LT3008EDC#TRMPBF [Linear]

暂无描述;
LT3008EDC#TRMPBF
型号: LT3008EDC#TRMPBF
厂家: Linear    Linear
描述:

暂无描述

稳压器
文件: 总16页 (文件大小:196K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3008  
µA I , 20mA, 45V  
3
Q
Low Dropout Linear Regulator  
FEATURES  
DESCRIPTION  
The LT®3008 is a micropower, low dropout voltage (LDO)  
linear regulator. The device supplies 20mA output current  
with a dropout voltage of 300mV. No-load quiescent cur-  
rent is 3μA. Ground pin current remains at less than 5% of  
output current as load increases. In shutdown, quiescent  
current is less than 1μA.  
n
Ultralow Quiescent Current: 3μA  
n
Input Voltage Range: 2.0V to 45V  
n
Output Current: 20mA  
n
Dropout Voltage: 300mV  
n
Adjustable Output (V  
= V  
= 600mV)  
ADJ  
OUT(MIN)  
n
n
Output Tolerance: 2% Over Load, Line and  
Temperature  
The LT3008 regulator optimizes stability and transient  
response with low ESR ceramic capacitors, requiring a  
minimum of only 2.2μF. The LT3008 does not require  
the addition of ESR as is common with other regulators.  
Internal protection circuitry includes current limiting,  
thermal limiting, reverse-battery protection and reverse-  
current protection.  
Stable with Low ESR, Ceramic Output Capacitors  
(2.2μF minimum)  
n
n
n
n
n
Shutdown Current: <1μA  
Current Limit Protection  
Reverse-Battery Protection  
Thermal Limit Protection  
TSOT-23 and 2mm × 2mm DFN Packages  
The LT3008 is ideal for applications that require moderate  
outputdrivecapabilitycoupledwithultralowstandbypower  
consumption. The device is available as an adjustable  
device with an output voltage range down to the 600mV  
reference. The LT3008 is available in the 6-lead DFN and  
8-lead TSOT-23 packages.  
APPLICATIONS  
n
Automotive  
n
Low Current Battery-Powered Systems  
n
Keep-Alive Power Supplies  
Remote Monitoring  
Utility Meters  
n
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
n
n
Low Power Industrial Applications  
TYPICAL APPLICATION  
3.3V, 20mA Supply with Shutdown  
Dropout Voltage/Quiescent Current  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
6
5
4
3
2
1
0
I
= 20mA  
LOAD  
DROPOUT  
VOLTAGE  
V
OUT  
3.3V  
IN  
OUT  
ADJ  
V
IN  
20mA  
3.8V TO  
45V  
2.2μF  
1μF  
2.8M  
1%  
LT3008  
SHDN  
GND  
I
Q
619k  
1%  
3008 TA01a  
0
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
3008 TA01b  
3008f  
1
LT3008  
(Note 1)  
ABSOLUTE MAXIMUM RATINGS  
Operating Junction Temperature Range (Notes 2, 3)  
LT3008E.............................................–40°C to 125°C  
LT3008I..............................................–40°C to 125°C  
Storage Temperature Range...................–65°C to 150°C  
Lead Temperature: Soldering, 10 sec  
IN Pin Voltage ......................................................... 50V  
OUT Pin Voltage...................................................... 50V  
Input-to-Output Differential Voltage........................ 50V  
ADJ Pin Voltage ...................................................... 50V  
SHDN Pin Voltage (Note 8) ..................................... 50V  
Output Short-Circuit Duration .......................... Indefinite  
TS8 Package Only............................................. 300°C  
PIN CONFIGURATION  
TOP VIEW  
TOP VIEW  
6
5
4
GND  
SHDN  
IN  
ADJ  
OUT  
OUT  
1
2
3
8
7
6
5
NC  
SHDN  
GND  
GND  
GND  
1
2
3
4
ADJ  
OUT  
IN  
7
TS8 PACKAGE  
8-LEAD PLASTIC TSOT-23  
DC PACKAGE  
6-LEAD (2mm s 2mm) PLASTIC DFN  
T
= 125°C, θ = 65°C/W TO 85°C/W*  
JA  
JMAX  
T
JMAX  
= 125°C, θ = 65°C/W TO 85°C/W*  
JA  
EXPOSED PAD (PIN 7) IS GND, MUST BE SOLDERED TO PCB  
* See Applications Information Section.  
ORDER INFORMATION  
LEAD FREE FINISH  
LT3008EDC#PBF  
LT3008IDC#PBF  
LT3008ETS8#PBF  
LT3008ITS8#PBF  
LEAD BASED FINISH  
LT3008EDC  
TAPE AND REEL  
LT3008EDC#TRPBF  
LT3008IDC#TRPBF  
LT3008ETS8#TRPBF  
LT3008ITS8#TRPBF  
TAPE AND REEL  
LT3008EDC#TR  
PART MARKING*  
LDPS  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
TEMPERATURE RANGE  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
6-Lead (2mm × 2mm) Plastic DFN  
6-Lead (2mm × 2mm) Plastic DFN  
8-Lead Plastic TSOT-23  
LDPS  
LTDSX  
LTDSX  
8-Lead Plastic TSOT-23  
PART MARKING*  
LDPS  
PACKAGE DESCRIPTION  
6-Lead (2mm × 2mm) Plastic DFN  
6-Lead (2mm × 2mm) Plastic DFN  
8-Lead Plastic TSOT-23  
LT3008IDC  
LT3008IDC#TR  
LDPS  
LT3008ETS8  
LT3008ETS8#TR  
LT3008ITS8#TR  
LTDSX  
LT3008ITS8  
LTDSX  
8-Lead Plastic TSOT-23  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
3008f  
2
LT3008  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TJ = 25°C. (Note 2)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
Operating Voltage  
2
45  
V
ADJ Pin Voltage (Notes 3, 4)  
V
= 2V, I  
IN  
= 100μA  
594  
588  
600  
600  
606  
612  
mV  
mV  
IN  
LOAD  
l
l
2V < V < 45V, 1μA < I  
< 20mA  
LOAD  
