LT2217 [Linear]

16-Bit, 65Msps/40Msps/25Msps Low Power Dual ADCs; 16位,支持65Msps / 40Msps的/ 25Msps时的低功耗双通道ADC
LT2217
型号: LT2217
厂家: Linear    Linear
描述:

16-Bit, 65Msps/40Msps/25Msps Low Power Dual ADCs
16位,支持65Msps / 40Msps的/ 25Msps时的低功耗双通道ADC

文件: 总28页 (文件大小:3816K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Electrical Specifications SuLbjTecCt to2C1ha9ng2e  
LTC2191/LTC2190  
16-Bit, 65Msps/40Msps/  
25Msps Low Power  
Dual ADCs  
FEATURES  
DESCRIPTION  
The LTC®2192/LTC2191/LTC2190 are 2-channel, simul-  
taneous sampling 16-bit A/D converters designed for  
digitizinghighfrequency,widedynamicrangesignals.They  
are perfect for demanding communications applications  
with AC performance that includes 77dB SNR and 90dB  
spurious free dynamic range (SFDR). Ultralow jitter of  
n
2-Channel Simultaneous Sampling ADC  
n
Serial LVDS Outputs: 1, 2 or 4 Bits per Channel  
n
77dB SNR  
90dB SFDR  
n
n
Low Power: 198mW/146mW/104mW Total  
n
99mW/73mW/ꢀ2mW per Channel  
n
Single 1.8V Supply  
0.07ps  
allows undersampling of IF frequencies with  
RMS  
n
Selectable Input Ranges: 1V to 2V  
excellent noise performance.  
P-P  
P-P  
n
n
n
n
ꢀꢀ0MHz Full-Power Bandwidth S/H  
DC specs include 2LSB INL (typ), 0.ꢀLSB DNL (typ)  
and no missing codes over temperature. The transition  
Shutdown and Nap Modes  
Serial SPI Port for Configuration  
ꢀ2-Pin (7mm × 8mm) QFN Package  
noise is 3.3LSB  
.
RMS  
To minimize the number of data lines the digital outputs  
are serial LVDS. Each channel outputs one bit, two bits or  
four bits at a time. The LVDS drivers have optional internal  
termination and adjustable output levels to ensure clean  
signal integrity.  
APPLICATIONS  
n
Communications  
n
Cellular Base Stations  
n
+
Software-Defined Radios  
Portable Medical Imaging  
Multi-Channel Data Acquisition  
The ENC and ENC inputs may be driven differentially or  
single ended with a sine wave, PECL, LVDS, TTL or CMOS  
inputs. An internal clock duty cycle stabilizer allows high  
performance at full speed for a wide range of clock duty  
cycles.  
n
n
n
Nondestructive Testing  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
TYPICAL APPLICATION  
2-Tone FFT, fIN = 70MHz and 69MHz  
0
–10  
–20  
–30  
–40  
–50  
1.8V  
1.8V  
OV  
V
DD  
DD  
OUT1A  
OUT1B  
OUT1C  
OUT1D  
OUT2A  
OUT2B  
OUT2C  
OUT2D  
CH1  
ANALOG  
INPUT  
16-BIT  
ADC CORE  
S/H  
S/H  
CH2  
ANALOG  
INPUT  
–60  
–70  
SERIALIZED  
LVDS  
OUTPUTS  
16-BIT  
ADC CORE  
DATA  
SERIALIZER  
–80  
–90  
–100  
–110  
–120  
ENCODE  
INPUT  
PLL  
DATA CLOCK OUT  
FRAME  
GND  
OGND  
0
20  
10  
FREQUENCY (MHz)  
30  
219210 TA01a  
219210 G07  
219210p  
1
LTC2192  
LTC2191/LTC2190  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Notes 1, 2)  
TOP VIEW  
Supply Voltages  
V , OV ................................................ –0.3V to 2V  
DD  
DD  
Analog Input Voltage  
A +, A –, PAR/SER, SENSE  
52 51 50 49 48 47 46 45 44 43 42 41  
IN  
IN  
+
+
V
1
2
3
4
5
6
7
8
9
40 OUT1C  
39 OUT1C  
CM1  
(Note 3) ....................................–0.3V to (V + 0.2V)  
DD  
GND  
Digital Input Voltage  
A
+
OUT1D  
38  
37  
IN1  
IN1  
+
ENC , ENC , CS, SDI, SCK (Note 4)...... –0.3V to 3.9V  
A
OUT1D  
+
SDO (Note 4) ............................................ –0.3V to 3.9V  
GND  
REFH  
REFL  
REFH  
REFL  
36 DCO  
DCO  
35  
Digital Output Voltage ................ –0.3V to (OV + 0.3V)  
DD  
34 OV  
53  
GND  
DD  
Operating Temperature Range  
33 OGND  
LTC2192C, LTC2191C, LTC2190C............. 0°C to 70°C  
LTC2192I, LTC2191I, LTC2190I............ –40°C to 8ꢀ°C  
Storage Temperature Range................... –6ꢀ°C to 1ꢀ0°C  
+
32 FR  
PAR/SER 10  
31 FR–  
+
+
A
IN2  
+ 11  
12  
30 OUT2A  
29 OUT2A  
28 OUT2B  
27 OUT2B  
A
IN2  
GND 13  
14  
V
CM2  
15 16 17 18 19 20 21 22 23 24 25 26  
UKG PACKAGE  
52-LEAD (7mm × 8mm) PLASTIC QFN  
T
= 1ꢀ0°C, θ = 29°C/W  
JA  
JMAX  
EXPOSED PAD (PIN ꢀ3) IS GND, MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC2192CUKG#PBF  
LTC2192IUKG#PBF  
LTC2191CUKG#PBF  
LTC2191IUKG#PBF  
LTC2190CUKG#PBF  
LTC2190IUKG#PBF  
TAPE AND REEL  
PART MARKING*  
LTC2192UKG  
LTC2192UKG  
LTC2191UKG  
LTC2191UKG  
LTC2190UKG  
LTC2190UKG  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
0°C to 70°C  
LTC2192CUKG#TRPBF  
LTC2192IUKG#TRPBF  
LTC2191CUKG#TRPBF  
LTC2191IUKG#TRPBF  
LTC2190CUKG#TRPBF  
LTC2190IUKG#TRPBF  
ꢀ2-Lead (7mm × 8mm) Plastic QFN  
ꢀ2-Lead (7mm × 8mm) Plastic QFN  
ꢀ2-Lead (7mm × 8mm) Plastic QFN  
ꢀ2-Lead (7mm × 8mm) Plastic QFN  
ꢀ2-Lead (7mm × 8mm) Plastic QFN  
ꢀ2-Lead (7mm × 8mm) Plastic QFN  
–40°C to 8ꢀ°C  
0°C to 70°C  
–40°C to 8ꢀ°C  
0°C to 70°C  
–40°C to 8ꢀ°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
219210p  
2
LTC2192  
LTC2191/LTC2190  
CONVERTER CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 5)  
LTC2192  
TYP  
LTC2191  
TYP  
LTC2190  
TYP  
PARAMETER  
CONDITIONS  
MIN  
16  
MAX  
MIN  
16  
MAX  
MIN  
16  
MAX  
UNITS  
Bits  
l
l
Resolution (No Missing Codes)  
Integral Linearity Error  
Differential Analog Input  
(Note 6)  
tbd  
2
tbd  
tbd  
2
tbd  
tbd  
2
tbd  
LSB  
l
l
Differential Linearity Error  
Offset Error  
Differential Analog Input  
(Note 7)  
–1  
–9  
0.ꢀ  
1.ꢀ  
1
9
–1  
–9  
0.ꢀ  
1.ꢀ  
1
9
–1  
–9  
0.ꢀ  
1.ꢀ  
1
9
LSB  
mV  
Gain Error  
Internal Reference  
External Reference  
1.ꢀ  
–0.6  
1.ꢀ  
–0.6  
1.ꢀ  
–0.6  
%FS  
%FS  
l
–2.1  
0.9  
–2.1  
0.9  
–2.1  
0.9  
Offset Drift  
10  
10  
10  
µV/°C  
Full-Scale Drift  
Internal Reference  
External Reference  
30  
10  
30  
10  
30  
10  
ppm/°C  
ppm/°C  
Gain Matching  
Offset Matching  
Transition Noise  
0.3  
1.ꢀ  
3.3  
0.3  
1.ꢀ  
3.3  
0.3  
1.ꢀ  
3.2  
%FS  
mV  
LSB  
RMS  
ANALOG INPUT The l denotes the specifications which apply over the full operating temperature range, otherwise  
specifications are at TA = 25°C. (Note 5)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
l
V
V
V
Analog Input Range (A + – A –)  
1.7V < V < 1.9V  
1 to 2  
V
P-P  
IN  
IN  
IN  
DD  
Analog Input Common Mode (A + + A –)/2  
Differential Analog Input (Note 8)  
0.7  
V
CM  
1.2ꢀ  
V
IN(CM)  
SENSE  
INCM  
IN  
IN  
External Voltage Reference Applied to SENSE External Reference Mode  
0.62ꢀ  
1.2ꢀ0  
1.300  
V
I
Analog Input Common Mode Current  
Per Pin, 6ꢀMsps  
Per Pin, 40Msps  
Per Pin, 2ꢀMsps  
104  
64  
40  
µA  
µA  
µA  
l
l
l
I
I
I
t
t
Analog Input Leakage Current (No Encode)  
PAR/SER Input Leakage Current  
0 < A +, A – < V  
DD  
–1  
–3  
–6  
1
3
6
µA  
µA  
µA  
ns  
IN1  
IN  
IN  
0 < PAR/SER < V  
IN2  
DD  
SENSE Input Leakage Current  
0.62ꢀV < SENSE < 1.3V  
IN3  
Sample-and-Hold Acquisition Delay Time  
Sample-and-Hold Acquisition Delay Jitter  
0
AP  
Single-Ended Encode  
Differential Encode  
0.07  
0.09  
ps  
ps  
JITTER  
RMS  
RMS  
CMRR  
Analog Input Common Mode Rejection Ratio  
Full-Power Bandwidth  
80  
dB  
BW–3B  
Figure 6 Test Circuit  
ꢀꢀ0  
MHz  
219210p  
3
LTC2192  
LTC2191/LTC2190  
DYNAMIC ACCURACY The l denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = 25°C. AIN = –1dBFS. (Note 5)  
LTC2192  
TYP  
LTC2191  
TYP  
LTC2190  
TYP  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
UNITS  
SNR  
Signal-to-Noise Ratio  
ꢀMHz Input  
77  
76.9  
76.8  
76.7  
76.2  
77.1  
77  
dBFS  
dBFS  
dBFS  
dBFS  
l
l
l
l
30MHz Input  
70MHz Input  
140MHz Input  
tbd  
76.9  
76.8  
76.3  
tbd  
tbd  
76.9  
76.4  
SFDR  
Spurious Free Dynamic Range ꢀMHz Input  
2nd or 3rd Harmonic  
90  
90  
89  
84  
90  
90  
89  
84  
90  
90  
89  
84  
dBFS  
dBFS  
dBFS  
dBFS  
30MHz Input  
70MHz Input  
140MHz Input  
tbd  
tbd  
tbd  
tbd  
tbd  
tbd  
tbd  
tbd  
tbd  
Spurious Free Dynamic Range ꢀMHz Input  
4th Harmonic or Higher  
9ꢀ  
9ꢀ  
9ꢀ  
9ꢀ  
9ꢀ  
9ꢀ  
9ꢀ  
9ꢀ  
9ꢀ  
9ꢀ  
9ꢀ  
9ꢀ  
dBFS  
dBFS  
dBFS  
dBFS  
30MHz Input  
