.15  
80  
0.4  
100  
0.65  
kΩ  
MΩ  
V
= 0.5V  
SHDN  
l
l
V
V
Open Circuit Voltage  
2.45  
0.25  
2.5  
2.5  
2.55  
2.75  
V
V
REF  
V
= 0.5V  
SHDN  
+
+
+
l
l
l
REF Pin Input Range (Note 9)  
LT1999-10  
LT1999-20  
LT1999-50  
1.5  
1.125  
1.125  
V – 1.25  
V
V
V
REFR  
V – 1.125  
V – 1.125  
+
l
l
l
I
Pin Pull-Up Current  
SHDN Pin Input High  
SHDN Pin Input Low  
Small Signal Bandwidth  
V = 5.5V, V  
= 0V  
SHDN  
–6  
–2  
μA  
V
SHDN  
+
V
V
V – 0.5  
IH  
IL  
0.5  
V
f
LT1999-10  
LT1999-20  
LT1999-50  
2
2
1.2  
MHz  
MHz  
MHz  
3dB  
SR  
Slew Rate  
3
V/μs  
μs  
t
Settling Time Due to Input Step, ΔV  
=
2V  
0.5% Settling  
2.5  
S
OUT  
Rev. E  
6
For more information www.analog.com  
LT1999-10/LT1999-20/  
LT1999-50  
The l denotes the specifications which apply over the full operating  
ELECTRICAL CHARACTERISTICS  
temperature range, –55°C < TA < 150°C for MP-grade parts, otherwise specifications are at TA = 25°C. V+ = 5V, GND = 0V, VCM = 12V,  
VREF = floating, VSHDN = floating, unless otherwise specified. See Figure 2.  
SYMBOL PARAMETER  
Common Mode Step Recovery Time  
ΔV 50V, 20ns  
(Note 10)  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
t
LT1999-10  
LT1999-20  
LT1999-50  
0.8  
1
1.3  
μs  
μs  
μs  
r
=
CM  
l
V
Supply Voltage (Note 11)  
Supply Current  
4.5  
5
5.5  
V
S
l
l
l
I
S
V
V
> 5.5V  
= –5V  
1.55  
5.8  
3
1.9  
7.1  
25  
mA  
mA  
μA  
CM  
CM  
+
V = 5.5V, V  
= 0.5V, V > 0V  
CM  
SHDN  
R
Output Impedance  
ΔI = 2mA  
0.15  
31  
Ω
mA  
mA  
O
O
l
l
I
I
Sourcing Output Current  
Sinking Output Current  
R
LOAD  
R
LOAD  
= 50Ω to GND  
3
40  
40  
SRC  
SNK  
+
= 50Ω to V  
10  
26  
+
l
l
V
Swing Output High (with Respect to V )  
R
LOAD  
R
LOAD  
= 1kΩ to Mid-Supply  
= Open  
125  
5
250  
125  
mV  
mV  
OUT  
l
l
Swing Output Low (with Respect to V )  
R
LOAD  
R
LOAD  
= 1kΩ to Mid-Supply  
= Open  
250  
150  
400  
225  
mV  
mV  
t
t
Turn-On Time  
Turn-Off Time  
V
SHDN  
V
SHDN  
= 0V to 5V  
= 5V to 0V  
1
1
μs  
μs  
ON  
OFF  
Note 1: Stresses beyond those listed underAbsolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: Pin 2 (+IN) and Pin 3 (–IN) are protected by ESD voltage clamps  
which have asymmetric bidirectional breakdown characteristics with respect  
to the GND pin (Pin 5). These pins can safely support common mode  
voltages which vary from –5.25V to 88V without triggering an ESD clamp.  
Note 3: Exposure to differential sense voltages exceeding the normal  
operating range for extended periods of time may degrade part  
performance. A heat sink may be required to keep the junction temperature  
below the Absolute Maximum Rating when the inputs are stressed  
differentially. The amount of power dissipated in the LT1999 due to input  
Note 7: Full-scale sense (V  
differential input that can be applied with better than 0.5% gain accuracy.  
Gain accuracy is degraded when the output saturates against either power  
) gives indication of the maximum  
SENSE  
+
supply rail. V  
is verified with V = 5.5V, V = 12V, with the REF pin  
SENSE  
CM  
set to it’s voltage range limits. The maximum V  
REF pin set to it’s minimum specified limit, verifying the gain error is less  
than 0.5% at the output. The minimum V is verified with the REF pin  
set to its maximum specified limit, verifying the gain error at the output is  
less than 0.5%. See Note 9 for more information.  
is verified with the  
SENSE  
SENSE  
Note 8: I is defined as the average of the input bias currents to the +IN  
B
and –IN pins (Pins 2 and 3). A positive current indicates current flowing  
into the pin. I is defined as the difference of the input bias currents.  
OS  
I
= I(+IN) – I(–IN)  
OS  
overdrive can be approximated by:  
Note 9: The REF pin voltage range is the minimum and maximum limits  
that ensures the input referred voltage offset does not exceed 3mV over  
the I, C, and H temperature ranges, and 3.5mV over the MP temperature  
range.  
2
V
+IN VIN  
(
=
)
PDISS  
8kΩ  
Note 4: A heat sink may be required to keep the junction temperature  
Note 10: Common mode recovery time is defined as the time it takes the  
output of the LT1999 to recover from a 50V, 20ns input common mode  
voltage transition, and settle to within the DC amplifier specifications.  
below the absolute maximum rating.  
Note 5: The LT1999C/LT1999I are guaranteed functional over the operating  
temperature range –40°C to 85°C. The LT1999H is guaranteed functional  
over the operating temperature range –40°C to 125°C. The LT1999MP is  
guaranteed functional over the operating temperature range –55°C to 150°C.  
Junction temperatures greater than 125°C will promote accelerated aging.  
The LT1999 has a demonstrated typical life beyond 1000 hours at 150°C.  
+
Note 11: Operating the LT1999 with V < 4.5V is possible, although the  
LT1999 is not tested or specified in this condition. See the Applications  
Information section.  
Note 6: The LT1999C is guaranteed to meet specified performance from  
0°C to 70°C. The LT1999C is designed, characterized, and expected to  
meet specified performance from –40°C to 85°C but is not tested or  
QA sampled at these temperatures. The LT1999I is guaranteed to meet  
specified performance from –40°C to 85°C. The LT1999H is guaranteed  
to meet specified performance from –40°C to 125°C. The LT1999MP is  
guaranteed to meet specified performance from –55°C to 150°C.  
Rev. E  
7
For more information www.analog.com  
LT1999-10/LT1999-20/  
LT1999-50  
TYPICAL PERFORMANCE CHARACTERISTICS  
Supply Current  
vs Input Common Mode  
Supply Current vs Temperature  
Supply Current vs Supply Voltage  
ꢎ.ꢏ  
ꢎ.ꢐ  
ꢎ.ꢑ  
ꢎ.ꢊ  
ꢎ.ꢒ  
ꢏ.ꢌ  
ꢐ.ꢓ  
ꢐ.ꢌ  
ꢒ.ꢓ  
ꢒ.ꢌ  
ꢑ.ꢓ  
ꢑ.ꢌ  
ꢌ.ꢓ  
ꢑꢓꢌꢘꢕ  
ꢑꢐꢌꢘꢕ  
ꢔꢌꢘꢕ  
ꢒꢓꢘꢕ  
ꢙꢏꢓꢘꢕ  
ꢙꢓꢓꢘꢕ  
ꢚ ꢛꢂEꢜ  
ꢚ ꢓꢘ  
ꢗ ꢑꢒꢅ  
SHDN  
ꢕꢖ  
ꢖ ꢆꢀ  
ꢋꢜꢝꢋꢞꢞ  
ꢚ ꢎꢔꢘ  
ꢇꢁ  
ꢚ ꢊ.ꢊꢘ  
ꢚ ꢒ.ꢊꢘ  
ꢉꢊꢊ ꢉꢗꢓ ꢉꢊ ꢔꢓ ꢒꢊ ꢐꢓ ꢕꢊ ꢎꢔꢓ ꢎꢒꢊ  
ꢅꢆ  
ꢐꢆ ꢎꢆ ꢏꢆ ꢍꢆ ꢆꢆ ꢌꢆ ꢋꢆ ꢔꢑ  
ꢃꢀꢄ  
ꢀEꢁꢂERꢃꢀꢄRE ꢅꢆꢇꢈ  
ꢀꢁꢂꢂꢉE ꢊꢅꢋ  
ꢁꢂ  
ꢎꢕꢕꢕ ꢖꢓꢔ  
ꢑꢔꢔꢔ ꢉꢌꢐ  
ꢐꢒꢒꢒ ꢓꢑꢐ  
Supply Current  
Shutdown Supply Current  
vs Temperature  
