LT3012BEDE [Linear]

250mA, 4V to 80V Low Dropout Micropower Linear Regulator; 250毫安, 4V至80V低压差微功耗线性稳压器
LT3012BEDE
型号: LT3012BEDE
厂家: Linear    Linear
描述:

250mA, 4V to 80V Low Dropout Micropower Linear Regulator
250毫安, 4V至80V低压差微功耗线性稳压器

稳压器
文件: 总16页 (文件大小:207K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3012B  
250mA, 4V to 80V  
Low Dropout  
Micropower Linear Regulator  
U
FEATURES  
DESCRIPTIO  
The LT®3012B is a high voltage, micropower low dropout  
linearregulator.Thedeviceiscapableofsupplying250mA  
of output current with a dropout voltage of 400mV. De-  
signed for use in battery-powered or high voltage sys-  
tems, the low quiescent current (40µA operating) makes  
theLT3012Banidealchoice.Quiescentcurrentisalsowell  
controlled in dropout.  
Wide Input Voltage Range: 4V to 80V  
Low Quiescent Current: 40µA  
Low Dropout Voltage: 400mV  
Output Current: 250mA  
No Protection Diodes Needed  
Adjustable Output from 1.24V to 60V  
Stable with 3.3µF Output Capacitor  
Stable with Aluminum, Tantalum or Ceramic  
Other features of the LT3012B include the ability to oper-  
ate with very small output capacitors. The regulators are  
stable with only 3.3µF on the output while most older  
devices require between 10µF and 100µF for stability.  
Smallceramiccapacitorscanbeusedwithoutanyneedfor  
series resistance (ESR) as is common with other regula-  
tors. Internal protection circuitry includes reverse-battery  
protection, current limiting, thermal limiting and reverse  
current protection.  
Capacitors  
Reverse-Battery Protection  
No Reverse Current Flow from Output to Input  
Thermal Limiting  
Thermally Enhanced 16-Lead TSSOP and 12-Pin  
(4mm × 3mm) DFN Packages  
U
APPLICATIO S  
Low Current High Voltage Regulators  
The device is available with an adjustable output with a  
1.24V reference voltage. The LT3012B regulator is avail-  
ableinthe16-leadTSSOPand12pinlowprofile(0.75mm)  
(4mm × 3mm) DFN packages with an exposed pad for  
enhanced thermal handling capability.  
Regulator for Battery-Powered Systems  
Telecom Applications  
Automotive Applications  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
U
TYPICAL APPLICATIO  
Dropout Voltage  
400  
350  
300  
250  
200  
150  
100  
50  
5V Supply  
V
OUT  
IN  
OUT  
LT3012B  
ADJ  
5V  
250mA  
V
IN  
750k  
249k  
5.4V TO  
80V  
3.3µF  
1µF  
GND  
3012B TA01  
0
50  
100  
150  
250  
0
200  
OUTPUT CURRENT (mA)  
3012B TA02  
3012bf  
1
LT3012B  
W W U W  
ABSOLUTE AXI U RATI GS (Note 1)  
IN Pin Voltage................................................... ±80V  
OUT Pin Voltage ............................................... ±60V  
IN to OUT Differential Voltage........................... ±80V  
ADJ Pin Voltage .................................................. ±7V  
Output Short-Circuit Duration..................... Indefinite  
Storage Temperature Range  
TSSOP Package ........................... –65°C to 150°C  
DFN Package ............................... –65°C to 125°C  
Operating Junction Temperature Range  
(Notes 3, 9, 10) ........................... –40°C to 125°C  
Lead Temperature (Soldering, 10 sec)............ 300°C  
U W  
U
PACKAGE/ORDER I FOR ATIO  
TOP VIEW  
TOP VIEW  
GND  
NC  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
GND  
NC  
IN  
NC  
OUT  
OUT  
ADJ  
GND  
NC  
1
2
3
4
5
6
12 NC  
11 IN  
10 IN  
OUT  
OUT  
ADJ  
GND  
NC  
IN  
13  
17  
9
8
7
NC  
NC  
NC  
NC  
NC  
NC  
GND  
GND  
DE PACKAGE  
12-LEAD (4mm × 3mm) PLASTIC DFN  
FE PACKAGE  
16-LEAD PLASTIC TSSOP  
TJMAX = 125°C, θJA = 40°C/ W, θJC = 16°C/ W  
TJMAX = 125°C, θJA = 40°C/ W, θJC = 16°C/ W  
EXPOSED PAD (PIN 13) IS GND  
MUST BE SOLDERED TO PCB  
EXPOSED PAD (PIN 17) IS GND  
MUST BE SOLDERED TO PCB  
ORDER PART NUMBER  
DE PART MARKING  
3012B  
ORDER PART NUMBER  
LT3012BEFE  
FE PART MARKING  
3012BEFE  
LT3012BEDE  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The  
denotes specifications which apply over the full operating temperature range, otherwise specifications are at T = 25°C.  
J
PARAMETER  
CONDITIONS  
= 250mA  
MIN  
TYP  
MAX  
UNITS  
Minimum Input Voltage  
ADJ Pin Voltage (Notes 2, 3)  
I
4
4.5  
V
LOAD  
V
= 4V, I  
= 1mA  
1.225  
1.2  
1.24  
1.24  
1.255  
1.28  
V
V
IN  
LOAD  
4.5V < V < 80V, 1mA < I  
< 250mA  
IN  
LOAD  
Line Regulation  
V = 4V to 80V, I  
IN  
= 1mA (Note 2)  
0.1  
7
5
mV  
LOAD  
Load Regulation (Note 2)  
V
V
= 4.5V, I  
= 4.5V, I  
= 1mA to 250mA  
= 1mA to 250mA  
12  
25  
mV  
mV  
IN  
IN  
LOAD  
LOAD  
3012bf  
2
LT3012B  
ELECTRICAL CHARACTERISTICS  
The  
denotes specifications which apply over the full operating temperature range, otherwise specifications are at T = 25°C.  
J
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Dropout Voltage  
I
I
= 10mA  
= 10mA  
160  
230  
300  
mV  
mV  
LOAD  
LOAD  
V
= V  
IN  
OUT(NOMINAL)  
(Notes 4, 5)  
I
I
= 50mA  
= 50mA  
