LT3014IS5 [Linear]

IC VREG 1.22 V-60 V ADJUSTABLE POSITIVE LDO REGULATOR, 0.57 V DROPOUT, PDSO5, PLASTIC, MO-193, TSOT-23, 5 PIN, Adjustable Positive Single Output LDO Regulator;
LT3014IS5
型号: LT3014IS5
厂家: Linear    Linear
描述:

IC VREG 1.22 V-60 V ADJUSTABLE POSITIVE LDO REGULATOR, 0.57 V DROPOUT, PDSO5, PLASTIC, MO-193, TSOT-23, 5 PIN, Adjustable Positive Single Output LDO Regulator

光电二极管 输出元件 调节器
文件: 总16页 (文件大小:181K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3014  
20mA, 3V to 80V  
Low Dropout Micropower  
Linear Regulator  
FEATURES  
DESCRIPTION  
The LT®3014 is a high voltage, micropower low dropout  
linearregulator.Thedeviceiscapableofsupplying20mAof  
output current with a dropout voltage of 350mV. Designed  
foruseinbattery-poweredorhighvoltagesystems,thelow  
quiescent current (7μA operating and 1μA in shutdown)  
makes the LT3014 an ideal choice. Quiescent current is  
also well controlled in dropout.  
n
Wide Input Voltage Range: 3V to 80V  
n
Low Quiescent Current: 7µA  
n
Low Dropout Voltage: 350mV  
Output Current: 20mA  
n
n
LT3014HV Survives 100V Transients (2ms)  
n
No Protection Diodes Needed  
n
Adjustable Output from 1.22V to 60V  
n
1µA Quiescent Current in Shutdown  
Other features of the LT3014 include the ability to operate  
withverysmalloutputcapacitors.Theregulatorsarestable  
with only 0.47μF on the output while most older devices  
requirebetween1Fand100μFforstability.Smallceramic  
capacitors can be used without the necessary addition of  
ESR as is common with other regulators. Internal protec-  
tion circuitry includes reverse-battery protection, current  
limiting, thermal limiting and reverse current protection.  
n
Stable with 0.47µF Output Capacitor  
n
Stable with Aluminum, Tantalum or Ceramic  
Capacitors  
Reverse-Battery Protection  
n
n
No Reverse Current Flow from Output  
n
Thermal Limiting  
Available in 5-Lead ThinSOTTM and  
8-Lead DFN Packages  
Thedeviceisavailableasanadjustabledevicewitha1.22V  
reference voltage. The LT3014 regulator is available in the  
5-lead ThinSOT and 8-lead DFN packages.  
APPLICATIONS  
n
Low Current High Voltage Regulators  
L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
ThinSOT is a trademark of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
Protected by U.S. Patents including 6118263, 6144250.  
n
Regulator for Battery-Powered Systems  
n
Telecom Applications  
Automotive Applications  
n
TYPICAL APPLICATION  
5V Supply with Shutdown  
Dropout Voltage  
400  
V
OUT  
350  
300  
250  
200  
150  
100  
50  
IN  
OUT  
ADJ  
5V  
20mA  
V
IN  
LT3014  
3.92M  
1.27M  
5.4V TO  
80V  
0.47μF  
1μF  
SHDN  
GND  
3014 TA01  
V
OUTPUT  
SHDN  
<0.3V  
>2.0V  
OFF  
ON  
0
0
2
4
6
8
10 12 14 16 18 20  
OUTPUT CURRENT (mA)  
3014 TA02  
3014fd  
1
LT3014  
ABSOLUTE MAXIMUM RATINGS  
(Note 1)  
IN Pin Voltage, Operating................................... 80V  
Transient (2ms Survival, LT3014HV)................ +100V  
OUT Pin Voltage................................................. 60V  
IN to OUT Differential Voltage ............................ 80V  
ADJ Pin Voltage ................................................... 7V  
SHDN Pin Input Voltage..................................... 80V  
Output Short-Circuit Duration ......................Indefinite  
Storage Temperature Range  
ThinSOT Package.......................... –65°C to 150°C  
DFN Package..................................–65°C to 125°C  
Operating Junction Temperature Range  
(Notes 3, 10, 11)............................–40°C to 125°C  
Lead Temperature  
(Soldering, 10 sec, SOT-23 Package)............300°C  
PIN CONFIGURATION  
TOP VIEW  
TOP VIEW  
OUT  
ADJ  
NC  
1
2
3
4
8
7
6
5
IN  
IN 1  
GND 2  
5 OUT  
4 ADJ  
NC  
9
NC  
SHDN 3  
GND  
SHDN  
S5 PACKAGE  
5-LEAD PLASTIC SOT-23  
DD PACKAGE  
T
= 125°C, θ = 150°C/ W  
8-LEAD (3mm s 3mm) PLASTIC DFN  
JMAX  
JA  
EXPOSED PAD IS GND (PIN 9) MUST BE SOLDERED TO PCB  
θ
= 25°C/W MEASURED AT PIN 2  
SEE APPLICATIONS INFORMATION SECTION  
JC  
T
= 125°C, θ = 40°C/ W  
JA  
= 10°C/W MEASURED AT PIN 9  
JMAX  
θ
JC  
ORDER INFORMATION  
LEAD FREE FINISH  
LT3014ES5#PBF  
LT3014IS5#PBF  
LT3014HVES5#PBF  
LT3014HVIS5#PBF  
LT3014EDD#PBF  
LT3014IDD#PBF  
LT3014HVEDD#PBF  
LT3014HVIDD#PBF  
LEAD BASED FINISH  
LT3014ES5  
TAPE AND REEL  
PART MARKING*  
LTBMF  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
TEMPERATURE RANGE  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
LT3014ES5#TRPBF  
LT3014IS5#TRPBF  
LT3014HVES5#TRPBF  
LT3014HVIS5#TRPBF  
LT3014EDD#TRPBF  
LT3014IDD#TRPBF  
LT3014HVEDD#TRPBF  
LT3014HVIDD#TRPBF  
TAPE AND REEL  
5-Lead Plastic SOT-23  
LTBMF  
5-Lead Plastic SOT-23  
LTBRS  
5-Lead Plastic SOT-23  
LTBRS  
5-Lead Plastic SOT-23  
LBMG  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
PACKAGE DESCRIPTION  
LBMG  
LBRT  
LBRT  
PART MARKING*  
LTBMF  
LT3014ES5#TR  
5-Lead Plastic SOT-23  
LT3014IS5  
LT3014IS5#TR  
LTBMF  
5-Lead Plastic SOT-23  
LT3014HVES5  
LT3014HVES5#TR  
LT3014HVIS5#TR  