Line Regulation (Note 3)  
Load Regulation (Note 3)  
0.6  
3
mV  
ΔV = 2V to 45V, I  
= 1mA  
IN  
LOAD  
l
l
V
IN  
V
IN  
= 2V, I  
= 2V, I  
= 1μA to 10mA  
= 1μA to 20mA  
0.4  
0.5  
2
5
mV  
mV  
LOAD  
LOAD  
Dropout Voltage  
IN  
I
I
= 100μA  
= 100μA  
115  
170  
270  
300  
3
180  
250  
mV  
mV  
LOAD  
LOAD  
l
l
l
l
l
V
= V  
(Notes 5, 6)  
OUT(NOMINAL)  
I
I
= 1mA  
= 1mA  
250  
350  
mV  
mV  
LOAD  
LOAD  
I
I
= 10mA  
= 10mA  
340  
470  
mV  
mV  
LOAD  
LOAD  
I
I
= 20mA  
= 20mA  
365  
500  
mV  
mV  
LOAD  
LOAD  
Quiescent Current (Notes 6, 7)  
GND Pin Current  
I
I
= 0μA  
= 0μA  
μA  
μA  
LOAD  
LOAD  
6
l
l
l
l
l
I
I
I
I
I
= 0μA  
3
6
21  
160  
350  
6
12  
50  
500  
1200  
μA  
μA  
μA  
μA  
μA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
V
= V  
+ 0.5V (Notes 6, 7)  
OUT(NOMINAL)  
= 100μA  
= 1mA  
IN  
= 10mA  
= 20mA  
Output Voltage Noise (Note 9)  
ADJ Pin Bias Current  
C
OUT  
= 2.2μF, I  
= 20mA, BW = 10Hz to 100kHz  
92  
μV  
RMS  
LOAD  
l
–10  
0.4  
10  
nA  
l
l
Shutdown Threshold  
V
OUT  
V
OUT  
= Off to On  
= On to Off  
0.67  
0.61  
1.5  
V
V
0.25  
l
l
SHDN Pin Current  
V
SHDN  
V
SHDN  
= 0V, V = 45V  
μA  
μA  
1
2
IN  
= 45V, V = 45V  
0.65  
IN  
l
Quiescent Current in Shutdown  
Ripple Rejection (Note 3)  
V
= 6V, V  
= 0V  
<1  
μA  
dB  
IN  
SHDN  
V
– V  
= 1.5V, V  
= 0.5V ,  
P-P  
58  
22  
70  
75  
IN  
OUT  
= 120Hz, I  
RIPPLE  
f
= 20mA  
LOAD  
RIPPLE  
Current Limit  
V
V
= 45V, V  
= 0  
mA  
mA  
IN  
IN  
OUT  
l
l
= V  
+ 1V, ΔV  
= 5%  
OUT  
OUT(NOMINAL)  
Input Reverse Leakage Current  
Reverse Output Current  
V
IN  
= –45V, V  
= 0  
1
30  
10  
μA  
μA  
OUT  
V
OUT  
= 1.2V, V = 0  
0.6  
IN  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 4: Operating conditions are limited by maximum junction  
temperature. The regulated output voltage specification will not apply  
for all possible combinations of input voltage and output current. When  
operating at the maximum input voltage, the output current range must be  
limited. When operating at the maximum output current, the input voltage  
must be limited.  
Note 2: The LT3008 is tested and specified under pulse load conditions  
such that T T . The LT3008E is 100% tested at T =25°C. Performance  
J
A
A
at 40°C and 125°C is assured by design, characterization and correlation  
with statistical process controls. The LT3008I is guaranteed over the full  
40°C to 125°C operating junction temperature range.  
Note 5: Dropout voltage is the minimum input to output voltage differential  
needed to maintain regulation at a specified output current. In dropout, the  
output voltage equals (V – V  
).  
IN  
DROPOUT  
Note 3: The LT3008 adjustable version is tested and specified for these  
conditions with the ADJ pin connected to the OUT pin.  
3008f  
3
LT3008  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TJ = 25°C. (Note 2)  
Note 6: To satisfy minimum input voltage requirements, the LT3008  
adjustable version is tested and specified for these conditions with an  
Note 8: The SHDN pin can be driven below GND only when tied to the IN  
pin directly or through a pull-up resistor. If the SHDN pin is driven below  
GND by more than –0.3V while IN is powered, the output will turn on.  
external resistor divider (61.9k bottom, 280k top) which sets V  
to 3.3V.  
OUT  
The external resistor divider adds 9.69μA of DC load on the output. This  
external current is not factored into GND pin current.  
Note 9: Output noise is listed for the adjustable version with the ADJ pin  
connected to the OUT pin. See the RMS Output Noise vs Load Current  
curve in the Typical Performance Characteristics Section.  
Note 7: GND pin current is tested with V = V  
+ 0.5V and a  
IN  
OUT(NOMINAL)  
current source load. GND pin current will increase in dropout. See the GND  
Pin Current curves in the Typical Performance Characteristics section.  
TYPICAL PERFORMANCE CHARACTERISTICS TJ = 25°C, unless otherwise noted.  
Dropout Voltage  
Dropout Voltage  
Minimum Input Voltage  
450  
400  
350  
300  
250  
200  
150  
100  
50  
450  
400  
350  
300  
250  
200  
150  
100  
50  
2
1.8  
1.6  
1.4  
1.2  
1
I
= 20mA  
LOAD  
T
= 125°C  
J
20mA  
1mA  
T
= 25°C  
10mA  
100μA  
J
0.8  
0.6  
0.4  
0.2  
0
0
0
–50 –25  
0
25 50 75 100 125 150  
–50 –25  
0
25 50 75 100 125 150  
0
2
4
6
8
10 12 14 16 18 20  
OUTPUT CURRENT (mA)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3008 G01  
3008 G02  
3008 G03  
ADJ Pin Voltage  
ADJ Pin Bias Current  
Quiescent Current  
10  
8
0.612  
0.610  
0.608  
0.606  
0.604  
0.602  
0.600  
0.598  
0.596  
0.594  
0.592  
0.590  
0.588  
6
5
4
3
2
1
0
I
= 100μA  
L
6
4
2
0
–2  
–4  
–6  
–8  
–10  
–50 –25  
0
25 50 75 100 125 150  
–50 –25  
0
25 50 75 100 125 150  
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3008 G05  