70MHz Input  
140MHz Input  
S/(N+D)  
Signal-to-Noise Plus  
Distortion Ratio  
ꢀMHz Input  
76.8  
76.7  
76.4  
76.3  
76.7  
76.6  
76.3  
7ꢀ.2  
76.9  
76.8  
76.ꢀ  
76.4  
dBFS  
dBFS  
dBFS  
dBFS  
30MHz Input  
70MHz Input  
140MHz Input  
Crosstalk  
10MHz Input  
–110  
–110  
–110  
dBc  
INTERNAL REFERENCE CHARACTERISTICS The l denotes the specifications which apply over the full  
operating temperature range, otherwise specifications are at TA = 25°C. (Note 5)  
PARAMETER  
CONDITIONS  
I = 0  
OUT  
MIN  
TYP  
0.ꢀ V  
2ꢀ  
MAX  
UNITS  
V
V
V
V
V
V
V
V
Output Voltage  
0.ꢀ V – 2ꢀmV  
0.ꢀ V + 2ꢀmV  
CM  
CM  
CM  
REF  
REF  
REF  
REF  
DD  
DD  
DD  
Output Temperature Drift  
Output Resistance  
Output Voltage  
ppm/°C  
Ω
–600µA < I  
< 1mA  
< 1mA  
4
OUT  
I
= 0  
1.22ꢀ  
1.2ꢀ0  
2ꢀ  
1.27ꢀ  
V
OUT  
Output Temperature Drift  
Output Resistance  
Line Regulation  
ppm/°C  
Ω
–400µA < I  
7
OUT  
1.7V < V < 1.9V  
0.6  
mV/V  
DD  
DIGITAL INPUTS AND OUTPUTS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 5)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
ENCODE INPUTS (ENC , ENC )  
Differential Encode Mode (ENC Not Tied to GND)  
l
V
V
Differential Input Voltage  
(Note 8)  
0.2  
V
ID  
Common Mode Input Voltage  
Internally Set  
Externally Set (Note 8)  
1.2  
V
V
ICM  
l
l
1.1  
0.2  
1.6  
3.6  
+
V
Input Voltage Range  
Input Resistance  
ENC , ENC to GND  
See Figure 10  
(Note 8)  
V
kΩ  
pF  
IN  
R
10  
IN  
C
Input Capacitance  
3.ꢀ  
IN  
Single-Ended Encode Mode (ENC Tied to GND)  
l
l
V
V
High Level Input Voltage  
Low Level Input Voltage  
V
V
=1.8V  
=1.8V  
1.2  
V
V
IH  
IL  
DD  
DD  
0.6  
219210p  
4
LTC2192  
LTC2191/LTC2190  
DIGITAL INPUTS AND OUTPUTS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 5)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
+
l
V
Input Voltage Range  
Input Resistance  
Input Capacitance  
ENC to GND  
0
3.6  
IN  
R
See Figure 11  
(Note 8)  
30  
kΩ  
pF  
IN  
IN  
C
3.ꢀ  
DIGITAL INPUTS (CS, SDI, SCK in Serial or Parallel Programming Mode. SDO in Parallel Programming Mode)  
l
V
V
High Level Input Voltage  
Low Level Input Voltage  
Input Current  
V
V
V
=1.8V  
1.3  
V
V
IH  
IL  
DD  
DD  
IN  
l
l
=1.8V  
0.6  
10  
I
= 0V to 3.6V  
–10  
µA  
pF  
IN  
C
Input Capacitance  
(Note 8)  
3
200  
3
IN  
SDO OUTPUT (Serial Programming Mode. Open-Drain Output. Requires 2k Pull-Up Resistor if SDO is Used)  
R
Logic Low Output Resistance to GND  
Logic High Output Leakage Current  
Output Capacitance  
V
=1.8V, SDO = 0V  
DD  
Ω
µA  
pF  
OL  
l
I
SDO = 0V to 3.6V  
(Note 8)  
–10  
10  
OH  
C
OUT  
DIGITAL DATA OUTPUTS  
l
l
V
Differential Output Voltage  
100Ω Differential Load, 3.ꢀmA Mode  
100Ω Differential Load, 1.7ꢀmA Mode  
247  
12ꢀ  
3ꢀ0  
17ꢀ  
4ꢀ4  
2ꢀ0  
mV  
mV  
OD  
l
l
V
Common Mode Output Voltage  
On-Chip Termination Resistance  
100Ω Differential Load, 3.ꢀmA Mode  
100Ω Differential Load, 1.7ꢀmA Mode  
1.12ꢀ  
1.12ꢀ  
1.2ꢀ0  
1.2ꢀ0  
1.37ꢀ  
1.37ꢀ  
V
V
OS  
R
Termination Enabled, OV = 1.8V  
100  
Ω
TERM  
DD  
POWER REQUIREMENTS The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Note 9)  
LTC2192  
TYP MAX MIN  
LTC2191  
TYP MAX MIN  
LTC2190  
TYP MAX  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
1.7  
UNITS  
l
l
l
V
Analog Supply Voltage (Note 10)  
1.8  
1.8  
99  
1.9  
1.9  
tbd  
1.7  
1.7  
1.8  
1.8  
72  
1.9  
1.9  
tbd  
1.7  
1.7  
1.8  
1.8  
49  
1.9  
1.9  
tbd  
V
V
DD  
OV  
DD  
Output Supply Voltage (Note 10)  
1.7  
I
I
Analog Supply Current Sine Wave Input  
mA  
VDD  
OVDD  
Digital Supply Current  
1-Lane Mode, 1.7ꢀmA Mode  
10.2  
17.6  
13.6  
24.7  
21.1  
39.6  
tbd  
tbd  
tbd  
tbd  
tbd  
tbd  
9.2  
tbd  
tbd  
tbd  
tbd  
tbd  
tbd  
8.7  
tbd  
tbd  
tbd  
tbd  
tbd  
tbd  
mA  
mA  
mA  
mA  
mA  
mA  
1-Lane Mode, 3.ꢀmA Mode  
2-Lane Mode, 1.7ꢀmA Mode  
2-Lane Mode, 3.ꢀmA Mode  
4-Lane Mode, 1.7ꢀmA Mode  
4-Lane Mode, 3.ꢀmA Mode  
16.6  
12.8  
23.9  
20.3  
38.8  
16.1  
12.3  
23.4  
19.9  
38.4  
l
l
l
l
P
Power Dissipation  
1-Lane Mode, 1.7ꢀmA Mode  
1-Lane Mode, 3.ꢀmA Mode  
2-Lane Mode, 1.7ꢀmA Mode  
2-Lane Mode, 3.ꢀmA Mode  
4-Lane Mode, 1.7ꢀmA Mode  
4-Lane Mode, 3.ꢀmA Mode  
198  
211  
203  
223  
217  
2ꢀ0  
tbd  
tbd  
tbd  
tbd  
tbd  
tbd  
146  
1ꢀ9  
1ꢀ2  
172  
166  
199  
tbd  
tbd  
tbd  
tbd  
tbd  
tbd  
104  
118  
111  
131  
124  
1ꢀ8  
tbd  
tbd  
tbd  
tbd  
tbd  
tbd  
mW  
mW  
mW  
mW  
mW  
mW  
DISS  
l
l
l
l
P
P
P
Sleep Mode Power  
Nap Mode Power  
1
1
1
mW  
mW  
mW  
SLEEP  
NAP  
ꢀ0  
20  
ꢀ0  
20  
ꢀ0  
20  
Power Increase with Diffential Encode Mode Enabled  
(No Increase for Sleep Mode)  
DIFFCLK  
219210p  
5
LTC2192  
LTC2191/LTC2190  
TIMING CHARACTERISTICS The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Note 5)  
LTC2192  
TYP MAX MIN  
LTC2191  
TYP MAX MIN  
LTC2190  
TYP MAX  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
UNITS  
l
f
t
Sampling Frequency  
(Notes 10, 11)  
6ꢀ  
100 11.88 12.ꢀ  
100 12.ꢀ  
100 11.88 12.ꢀ  
40  
2ꢀ  
MHz  
S
l
l
ENC Low Time (Note 8) Duty Cycle Stabilizer Off  
Duty Cycle Stabilizer On  
7.3  
2
7.69  
7.69  
100  
100  
19  
2
20  
20  
100  
100  
ns  
ns  
ENCL  
2
l
l
t
t
ENC High Time (Note 8) Duty Cycle Stabilizer Off  
Duty Cycle Stabilizer On  
7.3  
2
7.69  
7.69  
100  
100  
19  
2
20  
20  
100  
100  
ns  
ns  
ENCH  
AP  
100  
2
12.ꢀ  
Sample-and-Hold  
Acquistion Delay Time  
0
0
0
ns  
SYMBOL PARAMETER  
Digital Data Outputs (R  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
= 100Ω Differential, C = 2pF to GND On Each Output)  
TERM  
L
t
Serial Data Bit Period  
4-Lane Output Mode  
2-Lane Output Mode  
1-Lane Output Mode  
1/(4 • f )  
Sec  
SER  
S
1/(8 • f )  
S
1/(16 • f )  
S
l
l
l
t
t
t
t
t
FR to DCO Delay  
Data to DCO Delay  
Propagation Delay  
Output Rise Time  
Output Fall Time  
DCO Cycle-Cycle Jitter  
Pipeline Latency  
(Note 8)  
0.35 • t  
0.35 • t  
0.5 • t  
0.5 • t  
0.65 • t  
0.65 • t  
Sec  
Sec  
Sec  
ns  
FRAME  
SER  
SER  
SER  
SER  
(Note 8)  
DATA  
SER  
SER  
(Note 8)  
0.7n + 2 • t  
1.1n + 2 • t  
1.5n + 2 • t  
SER  
PD  
SER  
SER  
Data, DCO, FR, 20% to 80%  
Data, DCO, FR, 20% to 80%  
0.17  
0.17  
60  
r
f
ns  
t
= 1ns  
ps  
P-P  
SER  
7
Cycles  
SPI Port Timing (Note 8)  
l
l
t
SCK Period  
Write Mode  
40  
2ꢀ0  
ns  
ns  
SCK  
Readback Mode,  
C
= 20pF, R  
= 2k  
SDO  
PULLUP  
l
l
l
l
l
t
t
t
t
t
CS-to-CLK Setup Time  
SCK-to-CS Setup Time  
SDI Setup Time  
ns  
ns  
ns  
ns  
ns  
S
H
DS  
DH  
DO  
SDI Hold Time  
SCK Falling to SDO  
Valid  
Readback Mode,  
= 20pF, R  
12ꢀ  
C
= 2k  
SDO  
PULLUP  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: All voltage values are with respect to GND with GND and OGND  
shorted (unless otherwise noted).  
Note 6: Integral nonlinearity is defined as the deviation of a code from a  
best fit straight line to the transfer curve. The deviation is measured from  
the center of the quantization band.  
Note 7: Offset error is the offset voltage measured from –0.ꢀLSB when  
the output code flickers between 0000 0000 0000 0000 and 1111 1111  
1111 1111 in 2’s complement output mode.  
Note 3: When these pin voltages are taken below GND or above V , they  
Note 8: Guaranteed by design, not subject to test.  
DD  
will be clamped by internal diodes. This product can handle input currents  
Note 9: V = OV =1.8V, f = 6ꢀMHz (LTC2192),  
DD  
DD  
SAMPLE  
of greater than 100mA below GND or above V without latchup.  
DD  
40MHz (LTC2191), or 2ꢀMHz (LTC2190), 2-lane output mode,  
+
Note 4: When these pin voltages are taken below GND they will be  
ENC = single-ended 1.8V square wave, ENC = 0V, input range = 2V  
P-P  
clamped by internal diodes. When these pin voltages are taken above V  
they will not be clamped by internal diodes. This product can handle input  