LT3014EDD#TR  
LTBRS  
5-Lead Plastic SOT-23  
LT3014HVIS5  
LTBRS  
5-Lead Plastic SOT-23  
LT3014EDD  
LBMG  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
LT3014IDD  
LT3014IDD#TR  
LBMG  
LT3014HVEDD  
LT3014HVIDD  
LT3014HVEDD#TR  
LT3014HVIDD#TR  
LBRT  
LBRT  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
3014fd  
2
LT3014  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TJ = 25°C.  
SYMBOL  
CONDITIONS  
= 20mA  
MIN  
TYP  
MAX  
UNITS  
l
Minimum Input Voltage  
I
3
3.3  
V
LOAD  
ADJ Pin Voltage  
(Notes 2, 3)  
V
= 3.3V, I  
= 100μA  
1.200  
1.180  
1.220  
1.220  
1.240  
1.260  
V
V
IN  
LOAD  
l
l
3.3V < V < 80V, 100μA < I  
< 20mA  
LOAD  
IN  
Line Regulation  
1
10  
mV  
ΔV = 3.3V to 80V, I  
= 100μA (Note 2)  
IN  
LOAD  
Load Regulation (Note 2)  
13  
25  
40  
mV  
mV  
V
V
= 3.3V, ΔI  
= 3.3V, ΔI  
= 100μA to 20mA  
= 100μA to 20mA  
IN  
IN  
LOAD  
LOAD  
l
l
l
l
l
Dropout Voltage  
I
I
= 100μA  
= 100μA  
120  
200  
300  
350  
180  
250  
mV  
mV  
LOAD  
LOAD  
V
IN  
= V  
(Notes 4, 5)  
OUT(NOMINAL)  
I
I
= 1mA  
= 1mA  
270  
360  
mV  
mV  
LOAD  
LOAD  
I
I
= 10mA  
= 10mA  
350  
450  
mV  
mV  
LOAD  
LOAD  
I
I
= 20mA  
= 20mA  
410  
570  
mV  
mV  
LOAD  
LOAD  
l
l
l
l
l
GND Pin Current  
= V  
I
I
I
I
I
= 0mA  
7
20  
30  
100  
450  
1000  
μA  
μA  
μA  
μA  
μA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
V
(Notes 4, 6)  
OUT(NOMINAL)  
= 100μA  
= 1mA  
12  
IN  
40  
250  
650  
= 10mA  
= 20mA  
Output Voltage Noise  
ADJ Pin Bias Current  
Shutdown Threshold  
C
= 0.47μF, I  
= 20mA, BW = 10Hz to 100kHz  
115  
4
μV  
RMS  
OUT  
LOAD  
(Note 7)  
10  
2
nA  
l
l
V
OUT  
V
OUT  
= Off to On  
= On to Off  
1.3  
1.3  
V
V
0.25  
l
l
SHDN Pin Current (Note 8)  
V
SHDN  
V
SHDN  
= 0V  
= 6V  
1
0
4
1
μA  
μA  
l
Quiescent Current in Shutdown  
Ripple Rejection  
V
= 6V, V  
= 0V  
SHDN  
1
4
μA  
dB  
IN  
V
LOAD  
= 7V (Avg), V  
= 20mA  
= 0.5V , f = 120Hz,  
P-P RIPPLE  
60  
25  
70  
IN  
RIPPLE  
I
Current Limit  
V
IN  
V
IN  
= 7V, V  
= 3.3V, ΔV  
= 0V  
70  
mA  
mA  
OUT  
l
l
= –0.1V (Note 2)  
OUT  
Input Reverse Leakage Current  
Reverse Output Current (Note 9)  
V
IN  
= –80V, V  
= 0V  
OUT  
6
4
mA  
μA  
V
OUT  
= 1.22V, V < 1.22V (Note 2)  
2
IN  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The LT3014 is tested and specified for these conditions with the  
ADJ pin connected to the OUT pin.  
Note 3: Operating conditions are limited by maximum junction  
temperature. The regulated output voltage specification will not apply  
for all possible combinations of input voltage and output current. When  
operating at maximum input voltage, the output current range must be  
limited. When operating at maximum output current, the input voltage  
range must be limited.  
Note 4: To satisfy requirements for minimum input voltage, the LT3014 is  
tested and specified for these conditions with an external resistor divider  
(249k bottom, 392k top) for an output voltage of 3.3V. The external  
resistor divider adds a 5µA DC load on the output.  
Note 5: Dropout voltage is the minimum input to output voltage differential  
needed to maintain regulation at a specified output current. In dropout, the  
output voltage is equal to (V – V  
).  
IN  
DROPOUT  
Note 6: GND pin current is tested with V = V  
(nominal) and a current  
IN  
OUT  
source load. This means the device is tested while operating in its dropout  
region. This is the worst-case GND pin current. The GND pin current  
decreases slightly at higher input voltages.  
Note 7: ADJ pin bias current flows into the ADJ pin.  
Note 8: SHDN pin current flows out of the SHDN pin.  
Note 9: Reverse output current is tested with the IN pin grounded and the  
OUT pin forced to the rated output voltage. This current flows into the OUT  
pin and out of the GND pin.  
Note 10: The LT3014 is tested and specified under pulse load conditions  
such that T T . The LT3014E is 100% tested at T = 25°C. Performance  
J
A
A
at –40°C to 125°C is assured by design, characterization, and statistical  
3014fd  
3
LT3014  
ELECTRICAL CHARACTERISTICS  
process controls. The LT3014I is guaranteed over the full –40°C to 125°C  
operating junction temperature.  
temperature will exceed 125°C when overtemperature protection is active.  
Continuous operation above the specified maximum operating junction  
temperature may impair device reliability.  
Note 11: This IC includes overtemperature protection that is intended  
to protect the device during momentary overload conditions. Junction  
TYPICAL PERFORMANCE CHARACTERISTICS  
Typical Dropout Voltage  
Guaranteed Dropout Voltage  
Dropout Voltage  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
600  
500  
= TEST POINTS  
T
b 125oC  
J
T
= 125oC  
J
I
L
= 20mA  
400  
300  
I
= 10mA  
T
b 25oC  
L
J
T
= 25oC  
J
I
= 1mA  
L
200  
100  
0
I
= 100MA  
L
0
0
0
2
4
6
8
10 12 14 16 18 20  
–50  
0
25  
50  
75 100 125  
0
2
4
6
8
10 12 14 16 18 20  
–25  