3008 G04  
3008 G06  
3008f  
4
LT3008  
TYPICAL PERFORMANCE CHARACTERISTICS TJ = 25°C, unless otherwise noted.  
Quiescent Current  
GND Pin Current  
GND Pin Current vs ILOAD  
400  
350  
300  
250  
200  
150  
100  
50  
1000  
100  
10  
30  
27  
24  
21  
18  
15  
12  
9
V
V
= 3.8V  
V
= 3.3V  
V
I
= 3.3V  
= 1μA  
IN  
OUT  
OUT  
OUT  
LOAD  
20mA (R  
= 165Ω)  
LOAD  
= 3.3V  
10mA (R  
= 330Ω)  
LOAD  
100μA (R  
= 33k)  
LOAD  
6
1mA (R  
= 3.3k)  
3
LOAD  
7
0
0
1
0
1
2
3
4
5
6
8
9
10  
0.001  
0.01  
0.1  
1
10  
100  
0
2
4
6
8
10  
12  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
LOAD (mA)  
3008 G07  
3008 G08  
3008 G09  
SHDN Pin Thresholds  
SHDN Pin Input Current  
SHDN Pin Input Current  
2
1.8  
1.6  
1.4  
1.2  
1
1.5  
1.4  
1.3  
1.2  
1.1  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
2
1.8  
1.6  
1.4  
1.2  
1
OFF TO ON  
ON TO OFF  
V
SHDN  
= 45V  
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
–50  
–25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
3008 G12  
–50  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
3008 G10  
0
5
10 15 20 25 30 35 40 45  
SHDN PIN VOLTAGE (V)  
3008 G11  
–25  
Input Ripple Rejection  
Current Limit  
Reverse Output Current  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
OUT = ADJ = 1.2V  
IN = SHDN = GND  
V
V
= 2.1V + 50mV  
RMS  
OUT  
LOAD  
IN  
= 600mV  
= 20mA  
I
V
= 45V  
IN  
V
= 2V  
IN  
10μF  
ADJ  
2.2μF  
OUT  
0
–50  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
3008 G14  
–50  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
3008 G13  
–25  
–25  
10  
100  
1000  
10000 100000 1000000  
FREQUENCY (Hz)  
3008 G15  
3008f  
5
LT3008  
TYPICAL PERFORMANCE CHARACTERISTICS TJ = 25°C, unless otherwise noted.  
Input Ripple Rejection  
Load Regulation  
Output Noise Spectral Density  
80  
70  
60  
50  
40  
30  
20  
10  
0
5
4.5  
4
100  
10  
1
C
I
= 2.2μF  
= 20mA  
5V  
OUT  
LOAD  
$I = 1μA to 20mA  
L
OUT  
IN  
3.3V  
2.5V  
1.8V  
1.5V  
1V  
V
V
= 600mV  
= 2V  
3.5  
3
0.6V  
2.5  
2
1.5  
1
V
= V  
(NOMINAL) + 2V + 0.5V  
OUT P-P  
IN  
RIPPLE AT f = 120Hz  
= 20mA  
0.5  
I
LOAD  
0
0.1  
–50  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
–50  
0
25  
50  
TEMPERATURE (°C)  
75  
100 125 150  
–25  
10  
100  
1k  
10k  
100k  
–25  
FREQUENCY (Hz)  
3008 G17  
3008 G18  
3008 G16  
RMS Output Noise  
vs Load Current  
Transient Response  
500  
450  
C
OUT  
= 10μF  
5V  
I
= 1mA TO 20mA  
= 5.5V  
OUT  
IN  
V
V
C
= 5V  
OUT  
OUT  
400  
350  
= 2.2μF  
V
3.3V  
OUT  
50mV/DIV  
300  
250  
200  
150  
2.5V  
1.8V  
1.5V  
I
OUT  
20mA/DIV  
1.2V  
0.6V  
3008 G21  
100  
50  
0
500μs/DIV  
0.01  
0.1  
1
100  
0.001  
10  
I
(mA)  
LOAD  
3008 G19  
Transient Response  
Transient Response (Load Dump)  
I
= 1mA TO 20mA  
= 5.5V  
OUT  
IN  
V
V
C
V
OUT  
= 5V  
OUT  
OUT  
50mV/DIV  
= 10μF  
V
OUT  
45V  
12V  
50mV/DIV  
V
I
= 5V  
= 20mA  
= 4.7μF  
OUT  
OUT  
C
OUT  
V
IN  
10V/DIV  
I
OUT  
20mA/DIV  
3008 G22  
3008 G23  
500μs/DIV  
1ms/DIV  
3008f  
6
LT3008  
PIN FUNCTIONS (TSOT-23/DFN)  
SHDN (Pin 1/Pin 5): Shutdown. Pulling the SHDN pin  
OUT (Pin 6/Pins 2, 3): Output. This pin supplies power  
to the load. Use a minimum output capacitor of 2.2μF  
to prevent oscillations. Large load transient applications  
require larger output capacitors to limit peak voltage  
transients. See the Applications Information section for  
more information on output capacitance and reverse  
output characteristics.  
low puts the LT3008 into a low power state and turns the  
output off. If unused, tie the SHDN pin to V . The LT3008  
IN  
does not function if the SHDN pin is not connected. The  
SHDN pin cannot be driven below GND unless tied to the  
IN pin. If the SHDN pin is driven below GND while IN is  
powered, the output will turn on. SHDN pin logic cannot  
be referenced to a negative rail.  
ADJ (Pin 7/Pin 1): Adjust. This pin is the error amplifier’s  
inverting terminal. Its 400pA typical input bias current  
flows out of the pin (see curve of ADJ Pin Bias Current vs  
Temperature in the Typical Performance Characteristics  
section). TheADJpinvoltageis600mVreferencedtoGND  
and the output voltage range is 600mV to 44.5V.  
GND (Pins 2, 3, 4/Pin 6): Ground. Connect the bottom  
of the resistor divider that sets output voltage directly to  
GND for the best regulation.  
IN (Pin 5/Pin 4): Input. The IN pin supplies power to the  
device. The LT3008 requires a bypass capacitor at IN if  
the device is more than six inches away from the main  
input filter capacitor. In general, the output impedance of  
a battery rises with frequency, so it is advisable to include  
a bypass capacitor in battery-powered circuits. A bypass  
capacitor in the range of 0.1μF to 10μF will suffice. The  