currents of greater than 100mA below GND without latchup.  
with differential drive, unless otherwise noted. The supply current and  
power dissipation specifications are totals for the entire IC, not per  
channel.  
DD  
Note 5: V = OV = 1.8V, f = 6ꢀMHz (LTC2192), 40MHz  
Note 10: Recommended operating conditions.  
DD  
DD  
SAMPLE  
(LTC2191), or 2ꢀMHz (LTC2190), 2-lane output mode, differential  
Note 11: The maximum sampling frequency depends on the speed grade  
of the part and also which serialization mode is used. The maximum serial  
+
ENC /ENC = 2V sine wave, input range = 2V with differential drive,  
P-P  
P-P  
unless otherwise noted.  
data rate is 1000Mbps, so t  
must be greater than or equal to 1ns.  
SER  
219210p  
6
LTC2192  
LTC2191/LTC2190  
TIMING DIAGRAMS  
4-Lane Output Mode  
t
AP  
ANALOG  
INPUT  
N
N+1  
t
t
ENCL  
ENCH  
ENC  
+
ENC  
t
t
SER  
DATA  
DCO  
+
DCO  
t
t
SER  
FRAME  
+
FR  
FR  
t
t
PD  
SER  
OUT#A  
D15  
D13  
D12  
D5  
D11  
D10  
D3  
D9  
D8  
D1  
D0  
D15  
D14  
D7  
D13  
D12  
D5  
D11  
D10  
D3  
D9  
D8  
D1  
D0  
D15  
D14  
D7  
+
OUT#A  
OUT#B  
D14  
+
OUT#B  
OUT#C  
D7  
+
OUT#C  
OUT#D  
D6  
D4  
D2  
D6  
D4  
D2  
D6  
+
OUT#D  
SAMPLE N–7  
SAMPLE N–6  
SAMPLE N–5  
219210 TD01  
2-Lane Output Mode  
t
AP  
N+1  
ANALOG  
INPUT  
N
t
t
ENCH  
ENCL  
ENC  
+
ENC  
t
SER  
DCO  
+
DCO  
t
t
t
SER  
FRAME  
DATA  
FR  
+
FR  
t
t
PD  
SER  
OUT#A  
D7  
D6  
D5  
D3  
D1  
D15 D13 D11  
D14 D12 D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D1  
D0  
D15 D13 D11  
D14 D12 D10  
+
OUT#A  
OUT#B  
D4  
D2  
D0  
+
D2  
+
OUT#B  
SAMPLE N–7  
+
SAMPLE N–6  
SAMPLE N–5  
219210 TD02  
OUT#C , OUT#C , OUT#D , OUT#D ARE DISABLED  
219210p  
7
LTC2192  
LTC2191/LTC2190  
TIMING DIAGRAMS  
1-Lane Output Mode  
t
AP  
ANALOG  
INPUT  
N+1  
N
t
t
ENCL  
ENCH  
ENC  
+
ENC  
t
SER  
DCO  
+
DCO  
t
t
t
SER  
FRAME  
DATA  
FR  
+
FR  
t
PD  
t
SER  
OUT#A  
D3  
D2  
D1  
D0 D15 D14 D13 D12 D11 D10 D9  
SAMPLE N–6  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0 D15 D14 D13 D12  
+
OUT#A  
219210 TD03  
SAMPLE N–7  
+
SAMPLE N–5  
+
+
OUT#B , OUT#B , OUT#C , OUT#C , OUT#D , OUT#D ARE DISABLED  
SPI Port Timing (Readback Mode)  
t
S
t
DS  
t
DH  
t
t
H
SCK  
CS  
SCK  
t
DO  
SDI  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
XX  
XX  
D6  
XX  
D5  
XX  
D4  
XX  
XX  
D2  
XX  
D1  
XX  
R/W  
SDO  
D7  
D3  
D0  
HIGH IMPEDANCE  
SPI Port Timing (Write Mode)  
CS  
SCK  
SDI  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
R/W  
SDO  
219210 TD04  
HIGH IMPEDANCE  
219210p  
8
LTC2192  
LTC2191/LTC2190  
TYPICAL PERFORMANCE CHARACTERISTICS  
LTC2192: Integral  
Nonlinearity (INL)  
LTC2192: Differential  
Nonlinearity (DNL)  
LTC2192: 64k Point FFT,  
fIN = 5MHz, –1dBFS, 65Msps  
1.0  
0.8  
4.0  
3.0  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0.6  
2.0  
0.4  
1.0  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.0  
–2.0  
–3.0  
–4.0  
–80  
–90  
–100  
–110  
–120  
0
32768  
49152  
65536  
16384  
0
32768  
49152  
65536  
16384  
0
20  
10  
FREQUENCY (MHz)  
30  
OUTPUT CODE  
OUTPUT CODE  
219210 G02  
219210 G01  
219210 G03  
LTC2192: 64k Point FFT,  
fIN = 30MHz, –1dBFS, 65Msps  
LTC2192: 64k Point FFT,  
fIN = 70MHz, –1dBFS, 65Msps  
LTC2192: 64k Point FFT,  
fIN = 140MHz, –1dBFS, 65Msps  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–80  
–90  
–80  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
–100  
–110  
–120  
0
20  
10  
FREQUENCY (MHz)  
30  
0
20  
10  
FREQUENCY (MHz)  
30  
0
20  
10  
FREQUENCY (MHz)  
30  
219210 G04  
219210 G05  
219210 G06  
LTC2192: 64k Point 2-Tone FFT,  
fIN = 69MHz, 70MHz, –7dBFS,  
65Msps  
LTC2192: SNR vs Input Frequency,  
–1dBFS, 65Msps, 2V Range  
LTC2192: Shorted Input Histogram  
10000  
9000  
8000  
7000  
6000  
5000  
4000  
3000  
2000  
1000  
0
78  
77  
76  
75  
74  
73  
72  
71  
70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
SINGLE-ENDED  
ENCODE  
DIFFERENTIAL  
ENCODE  
–80  
–90  
–100  
–110  
–120  
32831  
32837  
32843  
32849  
32855  
0
50  
100  
150  
200  
250  
300  
0
20  
10  
FREQUENCY (MHz)  
30  
OUTPUT CODE  
INPUT FREQUENCY (MHz)  
219210 G08  
219210 G09  
219210 G07  
219210p  
9
LTC2192  
LTC2191/LTC2190  
TYPICAL PERFORMANCE CHARACTERISTICS  
LTC2192: 2nd, 3rd Harmonic vs  
Input Frequency, 1dBFS, 65Msps,  
2V Range  
LTC2192: 2nd, 3rd Harmonic vs  
Input Frequency, 1dBFS, 65Msps,  
1V Range  
LTC2192: SFDR vs Input Level,  
fIN = 70MHz, 65Msps, 2V Range  
100  
95  
90  
85  
80  
75  
70  
65  
130  
120  
110  
100  
90  
100  
95  
90  
85  
80  
75  
70  
65  
dBFS  
3RD  
3RD  
dBc  
80  
2ND  
70  
2ND  
60  
50  
40  
30  
20  
0
50  
100  
150  
200  
250  
300  
–80 –70 –60 –50 –40 –30 –20 –10  
INPUT LEVEL (dBFS)  
0
0
50  
100  
150  
200  
250  
300  
INPUT FREQUENCY (MHz)  
INPUT FREQUENCY (MHz)  
219210 G11  
219210 G12  
219210 G10  
LTC2192: IVDD vs Sample Rate,  
5MHz, –1dBFS Sine Wave on  
Each Channel  
LTC2192: IOVDD vs Sample Rate,  
5MHz, –1dBFS Sine Wave on  
Each Input  
LTC2192: SNR vs SENSE,  
fIN = 5MHz, –1dBFS  
45  
35  
25  
15  
5
110  
100  
90  
78  
77  
76  
75  
74  
73  
72  
71  
70  
4 LANE, 3.5mA  
2 LANE, 3.5mA  
4 LANE, 1.75mA  
1 LANE, 3.5mA  
80  
2 LANE, 1.75mA  
1 LANE, 1.75mA  
70  
60  
0
20  
30  
40  
50  
60  
0.6 0.7 0.8 0.9  
1
1.1 1.2 1.3  
10  
0
20  
40  
60  
SAMPLE RATE (Msps)  
SAMPLE RATE (Msps)  
SENSE PIN (V)  
219210 G15  
219210 G13  
219210 G14  
LTC2191: Integral  
Nonlinearity (INL)  
LTC2191: Differential  
Nonlinearity (DNL)  
LTC2191: 64k Point FFT,  
fIN = 5MHz, –1dBFS, 40Msps  
4.0  
3.0  
1.0  
0.8  
0.6  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
2.0  
0.4  
0.2  
0
1.0  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.0  
–2.0  
–3.0  
–4.0  
–80  
–90  
–100  
–110  
–120  
0
32768  
49152  
65536  
0
32768  
49152  
65536  
16384  
16384  
0
5
10  
15  
20  
OUTPUT CODE  
OUTPUT CODE  
FREQUENCY (MHz)  
219210 G16  
219210 G17  
219210 G18  
219210p  
10  
LTC2192  
LTC2191/LTC2190  
TYPICAL PERFORMANCE CHARACTERISTICS  
LTC2191: 64k Point FFT,  
fIN = 30MHz, –1dBFS, 40Msps  
LTC2191: 64k Point FFT,  
fIN = 70MHz, –1dBFS, 40Msps  
LTC2191: 64k Point FFT,  
fIN = 140MHz, –1dBFS, 40Msps  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–80  
–90  
–80  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
–100  
–110  
–120  
0
5
10  
15  
20  
0
5
10  
15  
20  
0
5
10  
15  
20  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
219210 G19  
219210 G20  
219210 G21  
LTC2191: 64k Point 2-Tone FFT,  
fIN = 69MHz, 70MHz, –7dBFS,  
40Msps  
LTC2191: SNR vs Input Frequency,  
–1dBFS, 40Msps, 2V Range  
LTC2191: Shorted Input Histogram  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
10000  
9000  
8000  
7000  
6000  
5000  
4000  
3000  
2000  
1000  
0
78  
77  
76  
75  
74  
73  
72  
71  
70  
SINGLE-ENDED  
ENCODE  
DIFFERENTIAL  
ENCODE  
–80  
–90  
–100  
–110  
–120  
32823  
32835 32841 32847  
OUTPUT CODE  
0
5
10  
15  
20  
32829  
0
50  
100  
150  
200  
250  
300  
FREQUENCY (MHz)  
INPUT FREQUENCY (MHz)  
219210 G22  
219210 G23  
219210 G24  
LTC2191: 2nd, 3rd Harmonic vs  
Input Frequency, 1dBFS, 40Msps,  
2V Range  
LTC2191: 2nd, 3rd Harmonic vs  
Input Frequency, 1dBFS, 40Msps,  
1V Range  
LTC2191: SFDR vs Input Level,  
fIN = 70MHz, 40Msps, 2V Range  
100  
95  
90  
85  
80  
75  
70  
65  
100  
95  
90  
85  
80  
75  
70  
65  
130  
120  
110  
100  
90  
dBFS  
3RD  
3RD  
dBc  
80  
2ND  
70  
2ND  
60  
50  
40  
30  
20  
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
–80 –70 –60 –50 –40 –30 –20 –10  
INPUT LEVEL (dBFS)  
0
INPUT FREQUENCY (MHz)  
INPUT FREQUENCY (MHz)  
219210 G25  
219210 G26  
219210 G27  
219210p  
11  
LTC2192  
LTC2191/LTC2190  
