LT3010HMS8E#TRPBF [Linear]

LT3010/LT3010-5 - 50mA, 3V to 80V Low Dropout Micropower Linear Regulator; Package: MSOP; Pins: 8; Temperature Range: -40°C to 125°C;
LT3010HMS8E#TRPBF
型号: LT3010HMS8E#TRPBF
厂家: Linear    Linear
描述:

LT3010/LT3010-5 - 50mA, 3V to 80V Low Dropout Micropower Linear Regulator; Package: MSOP; Pins: 8; Temperature Range: -40°C to 125°C

光电二极管 输出元件 调节器
文件: 总16页 (文件大小:170K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3010/LT3010-5  
50mA, 3V to 80V  
Low Dropout  
Micropower Linear Regulator  
DESCRIPTION  
FEATURES  
The LT®3010 is a high voltage, micropower low dropout  
linear regulator. The device is capable of supplying 50mA  
output current with a dropout voltage of 300mV. Designed  
foruseinbattery-poweredorhighvoltagesystems,thelow  
quiescent current (30μA operating and 1μA in shutdown)  
makes the LT3010 an ideal choice. Quiescent current is  
also well controlled in dropout.  
n
Wide Input Voltage Range: 3V to 80V  
n
Low Quiescent Current: 30μA  
n
Low Dropout Voltage: 300mV  
n
Output Current: 50mA  
Thermally Enhanced 8-Lead MSOP Package  
No Protection Diodes Needed  
Fixed Output Voltage: 5V (LT3010-5)  
Adjustable Output from 1.275V to 60V (LT3010)  
1μA Quiescent Current in Shutdown  
Stable with 1μF Output Capacitor  
Stable with Aluminum, Tantalum or Ceramic  
Capacitors  
Reverse-Battery Protection  
No Reverse Current Flow from Output  
n
n
n
n
Other features of the LT3010 include the ability to operate  
withverysmalloutputcapacitors.Theregulatorsarestable  
with only 1μF on the output while most older devices re-  
quire between 10μF and 100μF for stability. Small ceramic  
capacitors can be used without the necessary addition of  
ESR as is common with other regulators. Internal protec-  
tion circuitry includes reverse-battery protection, current  
limiting, thermal limiting and reverse current protection.  
n
n
n
n
n
n
Thermal Limiting  
The device is available in a fixed output voltage of 5V and  
as an adjustable device with a 1.275V reference voltage.  
TheLT3010regulatorisavailableinthe8-leadMSOPpack-  
age with an exposed pad for enhanced thermal handling  
capability.  
APPLICATIONS  
n
Low Current High Voltage Regulators  
n
Regulator for Battery-Powered Systems  
Telecom Applications  
n
n
L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
Automotive Applications  
TYPICAL APPLICATION  
Dropout Voltage  
350  
5V Supply with Shutdown  
300  
V
OUT  
250  
200  
150  
100  
50  
IN  
OUT  
LT3010-5  
5V  
50mA  
V
IN  
5.4V TO  
80V  
1μF  
1μF  
SHDN SENSE  
GND  
30105 TA01  
V
(PIN 5) OUTPUT  
SHDN  
<0.3V  
>2.0V  
OFF  
ON  
0
0
10  
20  
30  
40  
50  
OUTPUT CURRENT (mA)  
30105 TA02  
30105fc  
1
LT3010/LT3010-5  
ABSOLUTE MAXIMUM RATINGS  
(Note 1)  
PIN CONFIGURATION  
TOP VIEW  
IN Pin Voltage ........................................................ 80V  
OUT Pin Voltage..................................................... 60V  
IN to OUT Differential Voltage ................................ 80V  
ADJ Pin Voltage ....................................................... 7V  
SHDN Pin Input Voltage......................................... 80V  
Output Short-Circuit Duration ......................... Indefinite  
Storage Temperature Range.................. –65°C to 150°C  
Operating Junction Temperature Range  
OUT  
SENSE/ADJ*  
NC  
1
2
3
4
8 IN  
7 NC  
6 NC  
5 SHDN  
9
GND  
MS8E PACKAGE  
8-LEAD PLASTIC MSOP  
*SENSE FOR LT3010-5, ADJ FOR LT3010  
= 125°C (LT3010E), θ = 40°C/W, θ = 16°C/W†  
T
T
JMAX  
JMAX  
JA  
JC  
= 140°C (LT3010H), θ = 40°C/W, θ = 16°C/W†  
JA JC  
SEE APPLICATIONS INFORMATION SECTION.  
EXPOSED PAD (PIN 9) IS GND, MUST BE SOLDERED TO PCB  
†MEASURED AT BOTTOM PAD  
(Notes 3, 10, 11)  
LT3010E............................................. –40°C to 125°C  
LT3010H ............................................ –40°C to 140°C  
Lead Temperature (Soldering, 10 sec) ................. 300°C  
ORDER INFORMATION  
LEAD FREE FINISH  
LT3010EMS8E#PBF  
LT3010EMS8E-5#PBF  
LT3010HMS8E#PBF  
LT3010HMS8E-5#PBF  
LEAD BASED FINISH  
LT3010EMS8E  
TAPE AND REEL  
PART MARKING  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LT3010EMS8E#TRPBF  
LTZF  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
PACKAGE DESCRIPTION  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 140°C  
–40°C to 140°C  
TEMPERATURE RANGE  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 140°C  
–40°C to 140°C  
LT3010EMS8E-5#TRPBF LTAEF  
LT3010HMS8E#TRPBF LTCLP  
LT3010HMS8E-5#TRPBF LTCLQ  
TAPE AND REEL  
PART MARKING  
LT3010EMS8E#TR  
LT3010EMS8E-5#TR  
LT3010HMS8E #TR  
LT3010HMS8E-5 #TR  
LTZF  
LT3010EMS8E-5  
LTAEF  
LTCLP  
LTCLQ  
LT3010HMS8E  
LT3010HMS8E-5  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
(LT3010E) The l denotes the specifications which apply over the –40°C to  
ELECTRICAL CHARACTERISTICS  
125°C operating temperature range, otherwise specifications are at TJ = 25°C.  
PARAMETER  
CONDITIONS  
LT3010  
MIN  
TYP  
MAX  
UNITS  
l
l
Minimum Input Voltage  
I
= 50mA  
3
4
V
LOAD  
Regulated Output Voltage  
(Note 3)  
LT3010-5  
V
= 5.5V, I  
= 1mA  
LOAD  
4.925 5.000 5.075  
4.850 5.000 5.150  
V
V
IN  
6V < V < 80V, 1mA < I  
< 50mA  
< 50mA  
IN  
LOAD  
ADJ Pin Voltage (Notes 2, 3)  
LT3010  
V
= 3V, I  
= 1mA  
LOAD  
1.258 1.275 1.292  
1.237 1.275 1.313  
V
V
IN  
4V < V < 80V, 1mA < I  
l
l
IN  
LOAD  
Line Regulation  
LT3010-5  
LT3010 (Note 2) ΔV = 3V to 80V, I  
ΔV = 5.5V to 80V, I  
= 1mA  
= 1mA  
3
3
15  
13  
mV  
mV  
IN  
IN  
LOAD  
LOAD  
Load Regulation  
LT3010-5  
V
V
= 6V, ΔI  
= 6V, ΔI  
= 1mA to 50mA  
= 1mA to 50mA  
25  
50  
90  
mV  
mV  
IN  
IN  
LOAD  
LOAD  
l
30105fc  
2
LT3010/LT3010-5  
ELECTRICAL CHARACTERISTICS (LT3010E) The l denotes the specifications which apply over the –40°C to  
125°C operating temperature range, otherwise specifications are at TJ = 25°C.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
LT3010 (Note 2)  
V
V
= 4V, ΔI  
= 4V, ΔI  
= 1mA to 50mA  
= 1mA to 50mA  
10  
20  
32  
mV  
mV  
IN  
IN  
LOAD  
LOAD  
l
l
l
l