Shutdown Input Bias Current  
vs Input Common Mode  
vs SHDN Pin Voltage  
ꢈꢃ  
ꢎꢏ  
ꢊꢅꢅꢅ  
ꢊꢅꢅ  
ꢊꢅ  
ꢚ ꢏꢘ  
ꢚ ꢏꢘ  
ꢒ ꢓꢀ  
SHDN  
ꢐ ꢍꢀ  
ꢐ ꢈꢉꢀ  
ꢒ ꢊꢓꢅꢘꢁ  
ꢒ ꢅꢀ  
ꢒ ꢅꢀ  
ꢋꢛꢜꢋꢝꢝ  
SHDN  
ꢔEꢕꢔE  
ꢒꢕ  
ꢚ ꢎꢒꢘ  
ꢇꢁ  
ꢒꢊꢙꢅꢘꢁ  
ꢒꢊꢊꢅꢘꢁ  
ꢃ.ꢈ  
ꢐ ꢈꢍꢃꢑꢒ  
ꢚ ꢊ.ꢊꢘ  
ꢚ ꢑ.ꢊꢘ  
ꢒ ꢍꢅꢘꢁ  
ꢒ ꢗꢅꢘꢁ  
ꢃ.ꢃꢈ  
ꢃ.ꢃꢃꢈ  
ꢐ ꢓꢍꢍꢑꢒ  
ꢐ ꢉꢍꢑꢒ  
ꢁꢀꢂ  
ꢉꢊꢊ ꢉꢗꢏ ꢉꢊ ꢒꢏ ꢑꢊ ꢔꢏ ꢕꢊ ꢎꢒꢏ ꢎꢑꢊ  
ꢐꢅ  
ꢋꢅ  
ꢁꢂ  
ꢏꢅ  
ꢃꢀꢄ  
ꢌꢅ  
ꢊꢅꢅ  
ꢀEꢁꢂERꢃꢀꢄRE ꢅꢆꢇꢈ  
SHDN  
ꢈꢋꢋꢋ ꢌꢃꢊ  
ꢎꢕꢕꢕ ꢖꢏꢊ  
ꢊꢍꢍꢍ ꢎꢅꢏ  
Input Bias Current  
vs Input Common Mode  
Input Impedance  
vs Input Common Mode Voltage  
Input Bias Current vs Temperature  
ꢋ.ꢆ  
ꢎꢏꢐ  
ꢎꢏꢏ  
ꢎꢏꢔ  
ꢎꢏꢑ  
ꢎꢒꢓ  
ꢎꢒꢐ  
ꢎꢒꢏ  
ꢎꢒꢔ  
100000  
10000  
1000  
100  
ꢙ ꢚꢂEꢛ  
ꢙ ꢑꢘ  
SHDN  
ꢖ ꢆꢀ  
ꢋꢛꢜꢋꢝꢝ  
ꢙ ꢊꢘ  
COMMON MODE INPUT  
IMPEDANCE  
ꢙ ꢓꢑꢘ  
ꢅꢋ.ꢆ  
ꢅꢌ.ꢋ  
ꢅꢌ.ꢆ  
ꢅꢍ.ꢋ  
ꢇꢁ  
ꢇꢁ  
ꢙ ꢊ.ꢊꢘ  
DIFFERENTIAL INPUT IMPEDANCE  
10  
1
ꢅꢆ  
ꢌꢆ ꢍꢆ ꢔꢆ ꢎꢆ ꢆꢆ ꢏꢆ ꢒꢆ ꢓꢋ  
ꢃꢀꢄ  
ꢉꢊꢊ ꢉꢒꢑ ꢉꢊ ꢔꢑ ꢏꢊ ꢕꢑ ꢖꢊ ꢎꢔꢑ ꢎꢏꢊ  
–5  
5
15 25 35 45 55 65 75  
(V)  
ꢀEꢁꢂERꢃꢀꢄRE ꢅꢆꢇꢈ  
V
ꢁꢂ  
CM  
ꢌꢐꢐꢐ ꢑꢋꢒ  
ꢎꢖꢖꢖ ꢗꢑꢓ  
1999 G09  
Rev. E  
8
For more information www.analog.com  
LT1999-10/LT1999-20/  
LT1999-50  
TYPICAL PERFORMANCE CHARACTERISTICS  
Input Referred Voltage Offset  
Input Referred Voltage Offset  
vs Input Common Mode Voltage  
vs Temperature and Gain Option  
ꢋꢆꢌꢌ  
ꢐꢊꢑꢑ  
ꢐꢑꢑꢑ  
ꢊꢑꢑ  
ꢕ ꢆꢀ  
ꢕ ꢎꢆꢘꢁ  
ꢚ ꢐꢓꢋ  
ꢇꢁ  
ꢐꢓ ꢄꢛꢎꢀꢍ ꢂꢘꢌꢀꢀEꢜ  
ꢋꢌꢌꢌ ꢋꢎ ꢙꢚꢉꢖꢈ ꢛꢜꢇꢖꢖEꢝ  
ꢆꢌꢌ  
ꢅꢆꢌꢌ  
ꢉꢊꢑꢑ  
ꢉꢐꢑꢑꢑ  
ꢉꢐꢊꢑꢑ  
ꢋꢐꢐꢐꢞꢋꢌ  
ꢋꢐꢐꢐꢞꢎꢌ  
ꢋꢐꢐꢐꢞꢆꢌ  
ꢅꢋꢌꢌꢌ  
ꢅꢋꢆꢌꢌ  
ꢐꢔꢔꢔꢙꢐꢑ  
ꢐꢔꢔꢔꢙꢓꢑ  
ꢐꢔꢔꢔꢙꢊꢑ  
ꢅꢆ  
ꢋꢆ ꢎꢆ ꢓꢆ ꢍꢆ ꢆꢆ ꢏꢆ ꢒꢆ  
ꢉꢊꢊ ꢉꢗꢑ ꢉꢊ ꢓꢑ ꢖꢊ ꢒꢑ ꢔꢊ ꢐꢓꢑ ꢐꢖꢊ  
ꢃꢀꢄ  
ꢀEꢁꢂERꢃꢀꢄRE ꢅꢆꢇꢈ  
ꢁꢂ  
ꢋꢐꢐꢐ ꢑꢋꢋ  
ꢐꢔꢔꢔ ꢕꢐꢑ  
LT1999-20 Small Signal  
Frequency Response  
LT1999-10 Small Signal  
Frequency Response  
ꢔꢕ  
ꢔꢗ  
ꢖꢕ  
ꢖꢗ  
ꢋꢕ  
ꢋꢗ  
ꢋꢙꢗ  
ꢋꢔꢕ  
ꢛꢗ  
ꢔꢕ  
ꢋꢙꢕ  
ꢋꢔꢖ  
ꢛꢕ  
ꢘꢖ  
ꢘꢕ  
ꢋꢖ  
ꢋꢕ  
ꢌꢍꢎꢃ  
ꢌꢍꢎꢃ  
ꢚꢕ  
ꢚꢖ  
ꢑꢈꢍꢒE  
ꢑꢈꢍꢒE  
ꢘꢚꢕ  
ꢘꢛꢗ  
ꢘꢋꢔꢕ  
ꢘꢋꢙꢗ  
ꢗꢚꢖ  
ꢗꢛꢕ  
ꢗꢋꢔꢖ  
ꢗꢋꢙꢕ  
ꢗꢖ  
ꢗꢋꢕ  
ꢟ ꢗ.ꢕꢜ ꢍꢞ ꢋꢇꢈꢉ  
ꢑꢠꢑ  
ꢟ ꢕ.ꢖꢜ ꢍꢞ ꢋꢇꢈꢉ  
ꢝꢂꢞ  
ꢝꢂꢞ  
ꢑꢠꢑ  
ꢘꢕ  
ꢋꢗ  
ꢋꢗꢗ  
ꢋꢗꢗꢗ  
ꢋꢗꢗꢗꢗ  
ꢋꢕ  
ꢋꢕꢕ  
ꢋꢕꢕꢕ  
ꢋꢕꢕꢕꢕ  
ꢀREꢁꢂEꢃꢄꢅ ꢆꢇꢈꢉꢊ  
ꢀREꢁꢂEꢃꢄꢅ ꢆꢇꢈꢉꢊ  
ꢋꢛꢛꢛ ꢌꢋꢔ  
ꢋꢛꢛꢛ ꢌꢋꢘ  
Gain Error  
vs Input Common Mode Voltage  
LT1999-50 Small Signal  
Frequency Response  
Gain Error vs Temperature  
ꢔꢕ  
ꢘꢗ  
ꢘꢕ  
ꢖꢗ  
ꢖꢕ  
ꢋꢗ  
ꢋꢕ  
ꢋꢙꢕ  
ꢋꢘꢗ  
ꢛꢕ  
ꢍ.ꢆꢍ  
ꢍ.ꢎꢆ  
ꢐ.ꢊꢐ  
ꢐ.ꢑꢊ  
ꢖ ꢆꢀ  
ꢘ ꢓꢑꢗ  
ꢇꢁ  
ꢌꢍꢎꢃ  
ꢖ ꢎꢆꢘꢁ  
ꢓꢑ ꢄꢍꢌꢀꢙ ꢂꢚꢎꢀꢀEꢛ  
ꢑꢎ ꢙꢊꢉꢗꢚ ꢛꢜꢋꢗꢗEꢝ  
ꢔꢗ  
ꢑꢈꢍꢒE  
ꢚꢔꢗ  
ꢚꢛꢕ  
ꢚꢋꢘꢗ  
ꢅꢍ.ꢎꢆ  
ꢅꢍ.ꢆꢍ  
ꢉꢐ.ꢑꢊ  
ꢉꢐ.ꢊꢐ  
ꢓꢔꢔꢔꢜꢓꢐ  
ꢓꢔꢔꢔꢜꢑꢐ  
ꢓꢔꢔꢔꢜꢊꢐ  
ꢑꢒꢒꢒꢞꢑꢍ  
ꢑꢒꢒꢒꢞꢎꢍ  
ꢑꢒꢒꢒꢞꢆꢍ  
ꢟ ꢕ.ꢗꢜ ꢍꢞ ꢋꢇꢈꢉ  
ꢑꢠꢑ  
ꢝꢂꢞ  
ꢚꢋꢙꢕ  
ꢋꢕ  
ꢋꢕꢕ  
ꢋꢕꢕꢕ  
ꢋꢕꢕꢕꢕ  
ꢅꢆ  
ꢑꢆ ꢎꢆ ꢔꢆ ꢏꢆ ꢆꢆ ꢐꢆ ꢓꢆ  
ꢉꢊꢊ ꢉꢖꢐ ꢉꢊ ꢑꢐ ꢕꢊ ꢒꢐ ꢔꢊ ꢓꢑꢐ ꢓꢕꢊ  
ꢀREꢁꢂEꢃꢄꢅ ꢆꢇꢈꢉꢊ  
ꢃꢀꢄ  
ꢁꢂ  
ꢀEꢁꢂERꢃꢀꢄRE ꢅꢆꢇꢈ  
ꢋꢛꢛꢛ ꢌꢋꢔ  
ꢑꢒꢒꢒ ꢇꢑꢐ  
ꢓꢔꢔꢔ ꢋꢓꢊ  
Rev. E  
9
For more information www.analog.com  
LT1999-10/LT1999-20/  
LT1999-50  
TYPICAL PERFORMANCE CHARACTERISTICS  
LT1999-10 Pulse Response  
LT1999-20 Pulse Response  
LT1999-50 Pulse Response  
ꢋEꢌꢋE  
ꢋEꢌꢋE  
ꢋEꢌꢋE  
ꢏꢐꢀ  
ꢏꢐꢀ  
ꢎꢏꢀ  
ꢎꢑꢑꢑ ꢒꢎꢑ  
ꢑꢒꢒꢒ ꢓꢑꢔ  
ꢐꢑꢑꢑ ꢒꢐꢓ  
ꢀꢁꢂE ꢃꢄꢅꢆꢇꢈꢁꢉꢊ  
ꢀꢁꢂE ꢃꢄꢅꢆꢇꢈꢁꢉꢊ  
ꢀꢁꢂE ꢃꢄꢅꢆꢇꢈꢁꢉꢊ  
LT1999-20 2V Step Response  
Settling Time  
LT1999-10 2V Step Response  
Settling Time  
ꢇ.ꢈ  
ꢇ.ꢌ  
ꢉ.ꢈ  
ꢉ.ꢌ  
ꢋ.ꢈ  
ꢋ.ꢌ  
ꢊ.ꢈ  
ꢊ.ꢌ  
ꢌ.ꢈ  
ꢌ.ꢋꢌ  
ꢌ.ꢊꢈ  
ꢌ.ꢊꢌ  
ꢌ.ꢌꢈ  
ꢎ.ꢏ  
ꢎ.ꢒ  
ꢐ.ꢏ  
ꢐ.ꢒ  
ꢑ.ꢏ  
ꢑ.ꢒ  
ꢇ.ꢏ  
ꢇ.ꢒ  
ꢒ.ꢏ  
ꢒ.ꢇꢒꢒ  
ꢒ.ꢒꢔꢏ  
ꢒ.ꢒꢏꢒ  
ꢒ.ꢒꢑꢏ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢍꢌ.ꢌꢈ  
ꢍꢌ.ꢌꢊ  
ꢍꢌ.ꢊꢈ  
ꢍꢌ.ꢋꢌ  
ꢓꢒ.ꢒꢑꢏ  
ꢓꢒ.ꢒꢏꢒ  
ꢓꢒ.ꢒꢔꢏ  
ꢓꢒ.ꢇꢒꢒ  
ꢁꢂꢃꢍꢂꢃ ERRꢁR  
ꢁꢂꢃꢆꢂꢃ ERRꢁR  
ꢇꢕꢕꢕ ꢖꢑꢒ  
ꢍꢊ  
ꢕ ꢊꢌ  
ꢃꢄꢅE ꢆꢇꢈꢉꢊꢋꢄꢀꢌ  
ꢃꢎꢏE ꢄꢊꢐꢑꢒꢓꢎꢀꢅ  
ꢊꢕꢕꢕ ꢖꢋꢊ  
LT1999-50 2V Step Response  
Settling Time  
CMRR vs Frequency  
CMRR vs Frequency  
ꢇ.ꢈ  
ꢇ.ꢌ  
ꢉ.ꢈ  
ꢉ.ꢌ  
ꢋ.ꢈ  
ꢋ.ꢌ  
ꢊ.ꢈ  
ꢊ.ꢌ  
ꢌ.ꢈ  
ꢌ.ꢈꢌꢌ  
ꢌ.ꢉꢎꢈ  
ꢌ.ꢋꢈꢌ  
ꢌ.ꢊꢋꢈ  
ꢋꢏꢐ  
ꢋꢐꢐ  
ꢑꢐ  
ꢓꢐ  
ꢒꢐ  
ꢏꢐ  
ꢋꢏꢐ  
ꢋꢐꢐ  
ꢑꢐ  
ꢓꢐ  
ꢒꢐ  
ꢏꢐ  
ꢋꢔꢔꢔꢤꢋꢐ  
ꢋꢔꢔꢔꢤꢏꢐ  
ꢋꢔꢔꢔꢤꢚꢐ  
ꢋꢔꢔꢔꢣꢋꢐ  
ꢋꢔꢔꢔꢣꢏꢐ  
ꢋꢔꢔꢔꢣꢙꢐ  
ꢁꢂꢃ  
ꢍꢌ.ꢊꢋꢈ  
ꢍꢌ.ꢋꢈꢌ  
ꢍꢌ.ꢉꢎꢈ  
ꢍꢌ.ꢈꢌꢌ  
ꢁꢂꢃꢆꢂꢃ ERRꢁR  
ꢗ ꢐꢖ  
ꢗ ꢙꢖ  
ꢗ ꢏꢙꢜꢄ  
ꢘ ꢋꢏꢗ  
ꢘ ꢚꢗ  
ꢘ ꢏꢚꢝꢄ  
ꢄꢌ  
ꢄꢌ  
ꢓ ꢂꢃꢝꢚꢞ ꢟꢠꢡꢚꢚEꢢ  
ꢓ ꢂꢃꢞꢛꢟ ꢠꢡꢢꢛꢛEꢣ  
ꢊꢕꢕꢕ ꢖꢋꢋ  
ꢋꢐ  
ꢋꢐꢐ  
ꢋꢐꢐꢐ  
ꢋꢐꢐꢐꢐ  
ꢋꢐ  
ꢋꢐꢐ  
ꢋꢐꢐꢐ  
ꢋꢐꢐꢐꢐ  
ꢃꢏꢐE ꢄꢊꢑꢒꢓꢔꢏꢀꢅ  
ꢀREꢁꢂEꢃꢄꢅ ꢆꢇꢈꢉꢊ  
ꢀREꢁꢂEꢃꢄꢅ ꢆꢇꢈꢉꢊ  
ꢋꢔꢔꢔ ꢕꢏꢒ  
ꢋꢔꢔꢔ ꢕꢏꢖ  
Rev. E  
10  
For more information www.analog.com  
LT1999-10/LT1999-20/  
LT1999-50  
TYPICAL PERFORMANCE CHARACTERISTICS  
LT1999-10 Common Mode Rising  
Edge Step Response  
LT1999-10 Common Mode Falling  
Edge Step Response  
V
, t  
≈ 20ns  
CM RISE  
V
, t  
≈ 20ns  
CM FALL  
V
V
OUT  
OUT  
1999 G25  
1999 G26  
TIME (0.5µs/DIV)  
TIME (0.5µs/DIV)  
LT1999-20 Common Mode Rising  
Edge Step Response  
LT1999-20 Common Mode Falling  
Edge Step Response  
V
, t  
≈ 20ns  
CM RISE  
V
, t  
≈ 20ns  
CM FALL  
V
V
OUT  
OUT  
1999 G27  
1999 G28  
TIME (0.5µs/DIV)  
TIME (0.5µs/DIV)  
LT1999-50 Common Mode Rising  
Edge Step Response  
LT1999-50 Common Mode Falling  
Edge Step Response  
V
, t  
≈ 20ns  
CM RISE  
V
, t  
≈ 20ns  
CM FALL  
V
OUT  
V
OUT  
1999 G29  
1999 G30  
TIME (0.5µs/DIV)  
TIME (0.5µs/DIV)  
Rev. E  
11  
For more information www.analog.com  
LT1999-10/LT1999-20/  
LT1999-50  
TYPICAL PERFORMANCE CHARACTERISTICS  
LT1999 Input Referred Noise  
Density vs Frequency  
Short-Circuit Current  
vs Temperature  
REF Open Circuit Voltage  
vs Temperature  
ꢒ.ꢓ  
ꢔ.ꢊ  
ꢔ.ꢓ  
ꢕ.ꢊ  
ꢕ.ꢓ  
ꢓ.ꢊ  
1000  
100  
10  
ꢎꢏ  
ꢑꢏ  
ꢃꢇꢀꢌꢎE ꢁꢏꢙE  
SHDN ꢁꢏꢙE  
ꢌꢋꢖꢗꢋꢖꢕ  
ꢐꢏ  
ꢒꢏ  
ꢉꢒꢏ  
ꢉꢐꢏ  
ꢉꢑꢏ  
ꢉꢎꢏ  
ꢌꢘꢄRꢇꢋꢖꢕ  
ꢛ ꢊꢎ  
ꢉꢊꢊ ꢉꢒꢓ ꢉꢊ ꢔꢓ ꢘꢊ ꢖꢓ ꢗꢊ ꢕꢔꢓ ꢕꢘꢊ  
0.001 0.01  
0.1  
1
10  
1000 10000  
ꢉꢊꢊ ꢉꢑꢏ ꢉꢊ ꢐꢏ ꢎꢊ ꢓꢏ ꢔꢊ ꢒꢐꢏ ꢒꢎꢊ  
ꢀEꢁꢂERꢃꢀꢄRE ꢅꢆꢇꢈ  
FREQUENCY (kHz)  
ꢀEꢁꢂERꢃꢀꢄRE ꢅꢆꢇꢈ  
ꢕꢗꢗꢗ ꢑꢒꢒ  
1999 G31  
ꢒꢔꢔꢔ ꢕꢑꢐ  
SHDN Pin Current vs SHDN Pin  
Voltage and Temperature  
Turn-On/Turn-Off Time  
vs SHDN Voltage  
ꢇꢊ  
ꢇꢈ  
ꢇꢋ  
ꢇꢉ  
ꢚ ꢃꢛꢈ  
ꢐ ꢌꢀ  
ꢐ ꢊꢈꢀ  
ꢙꢑ  
ꢒꢔ  
ꢐ ꢊꢌꢃꢑꢒ  
ꢐ ꢈꢌꢑꢒ  
ꢁꢖꢗꢎꢇꢌꢘꢋ  
ꢐ ꢇꢌꢌꢑꢒ  
SHDN  
ꢃꢔꢔꢔ ꢏꢕꢐ  
ꢎꢀꢑE ꢂꢃꢒꢓꢆꢇꢀꢈꢉ  
ꢁꢀꢂ  
SHDN  
ꢊꢍꢍꢍ ꢎꢋꢉ  
VOUT vs VSENSE Over the Sense  
ABSMAX Range  
VOUT vs VSENSE  
ꢓ ꢇ.ꢈꢀ  
ꢓꢔꢕꢁE REꢀERꢁꢕꢖ ꢗꢈR ꢀ  
ꢘ ꢅꢎꢌꢀ  
REꢒ  
ꢈꢉꢊ  
ꢁEꢂꢁE  
ꢎꢐꢐꢐꢕꢎꢆ  
ꢎꢐꢐꢐꢕꢇꢆ  
ꢎꢐꢐꢐꢕꢈꢆ  
ꢍꢐꢐꢐꢚꢍꢇ  
ꢍꢐꢐꢐꢚꢎꢇ  
ꢍꢐꢐꢐꢚꢌꢇ  
ꢙ ꢎ.ꢌꢀ  
REꢗ  
ꢅꢎ  
ꢅꢍ  
ꢅꢆ.ꢇꢈ ꢅꢆ.ꢎꢈ ꢅꢆ.ꢆꢈ  
ꢆ.ꢆꢈ  
ꢃꢀꢄ  
ꢆ.ꢎꢈ  
ꢆ.ꢇꢈ  
ꢅꢆꢇ  
ꢅꢏꢇ  
ꢏꢇ  
ꢆꢇ  
ꢃꢀꢄ  
ꢁEꢂꢁE  
ꢁEꢂꢁE  
ꢎꢐꢐꢐ ꢑꢏꢌ  
ꢍꢐꢐꢐ ꢑꢏꢒ  
Rev. E  
12  
For more information www.analog.com  