LT3008 withstands reverse voltages on the IN pin with re-  
spect to ground and the OUT pin. In the case of a reversed  
input, which occurs with a battery plugged in backwards,  
the LT3008 acts as if a blocking diode is in series with its  
input. No reverse current flows into the LT3008 and no  
reverse voltage appears at the load. The device protects  
both itself and the load.  
NC (Pin 8, TSOT-23 Package Only): No Connect. Pin 8  
is an NC pin in the TSOT-23 package. This pin is not tied  
to any internal circuitry. It may be floated, tied to V or  
IN  
tied to GND.  
Exposed Pad (Pin 7, DFN Package Only): Ground. The  
Exposed Pad (backside) of the DFN package is an electri-  
cal connection to GND. To ensure optimum performance,  
solder Pin 7 to the PCB and tie directly to Pin 6.  
3008f  
7
LT3008  
APPLICATIONS INFORMATION  
The LT3008 is a low dropout linear regulator with ultra-  
low quiescent current and shutdown. Quiescent current is  
extremely low at 3μA and drops well below 1μA in shut-  
down. The device supplies up to 20mA of output current.  
Dropout voltage at 20mA is typically 300mV. The LT3008  
incorporatesseveralprotectionfeatures,makingitidealfor  
useinbattery-poweredsystems.Thedeviceprotectsitself  
against both reverse-input and reverse-output voltages.  
In battery backup applications, where a backup battery  
holds up the output when the input is pulled to ground,  
the LT3008 acts as if a blocking diode is in series with its  
output and prevents reverse current flow. In applications  
where the regulator load returns to a negative supply, the  
output can be pulled below ground by as much as 50V  
without affecting startup or normal operation.  
Typical Performance Characteristics.  
Specifications for output voltages greater than 0.6V are  
proportional to the ratio of the desired output voltage to  
0.6V:V /0.6V.Forexample,loadregulationforanoutput  
OUT  
current change of 100μA to 20mA is –0.5mV typical at  
V
OUT  
= 0.6V. At V  
= 5V, load regulation is:  
OUT  
5V  
0.6V  
• (0.5mV) = −4.17mV  
Table 1 shows resistor divider values for some com-  
mon output voltages with a resistor divider current of  
about 1μA.  
Table 1. Output Voltage Resistor Divider Values  
V
R1  
R2  
OUT  
1V  
1.2V  
1.5V  
1.8V  
2.5V  
3V  
604k  
590k  
590k  
590k  
590k  
590k  
619k  
590k  
402k  
Adjustable Operation  
590k  
The LT3008 has an output voltage range of 0.6V to 44.5V.  
Figure1showsthatoutputvoltageissetbytheratiooftwo  
external resistors. The IC regulates the output to maintain  
the ADJ pin voltage at 600mV referenced to ground. The  
current in R1 equals 600mV/R1 and the current in R2 is  
the current in R1 minus the ADJ pin bias current. The  
ADJ pin bias current, typically 400pA at 25°C, flows out  
of the pin. Calculate the output voltage using the formula  
in Figure 1. An R1 value of 619k sets the divider current  
to 0.97μA. Do not make R1’s value any greater than 619k  
to minimize output voltage errors due to the ADJ pin bias  
current and to insure stability under minimum load condi-  
tions. In shutdown, the output turns off and the divider  
current is zero. Curves of ADJ Pin Voltage vs Temperature  
and ADJ Pin Bias Current vs Temperature appear in the  
887k  
1.18M  
1.87M  
2.37M  
2.8M  
4.32M  
3.3V  
5V  
Because the ADJ pin is relatively high impedance (de-  
pendingontheresistordividerused),straycapacitances  
atthispinshouldbeminimized.Specialattentionshould  
be given to any stray capacitances that can couple ex-  
ternal signals onto the ADJ pin producing undesirable  
output transients or ripple.  
V
OUT  
IN  
OUT  
ADJ  
V
V
= 600mV • (1 + R2/R1) – (I  
= 600mV  
= 0.4nA at 25°C  
• R2)  
ADJ  
OUT  
ADJ  
V
IN  
LT3008  
R2  
R1  
I
ADJ  
OUTPUT RANGE = 0.6V to 44.5V  
SHDN  
GND  
3008 F01  
Figure 1. Adjustable Operation  
3008f  
8
LT3008  
APPLICATIONS INFORMATION  
Extra care should be taken in assembly when using high  
valuedresistors.Smallamountsofboardcontamination  
canleadtosignificantshiftsinoutputvoltage.Appropriate  
post-assembly board cleaning measures should be  
implemented to prevent board contamination. If the  
board is to be subjected to humidity cycling or if board  
cleaningmeasurescannotbeguaranteed,consideration  
shouldbegiventousingresistorsanorderofmagnitude  
smaller than in Table 1 to prevent contamination from  
causing unwanted shifts in the output voltage.  
dielectrics,eachwithdifferentbehavioracrosstemperature  
and applied voltage. The most common dielectrics are  
specified with EIA temperature characteristic codes of  
Z5U, Y5V, X5R and X7R. The Z5U and Y5V dielectrics  
provide high C-V products in a small package at low cost,  
but exhibit strong voltage and temperature coefficients as  
shown in Figures 2 and 3. When used with a 5V regulator,  
a 16V 10μF Y5V capacitor can exhibit an effective value  