Dropout Voltage  
I
I
= 1mA  
= 1mA  
100  
200  
300  
150  
190  
mV  
mV  
LOAD  
LOAD  
V
= V  
OUT(NOMINAL)  
IN  
(Notes 4, 5)  
I
I
= 10mA  
= 10mA  
260  
350  
mV  
mV  
LOAD  
LOAD  
I
I
= 50mA  
= 50mA  
370  
550  
mV  
mV  
LOAD  
LOAD  
l
l
l
l
GND Pin Current  
I
I
I
I
= 0mA  
= 1mA  
= 10mA  
= 50mA  
30  
60  
μA  
μA  
LOAD  
LOAD  
LOAD  
LOAD  
V
= V  
100  
400  
1.8  
180  
700  
3.3  
IN  
OUT(NOMINAL)  
(Notes 4, 6)  
μA  
mA  
Output Voltage Noise  
ADJ Pin Bias Current  
Shutdown Threshold  
C
= 10μF, I  
= 50mA, BW = 10Hz to 100kHz  
100  
50  
μV  
RMS  
OUT  
LOAD  
(Note 7)  
100  
2
nA  
l
l
V
OUT  
V
OUT  
= Off to On  
= On to Off  
1.3  
1.1  
V
V
0.3  
SHDN Pin Current  
(Note 8)  
V
SHDN  
V
SHDN  
= 0V  
= 6V  
0.5  
0.1  
2
0.5  
μA  
μA  
Quiescent Current in Shutdown  
Ripple Rejection  
V
= 6V, V  
= 0V  
1
5
μA  
IN  
SHDN  
LT3010  
LT3010-5  
V
= 7V(Avg), V  
= 7V(Avg), V  
= 0.5V , f  
= 120Hz, I  
= 120Hz, I  
= 50mA  
= 50mA  
65  
60  
75  
68  
dB  
dB  
IN  
RIPPLE  
= 0.5V , f  
RIPPLE P-P RIPPLE  
P-P RIPPLE  
LOAD  
LOAD  
V
IN  
Current Limit  
V
= 7V, V  
= 0V  
OUT  
140  
mA  
mA  
mA  
IN  
l
l
LT3010-5  
LT3010 (Note 2)  
V
IN  
V
IN  
= 6V, ΔV  
= 4V, ΔV  
= 0.1V  
= 0.1V  
60  
60  
OUT  
OUT  
l
Input Reverse Leakage Current  
V
IN  
= –80V, V  
= 0V  
OUT  
6
mA  
Reverse Output Current  
(Note 9)  
LT3010-5  
LT3010 (Note 2)  
V
V
= 5V, V < 5V  
10  
8
20  
15  
μA  
μA  
OUT  
OUT  
IN  
= 1.275V, V < 1.275V  
IN  
(LT3010H) The l denotes the specifications which apply over the –40°C to 140°C operating temperature range, otherwise  
specifications are at TJ = 25°C.  
PARAMETER  
CONDITIONS  
LT3010  
MIN  
TYP  
MAX UNITS  
l
l
l
Minimum Input Voltage  
I
= 50mA  
3
4.25  
V
LOAD  
Regulated Output Voltage  
(Note 3)  
LT3010-5  
V
= 5.5V, I  
= 1mA  
LOAD  
4.925 5.000 5.075  
4.825 5.000 5.15  
V
V
IN  
6V < V < 80V, 1mA < I  
< 50mA  
IN  
LOAD  
ADJ Pin Voltage (Notes 2, 3)  
LT3010  
V
= 3V, I  
= 1mA  
1.258 1.275 1.292  
1.230 1.275 1.313  
V
V
IN  
LOAD  
4.25V < V < 80V, 1mA < I  
< 50mA  
IN  
LOAD  
l
l
Line Regulation  
LT3010-5  
ΔV = 5.5V to 80V, I  
= 1mA  
3
3
20  
15  
mV  
mV  
IN  
LOAD  
LT3010 (Note 2) ΔV = 3V to 80V, I  
= 1mA  
IN  
LOAD  
Load Regulation  
LT3010-5  
V
V
= 6V, ΔI  
= 6V, ΔI  
= 1mA to 50mA  
= 1mA to 50mA  
25  
50  
mV  
mV  
IN  
IN  
LOAD  
LOAD  
l
l
100  
LT3010 (Note 2)  
V
V
= 4V, ΔI  
= 4.25V, ΔI  
= 1mA to 50mA  
10  
20  
45  
mV  
mV  
IN  
IN  
LOAD  
= 1mA to 50mA  
LOAD  
30105fc  
3
LT3010/LT3010-5  
ELECTRICAL CHARACTERISTICS (LT3010H) The l denotes the specifications which apply over the –40°C to  
140°C operating temperature range, otherwise specifications are at TJ = 25°C.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
Dropout Voltage  
I
I
= 1mA  
= 1mA  
100  
150  
220  
mV  
mV  
LOAD  
LOAD  
V
= V  
l
l
l
IN  
OUT(NOMINAL)  
(Notes 4, 5)  
I
I
= 10mA  
= 10mA  
200  
300  
260  
380  
mV  
mV  
LOAD  
LOAD  
I
I
= 50mA  
= 50mA  
370  
600  
mV  
mV  
LOAD  
LOAD  
l
l
l
l
GND Pin Current  
I
I
I
I
= 0mA  
= 1mA  
= 10mA  
= 50mA  
30  
80  
μA  
μA  
LOAD  
LOAD  
LOAD  
LOAD  
V
= V  
100  
400  
1.8  
200  
750  
3.5  
IN  
OUT(NOMINAL)  
(Notes 4, 6)  
μA  
mA  
Output Voltage Noise  
ADJ Pin Bias Current  
Shutdown Threshold  
C
= 10μF, I  
= 250mA, BW = 10Hz to 100kHz  
100  
50  
μV  
RMS  
OUT  
LOAD  
(Note 7)  
100  
2
nA  
l
l
V
OUT  
V
OUT  
= Off to On  
= On to Off  
1.3  
0.8  
V
V
0.3  
SHDN Pin Current  
(Note 8)  
V
SHDN  
V
SHDN  
= 0V  
= 6V  
0.5  
0.1  
2
0.5  
μA  
μA  
Quiescent Current in Shutdown  
Ripple Rejection  
V
= 6V, V  
= 0V  
1
5
μA  
IN  
SHDN  
LT3010  
LT3010-5  
V
= 7V(Avg), V  
= 7V(Avg), V  
= 0.5V , f  
= 120Hz, I  
= 120Hz, I  
= 50mA  
= 50mA  
65  
60  
75  
68  
dB  
dB  
IN  
RIPPLE  
= 0.5V , f  
RIPPLE P-P RIPPLE  
P-P RIPPLE  
LOAD  
LOAD  
V
IN  
l
l
l
Current Limit  
V
= 7V, V  
= 0V  
OUT  
140  
mA  
mA  
mA  
IN  
LT3010-5  
LT3010 (Note 2)  
V
IN  
V
IN  
= 6V, ΔV  
= 0.1V  
OUT  
55  
55  
= 4.25V, ΔV  
= 0.1V  
OUT  
l
Input Reverse Leakage Current  
V
IN  
= 80V, V  
= 0V  
6
mA  
OUT  
Reverse Output Current  
(Note 9)  
LT3010-5  
LT3010 (Note 2)  
V
V
= 5V, V < 5V  
10  
8
20  
15  
μA  
μA  
OUT  
OUT  
IN  
= 1.275V, V < 1.275V  
IN  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The LT3010 (adjustable version) is tested and specified for these  
conditions with the ADJ pin connected to the OUT pin.  
Note 3: Operating conditions are limited by maximum junction  
temperature. The regulated output voltage specification will not apply  
for all possible combinations of input voltage and output current. When  
operating at maximum input voltage, the output current range must be  
limited. When operating at maximum output current, the input voltage  
range must be limited.  
Note 4: To satisfy requirements for minimum input voltage, the LT3010  
(adjustable version) is tested and specified for these conditions with an  
external resistor divider (249k bottom, 392k top) for an output voltage of  
3.3V. The external resistor divider will add a 5μA DC load on the output.  
Note 7: ADJ pin bias current flows into the ADJ pin.  
Note 8: SHDN pin current flows out of the SHDN pin.  
Note 9: Reverse output current is tested with the IN pin grounded and the  
OUT pin forced to the rated output voltage. This current flows into the OUT  
pin and out the GND pin.  
Note 10: The LT3010E is guaranteed to meet performance specifications  
from 0°C to 125°C operating junction temperature. Specifications over  
the –40°C to 125°C operating junction temperature range are assured by  
design, characterization and correlation with statistical process controls.  
The LT3010H is tested to the LT3010H Electrical Characteristics table at  
140°C operating junction temperature. High junction temperatures degrade  
operating lifetimes. Operating lifetime is derated at junction temperatures  
greater than 125°C.  
Note 11: This IC includes overtemperature protection that is intended  