LT1999-10/LT1999-20/  
LT1999-50  
PIN FUNCTIONS (LT1999-XX/LT1999-XXF)  
V (Pins 1, 4/Pin 4): Power Supply Voltage. Pins 1 and 4  
are tied internally together. The specified range of opera-  
tion is 4.5V to 5.5V, but lower supply voltages (down to  
approximately 4V) is possible although the LT1999 is not  
tested or characterized below 4.5V. See the Applications  
Information section.  
+
is mid-supply. It can be overdriven by an external voltage  
source cable of driving 80k to a mid-supply potential (see  
the Electrical Characteristics table for its specified input  
voltage range).  
OUT (Pin 7/Pin 7): Voltage Output. V  
= A (V  
V SENSE  
OUT  
V
), where A is the gain, and V is the input referred  
OSI  
V OSI  
+IN (Pin 2/Pin 1): Positive Sense Input Pin.  
–IN (Pin 3/Pin 2): Negative Sense Input Pin.  
NC (NA/Pin 3)  
offset voltage. The output amplifier has a low impedance  
output and is designed to drive up to 200pF capacitive  
loads directly. Capacitive loads exceeding 200pF should  
be decoupled with an external resistor of at least 100Ω.  
GND (Pin 5/Pin 5): Ground Pin.  
SHDN (Pin 8/Pin 8): Shutdown Pin. When pulled to within  
0.5V of GND (Pin 5), will place the LT1999 into low power  
shutdown. If the pin is left floating, an internal 2µA pull-  
up current source will place the LT1999 into the active  
(amplifying) state.  
REF (Pin 6/Pin 6): Reference Pin Input. The REF pin  
sets the output common mode level and is set halfway  
+
between V and GND using a divider made of two 160k  
resistors. The default open circuit potential of the REF pin  
Rev. E  
13  
For more information www.analog.com  
LT1999-10/LT1999-20/  
LT1999-50  
BLOCK DIAGRAM  
ꢌꢍꢂꢆꢆꢆ  
ꢌꢍꢂꢆꢆꢆꢎꢏꢏꢐ  
ꢔꢅ  
ꢔꢅ  
ꢉꢊꢋ  
ꢉꢊꢋ  
ꢄ.ꢓꢅ  
ꢄ.ꢓꢅ  
SHDN  
SHDN  
R
R
ꢔꢅ  
ꢔꢅ  
ꢄ.ꢓꢅ  
ꢄ.ꢓꢅ  
ꢀꢁ  
ꢀꢁ  
ꢂꢃꢄꢅ  
ꢂꢃꢄꢅ  
ꢂꢃꢄꢅ  
ꢂꢃꢄꢅ  
ꢘꢙ  
ꢂꢆꢆꢆ ꢇꢈ  
ꢂꢆꢆꢆ ꢇꢈ  
Figure 1. Simplified Block Diagram  
TEST CIRCUIT  
ꢕꢖ  
ꢕꢖ  
ꢔꢊꢂꢃꢃꢃ  
ꢔꢊꢂꢃꢃꢃꢄ  
ꢀꢁ  
ꢆꢇꢙ  
ꢆꢇꢙ  
ꢅ.ꢗꢖ  
ꢅ.ꢗꢖ  
SHDN  
SHDN  
SHDN  
SHDN  
ꢋꢌꢍꢎꢋꢄꢄꢏ  
R
R
ꢒꢓ  
ꢕꢖ  
ꢈꢉꢊ  
REꢄ  
ꢈꢉꢊ  
ꢅ.ꢗꢖ  
ꢅ.ꢗꢖ  
ꢋꢌꢍꢎꢋꢄꢄꢏ  
ꢌꢒ  
ꢒꢓ  
ꢂꢘꢅꢖ  
ꢂꢘꢅꢖ  
ꢂꢘꢅꢖ  
ꢂꢘꢅꢖ  
REꢄ  
ꢕꢖ  
ꢀꢁ  
ꢀꢁ  
ꢅ.ꢂꢇꢄ  
ꢅ.ꢂꢇꢄ  
ꢅ.ꢂꢇꢄ  
ꢅ.ꢂꢇꢄ  
ꢂꢃꢃꢃ ꢄꢅꢆ  
ꢂꢃꢃꢃ ꢄꢅꢆ  
Figure 2. Test Circuit  
Rev. E  
14  
For more information www.analog.com  
LT1999-10/LT1999-20/  
LT1999-50  
APPLICATIONS INFORMATION  
The LT1999 current sense amplifier provides accurate  
bidirectional monitoring of current through a user-  
selected sense resistor. The voltage generated by the  
current flowing in the sense resistor is amplified by a  
fixed gain of 10V/V, 20V/V or 50V/V (LT1999-10, LT1999-  
20, or LT1999-50 respectively) and is level shifted to the  
OUT pin. The voltage difference and polarity of the OUT  
pin with respect to REF (Pin 6) indicates magnitude and  
direction of the current in the sense resistor.  
FortheLT1999-10, RG isnominally40k. FortheLT1999-20,  
R is nominally 80k, and for the LT1999-50, R is nomi-  
G
G
nally 200k.  
The voltage difference between the OUT pin and the REF  
pin represent both polarity and magnitude of the sensed  
voltage. The noninverting input of amplifier A is biased  
O
+
by a resistive 160k to 160k divider tied between V and  
GND to set the default REF pin bias to mid-supply.  
+
Case 2: –5V < V < V  
CM  
THEORY OF OPERATION  
For common mode inputs which transition or are set below  
the supply voltage, diode D1 will turn on and will provide a  
Refer to the Block Diagram (Figure 1.  
source of current through R and R to bias the inputs  
of transconductance amplif+ieSr G atSleast 2.25V above  
+
Case 1: V < V < 80V  
CM  
IN  
GND. The transition is smooth and continuous; there are  
negligible changes to either gain or amplifier voltage off-  
set. The only difference in amplifier operation is the bias  
currents provided by D1 through R and R–S are steered  
through the input pins, otherwise+aSmplifier operation is  
identical. The inputs to transconductance amplifier GIN  
are still forced to equal potentials forcing any differential  
voltages appearing at the +IN and –IN pins into a dif-  
ferential current. This differential current is combined,  
level-shifted, and converted back into a voltage by trans-  
resistance amplifier AO and Resistor RG. Resistors R+S  
For input common mode voltages exceeding the power  
supply, one can assume D1 ofFigure 1 is completely off.  
The sensed voltage (VSENSE) is applied across Pin 2 (+IN)  
and Pin 3 (–IN) to matched resistors R and R (nomi-  
+
IN  
+
nally 4k each). The opposite ends of R andIRN are  
IN  
IN  
forced to equal potentials by transconductor G , which  
IN  
convert the differentially sensed voltage into a sensed  
current. The sensed current in R and R is combined,  
+
IN  
IN  
level-shifted, and converted back into a voltage by trans-  
resistance amplifier AO and resistor RG. Amplifier AO  
provides high open loop gain to accurately convert the  
sensed current back into a voltage and to drive external  
loads. The theoretical output voltage is determined by  
and R are trimmed to match R and R respectively,  
+
IN  
IN  
to prevSent common mode to differential conversion from  
occurring (to the extent of the matched trim) when the  
the sensed voltage (V ), and the ratio of two on-chip  
SENSE  
resistors:  
+
input common mode transitions below V .  
As described in case 1, the output is determined by the  
sense voltage and the ratio of two on-chip resistors:  
RG  
VOUT VREF = VSENSE  
RIN  
RG  
RIN  
VOUT VREF = VSENSE  
where  
where  
R
+IN + RIN  
RIN =  
nominally 4k  
2
R
+IN + RIN  
RIN =  
2
Rev. E  
15  
For more information www.analog.com  
LT1999-10/LT1999-20/  
LT1999-50  
APPLICATIONS INFORMATION  
Input Common Mode Range  
ꢑꢒ.ꢓ  
ꢑꢒ.ꢔ  
ꢑꢕ.ꢓ  
ꢑꢕ.ꢔ  
ꢑꢌ.ꢓ  
ꢑꢌ.ꢔ  
ꢑꢔ.ꢓ  
ꢑꢔ.ꢔ  
ꢑꢖ.ꢓ  
The LT1999 was optimized for high common mode rejec  
-
ꢛEꢃꢆꢏ ꢉRꢆꢁꢜꢝ ꢐꢜꢂꢁꢇ  
ꢍꢆꢎꢎꢆꢜ ꢎꢆꢝE RꢈꢜꢉE  
tion. Its input stage is balanced and fully differential,  
designed to amplify differential signals and reject com-  
mon mode signals. There is negligible crossover distor-  
tion due to sense voltage reversals. The amplifier is most  