TYPICAL PERFORMANCE CHARACTERISTICS  
LTC2191: IVDD vs Sample Rate,  
5MHz, –1dBFS Sine Wave Input  
on Each Channel  
LTC2191: IOVDD vs Sample Rate,  
5MHz, –1dBFS Sine Wave on  
Each Input  
LTC2191: SNR vs SENSE,  
fIN = 5MHz, –1dBFS  
80  
75  
45  
35  
25  
15  
5
78  
77  
76  
75  
74  
73  
72  
71  
70  
4 LANE, 3.5mA  
70  
65  
2 LANE, 3.5mA  
4 LANE, 1.75mA  
1 LANE, 3.5mA  
2 LANE, 1.75mA  
1 LANE, 1.75mA  
60  
55  
50  
0.6 0.7 0.8 0.9  
1
1.1 1.2 1.3  
0
10  
20  
30  
40  
0
20  
30  
40  
10  
SENSE PIN (V)  
SAMPLE RATE (Msps)  
SAMPLE RATE (Msps)  
219210 G30  
219210 G28  
219210 G29  
LTC2190: Integral  
Nonlinearity (INL)  
LTC2190: Differential  
Nonlinearity (DNL)  
LTC2190: 64k Point FFT,  
fIN = 5MHz, –1dBFS, 25Msps  
4.0  
3.0  
1.0  
0.8  
0.6  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
2.0  
0.4  
0.2  
0
1.0  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.0  
–2.0  
–3.0  
–4.0  
–80  
–90  
–100  
–110  
–120  
0
32768  
49152  
65536  
0
32768  
49152  
65536  
16384  
16384  
0
5
10  
OUTPUT CODE  
OUTPUT CODE  
FREQUENCY (MHz)  
219210 G31  
219210 G32  
219210 G33  
LTC2190: 64k Point FFT,  
fIN = 70MHz, –1dBFS, 25Msps  
LTC2190: 64k Point FFT,  
fIN = 30MHz, –1dBFS, 25Msps  
LTC2190: 64k Point FFT,  
fIN = 140MHz, –1dBFS, 25Msps  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–80  
–90  
–80  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
–100  
–110  
–120  
0
5
10  
0
5
10  
0
5
10  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
219210 G34  
219210 G35  
219210 G36  
219210p  
12  
LTC2192  
LTC2191/LTC2190  
TYPICAL PERFORMANCE CHARACTERISTICS  
LTC2190: 64k Point, 2-Tone FFT,  
fIN = 69MHz, 70MHz, –7dBFS,  
LTC2190: SNR vs Input Frequency,  
–1dBFS, 25Msps, 2V Range  
25Msps  
LTC2190: Shorted Input Histogram  
10000  
9000  
8000  
7000  
6000  
5000  
4000  
3000  
2000  
1000  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
78  
77  
SINGLE-ENDED  
ENCODE  
76  
75  
74  
DIFFERENTIAL  
ENCODE  
73  
–80  
–90  
–100  
–110  
–120  
72  
71  
70  
32836  
32848  
32854  
32860  
32842  
0
5
10  
0
50  
100  
150  
200  
250  
300  
OUTPUT CODE  
FREQUENCY (MHz)  
INPUT FREQUENCY (MHz)  
219210 G38  
219210 G37  
219210 G39  
LTC2190: 2nd, 3rd Harmonic vs  
Input Frequency, 1dBFS, 25Msps,  
2V Range  
LTC2190: 2nd, 3rd Harmonic vs  
Input Frequency, 1dBFS, 25Msps,  
1V Range  
LTC2190: SFDR vs Input Level,  
fIN = 70MHz, 25Msps, 2V Range  
100  
95  
90  
85  
80  
75  
70  
65  
100  
95  
90  
85  
80  
75  
70  
65  
130  
120  
110  
100  
90  
dBFS  
dBc  
3RD  
3RD  
80  
2ND  
70  
2ND  
60  
50  
40  
30  
20  
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
–80 –70 –60 –50 –40 –30 –20 –10  
INPUT LEVEL (dBFS)  
0
INPUT FREQUENCY (MHz)  
INPUT FREQUENCY (MHz)  
219210 G40  
219210 G41  
219210 G42  
LTC2190: IVDD vs Sample Rate,  
5MHz, –1dBFS Sine Wave Input on  
Each Channel  
LTC2190: IOVDD vs Sample Rate,  
5MHz, –1dBFS Sine Wave on Each  
Input  
LTC2190: SNR vs SENSE,  
fIN = 5MHz, –1dBFS  
78  
77  
76  
75  
74  
73  
72  
71  
70  
55  
50  
45  
40  
35  
45  
40  
35  
20  
15  
4 LANE, 3.5mA  
2 LANE, 3.5mA  
4 LANE, 1.75mA  
1 LANE, 3.5mA  
2 LANE, 1.75mA  
1 LANE, 1.75mA  
0.6 0.7 0.8 0.9  
1
1.1 1.2 1.3  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
SENSE PIN (V)  
SAMPLE RATE (Msps)  
SAMPLE RATE (Msps)  
219210 G45  
219210 G43  
219210 G44  
219210p  
13  
LTC2192  
LTC2191/LTC2190  
PIN FUNCTIONS  
+
V
CM1  
(Pin1):CommonModeBiasOutput,NominallyEqual  
ENC (Pin 17): Encode Input. Conversion starts on the  
to V /2. V  
should be used to bias the common mode  
rising edge.  
DD  
CM1  
of the analog inputs of channel 1. Bypass to ground with  
a 0.1µF ceramic capacitor.  
ENC (Pin 18): Encode Complement Input. Conversion  
starts on the falling edge. Tie to GND for single-ended  
encode mode.  
GND (Pins 2, 5, 13, 22, 45, 47, 49, Exposed Pad Pin 65):  
ADC Power Ground. The exposed pad must be soldered  
to the PCB ground.  
CS (Pin 19): In serial programming mode, (PAR/SER =  
0V), CS is the serial interface chip select input. When  
CS is low, SCK is enabled for shifting data on SDI into  
the mode control registers. In the parallel programming  
A
+ (Pin 3): Channel 1 Positive Differential Analog  
IN1  
Input.  
mode (PAR/SER = V ), CS along with SCK selects 1-,  
DD  
A
– (Pin 4): Channel 1 Negative Differential Analog  
IN1  
Input.  
2- or 4-lane output mode (see Table 3). CS can be driven  
with 1.8V to 3.3V logic.  
REFH(Pins6,8):ADCHighReference.SeetheReference  
sectionintheApplicationsInformationforrecommended  
bypassing cIrcuits for REFH and REFL.  
SCK (Pin 20): In serial programming mode, (PAR/SER =  
0V), SCK is the serial interface clock input. In the parallel  
programming mode (PAR/SER = V ), SCK along with CS  
DD  
REFL (Pins 7, 9): ADC Low Reference. See the Reference  
sectionintheApplicationsInformationforrecommended  
bypassing cIrcuits for REFH and REFL.  
selects 1-, 2- or 4-lane output mode (see Table 3). SCK  
can be driven with 1.8V to 3.3V logic.  
SDI (Pin 21): In Serial Programming Mode, (PAR/SER =  
0V), SDI is the Serial Interface Data Input. Data on SDI  
is clocked into the mode control registers on the rising  
edge of SCK. In the parallel programming pode (PAR/SER  
PAR/SER (Pin 10): Programming Mode Selection Pin.  
Connecttogroundtoenabletheserialprogrammingmode.  
CS, SCK, SDI, SDO become a serial interface that control  
the A/D operating modes. Connect to V to enable the  
= V ), SDI can be used to power down the part. SDI can  
DD  
DD  
parallel programming mode where CS, SCK, SDI, SDO  
become parallel logic inputs that control a reduced set of  
the A/D operating modes. PAR/SER should be connected  
be driven with 1.8V to 3.3V logic.  
OGND (Pin 33): Output Driver Ground. This pin must be  
shortedtothegroundplanebyaverylowinductancepath.  
Use multiple vias close to the pin.  
directly to ground or the V of the part and not be driven  
DD  
by a logic signal.  
OV (Pin 34): Output Driver Supply. Bypass to ground  
DD  
A
+ (Pin 11): Channel 2 Positive Differential Analog  
IN2  
Input.  
with a 0.1µF ceramic capacitor.  
SDO (Pin 46): In serial programming mode, (PAR/SER  
= 0V), SDO is the optional serial interface data output.  
Data on SDO is read back from the mode control regis-  
ters and can be latched on the falling edge of SCK. SDO  
is an open-drain NMOS output that requires an external  
2k pull-up resistor to 1.8V to 3.3V. If read back from the  
mode control registers is not needed, the pull-up resistor  
is not necessary and SDO can be left unconnected. In the  
A
– (Pin 12): Channel 2 Negative Differential Analog  
IN2  
Input.  
V
(Pin 14): Common Mode Bias Output, Nominally  
CM2  
Equal to V /2. V  
should be used to bias the common  
DD  
CM2  
mode of the analog inputs of channel 2. Bypass to ground  
with a 0.1µF ceramic capacitor.  
V
(Pins 15, 16, 51, 52): Analog Power Supply, 1.7V  
DD  
parallelprogrammingmode(PAR/SER=V ),SDOselects  
DD  
to 1.9V. Bypass to ground with 0.1µF ceramic capacitors.  
3.ꢀmA or 1.7ꢀmA LVDS output currents. When used as an  
input, SDO can be driven with 1.8V to 3.3V logic through  
a 1k series resistor.  
Adjacent pins can share a bypass capacitor.  
219210p  
14  
LTC2192  
LTC2191/LTC2190  
PIN FUNCTIONS  
+
+
+
+
V
(Pin48):ReferenceVoltageOutput.Bypasstoground  
OUT2D /OUT2D , OUT2C /OUT2C , OUT2B /OUT2B ,  
REF  
with a 2.2µF ceramic capacitor. The reference output is  
OUT2A /OUT2A (Pins23/24,25/26,27/28,29/30):Serial  
nominally 1.2ꢀV.  
Data Outputs for Channel 2. In 1-lane output mode only  
+
+
OUT2A /OUT2A are used. In 2-Lane output mode only  
SENSE(Pin50):ReferenceProgrammingPin.Connecting  
+
OUT2A /OUT2A and OUT2B /OUT2B are used.  
SENSEtoV selectstheinternalreferenceanda 1Vinput  