to protect the device during momentary overload conditions. Junction  
temperature will exceed 125°C (LT3010E) or 140°C (LT3010H) when  
overtemperature protection is active. Continuous operation above the  
specified maximum operating junction temperature may impair device  
reliability.  
Note 5: Dropout voltage is the minimum input to output voltage differential  
needed to maintain regulation at a specified output current. In dropout, the  
output voltage will be equal to (V – V  
).  
IN  
DROPOUT  
Note 6: GND pin current is tested with V = V  
(nominal) and a current  
IN  
OUT  
source load. This means the device is tested while operating in its dropout  
region. This is the worst-case GND pin current. The GND pin current will  
decrease slightly at higher input voltages.  
30105fc  
4
LT3010/LT3010-5  
TYPICAL PERFORMANCE CHARACTERISTICS  
Typical Dropout Voltage  
Guaranteed Dropout Voltage  
Dropout Voltage  
500  
600  
500  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
= TEST POINTS  
450  
400  
350  
300  
250  
200  
150  
100  
50  
I
L
= 50mA  
400  
300  
T
= 125°C  
J
T
≤ 125°C  
≤ 25°C  
J
I
I
= 10mA  
= 1mA  
L
T
J
T
= 25°C  
J
200  
100  
0
L
0
0
0
5
10 15 20 25 30 35 40 45 50  
0
5
10 15 20 25 30 35 40 45 50  
–50 –25  
0
25 50 75 100 125 150  
OUTPUT CURRENT (mA)  
TEMPERATURE (°C)  
OUTPUT CURRENT (mA)  
30105 G02  
30105 G01  
30105 G03  
Quiescent Current  
LT3010 ADJ Pin Voltage  
LT3010-5 Output Voltage  
1.295  
5.08  
40  
I
= 1mA  
I
L
= 1mA  
L
1.290  
1.285  
5.06  
5.04  
35  
30  
V
SHDN  
= V  
IN  
1.280  
1.275  
1.270  
1.265  
1.260  
5.02  
5.00  
4.98  
4.96  
4.94  
25  
20  
15  
10  
5
V
R
R
> 6V  
IN  
L
L
= ∞, I = 0 (LT3010-5)  
L
= 250k, I = 5μA (LT3010)  
L
V
SHDN  
= 0V  
1.255  
4.92  
0
–50 –25  
0
25 50 75 100 125 150  
–50 –25  
0
25 50 75 100 125 150  
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
30105 G05  
30105 G04  
30105 G06  
LT3010 Quiescent Current  
LT3010-5 Quiescent Current  
LT3010 GND Pin Current  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
200  
180  
160  
140  
120  
100  
80  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
T
= 25°C  
= ∞  
T
= 25°C  
R = ∞  
L
T
= 25°C  
J
L
J
J
R
*FOR V  
= 1.275V  
OUT  
V
= V  
IN  
R
= 25.5Ω  
= 50mA*  
SHDN  
L
L
I
R
= 51Ω  
L
I
L
= 25mA*  
R
L
= 127Ω  
= 10mA*  
L
60  
I
V
SHDN  
= V  
IN  
40  
R
= 1.27k I = 1mA*  
L
20  
L
V
= 0V  
6
SHDN  
V
6
= 0V  
8
SHDN  
0
0
0
1
2
3
4
5
7
8
9
10  
0
1
2
3
4
5
7
9
10  
0
1
2
3
4
5
6
7
8
9
10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
30105 G07  
30105 G09  
30105 G08  
30105fc  
5
LT3010/LT3010-5  
TYPICAL PERFORMANCE CHARACTERISTICS  
LT3010-5 GND Pin Current  
GND Pin Current vs ILOAD  
SHDN Pin Threshold  
1.6  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
T
= V  
+ 1V  
OUT(NOMINAL)  
T
= 25°C  
IN  
J
J
= 25°C  
*FOR V  
= 5V  
OUT  
1.4  
1.2  
OFF-TO-ON  
ON-TO-OFF  
R
I
= 100Ω  
= 50mA*  
L
L
1.0  
0.8  
0.6  
0.4  
0.2  
R
L
= 200Ω  
= 25mA*  
L
I
R
L
= 500Ω  
= 10mA*  
L
I
R
L
= 5k, I = 1mA*  
L
0
–50 –25  
0
25 50 75 100 125 150  
0
5
10 15 20 25 30 35 40 45 50  
0
1
2
3
4
5
6
7
8
9
10  
TEMPERATURE (°C)  
OUTPUT CURRENT (mA)  
INPUT VOLTAGE (V)  
30105 G10  
30105 G11  
30105 G12  
SHDN Pin Current  
SHDN Pin Current  
ADJ Pin Bias Current  
200  
180  
160  
140  
120  
100  
80  
0.6  
0.5  
0.8  
T
= 25°C  
V
= 0V  
J
SHDN  
CURRENT FLOWS  
CURRENT FLOWS  
0.7  
0.6  
OUT OF SHDN PIN  
OUT OF SHDN PIN  
0.4  
0.3  
0.5  
0.4  
0.3  
0.2  
0.1  
0.2  
0.1  
0
60  
40  
20  
0
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
–50 –25  
0
25 50 75 100 125 150  
–50 –25  
0
25 50 75 100 125 150  
SHDN PIN VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
30105 G13  
30105 G14  
30105 G15  
Current Limit  
Current Limit  
Reverse Output Current  
200  
180  
160  
140  
120  
100  
80  
200  
180  
160  
140  
120  
100  
80  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
V
= 7V  
V
T
= 0V  
IN  
OUT  
T
= 25°C  
= 0V  
OUT  
J
J
IN  
= 0V  
= 25°C  
V
CURRENT FLOWS  
INTO OUTPUT PIN  
V
V
= V  
= V  
(LT3010)  
ADJ  
SENSE  
OUT  
OUT  
ADJ  
(LT3010-5)  
PIN CLAMP  
(SEE APPLICATIONS  
INFORMATION)  
LT3010  
60  
60  
40  
40  
LT3010-5  
20  
20  
0
0
–50 –25  
0
25 50 75 100 125 150  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
30105 G17  
30105 G18  
30105 G16  
30105fc  
6
LT3010/LT3010-5  
TYPICAL PERFORMANCE CHARACTERISTICS  
Reverse Output Current  
Input Ripple Rejection  
Input Ripple Rejection  
100  
90  
80  
78  
76  
74  
72  
70  
68  
66  
64  
62  
60  
80  
V
I
= 7V + 50mV  
RIPPLE  
RMS  
V
V
V
= 0V  
= V  
IN  
L
IN  
OUT  
OUT  
= 50mA  
= 1.275V (LT3010)  
SENSE  
ADJ  
70  
60  
= V  
= 5V (LT3010-5)  
80  
70  
50  
40  
30  
20  
10  
0
C
OUT  
= 10μF  
60  
50  
40  
30  
20  
10  
0
C
OUT  
= 1μF  
V
L
= 7V + 0.5V RIPPLE AT f = 120Hz  
P-P  
LT3010-5  
IN  
I
= 50mA  
V
OUT  
= 1.275V  
LT3010  
25 50 75 100 125 150  
TEMPERATURE (°C)  
10  
100  
1k  
10k  
100k  
1M  
–50 –25  
0
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
30105 G21  
3010 G19  
30105 G20  
LT3010 Minimum Input Voltage  
Load Regulation  
Output Noise Spectral Density  
10  
1
4.0  
0
–5  
C
L
= 1μF  
ΔI = 1mA TO 50mA  
L
I
= 50mA  
OUT  
LOAD  
I
= 50mA  
3.5  
3.0  
LT3010  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
2.5  
2.0  
1.5  
1.0  
0.5  
LT3010-5  
0.1  
0.01  
0
10  
100  
1k  
10k  
100k  
–50 –25  
0
25 50 75 100 125 150  
–50 –25  
0
25 50 75 100 125 150  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
30105 G24  
30105 G22  
30105 G23  
LT3010-5 10Hz to 100kHz  
Output Noise  
LT3010-5 Transient Response  
0.2  
0.1  
0
V
OUT  
–0.1  
–0.2  
100μV/DIV  
V
C
C
= 6V  
IN  
IN  
= 1μF CERAMIC  
= 1μF CERAMIC  
= 1mA TO 50mA  
OUT  
ΔI  
LOAD  
50  
25  
0
30105 G25  
1ms/DIV  
C
L
= 1μF  
OUT  
I
= 50mA  
0
200  
400  
600  
800  
1000  
TIME (μs)  
30105 G26  
30105fc  
7
LT3010/LT3010-5  
PIN FUNCTIONS  
OUT(Pin1):Output.Theoutputsuppliespowertotheload.  
A minimum output capacitor of 1μF is required to prevent  
oscillations. Larger output capacitors will be required for  