250  
400  
340  
420  
mV  
mV  
LOAD  
LOAD  
I
I
= 250mA  
= 250mA  
490  
620  
mV  
mV  
LOAD  
LOAD  
GND Pin Current  
I
I
I
= 0mA  
= 100mA  
= 250mA  
40  
3
10  
100  
µA  
mA  
mA  
LOAD  
LOAD  
LOAD  
V
= 4.5V  
IN  
(Notes 4, 6)  
18  
Output Voltage Noise  
ADJ Pin Bias Current  
Ripple Rejection  
Current Limit  
C
= 10µF, I  
= 250mA, BW = 10Hz to 100kHz  
100  
30  
µV  
RMS  
OUT  
LOAD  
(Note 7)  
100  
25  
nA  
V
= 7V(Avg), V  
= 0.5V , f  
= 120Hz, I = 250mA  
LOAD  
65  
75  
dB  
IN  
RIPPLE  
P-P RIPPLE  
V
V
= 7V, V  
= 0V  
400  
mA  
mA  
IN  
IN  
OUT  
= 4.5V, V  
= –0.1V (Note 2)  
270  
OUT  
Reverse Output Current (Note 8)  
V
= 1.24V, V < 1.24V (Note 2)  
12  
µA  
OUT  
IN  
Note 6: GND pin current is tested with V = 4.5V and a current source  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
IN  
load. This means the device is tested while operating close to its dropout  
region. This is the worst-case GND pin current. The GND pin current will  
decrease slightly at higher input voltages.  
Note 7: ADJ pin bias current flows into the ADJ pin.  
Note 2: The LT3012B is tested and specified for these conditions with the  
ADJ pin connected to the OUT pin.  
Note 8: Reverse output current is tested with the IN pin grounded and the  
OUT pin forced to the rated output voltage. This current flows into the OUT  
pin and out the GND pin.  
Note 9: The LT3012BE is guaranteed to meet performance specifications  
from 0°C to 125°C operating junction temperature. Specifications over  
the –40°C to 125°C operating junction temperature range are assured by  
design, characterization and correlation with statistical process controls.  
Note 3: Operating conditions are limited by maximum junction  
temperature. The regulated output voltage specification will not apply for  
all possible combinations of input voltage and output current. When  
operating at maximum input voltage, the output current range must be  
limited. When operating at maximum output current, the input voltage  
range must be limited.  
Note 4: To satisfy requirements for minimum input voltage, the LT3012B  
is tested and specified for these conditions with an external resistor divider  
(249k bottom, 549k top) for an output voltage of 4V. The external resistor  
divider will add a 5µA DC load on the output.  
Note 10: This IC includes overtemperature protection that is intended to  
protect the device during momentary overload conditions. Junction  
temperature will exceed 125°C when overtemperature protection is  
active. Continuous operation above the specified maximum operating  
junction temperature may impair device reliability.  
Note 5: Dropout voltage is the minimum input to output voltage differential  
needed to maintain regulation at a specified output current. In dropout, the  
output voltage will be equal to (V – V  
).  
IN  
DROPOUT  
3012bf  
3
LT3012B  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Typical Dropout Voltage  
Guaranteed Dropout Voltage  
Dropout Voltage  
600  
500  
400  
300  
200  
100  
0
600  
500  
600  
500  
400  
300  
200  
100  
0
= TEST POINTS  
T
J
125°C  
T
= 125°C  
J
I
L
= 250mA  
I
= 100mA  
400  
300  
L
T
25°C  
J
T
= 25°C  
J
I
= 50mA  
L
200  
100  
0
I
I
= 10mA  
= 1mA  
L
L
0
50  
100  
150  
200  
250  
–50  
0
25  
50  
75 100 125  
–25  
0
50  
100  
150  
200  
250  
OUTPUT CURRENT (mA)  
TEMPERATURE (°C)  
OUTPUT CURRENT (mA)  
301B2 G02  
3012B G03  
3012B G01  
Quiescent Current  
ADJ Pin Voltage  
Quiescent Current  
1.260  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 6V  
T
R
V
= 25°C  
IN  
L
I = 1mA  
L
J
L
90  
R
I
=  
=
1.255  
1.250  
= 0  
= 1.24V  
L
OUT  
70  
60  
50  
1.245  
1.240  
1.235  
1.230  
1.225  
30  
20  
10  
0
1.220  
25  
0
50  
75 100 125  
50  
25  
25  
0
50  
75 100 125  
1
2
6
7
9
50  
25  
0
3
4
5
8
10  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
3012B G04  
3012B G05  
3012B G06  
GND Pin Current  
GND Pin Current vs I  
LOAD  
GND Pin Current  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
10  
9
8
7
6
5
4
3
2
1
0
10  
9
8
7
6
5
4
3
2
1
0
T
J
= 25°C, *FOR V  
OUT  
= 1.24V  
R
V
T
= 4.5V  
T
= 25°C  
IN  
J
J
= 25°C  
*FOR V  
= 1.24V  
OUT  
V
= 1.24V  
OUT  
R
I
= 49.6  
= 25mA*  
= 4.96  
L
L
L
I
= 250mA*  
L
R
L
= 124Ω  
= 10mA*  
L
I
R
L
= 12.4Ω  
= 100mA*  
L
I
R
L
I
L
= 1.24k  
= 1mA*  
R
= 24.8, I = 50mA*  
L
L
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
0
50  
100  
150  
200  
250  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
LOAD CURRENT (mA)  
3012B G07  
3012B G08  
3012B G09  
3012bf  
4
LT3012B  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Current Limit  
Current Limit  
ADJ Pin Bias Current  
700  
600  
500  
400  
300  
200  
100  
0
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
V
= 0V  
OUT  
T
= 25°C  
J
T
= 125°C  
J
V
V
= 7V  
IN  
OUT  
= 0V  
0