linear in the zero-sense region.  
ꢃꢐꢎꢐꢇEꢝ ꢛꢄ ꢅ  
ꢀꢁꢂꢂꢉE  
ꢛEꢃꢆꢏ ꢉRꢆꢁꢜꢝ ꢐꢜꢂꢁꢇ  
ꢍꢆꢎꢎꢆꢜ ꢎꢆꢝE RꢈꢜꢉE  
ꢃꢐꢎꢐꢇEꢝ ꢛꢄ Eꢀꢝ ꢍꢃꢈꢎꢂꢀ  
+
With the V supply configured within the specified and  
+
ꢇꢄꢂꢐꢍꢈꢃ Eꢀꢝ ꢍꢃꢈꢎꢂ ꢅꢆꢉE  
tested range (4.5V < V < 5.5V), the LT1999’s common  
mode range extends from –5V to 80V. Pushing +IN and  
–IN beyond the limits specified in the Absolute Maximum  
table can turn on the voltage clamps designed to protect  
the +IN and –IN pins during ESD events.  
ꢌ.ꢒꢔ  
ꢌ.ꢔ  
ꢌ.ꢗꢔ  
ꢔ.ꢒꢔ  
ꢔ.ꢔ  
ꢀꢁꢂꢂꢉE ꢊꢅꢋ  
ꢘꢙꢙꢙ ꢚꢓꢕ  
Figure 3. Lower Input Common Mode vs Supply Voltage  
It is possible to operate the LT1999 on power supplies  
as low as 4V (although it is not tested or specified below  
4.5V). Operating the LT1999 on supplies below 4V will  
produce erratic behavior. When operating the LT1999  
with supplies as low as 4V, the common mode range for  
inputs which extend below GND is reduced. Refer to the  
Output Common Mode Range  
The LT1999’s output common mode level is set by the  
voltage on the REF pin. The REF pin sits in the middle of  
a 160k to 160k voltage divider connected between V and  
GND which sets the default open circuit potential of the  
REF pin to mid-supply. It can be overdriven by an external  
voltage source capable of driving 80k tied to a mid-supply  
potential. See the Electrical Characteristics table for the  
REF pin’s specified input voltage range.  
+
+
Block Diagram (Figure 1). For inputs driven below V ,  
diode D1 conducts. For proper operation, the input to the  
transconductor V(G ) must be biased at approximately  
+
IN  
2.25V above the GND pin. V(G ) sits on the centertap  
+
IN  
of a voltage divider comprised of R and R V(G )  
IN  
Differential sampling of the OUT pin with respect the REF  
pin provides the best noise immunity. Measurements of  
the output voltage made differentially with respect to the  
REF pin will provide the highest power supply and com-  
mon mode rejection. Otherwise, power supply or GND  
pin disturbances are divided by the REF pin’s voltage  
divider and appear directly at the noninverting input of  
+
+
S
IN  
likewise sits in the middle of the voltage divider comprised  
of R , and R ). The voltage on V(G ) input is given  
+
IN  
S
IN  
by the following equation:  
R+S  
R+S + R+IN  
R+IN  
R+S + R+IN  
V(G+IN)= V +IN  
+ V+ V  
(
)
D1  
the trans-resistance amplifier A and are not rejected.  
O
Setting V(G+ ) = 2.25V, the ratio (R+ /R+ ) to 5, and VD1  
IN  
IN  
S
If not driven by a low impedance (<100Ω), the REF pin  
should be filtered with at least 1nF of capacitance to a  
low impedance, low noise ground plane. This external  
capacitance will also provide a charge reservoir during  
high frequency sampling of the REF pin by ADC inputs  
attached to this pin.  
equal to 0.8V (cold temperatures), a plot of the lower input  
common mode range plotted against supply is shown in  
Figure 3.  
Rev. E  
16  
For more information www.analog.com  
LT1999-10/LT1999-20/  
LT1999-50  
APPLICATIONS INFORMATION  
Shutdown Capability  
bandwidth of the LT1999 that may introduce errors. The  
pole is set by the following equation:  
If SHDN (Pin 8) is driven to within 0.5V of GND, the LT1999  
is placed into a low power shutdown state in which the  
f = 1/(π•(R + R )•C ) ≈ 10MHz  
+ –  
filt IN IN F  
+
part will draw about 3μA from the V supply. The input  
Both the resistors and capacitors have a 15% variation  
so the pole can vary by approximately 30% over manu-  
facturing process and temperature variations.  
pins (+IN and –IN) will draw approximately 1nA if biased  
within the range of 0V to 80V (with no differential voltage  
applied). If the input pins are pulled below the GND pin,  
each input appears as a diode tied to GND in series with  
approximately 4k of resistance. The REF pin appears as  
approximately 0.4MΩ tied to a mid-supply potential. The  
output appears as reverse biased diodes tied between the  
The layout for lowest EMI/noise susceptibility is achieved  
by keeping short direct connections and minimizing loop  
areas (see Figure 4). If the user-supplied sense resistor  
cannot be placed in close proximity to the LT1999, the  
surface area of the loop comprising connections of +IN  
to RSENSE and back to –IN should be minimized. This  
+
output to either V or GND pins.  
EMI Filtering and Layout Practices  
requires routing PCB traces connecting +IN to R  
SENSE  
and –IN to RSENSE adjacent with one another with minimal  
separation. The metal traces connecting +IN to the sense  
resistor and –IN to the sense resistor should match and  
use the same trace width.  
An internal 1st order differential lowpass noise/EMI sup-  
pression filter with a –3dB bandwidth of 10MHz (approxi-  
mately 5× the LT1999’s –3dB bandwidth) is included to  
help improve the LT1999’s EMI susceptibility and to assist  
with the rejection of high frequency signals beyond the  
+
Bypassing the V pin to the GND pin with a 0.1µF capaci-  
tor with short wiring connection is recommended.  
SHDN  
ꢊꢁꢉ  
REꢔ  
ꢔRꢊꢍ ꢒꢇ ꢀꢊꢁRꢇE  
ꢉꢊ ꢃꢊꢆꢒ  
ꢑꢈꢎ  
ꢓꢈꢎ  
ꢒꢈꢔꢔEREꢎꢉꢈꢆꢃ  
ꢆꢎꢆꢃꢊꢏ ꢊꢁꢉ  
R
ꢀEꢎꢀE  
ꢏꢎꢒ  
ꢋꢋ  
ꢀꢁꢂꢂꢃꢄ ꢅꢄꢂꢆꢀꢀ  
ꢇꢆꢂꢆꢇꢈꢉꢊR  
ꢗꢞꢞꢞ ꢔꢘꢟ  
ꢋ ꢌEEꢂ ꢃꢊꢊꢂ ꢆREꢆ ꢇꢊꢍꢂRꢈꢀꢈꢎꢏ R  
ꢆꢀ ꢀꢍꢆꢃꢃ ꢆꢀ ꢂꢊꢀꢀꢈꢅꢃE.  
ꢐ ꢑꢈꢎ ꢆꢎꢒ ꢓꢈꢎ ꢂꢈꢎꢀ  
ꢀEꢎꢀE  
REꢔ ꢅꢄꢂꢆꢀꢀ ꢉꢈEꢒ ꢉꢊ ꢆ ꢃꢊꢕ ꢎꢊꢈꢀEꢐ ꢃꢊꢕ ꢈꢍꢂEꢒꢆꢎꢇE  
ꢀꢈꢏꢎꢆꢃ ꢏRꢊꢁꢎꢒ ꢂꢃꢆꢎE.  
ꢖ ꢊꢂꢉꢈꢊꢎꢆꢃ ꢗꢘꢙꢔ ꢇꢆꢂꢆꢇꢈꢉꢊR ꢉꢊ ꢂREꢚEꢎꢉ ꢛꢚꢜꢛꢝ EꢒꢏEꢀ  
ꢊꢎ ꢈꢎꢂꢁꢉ ꢇꢊꢁꢂꢃꢈꢎꢏ ꢉꢊ ꢔꢃꢊꢆꢉꢈꢎꢏ SHDN ꢂꢈꢎ.  
Figure 4. Recommended Layout  
Rev. E  
17  
For more information www.analog.com  
LT1999-10/LT1999-20/  
LT1999-50  
APPLICATIONS INFORMATION  
The REF pin should be either driven by a low source  
impedance (<100Ω) or should be bypassed with at least  
1nF to a low impedance, low noise, signal ground plane  
Selection of the Current Sense Resistor  
The external sense resistor selection presents a delicate  
trade-off between power dissipation in the resistor and  
current measurement accuracy.  
+
(see Figure 4). Larger bypass capacitors on both V pins,  
and the REF pin, will extend enhanced AC CMRR, and  