applications with large transient loads to limit peak volt-  
age transients. See the Applications Information section  
for more information on output capacitance and reverse  
output characteristics.  
in the Typical Performance Characteristics). The ADJ pin  
voltage is 1.275V referenced to ground, and the output  
voltage range is 1.275V to 60V.  
NC (Pins 3, 6, 7): No Connection. May be floated, tied to  
IN or tied to GND.  
GND(Pin4, Pin9):Ground. Theexposedbackside(pin 9)  
of the package is an electrical connection for GND. As  
such, to ensure optimum device operation, pin 9 must be  
connected directly to pin 4 on the PC board.  
SENSE (Pin 2): Sense. For the LT3010-5, the SENSE pin  
is the input to the error amplifier. Optimum regulation will  
be obtained at the point where the SENSE pin is connected  
to the OUT pin of the regulator. In critical applications,  
SHDN (Pin 5): Shutdown. The SHDN pin is used to put  
the LT3010 into a low power shutdown state. The output  
will be off when the SHDN pin is pulled low. The SHDN  
pin can be driven either by 5V logic or open-collector logic  
withapull-upresistor. Thepull-upresistorisonlyrequired  
to supply the pull-up current of the open-collector gate,  
normally several microamperes. If unused, the SHDN pin  
small voltage drops are caused by the resistance (R ) of  
P
PC traces between the regulator and the load. These may  
be eliminated by connecting the SENSE pin to the output  
at the load as shown in Figure 1 (Kelvin Sense Connec-  
tion). Note that the voltage drop across the external PC  
traces will add to the dropout voltage of the regulator.  
The SENSE pin bias current is 10μA at the nominal rated  
output voltage.  
must be tied to a logic high or V .  
IN  
IN (Pin 8): Input. Power is supplied to the device through  
the IN pin. A bypass capacitor is required on this pin if  
the device is more than six inches away from the main  
input filter capacitor. In general, the output impedance of  
a battery rises with frequency, so it is advisable to include  
a bypass capacitor in battery-powered circuits. A bypass  
capacitor in the range of 1μF to 10μF is sufficient. The  
LT3010isdesignedtowithstandreversevoltagesontheIN  
pin with respect to ground and the OUT pin. In the case of  
a reversed input, which can happen if a battery is plugged  
in backwards, the LT3010 will act as if there is a diode in  
series with its input. There will be no reverse current flow  
into the LT3010 and no reverse voltage will appear at the  
load. The device will protect both itself and the load.  
ADJ (Pin 2): Adjust. For the adjustable LT3010, this is the  
input to the error amplifier. This pin is internally clamped  
to 7V. It has a bias current of 50nA which flows into the  
pin (see curve of ADJ Pin Bias Current vs Temperature  
R
P
8
5
1
2
IN  
OUT  
LT3010  
+
+
SHDN SENSE  
GND  
LOAD  
V
IN  
4, 9  
30105 F01  
Figure 1. Kelvin Sense Connection  
30105fc  
8
LT3010/LT3010-5  
APPLICATIONS INFORMATION  
The LT3010 is a 50mA high voltage low dropout regulator  
with micropower quiescent current and shutdown. The  
device is capable of supplying 50mA at a dropout voltage  
of 300mV. The low operating quiescent current (30μA)  
drops to 1μA in shutdown. In addition to the low quies-  
cent current, the LT3010 incorporates several protection  
features which make it ideal for use in battery-powered  
systems. The device is protected against both reverse  
input and reverse output voltages. In battery backup ap-  
plications where the output can be held up by a backup  
batterywhentheinputispulledtoground, theLT3010acts  
like it has a diode in series with its output and prevents  
reverse current flow.  
The adjustable device is tested and specified with the  
ADJ pin tied to the OUT pin and a 5μA DC load (unless  
otherwisespecified)foranoutputvoltageof1.275V.Speci-  
fications for output voltages greater than 1.275V will be  
proportional to the ratio of the desired output voltage to  
1.275V;(V /1.275V).Forexample,loadregulationforan  
OUT  
output current change of 1mA to 50mA is –10mV typical  
at V  
= 1.275V. At V  
= 12V, load regulation is:  
OUT  
OUT  
(12V/1.275V) • (–10mV) = –94mV  
Output Capacitance and Transient Response  
The LT3010 is designed to be stable with a wide range  
of output capacitors. The ESR of the output capacitor  
affects stability, most notably with small capacitors. A  
minimum output capacitor of 1μF with an ESR of 3Ω or  
less is recommended to prevent oscillations. The LT3010  
is a micropower device and output transient response  
will be a function of output capacitance. Larger values  
of output capacitance decrease the peak deviations and  
provideimprovedtransientresponseforlargerloadcurrent  
changes. Bypass capacitors, used to decouple individual  
components powered by the LT3010, will increase the  
effective output capacitor value.  
Adjustable Operation  
TheadjustableversionoftheLT3010hasanoutputvoltage  
range of 1.275V to 60V. The output voltage is set by the  
ratio of two external resistors as shown in Figure 2. The  
device servos the output to maintain the voltage at the  
adjust pin at 1.275V referenced to ground. The current  
in R1 is then equal to 1.275V/R1 and the current in R2 is  
the current in R1 plus the ADJ pin bias current. The ADJ  
pin bias current, 50nA at 25°C, flows through R2 into the  
ADJ pin. The output voltage can be calculated using the  
formula in Figure 2. The value of R1 should be less than  
250k to minimize errors in the output voltage caused by  
the ADJ pin bias current. Note that in shutdown the output  
is turned off and the divider current will be zero.  
Extra consideration must be given to the use of ceramic  
capacitors. Ceramic capacitors are manufactured with a  
variety of dielectrics, each with different behavior across  
temperature and applied voltage. The most common  
dielectrics used are specified with EIA temperature char-  
acteristic codes of Z5U, Y5V, X5R and X7R. The Z5U and  