as low as 1μF to 2μF for the DC bias voltage applied and  
over the operating temperature range. The X5R and X7R  
dielectrics yield more stable characteristics and are more  
suitable for use as the output capacitor. The X7R type has  
better stability across temperature, while the X5R is less  
expensive and is available in higher values. One must still  
exercise care when using X5R and X7R capacitors; the  
X5R and X7R codes only specify operating temperature  
rangeandmaximumcapacitancechangeovertemperature.  
Capacitance change due to DC bias with X5R and X7R  
capacitors is better than Y5V and Z5U capacitors, but can  
still be significant enough to drop capacitor values below  
appropriate levels. Capacitor DC bias characteristics tend  
toimproveascomponentcasesizeincreases,butexpected  
capacitance at operating voltage should be verified.  
Output Capacitance and Transient Response  
The LT3008 is stable with a wide range of output capaci-  
tors.TheESRoftheoutputcapacitoraffectsstability,most  
notably with small capacitors. Use a minimum output  
capacitor of 2.2μF with an ESR of 3Ω or less to prevent  
oscillations.TheLT3008isamicropowerdeviceandoutput  
loadtransientresponseisafunctionofoutputcapacitance.  
Larger values of output capacitance decrease the peak  
deviations and provide improved transient response for  
larger load current changes.  
Give extra consideration to the use of ceramic capacitors.  
Manufacturers make ceramic capacitors with a variety of  
20  
40  
20  
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10μF  
0
X5R  
X5R  
0
–20  
–20  
–40  
–40  
Y5V  
–60  
–60  
Y5V  
–80  
–80  
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10μF  
–100  
–100  
0
8
12 14  
2
4
6
10  
16  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
DC BIAS VOLTAGE (V)  
3008 F02  
3008 F03  
Figure 2. Ceramic Capacitor DC Bias Characteristics  
Figure 3. Ceramic Capacitor Temperature Characteristics  
3008f  
9
LT3008  
APPLICATIONS INFORMATION  
Voltage and temperature coefficients are not the only  
sources of problems. Some ceramic capacitors have a  
piezoelectric response. A piezoelectric device generates  
voltage across its terminals due to mechanical stress,  
similar to the way a piezoelectric accelerometer or micro-  
phone works. For a ceramic capacitor, the stress can be  
induced by vibrations in the system or thermal transients.  
The resulting voltages produced can cause appreciable  
amounts of noise, especially when a ceramic capacitor is  
used for noise bypassing. A ceramic capacitor produced  
Figure 4’s trace in response to light tapping from a pencil.  
Similar vibration induced behavior can masquerade as  
increased output voltage noise.  
Thermal Considerations  
The LT3008’s maximum rated junction temperature of  
125°Climitsitspower-handlingcapability.Twocomponents  
comprise the power dissipated by the device:  
1. Output current multiplied by the input/output voltage  
differential: I  
• (V – V  
)
OUT  
IN  
OUT  
2. GND pin current multiplied by the input voltage:  
• V  
I
GND  
IN  
GND pin current is found by examining the GND Pin Cur-  
rent curves in the Typical Performance Characteristics  
section. Power dissipation is equal to the sum of the two  
components listed prior.  
TheLT3008regulatorhasinternalthermallimitingdesigned  
to protect the device during overload conditions. For con-  
tinuous normal conditions, do not exceed the maximum  
junction temperature rating of 125°C. Carefully consider  
all sources of thermal resistance from junction to ambi-  
ent including other heat sources mounted in proximity to  
the LT3008. For surface mount devices, heat sinking is  
accomplished by using the heat spreading capabilities of  
the PC board and its copper traces. Copper board stiffen-  
ers and plated through-holes can also be used to spread  
the heat generated by power devices.  
V
C
LOAD  
= 0.6V  
= 22μF  
= 10μA  
OUT  
OUT  
I
V
OUT  
500μV/DIV  
3008 F04  
100ms/DIV  
Figure 4. Noise Resulting from Tapping  
on a Ceramic Capacitor  
3008f  
10  
LT3008  
APPLICATIONS INFORMATION  
The following tables list thermal resistance for several  
different board sizes and copper areas. All measurements  
were taken in still air on 3/32" FR-4 two-layer boards with  
one ounce copper.  
Calculating Junction Temperature  
Example: Given an output voltage of 3.3V, an input volt-  
age range of 12V 5%, an output current range of 0mA  
to 20mA and a maximum ambient temperature of 85°C,  
what will the maximum junction temperature be for an  
application using the DC package?  
PCB layers, copper weight, board layout and thermal vias  
affect the resultant thermal resistance. Although Tables  
2 and 3 provide thermal resistance numbers for 2-layer  
boards with 1 ounce copper, modern multi-layer PCBs  