OUTPUT CURRENT (mA)  
TEMPERATURE (oC)  
OUTPUT CURRENT (mA)  
3014 G01  
3014 G02  
3014 G03  
Quiescent Current  
ADJ Pin Voltage  
Quiescent Current  
16  
1.240  
16  
14  
12  
10  
8
I
= 100μA  
T
R
V
= 25oC  
= d  
OUT  
V
= 6V  
L
J
L
IN  
L
R
I
= d  
14  
12  
1.235  
1.230  
= 1.22V  
= 0  
L
10  
8
1.225  
1.220  
1.215  
1.210  
1.205  
V
= V  
IN  
SHDN  
V
= V  
IN  
SHDN  
6
6
4
4
2
2
V
= 0V  
SHDN  
V
= 0V  
5
SHDN  
4
0
0
1.200  
0
1
2
3
6
7
8
9
10  
–25  
0
50  
75 100 125  
–25  
0
50  
75 100 125  
–50  
25  
–50  
25  
INPUT VOLTAGE (V)  
TEMPERATURE (oC)  
TEMPERATURE (oC)  
3014 G06  
3014 G04  
3014 G05  
3014fd  
4
LT3014  
TYPICAL PERFORMANCE CHARACTERISTICS  
GND Pin Current  
GND Pin Current vs ILOAD  
SHDN Pin Threshold  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
T
= 25oC  
V
J
= 3.3V  
J
IN  
*FOR V  
= 1.22V  
T = 25oC  
OUT  
V
= 1.22V  
OUT  
R
L
= 617  
L
I
= 20mA*  
R
I
= 1227  
L
L
= 10mA*  
R
L
= 1.22k  
= 1mA*  
L
I
–50 –25  
0
25  
50  
75 100 125  
0
1
2
3
4
5
6
7
8
9
10  
0
2
4
6
8
10 12 14 16 18 20  
TEMPERATURE (oC)  
INPUT VOLTAGE (V)  
OUTPUT CURRENT (mA)  
3014 G09  
3014 G07  
3014 G08  
SHDN Pin Current  
SHDN Pin Current  
ADJ Pin Bias Current  
1.6  
14  
12  
10  
8
1.2  
1.0  
T
= 25oC  
V
= 0V  
J
SHDN  
CURRENT FLOWS  
OUT OF SHDN PIN  
CURRENT FLOWS  
OUT OF SHDN PIN  
1.4  
1.2  
0.8  
0.6  
1.0  
0.8  
0.6  
0.4  
0.2  
6
0.4  
0.2  
0
4
2
0
0
2.5  
3
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
0
0.5  
1
1.5  
2
3.5  
4
SHDN PIN VOLTAGE (V)  
TEMPERATURE (oC)  
TEMPERATURE (oC)  
3014 G11  
3014 G12  
3014 G10  
Current Limit  
Current Limit  
Reverse Output Current  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
V
V
= 7V  
V
T
= 0V  
IN  
OUT  
T
V
V
= 25oC  
OUT  
J
J
= 0V  
= 25oC  
= 0V  
IN  
OUT  
70  
60  
ADJ PIN  
ESD CLAMP  
= V  
ADJ  
50  
40  
30  
20  
10  
CURRENT FLOWS  
INTO OUTPUT PIN  
0
0
–50  
0
25  
50  
75 100 125  
0
2
4
6
8
10 12 14 16 18 20  
–25  
0
1
2
3
4
5
6
7
8
9
10  
TEMPERATURE (oC)  
INPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
3014 G14  
3014 G13  
3014 G15  
3014fd  
5
LT3014  
TYPICAL PERFORMANCE CHARACTERISTICS  
Reverse Output Current  
Input Ripple Rejection  
Input Ripple Rejection  
72  
80  
8
V
V
= 0V  
= V  
V
I
= 7V + 50mV  
RIPPLE  
V
= 7V + 0.5V  
P-P  
IN  
OUT  
IN  
RMS  
IN  
= 1.22V  
ADJ  
= 20mA  
RIPPLE AT f = 120Hz  
L
70  
68  
70  
60  
7
6
I
= 20mA  
L
66  
64  
62  
60  
58  
50  
40  
30  
20  
10  
5
4
3
2
1
C
= 4.7μF  
OUT  
C
= 0.47μF  
OUT  
56  
0
0
–25  
0
50  
75 100 125  
–50  
25  
10  
100  
1k  
10k  
100k  
1M  
–25  
0
50  
75 100 125  
–50  
25  
TEMPERATURE (oC)  
FREQUENCY (Hz)  
TEMPERATURE (oC)  
3014 G18  
3014 G17  
3014 G16  
Minimum Input Voltage  
Load Regulation  
Output Noise Spectral Density  
10  
1
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0
C
I
= 0.47μF  
$I = 100μA TO 20mA  
I
= 20mA  
OUT  
L
OUT  
L
OUT  
LOAD  
= 20mA  
V
= 1.22V  
–5  
V
= 1.22V  
–10  
–15  
–20  
–25  
–30  
–35  
0.1  
–40  
0.01  
–50 –25  
0
25  
50  
75  
100 125  
–50 –25  
0
25  
50  
75 100 125  
10  
100  
1k  
10k  
100k  
TEMPERATURE (oC)  
TEMPERATURE (oC)  
FREQUENCY (Hz)  
3014 G21  
3014 G19  
3014 G20  
10Hz to 100kHz Output Noise  
Transient Response  
0.04  
0.02  
0
V
= 7V  
= 5V  
IN  
V
OUT  
–0.02  
–0.04  
V
OUT  
200μV/DIV  
C
= C  
= 0.47μF CERAMIC  
IN  
OUT  
$I  
= 1mA TO 5mA  
LOAD  
6
4
C
L
V
= 0.47μF  
1ms/DIV  
OUT  
OUT  
3014 G22  
2
0
I
= 200mA  
= 1.22V  
0
200  
400  
600  
800  
1000  
TIME (μs)  
3014 G23  
3014fd  
6
LT3014  
PIN FUNCTIONS (SOT-23 Package/DD Package)  
IN (Pin 1/Pin 8): Input. Power is supplied to the device  
through the IN pin. A bypass capacitor is required on this  
pinifthedeviceismorethansixinchesawayfromthemain  
input filter capacitor. In general, the output impedance of  
a battery rises with frequency, so it is advisable to include  
a bypass capacitor in battery-powered circuits. A bypass  
capacitor in the range of 0.1μF to 10μF is sufficient. The  
LT3014isdesignedtowithstandreversevoltagesontheIN  
pin with respect to ground and the OUT pin. In the case of  
a reversed input, which can happen if a battery is plugged  
in backwards, the LT3014 will act as if there is a diode in  
series with its input. There will be no reverse current flow  
into the LT3014 and no reverse voltage will appear at the  
load. The device will protect both itself and the load.  
logic with a pull-up resistor. The pull-up resistor is only  
required to supply the pull-up current of the open-collec-  
tor gate, normally several microamperes. If unused, the  
SHDN pin must be tied to IN or to a logic high.  
ADJ (Pin 4/Pin 2): Adjust. This is the input to the error  
amplifier. This pin is internally clamped to 7V. It has a  
bias current of 4nA which flows into the pin (see curve  
of ADJ Pin Bias Current vs Temperature in the Typical  
Performance Characteristics). The ADJ pin voltage is  
1.22V referenced to ground, and the output voltage range  