Y5V dielectrics are good for providing high capacitances  
in a small package, but they tend to have strong voltage  
and temperature coefficients as shown in Figures 3 and 4.  
When used with a 5V regulator, a 16V 10μF Y5V capacitor  
can exhibit an effective value as low as 1μF to 2μF for the  
DC bias voltage applied and over the operating tempera-  
ture range. The X5R and X7R dielectrics result in more  
stable characteristics and are more suitable for use as the  
output capacitor. The X7R type has better stability across  
temperature, while the X5R is less expensive and is avail-  
able in higher values. Care still must be exercised when  
using X5R and X7R capacitors; the X5R and X7R codes  
only specify operating temperature range and maximum  
Asmallcapacitor(C1)placedinparallelwiththetopresistor  
(R2)oftheoutputdividerisnecessaryforstabilityandtran-  
sientperformanceoftheadjustableLT3010.Theimpedance  
of C1 at 10kHz should be less than the value of R1.  
V
IN  
OUT  
LT3010  
ADJ  
OUT  
+
C1  
R2  
R1  
V
IN  
GND  
30105 F02  
R2  
R1  
V
V
= 1.275V 1 +  
+ (I )(R2)  
ADJ  
OUT  
(
)
= 1.275V  
ADJ  
I
= 50nA AT 25°C  
OUTPUT RANGE = 1.275V TO 60V  
ADJ  
Figure 2. Adjustable Operation  
30105fc  
9
LT3010/LT3010-5  
APPLICATIONS INFORMATION  
20  
Thermal Considerations  
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10μF  
0
The power handling capability of the device will be lim-  
ited by the maximum rated junction temperature (125°C,  
LT3010E or 140°C, LT3010H). The power dissipated by  
the device will be made up of two components:  
X5R  
–20  
–40  
1. Output current multiplied by the input/output voltage  
–60  
Y5V  
differential: I  
• (V – V ) and,  
OUT  
IN OUT  
–80  
2. GND pin current multiplied by the input voltage:  
• V  
I
–100  
GND  
IN  
0
2
4
6
8
10 12 14 16  
DC BIAS VOLTAGE (V)  
The GND pin current can be found by examining the GND  
Pin Current curves in the Typical Performance Character-  
istics. Power dissipation will be equal to the sum of the  
two components listed above.  
30105 F03  
Figure 3. Ceramic Capacitor DC Bias Characteristics  
40  
20  
TheLT3010seriesregulatorshaveinternalthermallimiting  
designed to protect the device during overload condi-  
tions. For continuous normal conditions the maximum  
junction temperature rating of 125°C (LT3010E) or 140°C  
(LT3010H) must not be exceeded. It is important to give  
careful consideration to all sources of thermal resistance  
fromjunctiontoambient.Additionalheatsourcesmounted  
nearby must also be considered.  
0
X5R  
–20  
–40  
Y5V  
–60  
–80  
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10μF  
For surface mount devices, heat sinking is accomplished  
by using the heat spreading capabilities of the PC board  
and its copper traces. Copper board stiffeners and plated  
through-holes can also be used to spread the heat gener-  
ated by power devices.  
–100  
–50 –25  
0
25  
50  
75  
100 125  
TEMPERATURE (°C)  
30105 F04  
Figure 4. Ceramic Capacitor Temperature Characteristics  
capacitancechangeovertemperature.Capacitancechange  
due to DC bias with X5R and X7R capacitors is better than  
Y5VandZ5Ucapacitors,butcanstillbesignificantenough  
to drop capacitor values below appropriate levels. Capaci-  
tor DC bias characteristics tend to improve as component  
casesizeincreases, butexpectedcapacitanceatoperating  
voltage should be verified.  
The following table lists thermal resistance for several  
different board sizes and copper areas. All measurements  
were taken in still air on 3/32" FR-4 board with one ounce  
copper.  
Table 1. Measured Thermal Resistance  
COPPER AREA  
THERMAL RESISTANCE  
TOPSIDE  
BACKSIDE BOARD AREA (JUNCTION-TO-AMBIENT)  
Voltage and temperature coefficients are not the only  
sources of problems. Some ceramic capacitors have a  
piezoelectric response. A piezoelectric device generates  
voltageacrossitsterminalsduetomechanicalstress,simi-  
lartothewayapiezoelectricaccelerometerormicrophone  
works. For a ceramic capacitor the stress can be induced  
by vibrations in the system or thermal transients.  
2500 sq mm 2500 sq mm 2500 sq mm  
1000 sq mm 2500 sq mm 2500 sq mm  
225 sq mm 2500 sq mm 2500 sq mm  
100 sq mm 2500 sq mm 2500 sq mm  
40°C/W  
45°C/W  
50°C/W  
62°C/W  
The thermal resistance junction-to-case (θ ), measured  
JC  
at the exposed pad on the back of the die, is 16°C/W.  
30105fc  
10  
LT3010/LT3010-5  
APPLICATIONS INFORMATION  
Continuous operation at large input/output voltage dif-  
ferentials and maximum load current is not practical  
due to thermal limitations. Transient operation at high  
input/output differentials is possible. The approximate  
thermal time constant for a 2500sq mm 3/32" FR-4 board  
with maximum topside and backside area for one ounce  
copper is 3 seconds. This time constant will increase as  
more thermal mass is added (i.e. vias, larger board, and  
other components).  
Example 2: Given an output voltage of 5V, an input voltage  
of 48V that rises to 72V for 5ms(max) out of every 100ms,  
and a 5mA load that steps to 50mA for 50ms out of every  
250ms, what is the junction temperature rise above ambi-  
ent? Using a 500ms period (well under the time constant  
of the board), power dissipation is as follows:  
P1(48V in, 5mA load) = 5mA • (48V – 5V)  
+ (200μA • 48V) = 0.23W  
P2(48V in, 50mA load) = 50mA • (48V – 5V)  
+ (1mA • 48V) = 2.20W  
Foranapplicationwithtransienthighpowerpeaks,average  
power dissipation can be used for junction temperature  
calculationsaslongasthepulseperiodissignificantlyless  
than the thermal time constant of the device and board.  
P3(72V in, 5mA load) = 5mA • (72V – 5V)  
+ (200μA • 72V) = 0.35W  
P4(72V in, 50mA load) = 50mA • (72V – 5V)  
+ (1mA • 72V) = 3.42W  
Calculating Junction Temperature  
Example 1: Given an output voltage of 5V, an input volt-  
age range of 24V to 30V, an output current range of 0mA  
to 50mA, and a maximum ambient temperature of 50°C,  
what will the maximum junction temperature be?  
Operation at the different power levels is as follows:  