PSRR performance to lower frequencies. Bypassing the  
In high current applications, the user may want to mini-  
mize the power dissipated in the sense resistor. The sense  
resistor current will create heat and voltage loss, degrad-  
ing efficiency. As a result, the sense resistor should be as  
small as possible while still providing adequate dynamic  
range required by the measurement. The dynamic range  
is the ratio between the maximum accurately produced  
signal generated by the voltage across the sense resis-  
tor, and the minimum accurately reproduced signal. The  
minimum accurately reproduced signal is primarily dic-  
tated by the voltage offset of the LT1999. The maximum  
accurately reproduced signal is dictated by the output  
swing of the LT1999.  
+
REF pin to a quiet ground plane filters the V pin or GND  
pin noise that is sensed by the REF pin voltage divider and  
applied to the noninverting input of output amplifier A .  
O
Any common I•R drops generated by pulsating ground  
currents in common with the REF pin filter capacitor can  
compromise the filtering performance and should be  
avoided.  
If the SHDN pin is not driven and is left floating, routing  
a PCB trace connecting Pins 1 and 8 under the part will  
act as a shield, and will help limit edge coupling from the  
inputs (Pins 2 and 3) to the SHDN pin. Periodic pulses on  
the inputs with fast edges may glitch the high impedance  
SHDN pin, periodically putting the part into low power  
shutdown. Additional precaution against this may be  
taken by adding an optional small (~10pF) capacitor may  
Thus the dynamic range for the LT1999 can be thought of  
the maximum sense voltage divided by the input referred  
voltage offset or:  
+
be tied between V (Pin 1) and Pin 8.  
Finally, when connecting the LT1999 inputs to the sense  
resistor, it is important to use good Kelvin sensing prac-  
tices (sensing the resistor in a way that excludes PCB  
trace I•R voltage drops). For sense resistors less than  
1Ω, one might consider using a 4-wire sense resistor to  
sense the resistive element accurately.  
ΔVOUT(MAX)  
Dynamic Range=  
GAINVOSI  
The above equation tells us that the dynamic range is  
inversely proportional to the gain of the LT1999. Thus,  
if accuracy is of greater importance than efficiency or  
power loss, the LT1999-10 used with the highest valued  
sense resistor possible is recommended. If efficiency,  
heat generated, and power loss in the resistive shunt is  
the primary concern, the LT1999-50 and the lowest value  
sense resistor possible is recommended. The LT1999-20  
is available for applications somewhere in between these  
two extremes.  
Rev. E  
18  
For more information www.analog.com  
LT1999-10/LT1999-20/  
LT1999-50  
APPLICATIONS INFORMATION  
Pinout Option Engineered for FMEA (Failure Mode and  
Effects Analysis)  
The purpose of the FMEA is to emulate single faults and  
determine whether or not they are destructive and/or  
lead to conditions which could damage surrounding  
components. The LT1999-XXF is configured as shown  
in Figure 2, with an input common mode of either 12V  
or 0V. Each pin is systematically shorted to its adjacent  
pin (emulating solder bridging) and the resulting effects  
recorded. Each pin is then opened (emulating a cold sol-  
der joint) with the resulting effects recorded.  
The LT1999 family of ICs is available with an 8-lead MSOP  
pinout option engineered for FMEA (Failure Mode and  
Effects Analysis): (LT1999-10F, LT1999-20F and the  
LT1999-50F). See Figure 5 below.  
The LT1999-XXF is designed to meet the most stringent  
automotive requirements and to satisfactorily survive sin-  
gle faults due to the most common PCB defects: 1) open  
pins due to cold solder joints and 2) adjacent pin short cir-  
cuits due to adjacent pin solder bridging. The No-Connect  
Pin (Pin 3) has been inserted between the input pin (–IN)  
In all instances, the LT1999-XXF recovers when these  
fault conditions are removed. Furthermore, the output pin  
(OUT) has been verified to never exceed the pin’s nominal  
output range of 0V to 5V during fault testing.  
+
and the V supply pin to isolate the input voltages which  
may range from –5V to 80V from solder bridging to the  
Table 1 lists the behavior which results from shorting  
adjacent pins and Table 2 details the behavior from open-  
ing any pin.  
+
V supply (typically 5V). Pin 3 is not connected internally  
to the die and should be left unconnected.  
+
V
R
+IN  
2µA  
4.5k  
2k  
2k  
2k  
+IN  
8
SHDN  
1
0.8k  
0.8k  
R
G
+
C
F
+
G
V
4pF  
+
2k  
OUT  
REF  
–IN  
NC  
7
6
2
3
V+  
R
–IN  
300Ω  
160k  
160k  
+
V
GND  
5
4
1999 F05a  
Figure 5. Simplified Block Diagram of the LT1999-XXF  
Rev. E  
19  
For more information www.analog.com  
LT1999-10/LT1999-20/  
LT1999-50  
APPLICATIONS INFORMATION  
Table 1. Behavior due to Adjacent Pin-to-Pin Shorts for the LT1999-10F, LT1999-20F, or the LT1999-50F  
+
Adjacent Pin Short Test: (V = 5V, Tested at V = 0V, V = 12V, V = 80V)  
CM  
CM  
CM  
Adjacent Pins  
Shorted  
Recovery when  
PIN #  
1 – 2  
2 – 3  
3 – 4  
5 – 6  
6 – 7  
7 – 8  
Fault is removed  
BEHAVIOR  
+IN – –IN  
–IN – NC  
YES  
YES  
YES  
YES  
YES  
YES  
V
approaches the voltage on pin V  
.
OUT  
REF  
The circuit behaves normally.  
The circuit behaves normally.  
NC – V+  
GND – REF  
REF – OUT  
OUT – SHDN  
V
V
follows the voltage on Pin 6 or 0V.  
approaches 5.0V  
OUT  
OUT  
Supply Current drops by 5%.  
Table 2. Behavior due to open pins for the LT1999-10F, LT1999-20F, or the LT1999-50F  
+
Open Pin Test (V = 5V, Tested at V = 0V, V = 12V, V = 80V)  
CM  
CM  
CM  
Recovery when  
Fault is removed  
PIN #  
Pin Opened  
BEHAVIOR  
+
1
+IN  
YES  
V
may go to either V or GND, depending on the voltage applied to –IN. Generally, for –5V< –IN< 4V,  
OUT  
OUT will be near 5V. For –IN > 5V, OUT will be near 0V. In the range of 4V < –IN < 5V, OUT may go to either  
V or GND, depending on the voltage applied to –IN. The open input (+IN) is biased internal to the IC to one  