provide better performance than found in these tables.  
For example, a 4-layer, 1 ounce copper PCB board with  
3 thermal vias from the DFN exposed backside or the  
3 fused TSOT-23 GND pins to inner layer GND planes  
achieves 45°C/W thermal resistance. Demo circuit DC  
1388A’s board layout achieves this 45°C/W performance.  
This is approximately a 30% improvement over the lowest  
numbers shown in Tables 2 and 3.  
The power dissipated by the device is equal to:  
I
(V  
– V ) + I  
(V  
)
OUT(MAX) IN(MAX)  
OUT  
GND IN(MAX)  
where,  
I
= 20mA  
= 12.6V  
OUT(MAX)  
V
IN(MAX)  
I
at (I = 20mA, V = 12.6V) = 0.3mA  
OUT IN  
GND  
So,  
P = 20mA(12.6V – 3.3V) + 0.3mA(12.6V) = 189.8mW  
Table 2: Measured Thermal Resistance for DC Package  
COPPER AREA  
The thermal resistance ranges from 65°C/W to 85°C/W  
dependingonthecopperarea.Sothejunctiontemperature  
rise above ambient approximately equals:  
BOARD  
AREA  
THERMAL RESISTANCE  
TOPSIDE*  
BACKSIDE  
(JUNCTION-TO-AMBIENT)  
2
2
2
2
2
2
2
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
65°C/W  
70°C/W  
75°C/W  
80°C/W  
85°C/W  
2
2
1000mm  
2500mm  
0.1898W(75°C/W) = 14.2°C  
2
2
225mm  
2500mm  
The maximum junction temperature equals the maximum  
junctiontemperatureriseaboveambientplusthemaximum  
ambient temperature or:  
2
2
100mm  
2500mm  
2
2
50mm  
2500mm  
*Device is mounted on the topside.  
T
= 85°C + 14.2°C = 99.2°C  
J(MAX)  
Table 3: Measured Thermal Resistance for TSOT-23 Package  
COPPER AREA  
BOARD  
AREA  
THERMAL RESISTANCE  
(JUNCTION-TO-AMBIENT)  
TOPSIDE*  
BACKSIDE  
2
2
2
2
2
2
2
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
65°C/W  
67°C/W  
70°C/W  
75°C/W  
85°C/W  
2
2
1000mm  
2500mm  
2
2
225mm  
2500mm  
2
2
100mm  
2500mm  
2
2
50mm  
2500mm  
*Device is mounted on the topside.  
3008f  
11  
LT3008  
APPLICATIONS INFORMATION  
voltage. Current flows from the bottom resistor in the  
divider and from the ADJ pin’s internal clamp through the  
top resistor in the divider to the external circuitry pulling  
OUT below ground. If IN is powered by a voltage source,  
OUT sources current equal to its current limit capability  
and the LT3008 protects itself by thermal limiting if neces-  
sary. In this case, grounding the SHDN pin turns off the  
LT3008 and stops OUT from sourcing current.  
Protection Features  
The LT3008 incorporates several protection features that  
make it ideal for use in battery-powered circuits. In addition  
tothenormalprotectionfeaturesassociatedwithmonolithic  
regulators,suchascurrentlimitingandthermallimiting,the  
devicealsoprotectsagainstreverse-inputvoltages,reverse-  
output voltages and reverse output-to-input voltages.  
Current limit protection and thermal overload protection  
protect the device against current overload conditions at  
the output of the device. For normal operation, do not  
exceed a junction temperature of 125°C.  
The LT3008 incurs no damage if the ADJ pin is pulled  
above or below ground by 50V. If IN is left open circuit or  
grounded, ADJ acts like a 100k resistor in series with a  
diode when pulled above or below ground.  
The IN pin withstands reverse voltages of 50V. The device  
limits current flow to less than 20μA (typically less than  
1μA) and no negative voltage appears at OUT. The device  
protects both itself and the load against batteries that are  
plugged in backwards.  
In circuits where a backup battery is required, several  
different input/output conditions can occur. The output  
voltage may be held up while the input is either pulled  
to ground, pulled to some intermediate voltage or is left  
open circuit. Current flow back into the output follows the  
curve shown in Figure 5.  
The SHDN pin cannot be driven below GND unless tied to  
the IN pin. If the SHDN pin is driven below GND while IN  
is powered, the output will turn on. SHDN pin logic cannot  
be referenced to a negative rail.  
If the LT3008 IN pin is forced below the OUT pin or the  
OUT pin is pulled above the IN pin, input current typically  
drops to less than 1μA. This occurs if the LT3008 input is  
connected to a discharged (low voltage) battery and either  
a backup battery or a second regulator circuit holds up  
the output. The state of the SHDN pin has no effect in the  
reverse current if OUT is pulled above IN.  
The LT3008 incurs no damage if OUT is pulled below  
ground. If IN is left open circuit or grounded, OUT can be  
pulled below ground by 50V. No current flows from the  
pass transistor connected to OUT. However, current flows  
in (but is limited by) the resistor divider that sets output  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
ADJ CURRENT  
OUT CURRENT  
0
1
2
3
4
5
6
7
8
9
10  
OUTPUT AND ADJ VOLTAGE (V)  
3008 F05  
Figure 5. Reverse Output Current  
3008f  
12  
LT3008  
TYPICAL APPLICATIONS  