76% operation at P1, 19% for P2, 4% for P3, and  
1% for P4.  
PEFF = 76%(0.23W) + 19%(2.20W) + 4%(0.35W)  
+ 1%(3.42W) = 0.64W  
The power dissipated by the device will be equal to:  
I
• (V  
– V ) + (I  
• V  
)
OUT(MAX)  
IN(MAX)  
OUT  
GND  
IN(MAX)  
With a thermal resistance in the range of 40°C/W to  
62°C/W,thistranslatestoajunctiontemperatureriseabove  
ambient of 26°C to 38°C.  
where:  
I
= 50mA  
= 30V  
OUT(MAX)  
V
IN(MAX)  
High Temperature Operation  
I
at (I = 50mA, V = 30V) = 1mA  
OUT IN  
GND  
Care must be taken when designing LT3010/LT3010-5  
applications to operate at high ambient temperatures.  
The LT3010/LT3010-5 works at elevated temperatures  
but erratic operation can occur due to unforeseen varia-  
tions in external components. Some tantalum capacitors  
are available for high temperature operation, but ESR is  
often several ohms; capacitor ESR above 3Ω is unsuit-  
able for use with the LT3010/LT3010-5. Ceramic capacitor  
manufacturers (Murata, AVX, TDK, and Vishay Vitramon  
at this writing) now offer ceramic capacitors that are rated  
to 150°C using an X8R dielectric. Device instability will  
occurifoutputcapacitorvalueandESRareoutsidedesign  
limits at elevated temperature and operating DC voltage  
bias (see information on capacitor characteristics under  
So:  
P = 50mA • (30V – 5V) + (1mA • 30V) = 1.28W  
The thermal resistance will be in the range of 40°C/W to  
62°C/W depending on the copper area. So the junction  
temperature rise above ambient will be approximately  
equal to:  
1.31W • 50°C/W = 65.5°C  
The maximum junction temperature will then be equal to  
the maximum junction temperature rise above ambient  
plus the maximum ambient temperature or:  
T
= 50°C + 65.5°C = 115.5°C  
JMAX  
30105fc  
11  
LT3010/LT3010-5  
APPLICATIONS INFORMATION  
Output Capacitance and Transient Response). Check each  
passive component for absolute value and voltage ratings  
over the operating temperature range.  
In situations where the ADJ pin is connected to a resistor  
dividerthatwouldpulltheADJpinaboveits7Vclampvolt-  
age if the output is pulled high, the ADJ pin input current  
must be limited to less than 5mA. For example, a resistor  
divider is used to provide a regulated 1.5V output from the  
1.22V reference when the output is forced to 60V. The top  
resistor of the resistor divider must be chosen to limit the  
current into the ADJ pin to less than 5mA when the ADJ  
pin is at 7V. The 53V difference between the OUT and ADJ  
pins divided by the 5mA maximum current into the ADJ  
pin yields a minimum top resistor value of 10.6k.  
Leakagesincapacitorsorfromsolderuxleftafterinsuffi-  
cientboardcleaningadverselyaffectslowquiescentcurrent  
operation. Consider junction temperature increase due to  
power dissipation in both the junction and nearby compo-  
nents to ensure maximum specifications are not violated  
for the LT3010/LT3010H or external components.  
Protection Features  
In circuits where a backup battery is required, several  
different input/output conditions can occur. The output  
voltage may be held up while the input is either pulled  
to ground, pulled to some intermediate voltage, or is left  
open circuit. Current flow back into the output will follow  
the curve shown in Figure 5. The rise in reverse output  
current above 7V occurs from the breakdown of the 7V  
clamp on the ADJ pin. With a resistor divider on the  
regulator output, this current will be reduced depending  
on the size of the resistor divider.  
TheLT3010incorporatesseveralprotectionfeatureswhich  
make it ideal for use in battery-powered circuits. In ad-  
dition to the normal protection features associated with  
monolithicregulators,suchascurrentlimitingandthermal  
limiting, thedeviceisprotectedagainstreverse-inputvolt-  
ages, and reverse voltages from output to input.  
Current limit protection and thermal overload protection  
areintendedtoprotectthedeviceagainstcurrentoverload  
conditions at the output of the device. For normal opera-  
tion, the junction temperature should not exceed 125°C  
(LT3010E) or 140°C (LT3010H).  
When the IN pin of the LT3010 is forced below the OUT  
pin or the OUT pin is pulled above the IN pin, input cur-  
rent will typically drop to less than 2μA. This can happen  
if the input of the LT3010 is connected to a discharged  
(low voltage) battery and the output is held up by either  
a backup battery or a second regulator circuit. The state  
of the SHDN pin will have no effect on the reverse output  
current when the output is pulled above the input.  
The input of the device will withstand reverse voltages  
of 80V. Current flow into the device will be limited to less  
than 6mA (typically less than 100μA) and no negative  
voltage will appear at the output. The device will protect  
both itself and the load. This provides protection against  
batteries which can be plugged in backward.  
The ADJ pin of the adjustable device can be pulled above  
or below ground by as much as 7V without damaging the  
device. If the input is left open circuit or grounded, the  
ADJ pin will act like an open circuit when pulled below  
ground, and like a large resistor (typically 100k) in series  
with a diode when pulled above ground. If the input is  
powered by a voltage source, pulling the ADJ pin below  
the reference voltage will cause the device to try and force  
the current limit current out of the output. This will cause  
the output to go to a unregulated high voltage. Pulling  
the ADJ pin above the reference voltage will turn off all  
output current.  
100  
T
= 25°C  
IN  
A
V
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
= 0V  
CURRENT FLOWS  
INTO OUTPUT PIN  
ADJ  
PIN CLAMP  
(SEE ABOVE)  
V
V
= V  
= V  
(LT3010)  
OUT  
OUT  
ADJ  
SENSE  
(LT3010-5)  
LT3010  
LT3010-5  
0
1
2
3
4
5
6
7
8
9
10  
OUTPUT VOLTAGE (V)  
30105 F05  
Figure 5. Reverse Output Current  
30105fc  
12  
LT3010/LT3010-5  
TYPICAL APPLICATIONS  
5V Buck Converter with Low Current Keep Alive Backup  
D2  
D1N914  
6
L1†  
15μH  