+
+
diode below V .  
+
2
–IN  
NC  
YES  
V
may go to either V or GND, depending on the voltage applied to +IN. Generally, for –5V < +IN < 4V,  
OUT  
OUT will be near 0V. For +IN > 5V, OUT will be at 5V. In the range of 4V < –IN < 5V, OUT may go to either  
V+ or GND, depending on the voltage applied to +IN. The open input (–IN) is biased internal to the IC to one  
+
diode below V .  
3
4
5
6
7
8
YES  
YES  
YES  
YES  
YES  
YES  
The circuit behaves normally.  
+
V
The circuit will behave as if powered off.  
OUT, REF will float up towards 3.9V.  
GND  
REF  
The circuit behaves normally with more broadband noise on OUT.  
OUT  
No V  
signal.  
OUT  
SHDN  
The low power shutdown feature will not function, otherwise the circuit behaves normally in the active state.  
FMEA information in this document (not limited to, but including the description of behavior under specific pin-connection conditions) is provided for  
convenience only. Ultimately, the end-user is responsible for verifying proper and reliable operation in each actual application. Linear Technology assumes  
no liability whatsoever with providing this information.  
Rev. E  
20  
For more information www.analog.com  
LT1999-10/LT1999-20/  
LT1999-50  
APPLICATIONS INFORMATION  
Fuse Monitor  
power in the precision on-chip input resistors. Precaution  
should be taken to prevent junction temperatures from  
exceeding the Absolute Maximum ratings (see Note 3 in  
the Electrical Characteristics section). Secondly, if the  
load is inductive, and the fuse blows open without a clamp  
diode, energy stored in the inductive load will be dissi-  
pated in the LT1999, which could cause damage. A simple  
steering diode as shown in Figure 6 will prevent this from  
happening, and will protect the LT1999 from damage.  
The inputs can be overdriven without fear of damaging  
the LT1999. This makes the LT1999 ideal for monitoring  
fuses if either +IN or –IN are shorted to ground while the  
other is at the full common mode supply voltage (see  
Figure 6). If the fuse in Figure 6 opens with the +IN tied  
to the positive supply, the load will pull –IN to GND. The  
+
output will be forced to the positive V supply rail. If it is  
desired that the output be near ground if the fuse opens,  
it is a simple matter of swapping the inputs. Precautions  
should be followed: First, when the inputs are stressed  
differentially due to the fuse blowing open, a large voltage  
drop will be placed across the +IN to –IN pins, dissipating  
Finally, the user should be aware that in fuse monitoring  
applications with the sense voltage (V  
= V – V  
)
+
SENSE  
IN  
being driven in excess of –25V, the output of the LT19I9N9  
will undergo phase reversal (seeFigure 7).  
ꢅꢃꢆꢇꢇꢇ  
ꢔꢀ  
ꢍꢎꢏ  
SHDN  
ꢁꢘ ꢁꢄꢄ  
SHDN  
SHDN  
R
ꢅꢁꢏꢙ  
ꢈꢉ  
ꢈꢉ  
ꢐꢗꢘ  
ꢁꢂꢃ  
REꢄ  
ꢁꢂꢃ  
ꢊ.ꢋꢉ  
ꢊ.ꢋꢉ  
ꢄꢂꢖE  
R
ꢖEꢘꢖE  
ꢆꢌꢊꢉ  
ꢆꢌꢊꢉ  
ꢑꢗꢘ  
REꢄ  
ꢔꢀ  
ꢊ.ꢆꢎꢄ  
ꢖꢃEERꢗꢘꢕ  
ꢙꢗꢁꢙE  
ꢅꢁꢏꢙ  
ꢊ.ꢆꢎꢄ  
ꢆꢇꢇꢇ ꢄꢊꢔ  
Figure 6. Using the LT1999 to Monitor a Fuse  
ꢔꢕꢖꢁE REꢀERꢁꢖꢗ ꢓꢈR ꢀ  
ꢘ ꢅꢙꢑꢀ  
ꢈꢉꢊ  
ꢁEꢂꢁE  
ꢚ ꢙ.ꢑꢀ  
REꢓ  
ꢅꢆꢇ ꢅꢐꢑ ꢅꢏꢇ ꢅꢋꢑ  
ꢋꢑ ꢏꢇ ꢐꢑ ꢆꢇ  
ꢃꢀꢄ  
ꢁEꢂꢁE  
ꢋꢒꢒꢒ ꢓꢇꢆ  
Figure 7. A Plot of the LT1999’s Output Voltage vs VSENSE (VSENSE = V+IN – V–IN).  
In Applications Where the Sense Voltage Is Driven in Excess of –25V, the  
Output of the LT1999 Will Undergo Phase Reversal  
Rev. E  
21  
For more information www.analog.com  
LT1999-10/LT1999-20/  
LT1999-50  
TYPICAL APPLICATIONS  
Solenoid Current Monitor  
Bidirectional PWM Motor Monitor  
The solenoid of Figure 8 consists of a coil of wire in an  
iron case with permeable plunger that acts as a mov-  
able element. When the MOSFET turns on, the diode is  
Pulse width modulation is commonly used to efficiently  
vary the average voltage applied across a DC motor. The  
H-bridge topology of Figure 10 allows full 4-quadrant  
control: clockwise control, counter-clockwise control,  
clockwise regeneration, and counter-clockwise regen-  
eration. The LT1999 in conjunction with a non-inductive  
current shunt is used to monitor currents in the rotor.  
The LT1999 can be used to detect stuck rotors, provide  
detection of overcurrent conditions in general, or provide  
current mode feedback control.  
reversed biased off, and current flows through R  
to  
SENSE  
actuate the solenoid. If the MOSFET is turned off, the cur-  
rent in the MOSFET is interrupted, but the energy stored  
in the solenoid causes the diode to turn on and current  
to freewheel in the loop consisting of the diode, R  
and the solenoid.  
SENSE  
Figure 8 shows the LT1999 monitoring currents in a  
ground referenced solenoid used when the coil is hard  
tied to the case, and is tied to ground. Figure 9 shows a  
supply referenced solenoid whose coil is insulated from  
the case. The LT1999 will interface equally well to either  
of these two configurations.  
Figure 11 shows a plot of the output voltage of the LT1999.  
ꢀꢁꢂꢃꢃꢃ  
ꢛꢟꢟ  
ꢑꢌ  
ꢉꢊꢋ  
ꢛꢝ  
SHDN  
SHDN  
R
ꢄꢅ  
ꢄꢅ  
ꢍꢓꢝ  
ꢎꢓꢝ  
ꢛꢜꢁ  
REꢟ  
ꢆ.ꢇꢅ  
ꢆ.ꢇꢅ  
ꢉ.ꢑꢌ  
ꢛꢜꢁ  
R
ꢞEꢝꢞE  
ꢞꢛꢀEꢝꢛꢓꢙ REꢀEꢋꢞEꢞ  
ꢞꢛꢀEꢝꢛꢓꢙ ꢢꢀꢜꢝꢒER ꢢꢜꢀꢀꢞ ꢓꢝ  
ꢂꢈꢆꢅ  
ꢂꢈꢆꢅ  
ꢑꢌ  
ꢆ.ꢂꢊꢟ  
ꢍꢓꢝ  
ꢞꢛꢀEꢝꢛꢓꢙ  
ꢆ.ꢂꢊꢟ  
ꢂꢃꢃꢃ ꢟꢆꢐꢡ  
ꢂꢃꢃꢃ ꢟꢆꢐꢠ  
ꢁꢓꢔE ꢕꢑꢆꢖꢗꢘꢙꢓꢌꢚ  
Figure 8. Solenoid Current Monitor for Ground Tied Solenoid. The Common Mode  
Inputs to the LT1999 Switch Between VS and One Diode Drop Below Ground  
Rev. E  
22  
For more information www.analog.com  
LT1999-10/LT1999-20/  
LT1999-50  
TYPICAL APPLICATIONS  
ꢀꢁꢂꢃꢃꢃ  
ꢑꢌ  
ꢉꢊꢋ  
SHDN  
SHDN  
ꢓꢖꢀEꢗꢖꢘꢙ  
R
ꢄꢅ  
ꢍꢘꢗ  
ꢖꢚꢁ  
REꢔ  
ꢆ.ꢇꢅ  
ꢆ.ꢇꢅ  
ꢉ.ꢑꢌ  
ꢖꢚꢁ  
R
ꢓEꢗꢓE  
ꢓꢖꢀEꢗꢖꢘꢙ REꢀEꢋꢓEꢓ  
ꢓꢖꢀEꢗꢖꢘꢙ ꢡꢀꢚꢗꢒER ꢡꢚꢀꢀꢓ ꢘꢗ  
ꢂꢈꢆꢅ  
ꢂꢈꢆꢅ  
ꢄꢅ  
ꢎꢘꢗ  
ꢖꢗ  
ꢑꢌ  
ꢍꢘꢗ  
ꢆ.ꢂꢊꢔ  
ꢖꢔꢔ  
ꢆ.ꢂꢊꢔ  
ꢂꢃꢃꢃ ꢔꢆꢇꢢ  
ꢂꢃꢃꢃ ꢔꢆꢇꢕ  
ꢁꢘꢛE ꢜꢑꢆꢝꢞꢟꢙꢘꢌꢠ  
Figure 9. Solenoid Current Monitor for Non-Grounded Solenoids. This Circuit Performs the  
Same Function as Figure 7 Except One End of the Solenoid Is Tied to VS. The Common Mode  
Voltage of Inputs of the LT1999 Switch Between Ground and One Diode Drop Above VS  
Rev. E  
23  
For more information www.analog.com  
LT1999-10/LT1999-20/  