–50  
–25  
0
25  
50  
75 100 125  
25  
0
50  
75 100 125  
10 20  
60 70  
50  
25  
0
30 40 50  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
3012B G15  
3012B G13  
3012B G14  
Reverse Output Current  
Input Ripple Rejection  
Reverse Output Current  
92  
88  
84  
80  
76  
72  
68  
64  
60  
200  
180  
160  
140  
120  
100  
80  
35  
30  
25  
20  
15  
10  
5
T
V
V
= 25°C  
V
V
= 0V  
= V  
J
IN  
OUT  
= 0V  
= 1.24V  
ADJ  
IN  
OUT  
= V  
ADJ  
ADJ  
CURRENT FLOWS  
INTO OUTPUT PIN  
PIN CLAMP  
(SEE APPLICATIONS  
INFORMATION)  
60  
40  
V
L
V
= 4.5V + 0.5V RIPPLE AT f = 120Hz  
IN  
P-P  
I
= 250mA  
20  
= 1.24V  
OUT  
0
0
125  
0
1
2
3
4
5
6
7
8
9
10  
50  
25  
0
25  
50  
75 100 125  
–50  
0
25  
50  
75  
100  
–25  
TEMPERATURE (°C)  
OUTPUT VOLTAGE (V)  
TEMPERATURE (°C)  
3012B G16  
3012B G17  
3012B G18  
Input Ripple Rejection  
Minimum Input Voltage  
100  
90  
4.0  
V
= 4.5V + 50mV  
= 250mA  
RIPPLE  
RMS  
IN  
I
= 250mA  
LOAD  
I
LOAD  
3.5  
3.0  
80  
70  
2.5  
2.0  
1.5  
1.0  
0.5  
60  
50  
C
= 10µF  
OUT  
40  
30  
20  
10  
0
C
= 3.3µF  
OUT  
0
10  
100  
1k  
10k  
100k  
1M  
25  
0
50  
75 100 125  
50  
25  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
3012B G19  
3012B G20  
3012bf  
5
LT3012B  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Output Noise Spectral Density  
Load Regulation  
10  
0
–2  
C
I
= 3.3µF  
= 250mA  
OUT  
I = 1mA TO 250mA  
L
LOAD  
–4  
–6  
1
–8  
–10  
–12  
–14  
–16  
–18  
–20  
0.1  
0.01  
25  
0
50  
75 100 125  
50  
25  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
TEMPERATURE (°C)  
3012B G22  
3012B G21  
10Hz to 100kHz Output Noise  
Transient Response  
0.15  
0.10  
0.05  
0
VOUT  
100µV/DIV  
–0.05  
–0.10  
–0.15  
300  
V
V
C
C
= 6V  
= 5V  
= 3.3µF CERAMIC  
IN  
OUT  
IN  
= 3.3µF CERAMIC  
LOAD  
OUT  
I  
= 100mA TO 200mA  
200  
C
OUT = 10µF  
1ms/DIV  
3012B G23  
100  
IL = 250mA  
VOUT = 1.24V  
0
0
100  
200  
300  
400  
500  
TIME (µs)  
3012B G24  
3012bf  
6
LT3012B  
U
U
U
PI FU CTIO S  
(DFN Package)/(TSSOP Package)  
OUT (Pins 2, 3)/(Pins 3, 4): Output. The output supplies  
power to the load. A minimum output capacitor of 3.3µF is  
required to prevent oscillations. Larger output capacitors  
will be required for applications with large transient loads  
to limit peak voltage transients. See the Applications  
Information section for more information on output ca-  
pacitance and reverse output characteristics.  
IN (Pins 10, 11)/(Pins 13,14): Input. Power is supplied to  
the device through the IN pin. A bypass capacitor is  
required on this pin if the device is more than six inches  
away from the main input filter capacitor. In general, the  
output impedance of a battery rises with frequency, so it  
is advisable to include a bypass capacitor in battery-  
poweredcircuits. Abypasscapacitorintherangeof1µFto  
10µF is sufficient. The LT3012B is designed to withstand  
reverse voltages on the IN pin with respect to ground and  
the OUT pin. In the case of a reversed input, which can  
happen if a battery is plugged in backwards, the LT3012B  
will act as if there is a diode in series with its input. There  
will be no reverse current flow into the LT3012B and no  
reverse voltage will appear at the load. The device will  
protect both itself and the load.  
ADJ (Pin 4)/(Pin 5): Adjust. This is the input to the error  
amplifier. This pin is internally clamped to ±7V. It has a  
bias current of 30nA which flows into the pin (see curve of  
ADJPinBiasCurrentvsTemperatureintheTypicalPerfor-  
mance Characteristics). The ADJ pin voltage is 1.24V  
referenced to ground, and the output voltage range is  
1.24V to 60V.  
GND (Pins 5, 13)/(Pins 1, 6, 8, 9, 16, 17): Ground. The  
exposed backside of the package is an electrical connec-  
tion for GND. As such, to ensure optimum device opera-  
tion and thermal performance, the exposed pad must be  
connected directly to pin 5/pin 6 on the PC board.  
NC (Pins 1, 6-9, 12)/(Pins 2, 7, 10-12, 15): No Connect.  
No Connect pins may be floated, tied to IN or tied to GND.  
3012bf  
7
LT3012B  
W U U  
U
APPLICATIO S I FOR ATIO  
The LT3012B is a 250mA high voltage low dropout regu-  
lator with micropower quiescent current. The device is  
capable of supplying 250mA at a dropout voltage of  
400mV. Operating quiescent current is only 40µA. In  
addition to the low quiescent current, the LT3012B incor-  
porates several protection features which make it ideal for  
use in battery-powered systems. The device is protected  
against both reverse input and reverse output voltages. In  
battery backup applications where the output can be held  
up by a backup battery when the input is pulled to ground,  
theLT3012Bactslikeithasadiodeinserieswithitsoutput  
and prevents reverse current flow.  
to the ratio of the desired output voltage to 1.24V; (VOUT  