C2  
0.33μF  
V
V
BOOST  
IN  
OUT  
4
2
5.5V*  
V
SW  
5V  
IN  
C3  
4.7μF  
100V  
D1  
TO 60V  
1A/50mA  
10MQ060N  
LT1766  
CERAMIC  
15  
14  
10  
12  
SHDN  
BIAS  
FB  
R1  
C1  
+
15.4k  
100μF 10V  
SOLID  
SYNC  
GND  
R2  
4.99k  
TANTALUM  
V
C
1, 8, 9, 16 11  
C
C
1nF  
8
5
1
30105 TA03  
IN  
OUT  
LT3010-5  
OPERATING  
CURRENT  
*FOR INPUT VOLTAGES BELOW 7.5V,  
SOME RESTRICTIONS MAY APPLY  
INCREASE L1 TO 30μH FOR LOAD  
CURRENTS ABOVE 0.6A AND TO  
60μH ABOVE 1A  
2
SHDN  
SENSE  
HIGH  
LOW  
GND  
4
Buck Converter  
Efficiency vs Load Current  
100  
V
= 5V  
OUT  
L = 68μH  
V
V
= 10V  
= 42V  
IN  
IN  
90  
80  
70  
60  
50  
0
0.25  
0.50  
0.75  
1.00  
1.25  
LOAD CURRENT (A)  
30105 TA04  
30105fc  
13  
LT3010/LT3010-5  
TYPICAL APPLICATIONS  
LT3010 Automotive Application  
IN  
OUT  
NO PROTECTION  
DIODE NEEDED!  
+
V
IN  
LT3010-5  
1μF  
12V  
1μF  
LOAD: CLOCK,  
SECURITY SYSTEM  
ETC  
(LATER 42V)  
SHDN  
SENSE  
GND  
OFF  
ON  
LT3010 Telecom Application  
V
IN  
IN  
OUT  
48V  
(72V TRANSIENT)  
+
LT3010-5  
BACKUP  
BATTERY  
NO PROTECTION  
DIODE NEEDED!  
1μF  
1μF  
LOAD:  
SYSTEM MONITOR  
ETC  
SHDN  
SENSE  
GND  
30105 TA05  
OFF  
ON  
Constant Brightness for Indicator LED over Wide Input Voltage Range  
RETURN  
IN  
OUT  
LT3010  
1μF  
1μF  
OFF ON  
–48V  
SHDN ADJ  
GND  
R
SET  
30105 TA06  
I
= 1.275V/R  
LED  
SET  
–48V CAN VARY FROM –4V TO –80V  
30105fc  
14  
LT3010/LT3010-5  
PACKAGE DESCRIPTION  
MS8E Package  
8-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1662)  
BOTTOM VIEW OF  
EXPOSED PAD OPTION  
2.06 ± 0.102  
(.081 ± .004)  
1
1.83 ± 0.102  
(.072 ± .004)  
0.889 ± 0.127  
(.035 ± .005)  
2.794 ± 0.102  
(.110 ± .004)  
5.23  
(.206)  
MIN  
3.20 – 3.45  
(.126 – .136)  
2.083 ± 0.102  
(.082 ± .004)  
8
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 3)  
0.52  
(.0205)  
REF  
0.65  
(.0256)  
BSC  
0.42 ± 0.038  
(.0165 ± .0015)  
TYP  
8
7 6 5  
RECOMMENDED SOLDER PAD LAYOUT  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 4)  
4.90 ± 0.152  
(.193 ± .006)  
DETAIL “A”  
0.254  
(.010)  
0° – 6° TYP  
GAUGE PLANE  
1
2
3
4
0.53 ± 0.152  
(.021 ± .006)  
1.10  
(.043)  
MAX  
0.86  
(.034)  
REF  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.22 – 0.38  
(.009 – .015)  
TYP  
0.1016 ± 0.0508  
(.004 ± .002)  
0.65  
(.0256)  
BSC  
MSOP (MS8E) 0307 REV D  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
30105fc  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
15  
LT3010/LT3010-5  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1020  
125mA, Micropower Regulator and Comparator V : 4.5V to 36V, V  
= 2.5V, V = 0.4V, I = 40μA, I = 40μA, Comparator and  
IN  
OUT DO Q SD  
Reference, Class B Outputs, S16, PDIP14 Packages  
LT1120/LT1120A 125mA, Micropower Regulator and Comparator V : 4.5V to 36V, V  
= 2.5V, V = 0.4V, I = 40μA, I = 10μA, Comparator and  
IN  
OUT  
DO  
Q
SD  
Reference, Logic Shutdown, Ref Sources and Sinks 2/4mA, S8, N8 Packages  
LT1121/  
150mA, Micropower, LDO  
700mA, Micropower, LDO  
V : 4.2V to 30/36V, V = 3.75V, V = 0.42V, I = 30μA, I = 16μA, Reverse  
IN  
OUT  
DO  
Q
SD  
LT1121HV  
Battery Protection, SOT-223, S8, Z Packages  
LT1129  
LT1616  
LT1676  
LT1761  
LT1762  
LT1763  
V : 4.2V to 30V, V = 3.75V, V = 0.4V, I = 50μA, I = 16μA, DD, S0T-223, S8,  
IN  
OUT  
DO  
Q
SD  
TO220-5, TSSOP20 Packages  
25V, 500mA (I ), 1.4MHz, High Efficiency  
V : 3.6V to 25V, V  
= 1.25V, I = 1.9mA, I = <1μA, ThinSOT™ Package  
Q SD  
OUT  
IN  
OUT  
Step-Down DC/DC Converter  
60V, 440mA (I ), 100kHz, High Efficiency  
V : 7.4V to 60V, V  
= 1.24V, I = 3.2mA, I = 2.5μA, S8 Package  
Q SD  
OUT  
IN  
OUT  
Step-Down DC/DC Converter  
100mA, Low Noise Micropower, LDO  
V : 1.8V to 20V, V  
= 1.22V, V = 0.3V, I = 20μA, I = <1μA,  
IN  
OUT DO Q SD  
Low Noise < 20μV  
, Stable with 1μF Ceramic Capacitors, ThinSOT Package  
RMS  
150mA, Low Noise Micropower, LDO  
500mA, Low Noise Micropower, LDO  
V : 1.8V to 20V, V  
= 1.22V, V = 0.3V, I = 25μA, I = <1μA,  
IN  
OUT  
DO  
Q
SD  
Low Noise < 20μV  
, MS8 Package  
RMS  
V : 1.8V to 20V, V  
= 1.22V, V = 0.3V, I = 30μA, I = <1μA,  
IN  
OUT  
DO  
Q
SD  
Low Noise < 20μV  
, S8 Package  
RMS  
LT1764/LT1764A 3A, Low Noise, Fast Transient Response, LDO  
V : 2.7V to 20V, V  
= 1.21V, V = 0.34V, I = 1mA, I = <1μA,  
IN  
OUT DO Q SD  
Low Noise < 40μV  
, “A” Version Stable with Ceramic Capacitors,  
RMS  
DD, TO220-5 Packages  
LT1766  
LT1776  
60V, 1.2A (I ), 200kHz, High Efficiency  
V : 5.5V to 60V, V  
= 1.20V, I = 2.5mA, I = 25μA, TSSOP16/E Package  
Q SD  
OUT  
IN  
OUT  
Step-Down DC/DC Converter  
40V, 550mA (I ), 200kHz, High Efficiency  
V : 7.4V to 40V, V  
= 1.24V, I = 3.2mA, I = 30μA, N8, S8 Packages  
Q SD  
OUT  
IN  
OUT  
Step-Down DC/DC Converter  
LT1934/  
LT1934-1  
300mA/60mA, (I ), Constant Off-Time, High 90% Efficiency, V : 3.2V to 34V, V  
= 1.25V, I = 14μA, I = <1μA,  
OUT Q SD  
OUT  
IN  
Efficiency Step-Down DC/DC Converter  
ThinSOT Package  
LT1956  
60V, 1.2A (I ), 500kHz, High Efficiency  
V : 5.5V to 60V, V  
= 1.20V, I = 2.5mA, I = 25μA, TSSOP16/E Package  
OUT Q SD  
OUT  
IN  
Step-Down DC/DC Converter  
LT1962  
300mA, Low Noise Micropower, LDO  
V : 1.8V to 20V, V  
= 1.22V, V = 0.27V, I = 30μA, I = <1μA,  
IN  
OUT  
DO  
Q
SD  
Low Noise < 20μV  
, MS8 Package  
RMS  
LT1963/LT1963A 1.5A, Low Noise, Fast Transient Response, LDO V : 2.1V to 20V, V  
= 1.21V, V = 0.34V, I = 1mA, I = <1μA,  
DO Q SD  
IN  
OUT  
Low Noise < 40μV  
, “A” Version Stable with Ceramic Capacitors,  
RMS  
DD, TO220-5, S0T-223, S8 Packages  
LT1964  
200mA, Low Noise Micropower, Negative LDO  
V : –1.9V to –20V, V  
= –1.21V, V = 0.34V, I = 30μA, I = 3μA,  
IN  
OUT DO Q SD  
Low Noise < 30μV  
, Stable with Ceramic Capacitors, ThinSOT Package  
RMS  
ThinSOT is a trademark of Linear Technology Corporation.  
30105fc  
LT 0208 REV C • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
© LINEAR TECHNOLOGY CORPORATION 2003  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT3010HMS8E-5