LT1999-50  
TYPICAL APPLICATIONS  
5V  
+
+
V
V
LT1999-20  
10µF  
1
2
2µA  
8
7
SHDN  
V
V
V
SHDN  
80k  
0.1µF  
+
24V  
4k  
4k  
+
V
V
+
+IN  
–IN  
V
OUT  
0.8k  
0.8k  
C4  
+
1000µF  
V
160k  
160k  
3
4
V
6
5
H-BRIDGE  
BRIDGE  
REF  
0.1µF  
5V  
+
5V  
V
PWM INPUT  
DIRECTION  
1999 F09  
R
SENSE  
0.025Ω  
OUTA  
OUTB  
PWM IN  
24V MOTOR  
BRAKE INPUT  
GND  
Figure 10. Armature Current Monitor for DC Motor Applications  
ꢌꢍꢀ  
ꢄ.ꢓꢊ  
ꢎꢁꢏ  
ꢐꢑꢑꢑ ꢒꢐꢅ  
ꢀꢁꢂE ꢃꢄꢅꢆꢇꢈꢉꢁꢊꢋ  
Figure 11. LT1999 Output Waveforms for the Circuit of Figure 10  
Rev. E  
24  
For more information www.analog.com  
LT1999-10/LT1999-20/  
LT1999-50  
PACKAGE DESCRIPTION  
MS8 Package  
8-Lead Plastic MSOP  
ꢄReꢩeꢪeꢫꢬe ꢓꢐꢗ ꢕꢙꢌ ꢭ ꢇꢍꢮꢇꢅꢮꢉꢎꢎꢇ Rev ꢌꢆ  
ꢇ.ꢅꢅꢥ ꢇ.ꢉꢈꢣ  
ꢄ.ꢇꢊꢍ .ꢇꢇꢍꢆ  
ꢍ.ꢉꢇ  
ꢄ.ꢈꢇꢉꢆ  
ꢀꢑꢒ  
ꢊ.ꢈꢇ ꢤ ꢊ.ꢡꢍ  
ꢄ.ꢉꢈꢎ ꢤ .ꢉꢊꢎꢆ  
ꢊ.ꢇꢇ ꢇ.ꢉꢇꢈ  
ꢄ.ꢉꢉꢅ .ꢇꢇꢡꢆ  
ꢄꢒꢂꢐE ꢊꢆ  
ꢇ.ꢍꢈ  
ꢄ.ꢇꢈꢇꢍꢆ  
REꢛ  
ꢇ.ꢎꢍ  
ꢄ.ꢇꢈꢍꢎꢆ  
ꢝꢁꢗ  
ꢇ.ꢡꢈ ꢇ.ꢇꢊꢅ  
ꢄ.ꢇꢉꢎꢍ .ꢇꢇꢉꢍꢆ  
ꢐꢢꢃ  
ꢣ ꢎ ꢍ  
REꢗꢂꢀꢀEꢒꢕEꢕ ꢁꢂꢓꢕER ꢃꢏꢕ ꢓꢏꢢꢂꢚꢐ  
ꢊ.ꢇꢇ ꢇ.ꢉꢇꢈ  
ꢄ.ꢉꢉꢅ .ꢇꢇꢡꢆ  
ꢄꢒꢂꢐE ꢡꢆ  
ꢡ.ꢥꢇ ꢇ.ꢉꢍꢈ  
ꢄ.ꢉꢥꢊ .ꢇꢇꢎꢆ  
ꢕEꢐꢏꢑꢓ ꢧꢏꢨ  
ꢇ.ꢈꢍꢡ  
ꢄ.ꢇꢉꢇꢆ  
ꢇꢦ ꢤ ꢎꢦ ꢐꢢꢃ  
ꢌꢏꢚꢌE ꢃꢓꢏꢒE  
ꢇ.ꢍꢊ ꢇ.ꢉꢍꢈ  
ꢄ.ꢇꢈꢉ .ꢇꢇꢎꢆ  
ꢉ.ꢉꢇ  
ꢄ.ꢇꢡꢊꢆ  
ꢀꢏꢞ  
ꢇ.ꢅꢎ  
ꢄ.ꢇꢊꢡꢆ  
REꢛ  
ꢕEꢐꢏꢑꢓ ꢧꢏꢨ  
ꢇ.ꢉꢅ  
ꢄ.ꢇꢇꢣꢆ  
ꢁEꢏꢐꢑꢒꢌ  
ꢃꢓꢏꢒE  
ꢇ.ꢈꢈ ꢤ ꢇ.ꢊꢅ  
ꢇ.ꢉꢇꢉꢎ ꢇ.ꢇꢍꢇꢅ  
ꢄ.ꢇꢇꢥ ꢤ .ꢇꢉꢍꢆ  
ꢄ.ꢇꢇꢡ .ꢇꢇꢈꢆ  
ꢇ.ꢎꢍ  
ꢄ.ꢇꢈꢍꢎꢆ  
ꢝꢁꢗ  
ꢐꢢꢃ  
ꢀꢁꢂꢃ ꢄꢀꢁꢅꢆ ꢇꢈꢉꢊ REꢋ ꢌ  
ꢒꢂꢐEꢔ  
ꢉ. ꢕꢑꢀEꢒꢁꢑꢂꢒꢁ ꢑꢒ ꢀꢑꢓꢓꢑꢀEꢐERꢖꢄꢑꢒꢗꢘꢆ  
ꢈ. ꢕRꢏꢙꢑꢒꢌ ꢒꢂꢐ ꢐꢂ ꢁꢗꢏꢓE  
ꢊ. ꢕꢑꢀEꢒꢁꢑꢂꢒ ꢕꢂEꢁ ꢒꢂꢐ ꢑꢒꢗꢓꢚꢕE ꢀꢂꢓꢕ ꢛꢓꢏꢁꢘꢜ ꢃRꢂꢐRꢚꢁꢑꢂꢒꢁ ꢂR ꢌꢏꢐE ꢝꢚRRꢁ.  
ꢀꢂꢓꢕ ꢛꢓꢏꢁꢘꢜ ꢃRꢂꢐRꢚꢁꢑꢂꢒꢁ ꢂR ꢌꢏꢐE ꢝꢚRRꢁ ꢁꢘꢏꢓꢓ ꢒꢂꢐ EꢞꢗEEꢕ ꢇ.ꢉꢍꢈꢟꢟ ꢄ.ꢇꢇꢎꢠꢆ ꢃER ꢁꢑꢕE  
ꢡ. ꢕꢑꢀEꢒꢁꢑꢂꢒ ꢕꢂEꢁ ꢒꢂꢐ ꢑꢒꢗꢓꢚꢕE ꢑꢒꢐERꢓEꢏꢕ ꢛꢓꢏꢁꢘ ꢂR ꢃRꢂꢐRꢚꢁꢑꢂꢒꢁ.  
ꢑꢒꢐERꢓEꢏꢕ ꢛꢓꢏꢁꢘ ꢂR ꢃRꢂꢐRꢚꢁꢑꢂꢒꢁ ꢁꢘꢏꢓꢓ ꢒꢂꢐ EꢞꢗEEꢕ ꢇ.ꢉꢍꢈꢟꢟ ꢄ.ꢇꢇꢎꢠꢆ ꢃER ꢁꢑꢕE  
ꢍ. ꢓEꢏꢕ ꢗꢂꢃꢓꢏꢒꢏRꢑꢐꢢ ꢄꢝꢂꢐꢐꢂꢀ ꢂꢛ ꢓEꢏꢕꢁ ꢏꢛꢐER ꢛꢂRꢀꢑꢒꢌꢆ ꢁꢘꢏꢓꢓ ꢝE ꢇ.ꢉꢇꢈꢟꢟ ꢄ.ꢇꢇꢡꢠꢆ ꢀꢏꢞ  
Rev. E  
25  
For more information www.analog.com  
LT1999-10/LT1999-20/  
LT1999-50  
PACKAGE DESCRIPTION  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
ꢅReꢤeꢥeꢦꢧe ꢚꢋꢕ ꢙꢟꢒ ꢨ ꢀꢄꢩꢀꢊꢩꢁꢂꢁꢀ Rev ꢒꢉ  
.ꢁꢊꢓ ꢃ .ꢁꢓꢈ  
ꢅꢆ.ꢊꢀꢁ ꢃ ꢄ.ꢀꢀꢆꢉ  
.ꢀꢆꢄ ±.ꢀꢀꢄ  
ꢖꢐꢋE ꢎ  
.ꢀꢄꢀ ꢔꢏꢕ  
.ꢇꢆꢄ  
ꢗꢘꢖ  
.ꢁꢂꢀ ±.ꢀꢀꢄ  
.ꢁꢄꢀ ꢃ .ꢁꢄꢈ  
ꢅꢎ.ꢊꢁꢀ ꢃ ꢎ.ꢓꢊꢊꢉ  
ꢖꢐꢋE ꢎ  
.ꢇꢇꢊ ꢃ .ꢇꢆꢆ  
ꢅꢄ.ꢈꢓꢁ ꢃ ꢂ.ꢁꢓꢈꢉ  
.ꢀꢎꢀ ±.ꢀꢀꢄ  
ꢋꢌꢍ  
REꢕꢐꢗꢗEꢖꢙEꢙ ꢏꢐꢚꢙER ꢍꢛꢙ ꢚꢛꢌꢐꢜꢋ  
.ꢀꢁꢀ ꢃ .ꢀꢇꢀ  
ꢅꢀ.ꢇꢄꢆ ꢃ ꢀ.ꢄꢀꢊꢉ  
× ꢆꢄ°  
.ꢀꢄꢎ ꢃ .ꢀꢂꢓ  
ꢅꢁ.ꢎꢆꢂ ꢃ ꢁ.ꢈꢄꢇꢉ  
.ꢀꢀꢆ ꢃ .ꢀꢁꢀ  
ꢅꢀ.ꢁꢀꢁ ꢃ ꢀ.ꢇꢄꢆꢉ  
.ꢀꢀꢊ ꢃ .ꢀꢁꢀ  
ꢅꢀ.ꢇꢀꢎ ꢃ ꢀ.ꢇꢄꢆꢉ  
°ꢃ ꢊ° ꢋꢌꢍ  
.ꢀꢁꢂ ꢃ .ꢀꢄꢀ  
ꢅꢀ.ꢆꢀꢂ ꢃ ꢁ.ꢇꢈꢀꢉ  
.ꢀꢄꢀ  
ꢅꢁ.ꢇꢈꢀꢉ  
ꢔꢏꢕ  
.ꢀꢁꢆ ꢃ .ꢀꢁꢓ  
ꢅꢀ.ꢎꢄꢄ ꢃ ꢀ.ꢆꢊꢎꢉ  
ꢋꢌꢍ  
ꢖꢐꢋEꢞ  
ꢘꢖꢕꢝEꢏ  
ꢁ. ꢙꢘꢗEꢖꢏꢘꢐꢖꢏ ꢘꢖ  
ꢅꢗꢘꢚꢚꢘꢗEꢋERꢏꢉ  
ꢇ. ꢙRꢛꢟꢘꢖꢒ ꢖꢐꢋ ꢋꢐ ꢏꢕꢛꢚE  
ꢎ. ꢋꢝEꢏE ꢙꢘꢗEꢖꢏꢘꢐꢖꢏ ꢙꢐ ꢖꢐꢋ ꢘꢖꢕꢚꢜꢙE ꢗꢐꢚꢙ ꢠꢚꢛꢏꢝ ꢐR ꢍRꢐꢋRꢜꢏꢘꢐꢖꢏ.  
ꢗꢐꢚꢙ ꢠꢚꢛꢏꢝ ꢐR ꢍRꢐꢋRꢜꢏꢘꢐꢖꢏ ꢏꢝꢛꢚꢚ ꢖꢐꢋ EꢡꢕEEꢙ .ꢀꢀꢂꢢ ꢅꢀ.ꢁꢄꢣꢣꢉ  
ꢆ. ꢍꢘꢖ ꢁ ꢕꢛꢖ ꢔE ꢔEꢑEꢚ EꢙꢒE ꢐR ꢛ ꢙꢘꢗꢍꢚE  
ꢏꢐꢊ REꢑ ꢒ ꢀꢇꢁꢇ  
Rev. E  
26  
For more information www.analog.com  
LT1999-10/LT1999-20/  
LT1999-50  
REVISION HISTORY  
REV  
DATE  
5/11  
3/12  
DESCRIPTION  
PAGE NUMBER  
A
Revised +IN and –IN pin descriptions in Pin Functions section  
12  
B
Revised Voltage Output Swing Low specification (V ) under a loaded condition of 1kΩ to mid-supply.  
4, 6  
16  
OUT  
Updated Figure 4 to multicolor.  
C
2/15  
Addition of MSOP Pinout Option Engineered for FMEA  
Correction to AV Specification for LT1999-50 from 48.75 to 49.75  
Update to Pin Functions to include Pinout Option Engineered for FMEA  
Addition of New Application Information "Pinout Option Engineered for FMEA"  
Addition of Figure 5 and Renumbering of Figures 6 to 11  
Addition of Table 1 and Table 2  
All  
5
12  
18, 19  
18 to 23  
19  
D
E
6/15  
9/19  
LT1999F added to Figure 1 (Simplified Block Diagram)  
LT1999F added to Figure 2 (Test Circuit)  
13  
14  
Additional test condition (V = 80) added to table 1 and table 2  
19  
CM  
Note added regarding the use of FMEA information  
19  
Added Automotive Grade products, updated data sheet format  
All  
Rev. E  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog  
Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications  
27  
subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
LT1999-10/LT1999-20/  
LT1999-50  
TYPICAL APPLICATION  
Battery Charge Current and Load Current Monitor  
VOUT = 0.25V/A, Maximum Measured Current 9.5A  
0.025Ω  
CHARGER  
BAT  
42V  
5V  
+
V
LT1999-10  
LOAD  
+
5V  
V
2µA  
0.1µF  
1
2
8
7
V
V
SHDN  
SHDN  
0.1µF  
10µF  
40k  
+
4k  
V
V
+IN  
–IN  
+
OUT  
+
V
V
REF  
ꢀS  
V
CC  
+IN  
0.8k  
0.8k  
+
+
V
V
LTC2433-1  
SCK  
SDO  
OUT  
160k  
160k  
4k  
3
4
V
REF  
6
5
–IN  
+
V
5V  
0.1µF  
1999 TA02  
0.1µF  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
LT1787/  
Precision, Bidirectional High Side Current Sense Amplifier  
Gain-Selectable High Side Current Sense Amplifier  
High Voltage High Side Current Sense Amplifier  
Zero Drift High Side Current Sense Amplifier  
2.7V to 60V Operation, 75μV Offset, 60μA Current Draw  
LT1787HV  
LT6100  
4.1V to 48V Operation, Pin-Selectable Gain:  
10V/V, 12.5V/V, 20V/V, 25V/V, 40V/V, 50V/V  
LTC6101/  
LTC6101HV  
4V to 60V/5V to 100V Operation, External Resistor Set Gain, SOT23  
LTC6102/  
LTC6102HV  
4V to 60V/5V to 100V Operation, 10μV Offset, 1μs Step Response,  
MSOP8/DFN Packages  
LTC6103  
LTC6104  
LT6106  
LT6105  
LTC4150  
LT1990  
LT1991  
Dual High Side Precision Current Sense Amplifier  
Bidirectional, High Side Current Sense  
4V to 60V, Gain Configurable, 8-Pin MSOP Package  
4V to 60V, Gain Configurable, 8-Pin MSOP Package  
2.7V to 36V, Gain Configurable, SOT23 Package  
–0.3 to 44V, Gain Configurable, 8-Pin MSOP Package  
Indicates Charge Quantity and Polarity  
Low Cost, High Side Precision Current Sense Amplifier  
Precision, Extended Input Range Current Sense Amplifier  
Coulomb Counter/Battery Gas Gauge  
Precision, 100μA Gain Selectable Amplifier  
250V Input Range Difference Amplifier  
2.7V to 36V Operation, CMRR > 70dB, Input Voltage = 250V  
2.7V to 36V Operation, 50μV Offset, CMRR > 75B, Input Voltage = 60V  
0.4V/μs Slew Rate, 230μA per Amplifier  
LT1637/LT1638 1.1/1.2MHz, 0.4V/μs Over-The-Top, Rail-to-Rail Input and  
Output Amplifier  
Rev. E  
09/19  
www.analog.com  
28  
ANALOG DEVICES, INC. 2010-2019  