/
1.24V). For example, load regulation for an output current  
change of 1mA to 250mA is –7mV typical at VOUT = 1.24V.  
At VOUT = 12V, load regulation is:  
(12V/1.24V) • (–7mV) = –68mV  
Output Capacitance and Transient Response  
The LT3012B is designed to be stable with a wide range of  
output capacitors. The ESR of the output capacitor affects  
stability, most notably with small capacitors. A minimum  
output capacitor of 3.3µF with an ESR of 3or less is  
recommended to prevent oscillations. The LT3012B is a  
micropower device and output transient response will be  
a function of output capacitance. Larger values of output  
capacitance decrease the peak deviations and provide  
improved transient response for larger load current  
changes. Bypass capacitors, used to decouple individual  
components powered by the LT3012B, will increase the  
effective output capacitor value.  
Adjustable Operation  
The LT3012B has an output voltage range of 1.24V to  
60V. The output voltage is set by the ratio of two external  
resistors as shown in Figure 1. The device servos the  
output to maintain the voltage at the adjust pin at 1.24V  
referenced to ground. The current in R1 is then equal to  
1.24V/R1 and the current in R2 is the current in R1 plus  
the ADJ pin bias current. The ADJ pin bias current, 30nA  
at 25°C, flows through R2 into the ADJ pin. The output  
voltage can be calculated using the formula in Figure 1.  
The value of R1 should be less than 250k to minimize  
errors in the output voltage caused by the ADJ pin bias  
current.  
Extra consideration must be given to the use of ceramic  
capacitors. Ceramic capacitors are manufactured with a  
variety of dielectrics, each with different behavior across  
temperature and applied voltage. The most common di-  
electrics used are specified with EIA temperature charac-  
teristiccodesofZ5U,Y5V,X5RandX7R.TheZ5UandY5V  
dielectrics are good for providing high capacitances in a  
small package, but they tend to have strong voltage and  
temperature coefficients as shown in Figures 2 and 3.  
When used with a 5V regulator, a 16V 10µF Y5V capacitor  
The adjustable device is tested and specified with the ADJ  
pintiedtotheOUTpinanda5µADCload(unlessotherwise  
specified) for an output voltage of 1.24V. Specifications  
for output voltages greater than 1.24V will be proportional  
V
IN  
OUT  
OUT  
+
R2  
R1  
C1  
LT3012B  
ADJ  
V
IN  
GND  
3012B F01  
R2  
R1  
V
V
= 1.24V 1 +  
+ (I )(R2)  
ADJ  
OUT  
ADJ  
(
)
= 1.24V  
I
= 30nA AT 25°C  
OUTPUT RANGE = 1.24V TO 60V  
ADJ  
Figure 1. Adjustable Operation  
3012bf  
8
LT3012B  
W U U  
APPLICATIO S I FOR ATIO  
U
can exhibit an effective value as low as 1µF to 2µF for the  
DC bias voltage applied and over the operating tempera-  
ture range. The X5R and X7R dielectrics result in more  
stable characteristics and are more suitable for use as the  
output capacitor. The X7R type has better stability across  
temperature, while the X5R is less expensive and is  
available in higher values. Care still must be exercised  
when using X5R and X7R capacitors; the X5R and X7R  
codesonlyspecifyoperatingtemperaturerangeandmaxi-  
mum capacitance change over temperature. Capacitance  
change due to DC bias with X5R and X7R capacitors is  
better than Y5V and Z5U capacitors, but can still be  
significant enough to drop capacitor values below appro-  
priate levels. Capacitor DC bias characteristics tend to  
improve as component case size increases, but expected  
capacitance at operating voltage should be verified.  
ing region. The protection is designed to provide some  
outputcurrentatallvaluesofinputvoltageuptothedevice  
breakdown (see curve of Current Limit vs Input Voltage in  
the Typical Performance Characteristics).  
The LT3012B is limited for operating conditions by maxi-  
mum junction temperature. While operating at maximum  
input voltage, the output current range must be limited;  
when operating at maximum output current, the input  
voltage range must be limited. Device specifications will  
not apply for all possible combinations of input voltage  
and output current. Operating the LT3012B beyond the  
maximum junction temperature rating may impair the life  
of the device.  
Thermal Considerations  
The power handling capability of the device will be limited  
by the maximum rated junction temperature (125°C). The  
power dissipated by the device will be made up of two  
components:  
Voltage and temperature coefficients are not the only  
sources of problems. Some ceramic capacitors have a  
piezoelectric response. A piezoelectric device generates  
voltage across its terminals due to mechanical stress,  
similar to the way a piezoelectric accelerometer or micro-  
phone works. For a ceramic capacitor the stress can be  
induced by vibrations in the system or thermal transients.  
1. Output current multiplied by the input/output voltage  
differential: IOUT • (VIN – VOUT) and,  
2. GND pin current multiplied by the input voltage:  
IGND • VIN.  
Current Limit and Safe Operating Area Protection  
The GND pin current can be found by examining the GND  
Pin Current curves in the Typical Performance Character-  
istics.Powerdissipationwillbeequaltothesumofthetwo  
components listed above.  
Like many IC power regulators, the LT3012B has safe  
operating area protection. The safe operating area protec-  
tion decreases the current limit as the input voltage  
increases and keeps the power transistor in a safe operat-  
40  
20  
20  
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10µF  
0
X5R  
0
–20  
X5R  
–20  
–40  
–40  
Y5V  
–60  
–60  
Y5V  
–80  
–80  
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10µF  
–100  
–100  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
0
8
12 14  
2
4
6
10  
16  
DC BIAS VOLTAGE (V)  
3012B F03  
3012B F02  
Figure 2. Ceramic Capacitor DC Bias Characterics  
Figure 3. Ceramic Capacitor Temperature Characterics  
3012bf  
9
LT3012B  
W U U  
U
APPLICATIO S I FOR ATIO  
Continuous operation at large input/output voltage differ-  
entials and maximum load current is not practical due to  
thermal limitations. Transient operation at high input/  
output differentials is possible. The approximate thermal  
time constant for a 2500sq mm 3/32" FR-4 board with  
maximumtopsideandbacksideareaforoneouncecopper  
is 3 seconds. This time constant will increase as more  
thermal mass is added (i.e. vias, larger board, and other  
components).  
The LT3012B has internal thermal limiting designed to  
protect the device during overload conditions. For con-  
tinuous normal conditions the maximum junction tem-  
perature rating of 125°C must not be exceeded. It is  
important to give careful consideration to all sources of  
thermal resistance from junction to ambient. Additional  
heat sources mounted nearby must also be considered.  
For surface mount devices, heat sinking is accomplished  
by using the heat spreading capabilities of the PC board  
and its copper traces. Copper board stiffeners and plated  
through-holes can also be used to spread the heat gener-  
ated by power devices.  
For an application with transient high power peaks, aver-  
age power dissipation can be used for junction tempera-  
turecalculationsaslongasthepulseperiodissignificantly  
less than the thermal time constant of the device and  
board.  
The following tables list thermal resistance for several  
different board sizes and copper areas. All measurements  
were taken in still air on 3/32" FR-4 board with one ounce  
copper.  
Calculating Junction Temperature  
Example 1: Given an output voltage of 5V, an input voltage  
range of 24V to 30V, an output current range of 0mA to  
50mA, and a maximum ambient temperature of 50°C,  
what will the maximum junction temperature be?  
Table 1. DFN Measured Thermal Resistance  
COPPER AREA  
THERMAL RESISTANCE  
TOPSIDE  
2500 sq mm  
1000 sq mm  
225 sq mm  
100 sq mm  
BACKSIDE  
2500 sq mm  
2500 sq mm  
2500 sq mm  
2500 sq mm  
BOARD AREA  
2500 sq mm  
2500 sq mm  
2500 sq mm  
2500 sq mm  
(JUNCTION-TO-AMBIENT)  
40°C/W  
The power dissipated by the device will be equal to:  
45°C/W  
50°C/W  
I
OUT(MAX) • (VIN(MAX) – VOUT) + (IGND • VIN(MAX)  
where:  
IOUT(MAX) = 50mA  
)
62°C/W  
Table 2. TSSOP Measured Thermal Resistance  
COPPER AREA  
THERMAL RESISTANCE  
VIN(MAX) = 30V  
TOPSIDE  
2500 sq mm  
1000 sq mm  
225 sq mm  
100 sq mm  
BACKSIDE  
2500 sq mm  
2500 sq mm  
2500 sq mm  
2500 sq mm  
BOARD AREA  
2500 sq mm  
2500 sq mm  
2500 sq mm  
2500 sq mm  
(JUNCTION-TO-AMBIENT)  
IGND at (IOUT = 50mA, VIN = 30V) = 1mA  
40°C/W  
45°C/W  
So:  
50°C/W  
P = 50mA • (30V – 5V) + (1mA • 30V) = 1.28W  
62°C/W  
The thermal resistance will be in the range of 40°C/W to  
62°C/W depending on the copper area. So the junction  
temperature rise above ambient will be approximately  
equal to:  
The thermal resistance junction-to-case (θJC), measured  
at the exposed pad on the back of the die, is 16°C/W.  
1.31W • 50°C/W = 65.5°C  
3012bf  
10  
LT3012B  
W U U  
APPLICATIO S I FOR ATIO  
U
The maximum junction temperature will then be equal to  
the maximum junction temperature rise above ambient  
plus the maximum ambient temperature or:  
Protection Features  
The LT3012B incorporates several protection features  
which make it ideal for use in battery-powered circuits. In  
addition to the normal protection features associated with  
monolithic regulators, such as current limiting and ther-  
mal limiting, the device is protected against reverse-input  
voltages, and reverse voltages from output to input.  
T
JMAX = 50°C + 65.5°C = 115.5°C  
Example 2: Given an output voltage of 5V, an input voltage  
of 48V that rises to 72V for 5ms(max) out of every 100ms,  
and a 5mA load that steps to 50mA for 50ms out of every  
250ms, what is the junction temperature rise above ambi-  
ent? Using a 500ms period (well under the time constant  
of the board), power dissipation is as follows:  
Current limit protection and thermal overload protection  
areintendedtoprotectthedeviceagainstcurrentoverload  
conditions at the output of the device. For normal opera-  
tion, the junction temperature should not exceed 125°C.  
P1(48V in, 5mA load) = 5mA • (48V – 5V)  
+ (200µA • 48V) = 0.23W  
The input of the device will withstand reverse voltages of  
80V. No negative voltage will appear at the output. The  
device will protect both itself and the load. This provides  
protection against batteries which can be plugged in  
backward.  
P2(48V in, 50mA load) = 50mA • (48V – 5V)  
+ (1mA • 48V) = 2.20W  
P3(72V in, 5mA load) = 5mA • (72V – 5V)  
+ (200µA • 72V) = 0.35W  
The ADJ pin of the device can be pulled above or below  
ground by as much as 7V without damaging the device. If  
the input is left open circuit or grounded, the ADJ pin will  
act like an open circuit when pulled below ground, and like  
alargeresistor(typically100k)inserieswithadiodewhen  
pulled above ground. If the input is powered by a voltage  
source, pulling the ADJ pin below the reference voltage  
will cause the device to current limit. This will cause the  
output to go to a unregulated high voltage. Pulling the ADJ  
pin above the reference voltage will turn off all output  
current.  
P4(72V in, 50mA load) = 50mA • (72V – 5V)  
+ (1mA • 72V) = 3.42W  
Operation at the different power levels is as follows:  
76% operation at P1, 19% for P2, 4% for P3, and  
1% for P4.  
P
EFF = 76%(0.23W) + 19%(2.20W) + 4%(0.35W)  
+ 1%(3.42W) = 0.64W  
With a thermal resistance in the range of 40°C/W to  
62°C/W, this translates to a junction temperature rise  
above ambient of 26°C to 38°C.  
3012bf  
11  
LT3012B  
W U U  
U
APPLICATIO S I FOR ATIO  
In situations where the ADJ pin is connected to a resistor  
divider that would pull the ADJ pin above its 7V clamp  
voltage if the output is pulled high, the ADJ pin input  
current must be limited to less than 5mA. For example, a  
resistor divider is used to provide a regulated 1.5V output  
fromthe1.24Vreferencewhentheoutputisforcedto60V.  
The top resistor of the resistor divider must be chosen to  
limitthecurrentintotheADJpintolessthan5mAwhenthe  
ADJ pin is at 7V. The 53V difference between the OUT and  
ADJ pins divided by the 5mA maximum current into the  
ADJ pin yields a minimum top resistor value of 10.6k.  
ground, pulled to some intermediate voltage, or is left  
open circuit. Current flow back into the output will follow  
the curve shown in Figure 4. The rise in reverse output  
current above 7V occurs from the breakdown of the 7V  
clamp on the ADJ pin. With a resistor divider on the  
regulator output, this current will be reduced depending  
on the size of the resistor divider.  
When the IN pin of the LT3012B is forced below the OUT  
pin or the OUT pin is pulled above the IN pin, input current  
will typically drop to less than 2µA. This can happen if the  
input of the LT3012B is connected to a discharged (low  
voltage) battery and the output is held up by either a  
backup battery or a second regulator circuit.  
In circuits where a backup battery is required, several  
different input/output conditions can occur. The output  
voltage may be held up while the input is either pulled to  
200  
T
V
V
= 25°C  
J
= 0V  
180  
160  
140  
120  
100  
80  
IN  
OUT  
= V  
ADJ  
ADJ  
PIN CLAMP  
(SEE ABOVE)  
CURRENT FLOWS  
INTO OUTPUT PIN  
60  
40  
20  
0
0
1
2
3
4
5
6
7
8
9
10  
OUTPUT VOLTAGE (V)  
3012B F04  
Figure 4. Reverse Output Current  
3012bf  
12  
LT3012B  
U
TYPICAL APPLICATIO S  
LT3012B Automotive Application  
IN  
OUT  
ADJ  
NO PROTECTION  
DIODE NEEDED!  
+
V
IN  
LT3012B  
GND  
750k  
249k  
3.3µF  
12V  
1µF  
LOAD: CLOCK,  
SECURITY SYSTEM  
ETC  
(LATER 42V)  
LT3012B Telecom Application  
V
IN  
IN  
OUT  
48V  
(72V TRANSIENT)  
+
LT3012B  
750k  
249k  
BACKUP  
BATTERY  
NO PROTECTION  
DIODE NEEDED!  
3.3µF  
1µF  
LOAD:  
SYSTEM MONITOR  
ETC  
ADJ  
GND  
3012B TA05  
Constant Brightness for Indicator LED over Wide Input Voltage Range  
RETURN  
IN  
LT3012B  
ADJ  
OUT  
1µF  
3.3µF  
GND  
R
SET  
–48V  
3012B TA06  
I
= 1.24V/R  
SET  
LED  
–48V CAN VARY FROM –4V TO –80V  
3012bf  
13  
LT3012B  
U
PACKAGE DESCRIPTIO  
DE/UE Package  
12-Lead Plastic DFN (4mm × 3mm)  
(Reference LTC DWG # 05-08-1695 Rev C)  
0.70 ±0.05  
3.60 ±0.05  
2.20 ±0.05 (2 SIDES)  
1.70 ±0.05  
PACKAGE OUTLINE  
0.25 ± 0.05  
0.50  
BSC  
3.30 ±0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
0.40 ± 0.10  
4.00 ±0.10  
(2 SIDES)  
R = 0.115  
TYP  
7
12  
R = 0.05  
TYP  
3.00 ±0.10 1.70 ± 0.05  
(2 SIDES)  
(2 SIDES)  
PIN 1  
TOP MARK  
(NOTE 6)  
PIN 1 NOTCH  
R = 0.20 OR  
0.35 × 45°  
CHAMFER  
(UE12/DE12) DFN 0905 REV C  
6
0.25 ± 0.05  
1
0.75 ±0.05  
0.200 REF  
0.50  
BSC  
3.30 ±0.05  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING PROPOSED TO BE A VARIATION OF VERSION  
(WGED) IN JEDEC PACKAGE OUTLINE M0-229  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
3012bf  
14  
LT3012B  
U
PACKAGE DESCRIPTIO  
FE Package  
16-Lead Plastic TSSOP (4.4mm)  
(Reference LTC DWG # 05-08-1663)  
Exposed Pad Variation BB  
4.90 – 5.10*  
(.193 – .201)  
3.58  
(.141)  
3.58  
(.141)  
16 1514 13 12 1110  
9
6.60 ±0.10  
4.50 ±0.10  
2.94  
(.116)  
6.40  
(.252)  
BSC  
SEE NOTE 4  
2.94  
(.116)  
0.45 ±0.05  
1.05 ±0.10  
0.65 BSC  
5
7
8
1
2
3
4
6
RECOMMENDED SOLDER PAD LAYOUT  
1.10  
(.0433)  
MAX  
4.30 – 4.50*  
(.169 – .177)  
0.25  
REF  
0° – 8°  
0.65  
(.0256)  
BSC  
0.09 – 0.20  
(.0035 – .0079)  
0.50 – 0.75  
(.020 – .030)  
0.05 – 0.15  
(.002 – .006)  
0.195 – 0.30  
FE16 (BB) TSSOP 0204  
(.0077 – .0118)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: MILLIMETERS 4. RECOMMENDED MINIMUM PCB METAL SIZE  
FOR EXPOSED PAD ATTACHMENT  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.150mm (.006") PER SIDE  
MILLIMETERS  
(INCHES)  
2. DIMENSIONS ARE IN  
3. DRAWING NOT TO SCALE  
3012bf  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LT3012B  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
V : 4.5V to 36V, V  
LT1020  
125mA, Micropower Regulator and Comparator  
= 2.5V, V = 0.4V, I = 40µA, I = 40µA,  
OUT(MIN) DO Q SD  
IN  
Comparator and Reference, Class B Outputs, S16, PDIP14 Packages  
LT1120/LT1120A 125mA, Micropower Regulator and Comparator  
V : 4.5V to 36V, V = 2.5V, V = 0.4V, I = 40µA, I = 10µA,  
Comparator and Reference, Logic Shutdown, Ref Sources and Sinks 2/4mA,  
S8, N8 Packages  
IN  
OUT(MIN)  
DO  
Q
SD  
LT1121/  
LT1121HV  
150mA, Micropower, LDO  
700mA, Micropower, LDO  
V : 4.2V to 30/36V, V  
Reverse Battery Protection, SOT-223, S8, Z Packages  
= 3.75V, V = 0.42V, I = 30µA, I = 16µA,  
OUT(MIN) DO Q SD  
IN  
LT1129  
LT1676  
LT1761  
LT1762  
LT1763  
V : 4.2V to 30V, V = 3.75V, V = 0.4V, I = 50µA, I = 16µA,  
IN  
OUT(MIN)  
DO  
Q
SD  
DD, S0T-223, S8,TO220-5, TSSOP20 Packages  
60V, 440mA (I ), 100kHz, High Efficiency  
V : 7.4V to 60V, V  
IN  
= 1.24V, I = 3.2mA, I = 2.5µA, S8 Package  
Q SD  
OUT  
OUT(MIN)  
Step-Down DC/DC Converter  
100mA, Low Noise Micropower, LDO  
V : 1.8V to 20V, V  
IN  
= 1.22V, V = 0.3V, I = 20µA, I = <1µA,  
DO Q SD  
, Stable with 1µF Ceramic Capacitors, ThinSOT Package  
OUT(MIN)  
Low Noise < 20µV  
RMS  
150mA, Low Noise Micropower, LDO  
500mA, Low Noise Micropower, LDO  
V : 1.8V to 20V, V  
= 1.22V, V = 0.3V, I = 25µA, I = <1µA,  
OUT(MIN) DO Q SD  
IN  
Low Noise < 20µV  
, MS8 Package  
RMS  
V : 1.8V to 20V, V  
IN  
= 1.22V, V = 0.3V, I = 30µA, I = <1µA,  
DO Q SD  
, S8 Package  
OUT(MIN)  
Low Noise < 20µV  
RMS  
LT1764/LT1764A 3A, Low Noise, Fast Transient Response, LDO  
V : 2.7V to 20V, V  
= 1.21V, V = 0.34V, I = 1mA, I = <1µA,  
OUT(MIN) DO Q SD  
IN  
Low Noise < 40µV  
, “A” Version Stable with Ceramic Capacitors,  
RMS  
DD, TO220-5 Packages  
LT1766  
LT1776  
60V, 1.2A (I ), 200kHz, High Efficiency  
Step-Down DC/DC Converter  
V : 5.5V to 60V, V  
= 1.2V, I = 2.5mA, I = 25µA, TSSOP16/E Package  
Q SD  
OUT  
IN  
OUT(MIN)  
OUT(MIN)  
40V, 550mA (I ), 200kHz, High Efficiency  
V : 7.4V to 40V, V  
IN  
= 1.24V, I = 3.2mA, I = 30µA, N8, S8 Packages  
OUT  
Q
SD  
Step-Down DC/DC Converter  
LT1934/  
LT1934-1  
300mA/60mA, (I ), Constant Off-Time, High  
Efficiency Step-Down DC/DC Converter  
90% Efficiency, V : 3.2V to 34V, V  
ThinSOT Package  
= 1.25V, I = 14µA, I = <1µA,  
OUT(MIN) Q SD  
OUT  
IN  
LT1956  
60V, 1.2A (I ), 500kHz, High Efficiency  
Step-Down DC/DC Converter  
V : 5.5V to 60V, V  
IN  
= 1.2V, I = 2.5mA, I = 25µA, TSSOP16/E Package  
Q SD  
OUT  
OUT(MIN)  
LT1962  
300mA, Low Noise Micropower, LDO  
V : 1.8V to 20V, V  
= 1.22V, V = 0.27V, I = 30µA, I = <1µA,  
DO Q SD  
IN  
OUT(MIN)  
Low Noise < 20µV  
, MS8 Package  
RMS  
LT1963/LT1963A 1.5A, Low Noise, Fast Transient Response, LDO  
V : 2.1V to 20V, V  
= 1.21V, V = 0.34V, I = 1mA, I = <1µA,  
OUT(MIN) DO Q SD  
IN  
Low Noise < 40µV  
, “A” Version Stable with Ceramic Capacitors,  
RMS  
DD, TO220-5, S0T-223, S8 Packages  
LT1964  
LT3010  
200mA, Low Noise Micropower, Negative LDO  
100mA, 3V to 80V, Low Noise Micropower LDO  
V : –1.9V to –20V, V = –1.21V, V = 0.34V, I = 30µA, I = 3µA,  
IN  
OUT(MIN)  
DO  
Q
SD  
Low Noise < 30µV  
, Stable with Ceramic Capacitors, ThinSOT Package  
RMS  
V : 3V to 8V, V  
Low Noise < 100µV  
= 1.275V, V = 0.3V, I = 30µA, I = 1µA,  
IN  
OUT(MIN)  
DO  
Q
SD  
, MS8E Package  
RMS  
3012bf  
LT 0206 • PRINTED IN USA  
16 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
© LINEAR TECHNOLOGY CORPORATION 2006  