is 1.22V to 60V.  
OUT (Pin 5/Pin 1): Output. The output supplies power to  
theload.Aminimumoutputcapacitorof0.47μFisrequired  
to prevent oscillations. Larger output capacitors will be  
required for applications with large transient loads to limit  
peak voltage transients. See the Applications Information  
section for more information on output capacitance and  
reverse output characteristics.  
GND (Pin 2/Pins 4, 9): Ground.  
SHDN (Pin 3/Pin 5): Shutdown. The SHDN pin is used  
to put the LT3014 into a low power shutdown state. The  
output will be off when the SHDN pin is pulled low. The  
SHDNpincanbedriveneitherby5Vlogicoropen-collector  
3014fd  
7
LT3014  
APPLICATIONS INFORMATION  
The LT3014 is a 20mA high voltage low dropout regulator  
with micropower quiescent current and shutdown. The  
device is capable of supplying 20mA at a dropout voltage  
of350mV.Thelowoperatingquiescentcurrent(7μA)drops  
to 1μA in shutdown. In addition to the low quiescent cur-  
rent, the LT3014 incorporates several protection features  
which make it ideal for use in battery-powered systems.  
The device is protected against both reverse input and  
reverse output voltages. In battery backup applications  
where the output can be held up by a backup battery  
when the input is pulled to ground, the LT3014 acts like it  
has a diode in series with its output and prevents reverse  
current flow.  
is –13mV typical at V  
regulation is:  
= 1.22V. At V  
= 12V, load  
OUT  
OUT  
(12V/1.22V) • (–13mV) = –128mV  
Output Capacitance and Transient Response  
The LT3014 is designed to be stable with a wide range of  
output capacitors. The ESR of the output capacitor affects  
stability, most notably with small capacitors. A minimum  
output capacitor of 0.47μF with an ESR of 3Ω or less is  
recommended to prevent oscillations. The LT3014 is a  
micropower device and output transient response will be  
a function of output capacitance. Larger values of output  
capacitance decrease the peak deviations and provide  
improved transient response for larger load current  
changes. Bypass capacitors, used to decouple individual  
components powered by the LT3014, will increase the  
effective output capacitor value.  
Adjustable Operation  
The LT3014 has an output voltage range of 1.22V to 60V.  
The output voltage is set by the ratio of two external  
resistors as shown in Figure 1. The device servos the  
output to maintain the voltage at the adjust pin at 1.22V  
referenced to ground. The current in R1 is then equal to  
1.22V/R1 and the current in R2 is the current in R1 plus  
the ADJ pin bias current. The ADJ pin bias current, 4nA  
at 25°C, flows through R2 into the ADJ pin. The output  
voltage can be calculated using the formula in Figure 1.  
The value of R1 should be less than 1.62M to minimize  
errors in the output voltage caused by the ADJ pin bias  
current. Note that in shutdown the output is turned off  
and the divider current will be zero. The device is tested  
and specified with the ADJ pin tied to the OUT pin and a  
5μA DC load (unless otherwise specified) for an output  
voltageof1.22V.Specificationsforoutputvoltagesgreater  
than 1.22V will be proportional to the ratio of the desired  
Extra consideration must be given to the use of ceramic  
capacitors. Ceramic capacitors are manufactured with a  
variety of dielectrics, each with different behavior across  
temperature and applied voltage. The most common  
dielectrics used are specified with EIA temperature char-  
acteristic codes of Z5U, Y5V, X5R and X7R. The Z5U and  
Y5V dielectrics are good for providing high capacitances  
in a small package, but they tend to have strong voltage  
and temperature coefficients as shown in Figures 2 and 3.  
When used with a 5V regulator, a 16V 10μF Y5V capacitor  
can exhibit an effective value as low as 1μF to 2μF for the  
DC bias voltage applied and over the operating tempera-  
ture range. The X5R and X7R dielectrics result in more  
stable characteristics and are more suitable for use as the  
output capacitor. The X7R type has better stability across  
temperature, while the X5R is less expensive and is avail-  
able in higher values. Care still must be exercised when  
using X5R and X7R capacitors; the X5R and X7R codes  
only specify operating temperature range and maximum  
capacitancechangeovertemperature.Capacitancechange  
due to DC bias with X5R and X7R capacitors is better than  
Y5VandZ5Ucapacitors,butcanstillbesignificantenough  
to drop capacitor values below appropriate levels. Capaci-  
tor DC bias characteristics tend to improve as component  
casesizeincreases, butexpectedcapacitanceatoperating  
voltage should be verified.  
output voltage to 1.22V (V /1.22V). For example, load  
OUT  
regulation for an output current change of 1mA to 20mA  
V
IN  
OUT  
LT3014  
ADJ  
OUT  
+
R2  
R1  
V
IN  
GND  
3014 F01  
R2  
R1  
V
V
= 1.22V 1 +  
+ (I )(R2)  
ADJ  
OUT  
ADJ  
= 1.22V  
= 4nA AT 25oC  