Keep-Alive Power Supply  
NO PROTECTION  
DIODES NEEDED!  
3.3V  
V
IN  
IN  
OUT  
ADJ  
12V  
2.8M  
1%  
1μF  
2.2μF  
LT3008  
LOAD:  
SHDN  
SYSTEM MONITOR,  
VOLATILE MEMORY, ETC.  
619k  
1%  
GND  
3009 TA02  
Last-Gasp Circuit  
LINE POWER  
V
LINE  
SENSE  
12V TO 15V  
D
CHARGE  
LINE  
INTERRUPT  
DETECT  
R
LIMIT  
TO  
5V  
PWR  
FAULT  
MONITORING  
CENTER  
IN  
OUT  
GND  
4.32M  
1%  
SUPERCAP  
1μF  
2.2μF  
LT3008  
3008 TA03  
SHDN  
GND  
ADJ  
590k  
1%  
3008f  
13  
LT3008  
PACKAGE DESCRIPTION  
DC Package  
6-Lead Plastic DFN (2mm × 2mm)  
(Reference LTC DWG # 05-08-1703)  
R = 0.115  
TYP  
0.56 p 0.05  
(2 SIDES)  
0.38 p 0.05  
4
6
0.675 p 0.05  
2.50 p 0.05  
0.61 p 0.05  
(2 SIDES)  
2.00 p 0.10  
(4 SIDES)  
1.15 p 0.05  
PIN 1 BAR  
TOP MARK  
(SEE NOTE 6)  
PIN 1  
PACKAGE  
OUTLINE  
CHAMFER OF  
EXPOSED PAD  
(DC6) DFN 1103  
3
1
0.25 p 0.05  
0.25 p 0.05  
0.50 BSC  
0.50 BSC  
0.75 p 0.05  
0.200 REF  
1.37 p 0.05  
(2 SIDES)  
1.42 p 0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WCCD-2)  
2. DRAWING NOT TO SCALE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
3008f  
14  
LT3008  
PACKAGE DESCRIPTION  
TS8 Package  
8-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1639 Rev Ø)  
2.90 BSC  
(NOTE 4)  
0.52  
MAX  
0.65  
REF  
1.22 REF  
1.50 – 1.75  
(NOTE 4)  
2.80 BSC  
1.4 MIN  
3.85 MAX 2.62 REF  
PIN ONE ID  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.22 – 0.36  
8 PLCS (NOTE 3)  
0.65 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.95 BSC  
0.09 – 0.20  
(NOTE 3)  
TS8 TSOT-23 0802  
NOTE:  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
3008f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
15  
LT3008  
TYPICAL APPLICATION  
Low Duty Cycle Applications  
Average Power Savings for Low Duty Cycle Applications  
0mA to 10mA Pulsed Load, IN = 12V  
100  
90  
80  
70  
60  
3.3V  
V
IN  
IN  
OUT  
ADJ  
12V  
2.8M  
1%  
1μF  
2.2μF  
LT3008  
LOW DUTY CYCLE  
PULSED LOAD  
0 TO 10mA  
SHDN  
GND  
619k  
1%  
100μA I  
Q
50  
40  
30  
20  
10  
0
3008 TA04a  
30μA I  
Q
10μA I  
Q
1
10  
0.1  
DUTY CYCLE (%)  
3008 TA04b  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
: 1.8V to 20V, V  
LT1761  
100mA, Low Noise Micropower LDO  
150mA, Low Noise Micropower LDO  
500mA, Low Noise Micropower LDO  
V
IN  
= 1.22V, V = 0.3V, I = 20μA, I < 1μA, Low Noise < 20μV  
,
,
,
OUT  
DO  
Q
SD  
RMS  
RMS  
RMS  
Stable with 1μF Ceramic Capacitors, ThinSOTTM Package  
LT1762  
V
: 1.8V to 20V, V  
= 1.22V, V = 0.3V, I = 25μA, I < 1μA, Low Noise < 20μV  
DO Q SD  
IN  
OUT  
OUT  
OUT  
MS8 Package  
LT1763  
V
IN  
: 1.8V to 20V, V  
= 1.22V, V = 0.3V, I = 30μA, I < 1μA, Low Noise < 20μV  
DO Q SD  
S8 Package  
LT1764/LT1764A  
LT1962  
3A, Low Noise, Fast Transient  
Response LDOs  
V
: 2.7V to 20V, V  
= 1.21V, V = 0.34V, I = 1mA, I < 1μA, Low Noise < 40μV  
,
IN  
DO  
Q
SD  
RMS  
“A” Version Stable with Ceramic Capacitors, DD and TO220-5 Packages  
300mA, Low Noise Micropower LDO  
V
IN  
: 1.8V to 20V, V = 1.22V, V = 0.27V, I = 30μA, I < 1μA,  
OUT(MIN)  
DO  
Q
SD  
Low Noise: < 20μV  
, MS8 Package  
RMS  
LT1963/LT1963A  
1.5A, Low Noise, Fast Transient  
Response LDOs  
V
: 2.1V to 20V, V  
= 1.21V, V = 0.34V, I = 1mA, I < 1μA,  
IN  
OUT(MIN) DO Q SD  
RMS  
Low Noise: < 40μV  
, “A” Version Stable with Ceramic Capacitors, DD, TO220-5,  
SOT223 and S8 Packages  
LT3009  
LT3020  
20mA, 3μA I Micropower LDO  
V
: 1.6V to 20V, Low I : 3μA, V = 0.28V, 2mm × 2mm DFN and SC-70-8 Packages  
Q
IN  
Q
DO  
100mA, Low Voltage VLDO  
V
: 0.9V to 10V, V  
= 0.20V, V = 0.15V, I = 120μA, I < 1μA, 3mm × 3mm DFN  
DO Q SD  
IN  
OUT(MIN)  
and MS8 Packages  
LT3021  
500mA, Low Voltage VLDO  
V
: 0.9V to 10V, V  
= 0.20V, V = 0.16V, I = 120μA, I < 3μA, 5mm × 5mm DFN  
DO Q SD  
IN  
OUT(MIN)  
and SO8 Packages  
LT3080/ LT3080-1 1.1A, Parallelable, Low Noise,  
Low Dropout Linear Regulator  
300mV Dropout Voltage (2-supply operation), Low Noise: 40μV  
, V : 1.2V to 36V,  
RMS IN  
V
: 0V to 35.7V, current-based reference with 1-resistor V  
set; directly parallelable  
OUT  
OUT  
(no op amp required), stable with ceramic caps, TO-220, SOT-223, MSOP and 3 × 3 DFN  
Packages; “-1” version has integrated internal ballast resistor  
LT3085  
500mA, Parallelable, Low Noise,  
Low Dropout Linear Regulator  
275mV Dropout Voltage (2-supply operation), Low Noise: 40μVRMS, V : 1.2V to 36V,  
IN  
V
: 0V to 35.7V, current-based reference with 1-resistor V  
set; directly parallelable  
OUT  
OUT  
(no op amp required), stable with ceramic caps, MSOP-8 and 2 × 3 DFN packages  
ThinSOT is a trademark of Linear Technology Corporation.  
3008f  
LT 1108 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
© LINEAR TECHNOLOGY CORPORATION 2007  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT3008EDC-1.2