DD  
+
range. Connecting SENSE to ground selects the internal  
reference and a 0.ꢀV input range. An external reference  
between 0.62ꢀV and 1.3V applied to SENSE selects an  
FR /FR (Pins 31/32): Frame Start Outputs.  
+
DCO /DCO (Pins 35/36): Data Clock Outputs.  
+
+
+
+
OUT1D /OUT1D , OUT1C /OUT1C , OUT1B /OUT1B ,  
input range of ±0.8 • V  
.
SENSE  
OUT1A /OUT1A (Pins37/38,39/40,41/42,43/44):Serial  
LVDS Outputs  
Data Outputs for Channel 1. In 1-lane output mode only  
+
+
OUT1A /OUT1A are used. In 2-lane output mode only  
The following pins are differential LVDS outputs. The  
output current level is programmable. There is an optional  
internal 100Ω termination resistor between the pins of  
each LVDS output pair.  
+
OUT1A /OUT1A and OUT1B /OUT1B are used.  
219210p  
15  
LTC2192  
LTC2191/LTC2190  
FUNCTIONAL BLOCK DIAGRAM  
+
1.8V  
1.8V  
OV  
ENC  
ENC  
V
DD  
DD  
PLL  
OUT1A  
OUT1B  
OUT1C  
OUT1D  
OUT2A  
OUT2B  
OUT2C  
OUT2D  
CH1  
ANALOG  
INPUT  
16-BIT  
S/H  
S/H  
ADC CORE  
DATA  
SERIALIZER  
CH2  
ANALOG  
INPUT  
16-BIT  
ADC CORE  
DATA CLOCK OUT  
FRAME  
OGND  
V
REF  
1.25V  
REFERENCE  
2.2µF  
RANGE  
SELECT  
REF BUF  
REFH  
REFL  
SENSE  
V
/2  
DD  
MODE  
DIFF REF  
AMP  
CONTROL  
REGISTERS  
219210 F01  
REFH  
REFL  
V
V
CM2  
CM1  
2.2µF  
0.1µF  
PAR/SER  
SCK SDI  
SDO  
CS  
0.1µF  
0.1µF  
0.1µF  
Figure 1. Functional Block Diagram  
219210p  
16  
LTC2192  
LTC2191/LTC2190  
APPLICATIONS INFORMATION  
CONVERTER OPERATION  
Single-Ended Input  
TheLTC2192/LTC2191/LTC2190arelowpower,2-channel,  
16-bit, 6ꢀ/40/2ꢀMsps A/D converters that are powered  
by a single 1.8V supply. The analog inputs should be  
driven differentially. The encode input can be driven dif-  
ferentially or single ended for lower power consumption.  
To minimize the number of data lines the digital outputs  
are serial LVDS. Each channel outputs one bit at a time  
(1-lane mode), two bits at a time (2-lane mode) or four  
bits at a time (4-lane mode). Many additional features can  
be chosen by programming the mode control registers  
through a serial SPI port.  
For applications less sensitive to harmonic distortion, the  
+
A
input can be driven singled ended with a 1V signal  
IN  
P-P  
centered around V . The A input should be connected  
CM  
IN  
toV .Withasingled-endedinputtheharmonicdistortion  
CM  
and INL will degrade, but the noise and DNL will remain  
unchanged.  
INPUT DRIVE CIRCUITS  
Input Filtering  
If possible, there should be an RC lowpass filter right at  
the analog inputs. This lowpass filter isolates the drive  
circuitry from the A/D sample-and-hold switching, and  
alsolimitswidebandnoisefromthedrivecircuitry.Figure 3  
shows an example of an input RC filter. The RC component  
values should be chosen based on the application’s input  
frequency.  
ANALOG INPUT  
The analog inputs are differential CMOS sample-and-  
hold circuits (Figure 2). The inputs should be driven  
differentially around a common mode voltage set by the  
V
or V  
output pins, which are nominally V /2.  
CM1  
CM2 DD  
For the 2V input range, the inputs should swing from  
Transformer Coupled Circuits  
V
– 0.ꢀV to V + 0.ꢀV. There should be 180° phase  
CM  
CM  
difference between the inputs.  
Figure 3 shows the analog input being driven by an RF  
transformer with a center-tapped secondary. The center  
Thetwochannelsaresimultaneouslysampledbyashared  
encode circuit (Figure 2).  
tap is biased with V , setting the A/D input at its optimal  
CM  
LTC2192  
V
DD  
C
C
SAMPLE  
5pF  
R
ON  
10Ω  
10Ω  
15Ω  
A
+
IN  
IN  
C
PARASITIC  
1.8pF  
V
DD  
SAMPLE  
5pF  
R
15Ω  
ON  
A
C
PARASITIC  
1.8pF  
V
DD  
1.2V  
10k  
+
ENC  
ENC  
10k  
1.2V  
219210 F02  
Figure 2. Equivalent Input Circuit. Only One of Two Analog Channels Is Shown  
219210p  
17  
LTC2192  
LTC2191/LTC2190  
APPLICATIONS INFORMATION  
50Ω  
50Ω  
V
V
CM  
CM  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
T1  
1:1  
25Ω  
A
+
A +  
IN  
IN  
ANALOG  
INPUT  
ANALOG  
INPUT  
T2  
LTC2192  
LTC2192  
T1  
0.1µF  
0.1µF  
25Ω  
25Ω  
25Ω  
25Ω  
12pF  
1.8pF  
25Ω  
A
A
IN  
IN  
T1: MA/COM MABAES0060  
RESISTORS, CAPACITORS  
ARE 0402 PACKAGE SIZE  
T1: MA/COM MABA-007159-000000  
T2: COILCRAFT WBC1-1L  
RESISTORS, CAPACITORS ARE 0402 PACKAGE SIZE  
219210 F03  
219210 F05  
Figure 3. Analog Input Circuit Using a Transformer.  
Recommended for Input Frequencies from 5MHz to 70MHz  
Figure 5. Recommended Front-End Circuit for Input Frequencies  
from 150MHz to 250MHz  
50Ω  
50Ω  
V
V
CM  
CM  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
4.7nH  
0.1µF  
12Ω  
A
+
A
+
ANALOG  
INPUT  
IN  
IN  
ANALOG  
INPUT  
T2  
LTC2192  
LTC2192  
T1  
0.1µF  
25Ω  
25Ω  
T1  
25Ω  
25Ω  
8.2pF  
4.7nH  
12Ω  
A
A
IN  
IN  
T1: MA/COM MABA-007159-000000  
T2: COILCRAFT WBC1-1L  
RESISTORS, CAPACITORS ARE 0402 PACKAGE SIZE  
T1: MA/COM ETC1-1-13  
RESISTORS, CAPACITORS  
ARE 0402 PACKAGE SIZE  
219210 F04  
219210 F06  
Figure 4. Recommended Front-End Circuit for Input Frequencies  
from 5MHz to 150MHz  
Figure 6. Recommended Front-End Circuit for Input Frequencies  
Above 250MHz  
V
CM  
DC level. At higher input frequencies a transmission line  
balun transformer (Figures 4 to 6) has better balance,  
resulting in lower A/D distortion.  
HIGH SPEED  
DIFFERENTIAL  
AMPLIFIER  
0.1µF  
A
200Ω 200Ω  
25Ω  
0.1µF  
0.1µF  
+
IN  
LTC2192  
ANALOG  
INPUT  
12pF  
+
Amplifier Circuits  
Figure 7 shows the analog input being driven by a high  
speeddifferentialamplifier.TheoutputoftheamplifierisAC  
coupledtotheA/Dsotheamplifier’soutputcommonmode  
voltage can be optimally set to minimize distortion.  
25Ω  
A
IN  
12pF  
219210 F07  
Figure 7. Front-End Circuit Using a High Speed  
Differential Amplifier  
At very high frequencies an RF gain block will often have  
lower distortion than a differential amplifier. If the gain  
blockissingleended, thenatransformercircuit(Figures 4  
to 6) should convert the signal to differential before driv-  
ing the A/D.  
219210p  
18  
LTC2192  
LTC2191/LTC2190  
APPLICATIONS INFORMATION  
Reference  
Figure 8c and 8d show the recommended circuit board  
layout for the REFH/REFL bypass capacitors. Note that in  
Figure 8c, every pin of the interdigitated capacitor (C1)  
is connected since the pins are not internally connected  
in some vendors’ capacitors. In Figure 8d the REFH and  
REFL pins are connected by short jumpers in an internal  
layer. To minimize the inductance of these jumpers they  
can be placed in a small hole in the GND plane on the  
second board layer.  
The LTC2192/LTC2191/LTC2190 have an internal 1.2ꢀV  
voltage reference. For a 2V input range using the internal  
reference, connect SENSE to V . For a 1V input range  
DD  
using the internal reference, connect SENSE to ground.  
For a 2V input range with an external reference, apply a  
1.2ꢀV reference voltage to SENSE (Figure 9).  
The input range can be adjusted by applying a voltage to  
SENSE that is between 0.62ꢀV and 1.30V. The input range  
will then be 1.6 • V  
.
SENSE  
LTC2192  
REFH  
REFL  
C3  
0.1µF  
The V , REFH and REFL pins should be bypassed as  
REF  
shown in Figure 8. A low inductance 2.2µF interdigitated  
capacitor is recommended for the bypass between REFH  
and REFL. This type of capacitor is available at a low cost  
from multiple suppliers.  
C1  
2.2µF  
REFH  
C2  
0.1µF  
REFL  
219210 F08b  
Alternatively, C1 can be replaced by a standard 2.2µF  
capacitor between REFH and REFL. The capacitors should  
be as close to the pins as possible (not on the back side  
of the circuit board).  
CAPACITORS ARE 0402 PACKAGE SIZE  
Figure 8b. Alternative REFH/REFL Bypass Circuit  
LTC2192  
5Ω  
V
REF  
1.25V BANDGAP  
REFERENCE  
1.25V  
2.2µF  
0.625V  
219210 F08c  