I
ADJ  
OUTPUT RANGE = 1.22V TO 60V  
Figure 1. Adjustable Operation  
3014fd  
8
LT3014  
APPLICATIONS INFORMATION  
Voltage and temperature coefficients are not the only  
sources of problems. Some ceramic capacitors have a  
piezoelectric response. A piezoelectric device generates  
voltageacrossitsterminalsduetomechanicalstress,simi-  
lartothewayapiezoelectricaccelerometerormicrophone  
works. For a ceramic capacitor the stress can be induced  
by vibrations in the system or thermal transients.  
For surface mount devices, heat sinking is accomplished  
by using the heat spreading capabilities of the PC board  
and its copper traces. Copper board stiffeners and plated  
through-holes can also be used to spread the heat gener-  
ated by power devices.  
The following table lists thermal resistance for several  
different board sizes and copper areas. All measurements  
were taken in still air on 3/32” FR-4 board with one ounce  
copper.  
20  
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10μF  
0
X5R  
Table 1. SOT-23 Measured Thermal Resistance  
–20  
COPPER AREA  
THERMAL RESISTANCE  
(JUNCTION-TO-AMBIENT)  
–40  
TOPSIDE BACKSIDE BOARD AREA  
2500 sq mm 2500 sq mm  
1000 sq mm 2500 sq mm  
225 sq mm 2500 sq mm  
100 sq mm 2500 sq mm  
2500 sq mm  
2500 sq mm  
2500 sq mm  
2500 sq mm  
2500 sq mm  
125°C/W  
125°C/W  
130°C/W  
135°C/W  
150°C/W  
–60  
Y5V  
–80  
–100  
0
8
12 14  
2
4
6
10  
16  
50 sq mm  
2500 sq mm  
DC BIAS VOLTAGE (V)  
3014 F02  
Table 2. DFN Measured Thermal Resistance  
COPPER AREA  
Figure 2. Ceramic Capacitor DC Bias Characteristics  
THERMAL RESISTANCE  
TOPSIDE BACKSIDE BOARD AREA  
(JUNCTION-TO-AMBIENT)  
Thermal Considerations  
2500 sq mm 2500 sq mm  
1000 sq mm 2500 sq mm  
225 sq mm 2500 sq mm  
100 sq mm 2500 sq mm  
2500 sq mm  
2500 sq mm  
2500 sq mm  
2500 sq mm  
40°C/W  
45°C/W  
50°C/W  
62°C/W  
The power handling capability of the device will be limited  
by the maximum rated junction temperature (125°C). The  
power dissipated by the device will be made up of two  
components:  
For the DFN package, the thermal resistance junction-to-  
1. Output current multiplied by the input/output voltage  
case (θ ), measured at the Exposed Pad on the back of  
differential: I  
• (V – V ) and,  
JC  
OUT  
IN OUT  
the die, is 16°C/W.  
2. GND pin current multiplied by the input voltage:  
• V .  
40  
I
GND  
IN  
20  
The GND pin current can be found by examining the GND  
Pin Current curves in the Typical Performance Character-  
istics. Power dissipation will be equal to the sum of the  
two components listed above.  
0
X5R  
–20  
–40  
Y5V  
The LT3014 regulator has internal thermal limiting de-  
signed to protect the device during overload conditions.  
For continuous normal conditions the maximum junction  
temperature rating of 125°C must not be exceeded. It is  
important to give careful consideration to all sources of  
thermal resistance from junction to ambient. Additional  
heat sources mounted nearby must also be considered.  
–60  
–80  
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10μF  
–100  
50  
TEMPERATURE (oC)  
100 125  
–50 –25  
0
25  
75  
3014 F03  
Figure 3. Ceramic Capacitor Temperature Characteristics  
3014fd  
9
LT3014  
APPLICATIONS INFORMATION  
Continuous operation at large input/output voltage dif-  
ferentials and maximum load current is not practical  
due to thermal limitations. Transient operation at high  
input/output differentials is possible. The approximate  
thermal time constant for a 2500sq mm 3/32" FR-4 board  
with maximum topside and backside area for one ounce  
copper is 3 seconds. This time constant will increase as  
more thermal mass is added (i.e. vias, larger board, and  
other components).  
area. So the junction temperature rise above ambient will  
be approximately equal to:  
0.52W • 50°C/W = 26°C  
The maximum junction temperature will then be equal to  
the maximum junction temperature rise above ambient  
plus the maximum ambient temperature or:  
T
= 50°C + 26°C = 76°C  
JMAX  
Example 2: Given an output voltage of 5V, an input voltage  
of 48V that rises to 72V for 5ms(max) out of every 100ms,  
and a 5mA load that steps to 20mA for 50ms out of every  
250ms, what is the junction temperature rise above ambi-  
ent? Using a 500ms period (well under the time constant  
of the board), power dissipation is as follows:  
Foranapplicationwithtransienthighpowerpeaks,average  
power dissipation can be used for junction temperature  
calculationsaslongasthepulseperiodissignificantlyless  
than the thermal time constant of the device and board.  
Calculating Junction Temperature  
P1(48V in, 5mA load) = 5mA • (48V – 5V)  
+ (100μA • 48V) = 0.22W  
Example 1: Given an output voltage of 5V, an input volt-  
age range of 24V to 30V, an output current range of 0mA  
to 20mA, and a maximum ambient temperature of 50°C,  
what will the maximum junction temperature be?  
P2(48V in, 20mA load) = 20mA • (48V – 5V)  