相关型号:

LT1999CS8-20#PBF

LT1999 - High Voltage, Bidirectional Current Sense Amplifier; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1999CS8-50#PBF

LT1999 - High Voltage, Bidirectional Current Sense Amplifier; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1999HMS8-10

High Voltage, Bidirectional Current Sense Amplifier Low Power Shutdown <10μA
Linear

LT1999HMS8-10#PBF

LT1999 - High Voltage, Bidirectional Current Sense Amplifier; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 125&deg;C
Linear

LT1999HMS8-10#TRPBF

LT1999 - High Voltage, Bidirectional Current Sense Amplifier; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 125&deg;C
Linear

LT1999HMS8-20

High Voltage, Bidirectional Current Sense Amplifier Low Power Shutdown <10μA
Linear

LT1999HMS8-20#PBF

LT1999 - High Voltage, Bidirectional Current Sense Amplifier; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 125&deg;C
Linear

LT1999HMS8-50#PBF

LT1999 - High Voltage, Bidirectional Current Sense Amplifier; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 125&deg;C
Linear

LT1999HMS8-50F#PBF

LT1999 - High Voltage, Bidirectional Current Sense Amplifier; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 125&deg;C
Linear

LT1999HS8-10

High Voltage, Bidirectional Current Sense Amplifier Low Power Shutdown <10μA
Linear

LT1999HS8-10#PBF

LT1999 - High Voltage, Bidirectional Current Sense Amplifier; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 125&deg;C
Linear

LT1999HS8-20#PBF

LT1999 - High Voltage, Bidirectional Current Sense Amplifier; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 125&deg;C
Linear