Figure 8c. Recommended Layout for the REFH/REFL Bypass  
Circuit in Figure 8a  
RANGE  
DETECT  
AND  
CONTROL  
TIE TO V FOR 2V RANGE;  
DD  
SENSE  
TIE TO GND FOR 1V RANGE;  
RANGE = 1.6 • V  
FOR  
SENSE  
BUFFER  
0.625V < V  
< 1.300V  
SENSE  
INTERNAL ADC  
HIGH REFERENCE  
REFH  
REFL  
C2  
+
0.1µF  
219210 F08d  
+
Figure 8d. Recommended Layout for the REFH/REFL Bypass  
Circuit in Figure 8b  
0.8x  
DIFF AMP  
C1  
REFH  
REFL  
+
+
C3  
0.1µF  
V
REF  
INTERNAL ADC  
LOW REFERENCE  
2.2µF  
C1: 2.2µF LOW INDUCTANCE  
INTERDIGITATED CAPACITOR  
TDK CLLE1AX7S0G225M  
MURATA LLA219C70G225M  
AVX W2L14Z225M  
LTC2192  
1.25V  
EXTERNAL  
REFERENCE  
SENSE  
1µF  
219210 F08a  
219210 F09  
OR EQUIVALENT  
Figure 8a. Reference Circuit  
Figure 9. Using an External 1.25V Reference  
219210p  
19  
LTC2192  
LTC2191/LTC2190  
APPLICATIONS INFORMATION  
Encode Input  
+
encode input. ENC can be taken above V (up to 3.6V)  
DD  
+
so 1.8V to 3.3V CMOS logic levels can be used. The ENC  
thresholdis0.9V.ForgoodjitterperformanceENC should  
have fast rise and fall times. If the encode signal is turned  
off or drops below approximately ꢀ00kHz, the A/D enters  
nap mode.  
The signal quality of the encode inputs strongly affects  
the A/D noise performance. The encode inputs should  
be treated as analog signals—do not route them next to  
digital traces on the circuit board. There are two modes  
of operation for the encode inputs: the differential encode  
mode (Figure 10), and the single-ended encode mode  
(Figure 11).  
+
0.1µF  
+
ENC  
LTC2192  
50Ω  
50Ω  
The differential encode mode is recommended for sinu-  
soidal, PECL, or LVDS encode inputs (Figures 12, 13). The  
encode inputs are internally biased to 1.2V through 10k  
equivalentresistance.Theencodeinputscanbetakenabove  
T1  
100Ω  
0.1µF  
ENC  
0.1µF  
V
(upto3.6V),andthecommonmoderangeisfrom1.1V  
DD  
T1 = MA/COM ETC1-1-13  
RESISTORS AND CAPACITORS  
ARE 0402 PACKAGE SIZE  
to 1.6V. In the differential encode mode, ENC should stay  
atleast200mVabovegroundtoavoidfalselytriggeringthe  
single-ended encode mode. For good jitter performance  
219210 F12  
Figure 12. Sinusoidal Encode Drive  
+
ENC should have fast rise and fall times.  
The single-ended encode mode should be used with  
0.1µF  
+
CMOS encode inputs. To select this mode, ENC is con-  
ENC  
+
nected to ground and ENC is driven with a square wave  
PECL OR  
LTC2192  
LVDS  
CLOCK  
0.1µF  
LTC2192  
V
DD  
ENC  
DIFFERENTIAL  
COMPARATOR  
219210 F13  
V
DD  
Figure 13. PECL or LVDS Encode Drive  
15k  
30k  
+
ENC  
Clock PLL and Duty Cycle Stabilizer  
ENC  
Theencodeclockismultipliedbyaninternalphase-locked  
loop (PLL) to generate the serial digital output data. If the  
encode signal changes frequency or is turned off, the PLL  
requires 2ꢀµs to lock onto the input clock.  
219210 F10  
Figure 10. Equivalent Encode Input Circuit  
for Differential Encode Mode  
A clock duty cycle stabilizer circuit allows the duty cycle  
of the applied encode signal to vary from 30% to 70%.  
In the serial programming mode it is possible to disable  
the duty cycle stabilizer, but this is not recommended. In  
the parallel programming mode the duty cycle stabilizer  
is always enabled.  
LTC2192  
+
1.8V TO 3.3V  
0V  
ENC  
30k  
ENC  
CMOS LOGIC  
BUFFER  
219210 F11  
Figure 11. Equivalent Encode Input Circuit  
for Single-Ended Encode Mode  
219210p  
20  
LTC2192  
LTC2191/LTC2190  
APPLICATIONS INFORMATION  
DIGITAL OUTPUTS  
Optional LVDS Driver Internal Termination  
The digital outputs of the LTC2192/LTC2191/LTC2190 are  
serialized LVDS signals. Each channel outputs one bit at  
a time (1-lane mode), two bits at a time (2-lane mode) or  
four bits at a time (4-lane mode). Please refer to the Tim-  
ing Diagrams for details. In 4-lane mode the clock duty  
cycle stabilizer must be enabled.  
In most cases using just an external 100Ω termination  
resistor will give excellent LVDS signal integrity. In addi-  
tion, an optional internal 100Ω termination resistor can  
beenabledbyseriallyprogrammingmodecontrolregister  
A2. The internal termination helps absorb any reflections  
caused by imperfect termination at the receiver. When  
the internal termination is enabled, the output driver  
current is doubled to maintain the same output voltage  
swing. Internal termination can only be selected in serial  
programming mode.  
The output data should be latched on the rising and falling  
edges of the data clock out (DCO). A data frame output  
(FR) can be used to determine when the data from a new  
conversion result begins.  
Themaximumserialdatarateforthedataoutputsis1Gbps,  
so the maximum sample rate of the ADC will depend on  
the serialization mode as well as the speed grade of the  
ADC (See Table 1). The minimum sample rate for all se-  
rialization modes is ꢀMsps.  
DATA FORMAT  
Table 2 shows the relationship between the analog input  
voltage and the digital data output bits. By default the  
output data format is offset binary. The 2’s complement  
format can be selected by serially programming mode  
control register A1.  
By default the outputs are standard LVDS levels: 3.ꢀmA  
output current and a 1.2ꢀV output common mode volt-  
age. An external 100Ω differential termination resistor  
is required for each LVDS output pair. The termination  
resistors should be located as close as possible to the  
LVDS receiver.  
Table 2. Output Codes vs Input Voltage  
+
A
-A  
D15-D0  
D15-D0  
IN  
IN  
(2V RANGE)  
(OFFSET BINARY)  
(2’s COMPLEMENT)  
>1.000000V  
+0.999970V  
+0.999939V  
1111 1111 1111 1111 0111 1111 1111 1111  
1111 1111 1111 1111 0111 1111 1111 1111  
1111 1111 1111 1110 0111 1111 1111 1110  
The outputs are powered by OVDD and OGND which are  
isolated from the A/D core power and ground.  
+0.000030V  
+0.000000V  
–0.000030V  
–0.000061V  
1000 0000 0000 0001 0000 0000 0000 0001  
1000 0000 0000 0000 0000 0000 0000 0000  
0111 1111 1111 1111 1111 1111 1111 1111  
0111 1111 1111 1110 1111 1111 1111 1110  
Table 1. Maximum Sampling Frequency for All Serialization  
Modes. Note That These Limits are for the LTC2192. The  
Sampling Frequency for the Slower Speed Grades Cannot  
Exceed 40MHz (LTC2191) or 25MHz (LTC2190)  
–0.999939V  
–1.000000V  
<–1.000000V  
0000 0000 0000 0001 1000 0000 0000 0001  
0000 0000 0000 0000 1000 0000 0000 0000  
0000 0000 0000 0000 1000 0000 0000 0000  
MAXIMUM  
SAMPLING  
SERIALIZATION FREQUENCY,  
DCO  
FR  
SERIAL  
Digital Output Randomizer  
MODE  
4-Lane  
2-Lane  
1-Lane  
f (MHz)  
S
FREQUENCY FREQUENCY DATA RATE  
6ꢀ  
6ꢀ  
2 • f  
4 • f  
8 • f  
f
S
f
S
f
S
4 • f  
8 • f  
Interference from the A/D digital outputs is sometimes  
unavoidable.Digitalinterferencemaybefromcapacitiveor  
inductive coupling or coupling through the ground plane.  
Even a tiny coupling factor can cause unwanted tones  
in the ADC output spectrum. By randomizing the digital  
output before it is transmitted off-chip, these unwanted  
tones can be randomized which reduces the unwanted  
tone amplitude.  
S
S
S
S
S
62.ꢀ  
16 • f  
S
Programmable LVDS Output Current  
In LVDS mode, the default output driver current is 3.ꢀmA.  
This current can be adjusted by control register A2 in the  
serial programming mode. Available current levels are  
1.7ꢀmA, 2.1mA, 2.ꢀmA, 3mA, 3.ꢀmA, 4mA and 4.ꢀmA.  
In the parallel programming mode the SDO pin can select  
either 3.ꢀmA or 1.7ꢀmA.  
219210p  
21  
LTC2192  
LTC2191/LTC2190  
APPLICATIONS INFORMATION  
The digital output is randomized by applying an exclusive  
OR logic operation between the LSB and all other data  
outputbits.Todecode,thereverseoperationisapplied—an  
exclusive OR operation is applied between the LSB and all  
other bits. The FR and DCO outputs are not affected. The  
output randomizer is enabled by serially programming  