50mA, 3V to 80V Low Dropout Micropower Linear Regulator
Linear

LT3010HMS8E-5#PBF

LT3010/LT3010-5 - 50mA, 3V to 80V Low Dropout Micropower Linear Regulator; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 125&deg;C
Linear

LT3010HMS8E-5#TRPBF

LT3010/LT3010-5 - 50mA, 3V to 80V Low Dropout Micropower Linear Regulator; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 125&deg;C
Linear

LT3010MPMS8E

50mA, 3V to 80V Low Dropout Micropower Linear Regulator
Linear

LT3010MPMS8E#PBF

LT3010/LT3010-5 - 50mA, 3V to 80V Low Dropout Micropower Linear Regulator; Package: MSOP; Pins: 8; Temperature Range: -55&deg;C to 125&deg;C
Linear

LT3010MPMS8E#TR

LT3010/LT3010-5 - 50mA, 3V to 80V Low Dropout Micropower Linear Regulator; Package: MSOP; Pins: 8; Temperature Range: -55&deg;C to 125&deg;C
Linear

LT3010MPMS8E#TRPBF

LT3010/LT3010-5 - 50mA, 3V to 80V Low Dropout Micropower Linear Regulator; Package: MSOP; Pins: 8; Temperature Range: -55&deg;C to 125&deg;C
Linear

LT3010MPMS8E-5

50mA, 3V to 80V Low Dropout Micropower Linear Regulator
Linear

LT3010MPMS8E-5#PBF

LT3010/LT3010-5 - 50mA, 3V to 80V Low Dropout Micropower Linear Regulator; Package: MSOP; Pins: 8; Temperature Range: -55&deg;C to 125&deg;C
Linear

LT3010MPMS8E-5#TR

IC VREG 5 V FIXED POSITIVE LDO REGULATOR, 0.55 V DROPOUT, PDSO8, PLASTIC, MSOP-8, Fixed Positive Single Output LDO Regulator
Linear

LT3010MPMS8E-5#TRPBF

LT3010/LT3010-5 - 50mA, 3V to 80V Low Dropout Micropower Linear Regulator; Package: MSOP; Pins: 8; Temperature Range: -55&deg;C to 125&deg;C
Linear

LT3010_1

50mA, 3V to 80V Low Dropout Micropower Linear Regulator
Linear