3μA IQ, 20mA, 45V Low Dropout Linear Regulators
Linear

LT3008EDC-1.2#PBF

LT3008 Series - 3&#181;A IQ, 20mA, 45V Low Dropout Linear Regulators; Package: DFN; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3008EDC-1.2#TR

IC VREG 1.2 V FIXED POSITIVE LDO REGULATOR, 0.5 V DROPOUT, PDSO6, 2 X 2 MM, PLASTIC, M0-229WCCD-2, DFN-6, Fixed Positive Single Output LDO Regulator
Linear

LT3008EDC-1.2#TRM

暂无描述
Linear

LT3008EDC-1.2#TRMPBF

LT3008 Series - 3&#181;A IQ, 20mA, 45V Low Dropout Linear Regulators; Package: DFN; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3008EDC-1.2#TRPBF

LT3008 Series - 3&#181;A IQ, 20mA, 45V Low Dropout Linear Regulators; Package: DFN; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3008EDC-1.2PBF

3μA IQ, 20mA, 45V Low Dropout Linear Regulators
Linear

LT3008EDC-1.2TR

3μA IQ, 20mA, 45V Low Dropout Linear Regulators
Linear

LT3008EDC-1.2TRPBF

3μA IQ, 20mA, 45V Low Dropout Linear Regulators
Linear

LT3008EDC-1.5

3μA IQ, 20mA, 45V Low Dropout Linear Regulators
Linear

LT3008EDC-1.5#PBF

LT3008 Series - 3&#181;A IQ, 20mA, 45V Low Dropout Linear Regulators; Package: DFN; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3008EDC-1.5#TR

IC VREG 1.5 V FIXED POSITIVE LDO REGULATOR, 0.5 V DROPOUT, PDSO6, 2 X 2 MM, PLASTIC, M0-229WCCD-2, DFN-6, Fixed Positive Single Output LDO Regulator
Linear