mode control register A1.  
leaves nap mode. Nap mode is enabled by mode control  
register A1 in the serial programming mode.  
DEVICE PROGRAMMING MODES  
The operating modes of the LTC2192/LTC2191/LTC2190  
can be programmed by either a parallel interface or a  
simple serial interface. The serial interface has more flex-  
ibility and can program all available modes. The parallel  
interface is more limited and can only program some of  
the more commonly used modes.  
Digital Output Test Pattern  
To allow in-circuit testing of the digital interface to the  
A/D, there is a test mode that forces the A/D data outputs  
(D1ꢀ-D0) of both channels to known values. The digital  
output test patterns are enabled by serially programming  
mode control registers A2, A3 and A4. When enabled,  
the test patterns override all other formatting modes: 2’s  
complement and randomizer.  
Parallel Programming Mode  
To use the parallel programming mode, PAR/SER should  
be tied to V . The CS, SCK, SDI and SDO pins are binary  
DD  
logic inputs that set certain operating modes. These pins  
can be tied to V or ground, or driven by 1.8V, 2.ꢀV or  
DD  
3.3V CMOS logic. When used as an input, SDO should  
be driven through a 1k series resistor. Table 3 shows the  
modes set by CS, SCK, SDI and SDO.  
Output Disable  
The digital outputs may be disabled by serially program-  
ming mode control register A2. The current drive for all  
digital outputs including DCO and FR are disabled to save  
powerorenablein-circuittesting.Whendisabledthecom-  
mon mode of each output pair becomes high impedance,  
but the differential impedance may remain low.  
Table3.ParallelProgrammingModeControlBits(PAR/SER=VDD  
)
PIN  
DESCRIPTION  
CS/SCK  
2-Lane/4-Lane/1-Lane Selection Bits  
00 = 2-Lane Output Mode  
01 = 4-Lane Output Mode  
10 = 1-Lane Output Mode  
11 = Not Used  
Sleep and Nap Modes  
SDI  
Power Down Control Bit  
0 = Normal Operation  
1 = Sleep Mode  
The A/D may be placed in sleep or nap modes to conserve  
power. In sleep mode the entire device is powered down,  
resulting in 1mW power consumption. Sleep mode is  
enabled by mode control register A1 (serial program-  
ming mode), or by SDI (parallel programming mode).  
The amount of time required to recover from sleep mode  
SDO  
LVDS Current Selection Bit  
0 = 3.ꢀmA LVDS Current Mode  
1 = 1.7ꢀmA LVDS Current Mode  
Serial Programming Mode  
depends on the size of the bypass capacitors on V  
,
REF  
To use the serial programming mode, PAR/SER should be  
tied to ground. The CS, SCK, SDI and SDO pins become  
a serial interface that program the A/D mode control  
registers. Data is written to a register with a 16-bit serial  
word. Data can also be read back from a register to verify  
its contents.  
REFH and REFL. For the suggested values in Figure 8, the  
A/D will stabilize after 2ms.  
In nap mode any combination of A/D channels can be  
powereddownwhiletheinternalreferencecircuitsandthe  
PLL stay active, allowing faster wake up than from sleep  
mode. Recovering from nap mode requires at least 100  
clock cycles. If the application demands very accurate DC  
settling then an additional ꢀ0µs should be allowed so the  
on-chip references can settle from the slight temperature  
shift caused by the change in supply current as the A/D  
Serial data transfer starts when CS is taken low. The data  
on the SDI pin is latched at the first 16 rising edges of  
SCK. Any SCK rising edges after the first 16 are ignored.  
The data transfer ends when CS is taken high again.  
219210p  
22  
LTC2192  
LTC2191/LTC2190  
APPLICATIONS INFORMATION  
The first bit of the 16-bit input word is the R/W bit. The  
next seven bits are the address of the register (A6:A0).  
The final eight bits are the register data (D7:D0).  
then SDO can be left floating and no pull-up resistor is  
needed.  
Table 4 shows a map of the mode control registers.  
If the R/W bit is low, the serial data (D7:D0) will be writ-  
ten to the register set by the address bits (A6:A0). If the  
R/W bit is high, data in the register set by the address bits  
(A6:A0) will be read back on the SDO pin (see the Timing  
Diagrams). During a read back command the register is  
not updated and data on SDI is ignored.  
Software Reset  
If serial programming is used, the mode control registers  
shouldbeprogrammedassoonaspossibleafterthepower  
supplies turn on and are stable. The first serial command  
must be a software reset which will reset all register data  
bits to logic 0. To perform a software reset, bit D7 in the  
reset register is written with a logic 1. After the reset is  
complete, bit D7 is automatically set back to zero.  
The SDO pin is an open-drain output that pulls to ground  
with a 200Ω impedance. If register data is read back  
through SDO, an external 2k pull-up resistor is required.  
If serial data is only written and read back is not needed,  
Table 4. Serial Programming Mode Register Map (PAR/SER = GND)  
REGISTER A0: RESET REGISTER (ADDRESS 00h)  
D7  
D6  
X
Dꢀ  
D4  
X
D3  
X
D2  
X
D1  
X
D0  
X
RESET  
X
Bit 7  
RESET  
0 = Not Used  
Software Reset Bit  
1 = Software Reset. All Mode Control Registers are Reset to 00h. The ADC is Momentarily Placed in Sleep Mode.  
This Bit is Automatically Set Back to Zero After the Reset is Complete  
Bits 6-0  
Unused, Don’t Care Bits.  
REGISTER A1: FORMAT AND POWER-DOWN REGISTER (ADDRESS 01h)  
D7  
D6  
Dꢀ  
D4  
D3  
D2  
X
D1  
X
D0  
DCSOFF  
RAND  
TWOSCOMP  
SLEEP  
NAP_2  
NAP_1  
Bit 7  
Bit 6  
Bit ꢀ  
DCSOFF  
Clock Duty Cycle Stabilizer Bit  
0 = Clock Duty Cycle Stabilizer On  
1 = Clock Duty Cycle Stabilizer Off. This is not recommended.  
RAND  
Data Output Randomizer Mode Control Bit  
0 = Data Output Randomizer Mode Off  
1 = Data Output Randomizer Mode On  
TWOSCOMP  
0 = Offset Binary Data Format  
1 = Two’s Complement Data Format  
Two’s Complement Mode Control Bit  
Bits 4, 3, 0  
SLEEP:NAP_2:NAP_1 Sleep/Nap Mode Control Bits  
000 = Normal Operation  
0X1 = Channel 1 in Nap Mode  
01X = Channel 2 in Nap Mode  
1XX = Sleep Mode. Both Channels are Disabled.  
Note: Any Combination of Channels Can Be Placed in Nap Mode  
Bits 1, 2  
Unused, Don’t Care Bits  
219210p  
23  
LTC2192  
LTC2191/LTC2190  
APPLICATIONS INFORMATION  
REGISTER A2: OUTPUT MODE REGISTER (ADDRESS 02h)  
D7  
D6  
Dꢀ  
D4  
D3  
D2  
D1  
D0  
ILVDS2  
ILVDS1  
ILVDS0  
TERMON  
OUTOFF  
OUTTEST  
OUTMODE1  
OUTMODE0  
Bits 7-ꢀ  
ILVDS2:ILVDS0 LVDS Output Current Bits  
000 = 3.ꢀmA LVDS Output Driver Current  
001 = 4.0mA LVDS Output Driver Current  
010 = 4.ꢀmA LVDS Output Driver Current  
011 = Not Used  
100 = 3.0mA LVDS Output Driver Current  
101 = 2.ꢀmA LVDS Output Driver Current  
110 = 2.1mA LVDS Output Driver Current  
111 = 1.7ꢀmA LVDS Output Driver Current  
Bit 4  
Bit 3  
TERMON  
LVDS Internal Termination Bit  
0 = Internal Termination Off  
1 = Internal Termination On. LVDS Output Driver Current is 2× the Current Set by ILVDS2:ILVDS0  
OUTOFF  
0 = Digital Outputs are Enabled  
1 = Digital Outputs are Disabled  
Output Disable Bit  
Bit 2  
OUTTEST  
Digital Output Test Pattern Control Bit  
0 = Digital Output Test Pattern Off  
1 = Digital Output Test Pattern On  
Bits 1-0  
OUTMODE1:OUTMODE0  
00 = 2-Lane Output Mode  
01 = 4-Lane Output Mode  
10 = 1-Lane Output Mode  
11 = Not Used  
Digital Output Mode Control Bits  
REGISTER A3: TEST PATTERN MSB REGISTER (ADDRESS 03h)  
D7  
D6  
Dꢀ  
D4  
D3  
D2  
D1  
D0  
TP1ꢀ  
TP14  
TP13  
TP12  
TP11  
TP10  
TP9  
TP8  
Bits 7-0  
TP15:TP8  
Test Pattern Data Bits (MSB)  
TP1ꢀ:TP8 Set the Test Pattern for Data Bit 1ꢀ (MSB) Through Data Bit 8.  
REGISTER A4: TEST PATTERN LSB REGISTER (ADDRESS 04h)  
D7  
D6  
Dꢀ  
D4  
D3  
D2  
D1  
D0  
TP7  
TP6  
TPꢀ  
TP4  
TP3  
TP2  
TP1  
TP0  
Bits 7-0  
TP7:TP0  