+ (0.55mA • 48V) = 0.89W  
P3(72V in, 5mA load) = 5mA • (72V – 5V)  
+ (100μA • 72V) = 0.34W  
The power dissipated by the device will be equal to:  
I
• (V  
– V ) + (I  
• V  
)
OUT(MAX)  
IN(MAX)  
OUT  
GND  
IN(MAX)  
P4(72V in, 20mA load) = 20mA • (72V – 5V)  
+ (0.55mA • 72V) = 1.38W  
where:  
I
= 20mA  
= 30V  
OUT(MAX)  
Operation at the different power levels is as follows:  
V
IN(MAX)  
76% operation at P1, 19% for P2, 4% for P3, and  
1% for P4.  
I
at (I = 20mA, V = 30V) = 0.55mA  
OUT IN  
GND  
So:  
PEFF = 76%(0.22W) + 19%(0.89W) + 4%(0.34W)  
+ 1%(1.38W) = 0.36W  
P = 20mA • (30V – 5V) + (0.55mA • 30V) = 0.52W  
With a thermal resistance in the range of 40°C/W to  
62°C/W, this translates to a junction temperature rise  
above ambient of 20°C.  
The thermal resistance for the DFN package will be in the  
range of 40°C/W to 62°C/W depending on the copper  
3014fd  
10  
LT3014  
APPLICATIONS INFORMATION  
Protection Features  
In situations where the ADJ pin is connected to a resistor  
dividerthatwouldpulltheADJpinaboveits7Vclampvolt-  
age if the output is pulled high, the ADJ pin input current  
must be limited to less than 5mA. For example, a resistor  
divider is used to provide a regulated 1.5V output from the  
1.22V reference when the output is forced to 60V. The top  
resistor of the resistor divider must be chosen to limit the  
current into the ADJ pin to less than 5mA when the ADJ  
pin is at 7V. The 53V difference between the OUT and ADJ  
pins divided by the 5mA maximum current into the ADJ  
pin yields a minimum top resistor value of 10.6k.  
TheLT3014incorporatesseveralprotectionfeatureswhich  
make it ideal for use in battery-powered circuits. In ad-  
dition to the normal protection features associated with  
monolithicregulators,suchascurrentlimitingandthermal  
limiting, thedeviceisprotectedagainstreverse-inputvolt-  
ages, and reverse voltages from output to input.  
Current limit protection and thermal overload protection  
areintendedtoprotectthedeviceagainstcurrentoverload  
conditionsattheoutputofthedevice.Fornormaloperation,  
the junction temperature should not exceed 125°C.  
In circuits where a backup battery is required, several  
different input/output conditions can occur. The output  
voltage may be held up while the input is either pulled  
to ground, pulled to some intermediate voltage, or is left  
open circuit. Current flow back into the output will follow  
the curve shown in Figure 4. The rise in reverse output  
current above 7V occurs from the breakdown of the 7V  
clamp on the ADJ pin. With a resistor divider on the  
regulator output, this current will be reduced depending  
on the size of the resistor divider.  
The input of the device will withstand reverse voltages  
of 80V. Current flow into the device will be limited to less  
than 6mA (typically less than 100μA) and no negative  
voltage will appear at the output. The device will protect  
both itself and the load. This provides protection against  
batteries which can be plugged in backward.  
The ADJ pin can be pulled above or below ground by as  
much as 7V without damaging the device. If the input is  
left open circuit or grounded, the ADJ pin will act like an  
open circuit when pulled below ground, and like a large  
resistor (typically 100k) in series with a diode when pulled  
above ground. If the input is powered by a voltage source,  
pulling the ADJ pin below the reference voltage will cause  
the device to current limit. This will cause the output to go  
to an unregulated high voltage. Pulling the ADJ pin above  
the reference voltage will turn off all output current.  
When the IN pin of the LT3014 is forced below the OUT  
pin or the OUT pin is pulled above the IN pin, input cur-  
rent will typically drop to less than 2μA. This can happen  
if the input of the LT3014 is connected to a discharged  
(low voltage) battery and the output is held up by either  
a backup battery or a second regulator circuit. The state  
of the SHDN pin will have no effect on the reverse output  
current when the output is pulled above the input.  
50  
T
V
V
= 25oC  
J
45  
40  
35  
30  
25  
20  
15  
10  
5
= 0V  
IN  
OUT  
ADJ PIN  
ESD CLAMP  
= V  
ADJ  
CURRENT FLOWS  
INTO OUTPUT PIN  
0
0
1
2
3
4
5
6
7
8
9
10  
OUTPUT VOLTAGE (V)  
3014 F04  
Figure 4. Reverse Output Current  
3014fd  
11  
LT3014  
TYPICAL APPLICATIONS  
5V Buck Converter with Low Current Keep Alive Backup  
D2  
D1N914  
6
C2  
L1†  
15μH  
0.33μF  
BOOST  
V
V
IN  
OUT  
4
2
5.5V*  
V
SW  
5V  
IN  
C3  
4.7μF  
100V  
D1  
TO 60V  
1A/20mA  
10MQ060N  
LT1766  
CERAMIC  
15  
14  
10  
12  
SHDN  
BIAS  
FB  
R1  
C1  
+
15.4k  
100μF 10V  
SOLID  
SYNC  
GND  
R2  
4.99k  
TANTALUM  
V
C
1, 8, 9, 16 11  
C
C
1nF  
3014 TA03  
IN  
OUT  
*FOR INPUT VOLTAGES BELOW 7.5V,  
SOME RESTRICTIONS MAY APPLY  
INCREASE L1 TO 30μH FOR LOAD  
CURRENTS ABOVE 0.6A AND TO  
60μH ABOVE 1A  
LT3014  
3.92M  
1.27M  
OPERATING  
CURRENT  
SHDN  
ADJ  
HIGH  
LOW  