相关型号:

LT3012BEDE#PBF

LT3012B - 250mA, 4V to 80V Low Dropout Micropower Linear Regulator; Package: DFN; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3012BEDE#TRPBF

LT3012B - 250mA, 4V to 80V Low Dropout Micropower Linear Regulator; Package: DFN; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3012BEFE

250mA, 4V to 80V Low Dropout Micropower Linear Regulator
Linear

LT3012EDE

250mA, 4V to 80V Low Dropout Micropower Linear Regulator
Linear

LT3012EDE#TRPBF

LT3012 - 250mA, 4V to 80V Low Dropout Micropower Linear Regulator; Package: DFN; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3012EDE-PBF

250mA, 4V to 80V Low Dropout Micropower Linear Regulator
Linear

LT3012EDE-TR

250mA, 4V to 80V Low Dropout Micropower Linear Regulator
Linear

LT3012EDE-TRPBF

250mA, 4V to 80V Low Dropout Micropower Linear Regulator
Linear

LT3012EFE

250mA, 4V to 80V Low Dropout Micropower Linear Regulator
Linear

LT3012EFE#PBF

LT3012 - 250mA, 4V to 80V Low Dropout Micropower Linear Regulator; Package: TSSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3012EFE#TRPBF

LT3012 - 250mA, 4V to 80V Low Dropout Micropower Linear Regulator; Package: TSSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3012EFE-PBF

250mA, 4V to 80V Low Dropout Micropower Linear Regulator
Linear