Test Pattern Data Bits (LSB)  
TP7:TP0 Set the Test Pattern for Data Bit 7 Through Data Bit 0 (LSB).  
219210p  
24  
LTC2192  
LTC2191/LTC2190  
APPLICATIONS INFORMATION  
GROUNDING AND BYPASSING  
The analog inputs, encode signals, and digital outputs  
should not be routed next to each other. Ground fill and  
grounded vias should be used as barriers to isolate these  
signals from each other.  
The LTC2192/LTC2191/LTC2190 require a printed circuit  
board with a clean unbroken ground plane. A multilayer  
board with an internal ground plane in the first layer be-  
neath the ADC is recommended. Layout for the printed  
circuit board should ensure that digital and analog signal  
lines are separated as much as possible. In particular, care  
should be taken not to run any digital track alongside an  
analog signal track or underneath the ADC.  
HEAT TRANSFER  
Most of the heat generated by the LTC2192/LTC2191/  
LTC2190 is transferred from the die through the bottom-  
sideexposedpadandpackageleadsontotheprintedcircuit  
board. For good electrical and thermal performance, the  
exposed pad must be soldered to a large grounded pad  
on the PC board. This pad should be connected to the  
internal ground planes by an array of vias.  
High quality ceramic bypass capacitors should be used at  
the V , OV , V , V , REFH and REFL pins. Bypass  
DD  
DD CM REF  
capacitorsmustbelocatedasclosetothepinsaspossible.  
Size0402ceramiccapacitorsarerecommended.Thetraces  
connecting the pins and bypass capacitors must be kept  
short and should be made as wide as possible.  
Of particular importance is the capacitor between REFH  
and REFL. This capacitor should be on the same side of  
the circuit board as the A/D, and as close to the device  
as possible.  
TYPICAL APPLICATIONS  
C4  
2.2µF  
SDO  
SENSE  
V
DD  
C5  
0.1µF  
C29  
0.1µF  
1
2
40  
+
V
OUT1C  
CM1  
39  
GND  
OUT1C  
3
38  
+
A
A
+
A
A
+
OUT1D  
IN1  
IN1  
IN1  
4
37  
OUT1D  
IN1  
5
36  
+
C3 0.1µF  
C2 0.1µF  
GND  
DCO  
6
35  
+
+
REFH  
REFL  
DCO  
+
+
7
34  
33  
32  
31  
30  
29  
28  
27  
DIGITAL  
OUTPUTS  
OV  
DD  
OV  
DD  
LTC2192  
CN1  
8
REFH  
REFL  
OGND  
9
+
FR  
C16 0.1µF  
10  
11  
12  
13  
14  
PAR/SER  
FR–  
+
PAR/SER  
A
A
+
OUT2A  
A
+
IN2  
IN2  
IN2  
OUT2A  
A
IN2  
+
GND  
OUT2B  
V
OUT2B  
CM2  
C37  
0.1µF  
V
DD  
C7  
0.1µF  
219210 TA02  
ENCODE  
INPUT  
SPI  
PORT  
219210p  
25  
LTC2192  
LTC2191/LTC2190  
TYPICAL APPLICATIONS  
Top Side  
Inner Layer 2  
Inner Layer 4  
Bottom Side  
Inner Layer 3  
Inner Layer 5  
219210p  
26  
LTC2192  
LTC2191/LTC2190  
PACKAGE DESCRIPTION  
UKG Package  
52-Lead Plastic QFN (7mm × 8mm)  
(Reference LTC DWG # 0ꢀ-08-1729 Rev Ø)  
7.50 ±0.05  
6.10 ±0.05  
5.50 REF  
(2 SIDES)  
0.70 ±0.05  
6.45 ±0.05  
6.50 REF  
(2 SIDES)  
7.10 ±0.05 8.50 ±0.05  
5.41 ±0.05  
PACKAGE OUTLINE  
0.25 ±0.05  
0.50 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
5.50 REF  
(2 SIDES)  
0.75 ± 0.05  
7.00 ± 0.10  
(2 SIDES)  
R = 0.115  
TYP  
0.00 – 0.05  
51  
52  
0.40 ± 0.10  
PIN 1 TOP MARK  
(SEE NOTE 6)  
1
2
PIN 1 NOTCH  
R = 0.30 TYP OR  
0.35 × 45°C  
CHAMFER  
6.45 ±0.10  
8.00 ± 0.10  
(2 SIDES)  
6.50 REF  
(2 SIDES)  
5.41 ±0.10  
(UKG52) QFN REV  
Ø 0306  
R = 0.10  
TYP  
0.25 ± 0.05  
TOP VIEW  
SIDE VIEW  
0.50 BSC  
0.200 REF  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
0.75 ± 0.05  
NOTE:  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
1. DRAWING IS NOT A JEDEC PACKAGE OUTLINE  
2. DRAWING NOT TO SCALE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.20mm ON ANY SIDE, IF PRESENT  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE  
219210p  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
27  
LTC2192  
LTC2191/LTC2190  
TYPICAL APPLICATION  
1.8V  
1.8V  
OV  
2-Tone FFT, fIN = 70MHz and 69MHz  
0
V
DD  
DD  
–10  
OUT1A  
OUT1B  
OUT1C  
OUT1D  
OUT2A  
OUT2B  
OUT2C  
OUT2D  
CH1  
ANALOG  
INPUT  
16-BIT  
–20  
–30  
–40  
–50  
–60  
–70  
S/H  
S/H  
ADC CORE  
CH2  
ANALOG  
INPUT  
SERIALIZED  
LVDS  
OUTPUTS  
16-BIT  
ADC CORE  
DATA  
SERIALIZER  
ENCODE  
INPUT  
–80  
–90  
–100  
–110  
–120  
PLL  
DATA CLOCK OUT  
FRAME  
GND  
OGND  
219210 TA01a  
0
20  
10  
FREQUENCY (MHz)  
30  
219210 G07  
RELATED PARTS  
PART NUMBER  
ADCs  
DESCRIPTION  
COMMENTS  
LTC22ꢀ9-14/LTC2260-14/ 14-Bit, 80Msps/10ꢀMsps/12ꢀMsps  
89mW/106mW/127mW, 73.4dB SNR, 8ꢀdB SFDR, DDR LVDS/DDR CMOS/CMOS  
LTC2261-14  
LTC2262-14  
1.8V ADCs, Ultralow Power  
Outputs, 6mm × 6mm QFN-36  
14-Bit, 1ꢀ0Msps 1.8V ADC, Ultralow  
Power  
149mW, 72.8dB SNR, 88dB SFDR, DDR LVDS/DDR CMOS/CMOS Outputs,  
6mm × 6mm QFN-36  
LTC2266-14/LTC2267-14/ 14-Bit, 80Msps/10ꢀMsps/12ꢀMsps  
LTC2268-14 1.8V Dual ADCs, Ultralow Power  
216mW/2ꢀ0mW/293mW, 73.4dB SNR, 8ꢀdB SFDR, Serial LVDS Outputs,  
6mm × 6mm QFN-36  
LTC2266-12/LTC2267-12/ 12-Bit, 80Msps/10ꢀMsps/12ꢀMsps  
216mW/2ꢀ0mW/293mW, 70.ꢀdB SNR, 8ꢀdB SFDR, Serial LVDS Outputs,  
LTC2268-12  
LTC2208  
1.8V Dual ADCs, Ultralow Power  
16-Bit, 130Msps 3.3V ADC  
6mm × 6mm QFN-36  
12ꢀ0mW, 77.7dB SNR, 100dB SFDR, CMOS/LVDS Outputs, 9mm × 9mm QFN-64  
900mW/72ꢀmW, 77.9dB SNR, 100dB SFDR, CMOS Outputs, 7mm × 7mm QFN-48  
1190mW/970mW, 81.2dB SNR, 100dB SFDR, CMOS/LVDS Outputs,  
9mm × 9mm QFN-64  
LT2207/LT2206  
LT2217/LT2216  
16-Bit, 10ꢀMsps/80Msps 3.3V ADCs  
16-Bit, 10ꢀMsps/80Msps 3.3V ADCs  
RF Mixers/Demodulators  
LTCꢀꢀ17  
40MHz to 900MHz Direct Conversion  
Quadrature Demodulator  
High IIP3: 21dBm at 800MHz, Integrated LO Quadrature Generator  
LTCꢀꢀ27  
LTCꢀꢀꢀ7  
LTCꢀꢀ7ꢀ  
400MHz to 3.7GHz High Linearity  
Downconverting Mixer  
24.ꢀdBm IIP3 at 900MHz, 23.ꢀdBm IIP3 at 3.ꢀGHz, NF = 12.ꢀdB,  
ꢀ0Ω Single-Ended RF and LO Ports  
400MHz to 3.8GHz High Linearity  
Downconverting Mixer  
23.7dBm IIP3 at 2.6GHz, 23.ꢀdBm IIP3 at 3.ꢀGHz, NF = 13.2dB, 3.3V Supply  
Operation, Integrated Transformer  
800MHz to 2.7GHz Direct Conversion  
Quadrature Demodulator  
High IIP3: 28dBm at 900MHz, Integrated LO Quadrature Generator, Integrated RF  
and LO Transformer  
Amplifiers/Filters  
LTC6412  
800MHz, 31dB Range, Analog-Controlled Continuously Adjustable Gain Control, 3ꢀdBm OIP3 at 240MHz, 10dB Noise Figure,  
Variable Gain Amplifier  
4mm × 4mm QFN-24  
LTC6420-20  
LTC6421-20  
1.8GHz Dual Low Noise, Low Distortion  
Differential ADC Drivers for 300MHz IF  
Fixed Gain 10V/V, 1nV/√Hz Total Input Noise, 80mA Supply Current per Amplifier,  
3mm × 4mm QFN-20  
1.3GHz Dual Low Noise, Low Distortion  
Differential ADC Drivers  
Fixed Gain 10V/V, 1nV/√Hz Total Input Noise, 40mA Supply Current per Amplifier,  
3mm × 4mm QFN-20  
LTC660ꢀ-7/LTC660ꢀ-10/ Dual Matched 7MHz/10MHz/14MHz  
Dual Matched 2nd Order Lowpass Filters with Differential Drivers,  
Pin-Programmable Gain, 6mm × 3mm DFN-22  
LTC660ꢀ-14  
Filters with ADC Drivers  
Signal Chain Receivers  
LTM9002  
14-Bit Dual Channel IF/Baseband  
Receiver Subsystem  
Integrated High Speed ADC, Passive Filters and Fixed Gain Differential Amplifiers  
219210p  
LT 0111 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 9ꢀ03ꢀ-7417  
28  
LINEAR TECHNOLOGY CORPORATION 2011  
(408) 432-1900 FAX: (408) 434-0ꢀ07 www.linear.com  

相关型号:

LT230

Switching Gas Discharge Tubes - Gas Plasma Voltage Dependent Switches
LITTELFUSE

LT230

GaAs Hall IC for Noncontact Switch (Unidirestional magnetic field-type)
SHARP

LT230A

GaAs Hall IC for Noncontact Switch (Unidirestional magnetic field-type)
SHARP

LT230Z

GREEN OVAL LAMP LED
SEOUL

LT231

INFRARED LAMP LED
SEOUL

LT24001/6S912JT26

RESISTOR, TEMPERATURE DEPENDENT, PTC, 9100ohm, THROUGH HOLE MOUNT, AXIAL LEADED
KOA

LT2402-SERIES

Optoelectronic
ETC

LT2402XX-SERIES

Optoelectronic
ETC

LT240Z

GREEN OVAL LAMP LED
SEOUL

LT241

INFRARED LAMP LED
SEOUL

LT2410CGN

IC,A/D CONVERTER,SINGLE,24-BIT,CMOS,SSOP,16PIN
Linear

LT2412-15E

Analog IC
ETC