GND  
Buck Converter  
Efficiency vs Load Current  
100  
V
= 5V  
OUT  
L = 68μH  
V
V
= 10V  
= 42V  
IN  
IN  
90  
80  
70  
60  
50  
0
0.25  
0.50  
0.75  
1.00  
1.25  
LOAD CURRENT (A)  
3014 TA04  
3014fd  
12  
LT3014  
TYPICAL APPLICATIONS  
LT3014 Automotive Application  
IN  
OUT  
ADJ  
NO PROTECTION  
DIODE NEEDED!  
+
V
IN  
LT3014  
SHDN  
R1  
R2  
1μF  
12V  
1μF  
LOAD: CLOCK,  
SECURITY SYSTEM  
ETC  
(LATER 42V)  
GND  
OFF  
ON  
LT3014 Telecom Application  
V
IN  
IN  
OUT  
48V  
(72V TRANSIENT)  
+
LT3014  
BACKUP  
BATTERY  
R1  
R2  
NO PROTECTION  
DIODE NEEDED!  
1μF  
1μF  
LOAD:  
SYSTEM MONITOR  
ETC  
SHDN  
ADJ  
GND  
3014 TA05  
OFF  
ON  
Constant Brightness for Indicator LED over Wide Input Voltage Range  
RETURN  
IN  
OUT  
LT3014  
1μF  
1μF  
OFF ON  
–48V  
SHDN ADJ  
GND  
R
SET  
3014 TA06  
I
= 1.22V/R  
SET  
LED  
–48V CAN VARY FROM –3.3V TO –80V  
3014fd  
13  
LT3014  
PACKAGE DESCRIPTION  
S5 Package  
5-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1635)  
0.62  
MAX  
0.95  
REF  
2.90 BSC  
(NOTE 4)  
1.22 REF  
1.50 – 1.75  
(NOTE 4)  
2.80 BSC  
1.4 MIN  
3.85 MAX 2.62 REF  
PIN ONE  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.30 – 0.45 TYP  
5 PLCS (NOTE 3)  
0.95 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
NOTE:  
S5 TSOT-23 0302 REV B  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
3014fd  
14  
LT3014  
PACKAGE DESCRIPTION  
DD Package  
8-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1698)  
0.675 p0.05  
3.5 p0.05  
2.15 p0.05 (2 SIDES)  
1.65 p0.05  
PACKAGE  
OUTLINE  
0.25 p 0.05  
0.50  
BSC  
2.38 p0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
R = 0.115  
0.38 p 0.10  
TYP  
5
8
3.00 p0.10  
(4 SIDES)  
1.65 p 0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(NOTE 6)  
(DD) DFN 1203  
4
1
0.25 p 0.05  
0.75 p0.05  
0.200 REF  
0.50 BSC  
2.38 p0.10  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-1)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON TOP AND BOTTOM OF PACKAGE  
3014fd  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
15  
LT3014  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
V : 4.2V to 30V, V  
LT1129  
700mA, Micropower, LDO  
= 3.75V, V = 0.4V, I = 50μA, I = 16μA,  
OUT(MIN) DO Q SD  
IN  
DD, SOT-223, S8, TO220, TSSOP-20 Packages  
LT1175  
500mA, Micropower Negative LDO  
3A, Negative LDO  
V : –20V to –4.3V, V = 3.8V, V = 0.50V, I = 45μA, I = 10μA,  
IN  
OUT(MIN)  
DO  
Q
SD  
DD, SOT-223, S8 Packages  
LT1185  
V : –35V to –4.2V, V = 2.40V, V = 0.80V, I = 2.5mA, I <1μA,  
OUT(MIN) DO Q SD  
IN  
TO220-5 Package  
LT1761  
100mA, Low Noise Micropower, LDO  
150mA, Low Noise Micropower, LDO  
500mA, Low Noise Micropower, LDO  
3A, Low Noise, Fast Transient Response, LDO  
150mA, Very Low Dropout LDO  
V : 1.8V to 20V, V  
= 1.22V, V = 0.30V, I = 20μA, I <1μA,  
DO Q SD  
IN  
OUT(MIN)  
OUT(MIN)  
OUT(MIN)  
OUT(MIN)  
ThinSOT Package  
LT1762  
V : 1.8V to 20V, V  
= 1.22V, V = 0.30V, I = 25μA, I <1μA,  
DO Q SD  
IN  
MS8 Package  
LT1763  
V : 1.8V to 20V, V  
= 1.22V, V = 0.30V, I = 30μA, I <1μA,  
DO Q SD  
IN  
S8 Package  
LT1764/LT1764A  
LTC1844  
LT1962  
V : 2.7V to 20V, V  
= 1.21V, V = 0.34V, I = 1mA, I <1μA,  
DO Q SD  
IN  
DD, TO220 Packages  
V : 1.6V to 6.5V, V  
= 1.25V, V = 0.08V, I = 40μA, I <1μA,  
DO Q SD  
IN  
OUT(MIN)  
OUT(MIN)  
OUT(MIN)  
ThinSOT Package  
300mA, Low Noise Micropower, LDO  
1.5A, Low Noise, Fast Transient Response, LDO  
200mA, Low Noise Micropower, Negative LDO  
50mA, 80V, Low Noise Micropower, LDO  
V : 1.8V to 20V, V  
= 1.22V, V = 0.27V, I = 30μA, I <1μA,  
DO Q SD  
IN  
MS8 Package  
LT1963/LT1963A  
LT1964  
V : 2.1V to 20V, V  
= 1.21V, V = 0.34V, I = 1mA, I <1μA,  
DO Q SD  
IN  
DD, TO220, SOT Packages  
V : –1.9V to –20V, V  
= –1.21V, V = 0.34V, I = 30μA, I = 3μA,  
DO Q SD  
IN  
OUT(MIN)  
ThinSOT Package  
LT3010  
V : 3V to 80V, V  
= 1.28V, V = 0.3V, I = 30μA, I <1μA,  
IN  
OUT(MIN) DO Q SD  
MS8E Package  
LT3020  
100mA, Low V , Low V  
Micropower, VLDO  
V : 0.9V to 10V, V  
= 0.20V, V = 0.15V, I = 120μA, I <1μA,  
OUT(MIN) DO Q SD  
IN  
OUT  
IN  
DFN, MS8 Packages  
LT3023  
Dual 100mA, Low Noise Micropower, LDO  
V : 1.8V to 20V, V  
= 1.22V, V = 0.30V, I = 40μA, I <1μA,  
OUT(MIN) DO Q SD  
IN  
DFN, MS10 Packages  
LT3024  
Dual 100mA/500mA, Low Noise Micropower, LDO  
V : 1.8V to 20V, V  
= 1.22V, V = 0.30V, I = 60μA, I <1μA,  
OUT(MIN) DO Q SD  
IN  
DFN, TSSOP-16E Packages  
V : 1.8V to 20V, V = 1.22V, V = 0.30V, I = 40μA, I <1μA,  
OUT(MIN) DO Q SD  
LT3027  
Dual 100mA, Low Noise LDO with Independent  
Inputs  
IN  
DFN, MS10E Packages  
LT3028  
Dual 100mA/500mA, Low Noise LDO with  
Independent Inputs  
V : 1.8V to 20V, V  
= 1.22V, V = 0.30V, I = 60μA, I <1μA,  
OUT(MIN) DO Q SD  
IN  
DFN, TSSOP-16E Packages  
3014fd  
LT 0808 REV D • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
© LINEAR TECHNOLOGY CORPORATION 2005  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT3014IS5#PBF

LT3014 - 20mA, 3V to 80V Low Dropout Micropower Linear Regulator; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3014IS5#TR

Adjustable Positive LDO Regulator, 1.22V Min, 60V Max, 0.57V Dropout, PDSO5
Linear

LT3014IS5#TRMPBF

LT3014 - 20mA, 3V to 80V Low Dropout Micropower Linear Regulator; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3014IS5#TRPBF

LT3014 - 20mA, 3V to 80V Low Dropout Micropower Linear Regulator; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3015

1.5A, Low Noise, Negative Linear Regulator
Linear

LT3015EDD

1.5A, Low Noise, Negative Linear Regulator with Precision Current Limit
Linear

LT3015EDD#PBF

LT3015 - 1.5A, Low Noise, Negative Linear Regulator with Precision Current Limit; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3015EDD#TRPBF

LT3015 - 1.5A, Low Noise, Negative Linear Regulator with Precision Current Limit; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3015EMSE

1.5A, Low Noise, Negative Linear Regulator with Precision Current Limit
Linear

LT3015EMSE-15#PBF

LT3015 - 1.5A, Low Noise, Negative Linear Regulator with Precision Current Limit; Package: MSOP; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3015EQ

1.5A, Low Noise, Negative Linear Regulator with Precision Current Limit
Linear

LT3015EQ#PBF

LT3015 - 1.5A, Low Noise, Negative Linear Regulator with Precision Current Limit; Package: DD PAK; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear