LT3023EMSE [Linear]

Dual 100mA, Low Dropout, Low Noise, Micropower Regulator; 双路100mA时低压差,低噪声,微功率稳压器
LT3023EMSE
型号: LT3023EMSE
厂家: Linear    Linear
描述:

Dual 100mA, Low Dropout, Low Noise, Micropower Regulator
双路100mA时低压差,低噪声,微功率稳压器

稳压器
文件: 总16页 (文件大小:581K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3023  
Dual 100mA,  
Low Dropout, Low Noise,  
Micropower Regulator  
U
FEATURES  
DESCRIPTIO  
The LT®3023 is a dual, micropower, low noise, low drop-  
out regulator. With an external 0.01µF bypass capacitor,  
output noise drops to 20µVRMS over a 10Hz to 100kHz  
bandwidth. Designedforuseinbattery-poweredsystems,  
the low 20µA quiescent current per channel makes it an  
ideal choice. In shutdown, quiescent current drops to less  
than 0.1µA. Shutdown control is independent for each  
channel,allowingforflexibilityinpowermanagement.The  
device is capable of operating over an input voltage from  
1.8Vto20V, andcansupply100mAofoutputcurrentfrom  
each channel with a dropout voltage of 300mV. Quiescent  
current is well controlled in dropout.  
Low Noise: 20µVRMS (10Hz to 100kHz)  
Low Quiescent Current: 20µA/Channel  
Wide Input Voltage Range: 1.8V to 20V  
Output Current: 100mA/Channel  
Very Low Shutdown Current: <0.1µA  
Low Dropout Voltage: 300mV at 100mA  
Adjustable Output from 1.22V to 20V  
Stable with 1µF Output Capacitor  
Stable with Aluminum, Tantalum or  
Ceramic Capacitors  
Reverse Battery Protected  
No Reverse Current  
No Protection Diodes Needed  
Overcurrent and Overtemperature Protected  
Thermally Enhanced 10-Lead MSOP and DFN  
Packages  
The LT3023 regulator is stable with output capacitors as  
low as 1µF. Small ceramic capacitors can be used without  
the series resistance required by other regulators.  
Internal protection circuitry includes reverse battery pro-  
tection, current limiting, thermal limiting and reverse  
current protection. The device is available as an adjustable  
device with a 1.22V reference voltage. The LT3023 regu-  
lator is available in the thermally enhanced 10-lead MSOP  
and DFN packages.  
U
APPLICATIO S  
Cellular Phones  
Pagers  
Battery-Powered Systems  
Frequency Synthesizers  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
Wireless Modems  
U
TYPICAL APPLICATIO  
3.3V/2.5V Low Noise Regulators  
10Hz to 100kHz Output Noise  
3.3V AT100mA  
IN  
OUT1  
20µV  
NOISE  
V
IN  
RMS  
3.7V TO  
20V  
1µF  
SHDN1  
SHDN2  
0.01µF  
10µF  
422k  
249k  
BYP1  
ADJ1  
LT3023  
V
OUT  
100µV/DIV  
20µV  
RMS  
2.5V AT100mA  
OUT2  
20µV  
NOISE  
RMS  
0.01µF  
10µF  
261k  
249k  
BYP2  
ADJ2  
3023 TA01b  
GND  
3023 TA01  
3023f  
1
LT3023  
ABSOLUTE AXI U RATI GS  
W W  
U W  
(Note 1)  
IN Pin Voltage........................................................ ±20V  
OUT1, OUT2 Pin Voltage ....................................... ±20V  
Input to Output Differential Voltage ....................... ±20V  
ADJ1, ADJ2 Pin Voltage ......................................... ±7V  
BYP1, BYP2 Pin Voltage ....................................... ±0.6V  
SHDN1, SHDN2 Pin Voltage ................................. ±20V  
Output Short-Circut Duration.......................... Indefinite  
Operating Junction Temperature Range  
(Note 2) ............................................ 40°C to 125°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
U W  
U
PACKAGE/ORDER I FOR ATIO  
ORDER PART  
NUMBER  
ORDER PART  
TOP VIEW  
11  
NUMBER  
TOP VIEW  
BYP2  
ADJ2  
GND  
1
2
3
4
5
10 OUT2  
BYP2  
ADJ2  
GND  
ADJ1  
BYP1  
1
2
3
4
5
10 OUT2  
LT3023EDD  
LT3023EMSE  
9
8
7
6
SHDN2  
IN  
9
8
7
6
SHDN2  
IN  
SHDN1  
OUT1  
11  
ADJ1  
BYP1  
SHDN1  
OUT1  
MSE PACKAGE  
10-LEAD PLASTIC MSOP  
EXPOSED PAD (PIN 11) IS GND  
MUST BE SOLDERED TO PCB  
JMAX = 150°C, θJA = 40°C/ W, θJC = 10°C/ W  
DD PART  
MARKING  
MSE PART  
MARKING  
DD PACKAGE  
10-LEAD (3mm × 3mm) PLASTIC DFN  
EXPOSED PAD (PIN 11) IS GND  
MUST BE SOLDERED TO PCB  
T
LAJA  
LTAHZ  
TJMAX = 125°C, θJA = 40°C/ W, θJC = 10°C/ W  
Consult factory for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating temperature range, otherwise specifications are TA = 25°C. (Note 2)  
PARAMETER  
CONDITIONS  
= 100mA  
MIN  
TYP  
MAX  
UNITS  
Minimum Input Voltage  
(Notes 3, 11)  
I
1.8  
2.3  
V
LOAD  
ADJ1, ADJ2 Pin Voltage  
(Note 3, 4)  
V
= 2V, I  
= 1mA  
LOAD  
1.205  
1.190  
1.220  
1.220  
1.235  
1.250  
V
V
IN  
2.3V < V < 20V, 1mA < I  
< 100mA  
LOAD  
IN  
Line Regulation (Note 3)  
Load Regulation (Note 3)  
V = 2V to 20V, I  
= 1mA  
1
1
10  
mV  
IN  
LOAD  
V
V
= 2.3V, I  
= 2.3V, I  
= 1mA to 100mA  
= 1mA to 100mA  
12  
25  
mV  
mV  
IN  
IN  
LOAD  
LOAD  
Dropout Voltage  
I
I
= 1mA  
= 1mA  
0.10  
0.17  
0.24  
0.30  
0.15  
0.19  
V
V
LOAD  
LOAD  
V
= V  
IN  
OUT(NOMINAL)  
(Notes 5, 6, 11)  
I
I
= 10mA  
= 10mA  
0.22  
0.29  
V
V
LOAD  
LOAD  
I
I
= 50mA  
= 50mA  
0.28  
0.38  
V
V
LOAD  
LOAD  
I
I
= 100mA  
= 100mA  
0.35  
0.45  
V
V
LOAD  
LOAD  
3023f  
2
LT3023  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating temperature range, otherwise specifications are TA = 25°C. (Note 2)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
GND Pin Current (Per Channel)  
I
I
I
I
I
= 0mA  
20  
55  
230  
1
2.2  
45  
100  
400  
2
µA  
µA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
V
= V  
= 1mA  
IN  
OUT(NOMINAL)  
(Notes 5, 7)  
= 10mA  
= 50mA  
= 100mA  
µA  
mA  
mA  
4
Output Voltage Noise  
C
= 10µF, C  
= 0.01µF, I  
= 100mA, BW = 10Hz to 100kHz  
20  
30  
µV  
RMS  
OUT  
BYP  
LOAD  
ADJ1/ADJ2 Pin Bias Current  
Shutdown Threshold  
(Notes 3, 8)  
100  
1.4  
nA  
V
V
= Off to On  
= On to Off  
0.8  
0.65  
V
V
OUT  
OUT  
0.25  
SHDN1/SHDN2 Pin Current  
(Note 9)  
V
V
= 0V  
= 20V  
0
1
0.5  
3
µA  
µA  
SHDN  
SHDN  
Quiescent Current in Shutdown  
Ripple Rejection (Note 3)  
V
V
= 6V, V  
= 0V (Both SHDN Pins)  
SHDN  
0.01  
65  
0.1  
µA  
IN  
= 2.72V (Avg), V  
= 50mA  
= 0.5V , f = 120Hz,  
P-P RIPPLE  
55  
dB  
IN  
RIPPLE  
I
LOAD  
Current Limit  
V
V
= 7V, V  
= 0V  
OUT  
200  
mA  
mA  
IN  
IN  
OUT  
= 2.3V, V  
= 5%  
110  
Input Reverse Leakage Current  
V
= 20V, V  
= 0V  
1
mA  
IN  
OUT  
Reverse Output Current (Notes 3,10) V  
= 1.22V, V < 1.22V  
5
10  
µA  
OUT  
IN  
Note 6: Dropout voltage is the minimum input to output voltage differential  
needed to maintain regulation at a specified output current. In dropout, the  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
output voltage will be equal to: V – V  
.
IN  
DROPOUT  
Note 2: The LT3023 regulator is tested and specified under pulse load  
conditions such that T T . The LT3023 is 100% production tested at  
Note 7: GND pin current is tested with V = 2.44V and a current source  
IN  
J
A
load. This means the device is tested while operating in its dropout region  
or at the minimum input voltage specification. This is the worst-case GND  
pin current. The GND pin current will decrease slightly at higher input  
voltages.  
T = 25°C. Performance at 40°C and 125°C is assured by design,  
characterization and correlation with statistical process controls.  
Note 3: The LT3023 is tested and specified for these conditions with the  
ADJ1/ADJ2 pin connected to the corresponding OUT1/OUT2 pin.  
A
Note 8: ADJ1 and ADJ2 pin bias current flows into the pin.  
Note 9: SHDN1 and SHDN2 pin current flows into the pin.  
Note 10: Reverse output current is tested with the IN pin grounded and the  
OUT pin forced to the rated output voltage. This current flows into the OUT  
pin and out the GND pin.  
Note 11: For the LT3023 dropout voltage will be limited by the minimum  
input voltage specification under some output voltage/load conditions. See  
the curve of Minimum Input Voltage in the Typical Performance  
Characteristics.  
Note 4: Operating conditions are limited by maximum junction  
temperature. The regulated output voltage specification will not apply for  
all possible combinations of input voltage and output current. When  
operating at maximum input voltage, the output current range must be  
limited. When operating at maximum output current, the input voltage  
range must be limited.  
Note 5: To satisfy requirements for minimum input voltage, the LT3023 is  
tested and specified for these conditions with an external resistor divider  
(two 250k resistors) for an output voltage of 2.44V. The external resistor  
divider will add a 5µA DC load on the output.  
3023f  
3
LT3023  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Typical Dropout Voltage  
Dropout Voltage  
Guaranteed Dropout Voltage  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
= TEST POINTS  
T
125°C  
25°C  
J
T = 125°C  
J
I
= 100mA  
L
T
J
I
= 50mA  
= 10mA  
L
T = 25°C  
J
I
L
I
= 1mA  
L
0
–50  
0
0
0
25  
50  
75 100 125  
–25  
40  
40  
50 60 70 80 90 100  
0
10 20 30  
50 60 70 80 90 100  
0
10 20 30  
TEMPERATURE (°C)  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
3023 G03  
3023 G01  
3023 G02  
Quiescent Current  
ADJ1 or ADJ2 Pin Voltage  
Quiescent Current  
1.240  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
T = 25°C  
V
= 6V  
I
= 1mA  
J
R
IN  
L
L
= 250k  
R
= 250k  
1.235  
1.230  
1.225  
1.220  
1.215  
1.210  
1.205  
1.200  
L
L
I
= 5µA  
I
= 5µA  
L
V
= V  
IN  
SHDN  
V
= V  
IN  
SHDN  
V
SHDN  
= 0V  
V
= 0V  
50  
SHDN  
25  
0
0
–50  
–25  
0
25  
50  
75  
125  
0
2
4
6
8
10 12 14 16 18 20  
INPUT VOLTAGE (V)  
–50  
100  
–25  
0
75  
125  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3023 G05  
3023 G06  
3023 G03  
SHDN1 or SHDN2 Pin Threshold  
(On-to-Off)  
GND Pin Current vs ILOAD  
GND Pin Current  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
I
L
= 1mA  
V
IN  
= V  
+ 1V  
T = 25°C  
OUT(NOMINAL)  
J
*FOR V  
= 1.22V  
OUT  
R
L
= 12.2Ω  
L
I
= 100mA*  
R
L
= 24.4Ω  
L
I
= 50mA*  
R
L
= 1.22k  
L
R
L
= 122Ω  
L
I
= 1mA*  
I
= 10mA*  
40  
50 60 70 80 90 100  
0
10 20 30  
4
–50  
0
25  
50  
75  
125  
0
1
2
3
5
6
7
8
9
10  
–25  
100  
TEMPERATURE (°C)  
OUTPUT CURRENT (mA)  
INPUT VOLTAGE (V)  
3023 G08  
3023 G07  
3023 G09  
3023f  
4
LT3023  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
SHDN1 or SHDN2 Pin Input  
Current  
SHDN1 or SHDN2 Pin Input  
Current  
SHDN1 or SHDN2 Pin Threshold  
(Off-to-On)  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
= 20V  
SHDN  
I
= 100mA  
L
I
= 1mA  
L
–50  
0
25  
50  
75 100 125  
–50  
–25  
0
25  
50  
75 100 125  
–25  
4
0
1
2
3
5
6
7
8
9
10  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SHDN PIN VOLTAGE (V)  
3023 G10  
3023 G12  
3023 G11  
Current Limit  
ADJ1 or ADJ2 Pin Bias Current  
Current Limit  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
350  
300  
250  
200  
150  
100  
50  
350  
300  
250  
200  
150  
100  
50  
V
= 0V  
V
V
= 7V  
OUT  
OUT  
J
IN  
T
= 25°C  
= 0V  
0
0
–50  
0
25  
TEMPERATURE (°C)  
50  
75 100 125  
0
1
2
3
4
5
6
7
–50  
–25  
0
25  
50  
75 100 125  
–25  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
3023 G13  
3023 G14  
3023 G15  
Reverse Output Current  
Reverse Output Current  
Input Ripple Rejection  
18  
15  
12  
9
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
V
V
= 0V  
= V  
T
V
V
= 25°C  
IN  
OUT  
A
= 1.22V  
ADJ  
= 0V  
IN  
OUT  
= V  
ADJ  
CURRENT FLOWS  
INTO OUTPUT PIN  
C
= 10µF  
OUT  
6
3
I
V
C
= 100mA  
L
C
= 1µF  
= 2.3V + 50mV  
RIPPLE  
RMS  
OUT  
IN  
= 0  
BYP  
0
50  
TEMPERATURE (°C)  
100 125  
4
–50 –25  
0
25  
75  
0
1
2
3
5
6
7
8
9
10  
0.01  
0.1  
1
10  
100  
1000  
FREQUENCY (kHz)  
OUTPUT VOLTAGE (V)  
LTXXXX GXX  
3023 G17  
3023 G16  
3023f  
5
LT3023  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Input Ripple Rejection  
Input Ripple Rejection  
Channel-to-Channel Isolation  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
C
= 0.01µF  
BYP  
V
OUT1  
20mV/DIV  
C
= 1000pF  
BYP  
C
= 100pF  
BYP  
V
OUT2  
20mV/DIV  
V
= V  
+
IN  
OUT (NOMINAL)  
1V + 0.5V RIPPLE  
P-P  
3023 G21a  
I
V
C
= 100mA  
50µs/DIV  
L
AT f = 120Hz  
= 2.3V + 50mV  
RIPPLE  
RMS  
IN  
I
= 50mA  
–25  
C
, C = 10µF  
OUT1 OUT2  
L
= 10µF  
OUT  
C
, C  
= 0.01µF  
BYP1 BYP2  
I = 10mA to 100mA  
0
25  
50  
75  
125  
–50  
100  
L1  
0.01  
0.1  
1
10  
100  
1000  
I = 10mA to 100mA  
L2  
= 6V, V  
TEMPERATURE (°C)  
FREQUENCY (kHz)  
V
IN  
= V  
= 5V  
OUT1  
OUT2  
3023 G20  
3023 G19  
Minimum Input Voltage  
Load Regulation  
Channel-to-Channel Isolation  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
–10  
2.5  
2.0  
1.5  
1.0  
0.5  
0
I
= 100mA PER CHANNEL  
LOAD  
I
= 100mA  
L
I
= 50mA  
L
= 1mA TO 100mA  
IL  
0.01  
0.1  
1
10  
100  
1000  
–50 –25  
0
25  
50  
75 100 125  
–50  
0
25  
50  
75 100 125  
–25  
FREQUENCY (kHz)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3023 G21b  
3023 G23  
3023 G22  
RMS Output Noise vs  
Bypass Capacitor  
Output Noise Spectral Density  
Output Noise Spectral Density  
10  
1
160  
140  
120  
100  
80  
10  
1
C
= 10µF  
C
C
L
= 10µF  
OUT  
= 100mA  
L
OUT  
BYP  
C
L
= 10µF  
OUT  
= 100mA  
I
= 0  
I
f = 10Hz TO 100kHz  
I
= 100mA  
V
SET FOR 5V  
OUT  
C
= 1000pF  
BYP  
V
OUT  
SET FOR 5V  
V
SET FOR 5V  
OUT  
C
BYP  
= 100pF  
V
=V  
ADJ  
OUT  
V
OUT  
=V  
ADJ  
60  
0.1  
0.1  
0.01  
C
BYP  
= 0.01pF  
40  
V
=V  
ADJ  
OUT  
20  
0
0.01  
10  
100  
1k  
10k  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
C
(pF)  
BYP  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
3023 G26  
3023 G25  
3023 G24  
3023f  
6
LT3023  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
10Hz to 100kHz Output Noise  
BYP = 100pF  
RMS Output Noise vs  
Load Current (10Hz to 100kHz)  
10Hz to 100kHz Output Noise  
CBYP = 0  
C
160  
140  
120  
100  
80  
C
= 10µF  
OUT  
C
= 0µF  
BYP  
BYP  
C
= 0.01µF  
V
SET FOR 5V  
OUT  
VOUT  
100µV/DIV  
VOUT  
100µV/DIV  
V
=V  
ADJ  
OUT  
60  
40  
3023 G29  
3023 G28  
V
SET FOR 5V  
1ms/DIV  
OUT  
1ms/DIV  
20  
COUT = 10µF  
C
OUT = 10µF  
IL = 100mA  
OUT SET FOR 5V OUT  
V
=V  
ADJ  
IL = 100mA  
OUT  
10  
0
0.01  
VOUT SET FOR 5V OUT  
V
0.1  
1
100  
LOAD CURRENT (mA)  
3023 G27  
10Hz to 100kHz Output Noise  
BYP = 1000pF  
10Hz to 100kHz Output Noise  
CBYP = 0.01µF  
C
VOUT  
100µV/DIV  
VOUT  
100µV/DIV  
3023 G31  
3023 G30  
1ms/DIV  
1ms/DIV  
COUT = 10µF  
COUT = 10µF  
L = 100mA  
I
IL = 100mA  
VOUT SET FOR 5V OUT  
VOUT SET FOR 5V OUT  
Transient Response  
CBYP = 0.01µF  
Transient Response  
CBYP = 0  
0.2  
0.1  
0.04  
0.02  
0
0
–0.1  
–0.2  
–0.02  
–0.04  
V
C
C
V
= 6V  
IN  
IN  
V
C
C
V
= 6V  
IN  
IN  
= 10µF  
= 10µF  
= 10µF  
OUT  
OUT  
= 10µF  
OUT  
OUT  
SET FOR 5V OUT  
SET FOR 5V OUT  
100  
50  
0
100  
50  
0
800  
TIME (µs)  
80  
0
400  
1200  
1600  
2000  
0
20 40 60  
100 120 140 160 180 200  
TIME (µs)  
3023 G32  
3023 G33  
3023f  
7
LT3023  
U
U
U
PI FU CTIO S  
GND (Pin 3): Ground.  
SHDN1/SHDN2(Pins7/9):Shutdown.TheSHDN1/SHDN2  
pins are used to put the corresponding channel of the  
LT3023 regulator into a low power shutdown state. The  
output will be off when the pin is pulled low. The  
SHDN1/SHDN2 pins can be driven either by 5V logic or  
open-collector logic with pull-up resistors. The pull-up  
resistors are required to supply the pull-up current of the  
open-collector gates, normally several microamperes,  
and the SHDN1/SHDN2 pin current, typically 1µA. If  
unused, the pin must be connected to VIN. The device will  
not function if the SHDN1/SHDN2 pins are not connected.  
ADJ1/ADJ2 (Pins 4/2): Adjust Pin. These are the inputs to  
the error amplifiers. These pins are internally clamped to  
±7V. Theyhaveabiascurrentof30nAwhichflowsintothe  
pin(seecurveofADJ1/ADJ2PinBiasCurrentvsTempera-  
ture in the Typical Performance Characteristics section).  
The ADJ1 and ADJ2 pin voltage is 1.22V referenced to  
ground and the output voltage range is 1.22V to 20V.  
BYP1/BYP2 (Pins 5/1): Bypass. The BYP1/BYP2 pins are  
used to bypass the reference of the LT3023 regulator to  
achieve low noise performance from the regulator. The  
BYP1/BYP2 pins are clamped internally to ±0.6V (one  
VBE)fromground. Asmallcapacitorfromthecorrespond-  
ing output to this pin will bypass the reference to lower the  
output voltage noise. A maximum value of 0.01µF can be  
usedforreducingoutputvoltagenoisetoatypical20µVRMS  
over a 10Hz to 100kHz bandwidth. If not used, this pin  
must be left unconnected.  
IN (Pin 8): Input. Power is supplied to the device through  
the IN pin. A bypass capacitor is required on this pin if the  
device is more than six inches away from the main input  
filter capacitor. In general, the output impedance of a  
battery rises with frequency, so it is advisable to include a  
bypass capacitor in battery-powered circuits. A bypass  
capacitor in the range of 1µF to 10µF is sufficient. The  
LT3023 regulator is designed to withstand reverse volt-  
ages on the IN pin with respect to ground and the OUT pin.  
Inthecaseofareverseinput, whichcanhappenifabattery  
is plugged in backwards, the device will act as if there is a  
diode in series with its input. There will be no reverse  
current flow into the regulator and no reverse voltage will  
appear at the load. The device will protect both itself and  
the load.  
OUT1/OUT2 (Pins 6/10): Output. The outputs supply  
power to the loads. A minimum output capacitor of 1µF is  
required to prevent oscillations. Larger output capacitors  
will be required for applications with large transient loads  
to limit peak voltage transients. See the Applications  
Information section for more information on output ca-  
pacitance and reverse output characteristics.  
Exposed Pad (Pin 11): Ground. This pin must be soldered  
to the PCB and electrically connected to ground.  
3023f  
8
LT3023  
W U U  
APPLICATIO S I FOR ATIO  
U
The LT3023 is a dual 100mA low dropout regulator with  
micropower quiescent current and shutdown. The device  
is capable of supplying 100mA per channel at a dropout  
voltage of 300mV. Output voltage noise can be lowered to  
20µVRMS over a 10Hz to 100kHz bandwidth with the  
addition of a 0.01µF reference bypass capacitor. Addition-  
ally, the reference bypass capacitor will improve transient  
response of the regulator, lowering the settling time for  
transient load conditions. The low operating quiescent  
current (20µA per channel) drops to less than 1µA in  
shutdown. In addition to the low quiescent current, the  
LT3023regulatorincorporatesseveralprotectionfeatures  
which make it ideal for use in battery-powered systems.  
The device is protected against both reverse input and  
reverse output voltages. In battery backup applications  
where the output can be held up by a backup battery when  
the input is pulled to ground, the LT3023 acts like it has a  
diodeinserieswithitsoutputandpreventsreversecurrent  
flow. Additionally, in dual supply applications where the  
regulator load isreturned to a negative supply, the output  
can be pulled below ground by as much as 20V and still  
allow the device to start and operate.  
IN OUT1/OUT2  
LT3023  
V
OUT  
R2  
R1  
V
= 1.22V 1+  
= 1.22V  
+ I  
(
R2  
+
)(  
)
OUT  
ADJ  
V
IN  
R2  
R1  
V
ADJ  
ADJ1/ADJ2  
GND  
I
= 30nA AT 25°C  
ADJ  
OUTPUT RANGE = 1.22V TO 20V  
3023 F01  
Figure 1. Adjustable Operation  
The device is tested and specified with the ADJ1/ADJ2 pin  
tied to the corresponding OUT1/OUT2 pin for an output  
voltageof1.22V.Specificationsforoutputvoltagesgreater  
than 1.22V will be proportional to the ratio of the desired  
output voltage to 1.22V: VOUT/1.22V. For example, load  
regulation for an output current change of 1mA to 100mA  
is –1mV typical at VOUT = 1.22V. At VOUT = 12V, load  
regulation is:  
(12V/1.22V)(–1mV) = 9.8mV  
Bypass Capacitance and Low Noise Performance  
The LT3023 regulator may be used with the addition of a  
bypass capacitor from VOUT to the corresponding BYP1/  
BYP2pintoloweroutputvoltagenoise. Agoodqualitylow  
leakage capacitor is recommended. This capacitor will  
bypass the reference of the regulator, providing a low fre-  
quency noise pole. The noise pole provided by this bypass  
capacitor will lower the output voltage noise to as low as  
20µVRMS with the addition of a 0.01µF bypass capacitor.  
Using a bypass capacitor has the added benefit of improv-  
ing transient response. With no bypass capacitor and a  
10µF output capacitor, a 10mA to 100mA load step will  
settletowithin1%ofitsfinalvalueinlessthan100µs.With  
the addition of a 0.01µF bypass capacitor, the output will  
stay within 1% for a 10mA to 100mA load step (see Tran-  
sientReponseinTypicalPerformanceCharacteristicssec-  
tion). However, regulator start-up time is inversely pro-  
portional to the size of the bypass capacitor, slowing to  
15ms with a 0.01µF bypass capacitor and 10µF output  
capacitor.  
Adjustable Operation  
The LT3023 has an output voltage range of 1.22V to 20V.  
The output voltage is set by the ratio of two external resis-  
tors as shown in Figure 1. The device servos the output to  
maintain the corresponding ADJ1/ADJ2 pin voltage at  
1.22Vreferencedtoground.ThecurrentinR1isthenequal  
to 1.22V/R1 and the current in R2 is the current in R1 plus  
the ADJ1/ADJ2 pin bias current. The ADJ1/ADJ2 pin bias  
current,30nAat25°C,flowsthroughR2intotheADJ1/ADJ2  
pin.Theoutputvoltagecanbecalculatedusingtheformula  
inFigure1. ThevalueofR1shouldbenogreaterthan250k  
tominimizeerrorsintheoutputvoltagecausedbytheADJ1/  
ADJ2 pin bias current. Note that in shutdown the output is  
turned off and the divider current will be zero. Curves of  
ADJ1/ADJ2PinVoltagevsTemperatureandADJ1/ADJ2Pin  
Bias Current vs Temperature appear in the Typical Perfor-  
mance Characteristics.  
3023f  
9
LT3023  
W U U  
U
APPLICATIO S I FOR ATIO  
dielectrics used are Z5U, Y5V, X5R and X7R. The Z5U and  
Y5V dielectrics are good for providing high capacitances  
in a small package, but exhibit strong voltage and tem-  
perature coefficients as shown in Figures 3 and 4. When  
used with a 5V regulator, a 10µF Y5V capacitor can exhibit  
an effective value as low as 1µF to 2µF over the operating  
temperature range. The X5R and X7R dielectrics result in  
more stable characteristics and are more suitable for use  
as the output capacitor. The X7R type has better stability  
across temperature, while the X5R is less expensive and  
is available in higher values.  
Output Capacitance and Transient Response  
TheLT3023regulatorisdesignedtobestablewithawide  
rangeofoutputcapacitors. TheESRoftheoutputcapaci-  
tor affects stability, most notably with small  
capacitors. A minimum output capacitor of 1µF with an  
ESR of 3or less is recommended to prevent oscilla-  
tions. The LT3023 is a micropower device and output  
transient response will be a function of output capaci-  
tance. Larger values of output capacitance decrease the  
peakdeviationsandprovideimprovedtransientresponse  
for larger load current changes. Bypass capacitors, used  
to decouple individual components powered by the  
LT3023,willincreasetheeffectiveoutputcapacitorvalue.  
With larger capacitors used to bypass the reference (for  
low noise operation), larger values of output capacitors  
are needed. For 100pF of bypass capacitance, 2.2µF of  
output capacitor is recommended. With a 330pF bypass  
capacitor or larger, a 3.3µF output capacitor is recom-  
mended.TheshadedregionofFigure2definestheregion  
over which the LT3023 regulator is stable. The minimum  
ESR needed is defined by the amount of bypass capaci-  
tance used, while the maximum ESR is 3.  
20  
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10µF  
0
X5R  
–20  
–40  
–60  
Y5V  
–80  
–100  
0
8
12 14  
2
4
6
10  
16  
DC BIAS VOLTAGE (V)  
Extra consideration must be given to the use of ceramic  
capacitors. Ceramic capacitors are manufactured with a  
variety of dielectrics, each with different behavior across  
temperature and applied voltage. The most common  
3023 F03  
Figure 3. Ceramic Capacitor DC Bias Characteristics  
40  
20  
4.0  
3.5  
X5R  
0
–20  
3.0  
STABLE REGION  
2.5  
–40  
2.0  
Y5V  
C
= 0  
1.5  
1.0  
0.5  
0
BYP  
C
–60  
= 100pF  
BYP  
C
= 330pF  
BYP  
–80  
BOTH CAPACITORS ARE 16V,  
C
BYP  
> 3300pF  
1210 CASE SIZE, 10µF  
–100  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
1
3
6
9 10  
8
2
4
5
7
OUTPUT CAPACITANCE (µF)  
3023 F04  
3023 F02  
Figure 4. Ceramic Capacitor Temperature Characteristics  
Figure 2. Stability  
3023f  
10  
LT3023  
W U U  
APPLICATIO S I FOR ATIO  
U
Voltage and temperature coefficients are not the only  
sources of problems. Some ceramic capacitors have a  
piezoelectric response. A piezoelectric device generates  
voltage across its terminals due to mechanical stress,  
similar to the way a piezoelectric accelerometer or  
microphone works. For a ceramic capacitor the stress  
can be induced by vibrations in the system or thermal  
transients. The resulting voltages produced can cause  
appreciable amounts of noise, especially when a ceramic  
capacitor is used for noise bypassing. A ceramic capaci-  
tor produced Figure 5’s trace in response to light tapping  
from a pencil. Similar vibration induced behavior can  
masquerade as increased output voltage noise.  
dissipation from both channels must be considered dur-  
ing thermal analysis.  
The LT3023 regulator has internal thermal limiting de-  
signed to protect the device during overload conditions.  
For continuous normal conditions, the maximum junction  
temperature rating of 125°C must not be exceeded. It is  
important to give careful consideration to all sources of  
thermal resistance from junction to ambient. Additional  
heat sources mounted nearby must also be considered.  
For surface mount devices, heat sinking is accomplished  
by using the heat spreading capabilities of the PC board  
and its copper traces. Copper board stiffeners and plated  
through-holes can also be used to spread the heat gener-  
ated by power devices.  
COUT = 10µF  
C
BYP = 0.01µF  
ILOAD = 100mA  
The following tables list thermal resistance for several  
different board sizes and copper areas. All measurements  
were taken in still air on 3/32" FR-4 board with one ounce  
copper.  
VOUT  
500µV/DIV  
Table 1. MSE Package, 10-Lead MSOP  
COPPER AREA  
THERMAL RESISTANCE  
100ms/DIV  
3023 F05  
TOPSIDE*  
2500mm2  
1000mm2  
225mm2  
BACKSIDE BOARD AREA (JUNCTION-TO-AMBIENT)  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
40°C/W  
45°C/W  
50°C/W  
62°C/W  
Figure 5. Noise Resulting from Tapping on a Ceramic Capacitor  
Thermal Considerations  
100mm2  
The power handling capability of the device will be limited  
by the maximum rated junction temperature (125°C). The  
power dissipated by the device will be made up of two  
components (for each channel):  
*Device is mounted on topside.  
Table 2. DD Package, 10-Lead DFN  
COPPER AREA  
THERMAL RESISTANCE  
1. Output current multiplied by the input/output voltage  
differential: (IOUT)(VIN – VOUT), and  
TOPSIDE*  
2500mm2  
1000mm2  
225mm2  
BACKSIDE BOARD AREA (JUNCTION-TO-AMBIENT)  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
40°C/W  
45°C/W  
50°C/W  
62°C/W  
2. GND pin current multiplied by the input voltage:  
(IGND)(VIN).  
100mm2  
The ground pin current can be found by examining the  
GND Pin Current curves in the Typical Performance  
Characteristicssection. Powerdissipationwillbeequalto  
the sum of the two components listed above. Power  
*Device is mounted on topside.  
The thermal resistance juncton-to-case (θJC), measured  
at the Exposed Pad on the back of the die is 10°C/W.  
3023f  
11  
LT3023  
U
W U U  
APPLICATIONS INFORMATION  
Calculating Junction Temperature  
limiting and thermal limiting, the devices are protected  
against reverse input voltages, reverse output voltages  
and reverse voltages from output to input.  
Example: Given an output voltage on the first channel of  
3.3V, an output voltage of 2.5V on the second channel, an  
input voltage range of 4V to 6V, output current ranges of  
0mA to 100mA for the first channel and 0mA to 50mA for  
the second channel, with a maximum ambient tempera-  
ture of 50°C, what will the maximum junction temperature  
be?  
Current limit protection and thermal overload protection  
areintendedtoprotectthedeviceagainstcurrentoverload  
conditions at the output of the device. For normal opera-  
tion, the junction temperature should not exceed 125°C.  
The input of the device will withstand reverse voltages of  
20V.Currentflowintothedevicewillbelimitedtolessthan  
1mA (typically less than 100µA) and no negative voltage  
will appear at the output. The device will protect both itself  
and the load. This provides protection against batteries  
which can be plugged in backward.  
The power dissipated by each channel of the device will be  
equal to:  
IOUT(MAX)(VIN(MAX) – VOUT) + IGND(VIN(MAX))  
where (for the first channel):  
IOUT(MAX) = 100mA  
The output of the LT3023 can be pulled below ground  
withoutdamagingthedevice.Iftheinputisleftopencircuit  
or grounded, the output can be pulled below ground by  
20V. The output will act like an open circuit; no current will  
flow out of the pin. If the input is powered by a voltage  
source, the output will source the short-circuit current of  
the device and will protect itself by thermal limiting. In this  
case, grounding the SHDN1/SHDN2 pins will turn off the  
device and stop the output from sourcing the short-circuit  
current.  
VIN(MAX) = 6V  
IGND at (IOUT = 100mA, VIN = 6V) = 2mA  
so:  
P1 = 100mA(6V – 3.3V) + 2mA(6V) = 0.28W  
and (for the second channel):  
IOUT(MAX) = 50mA  
VIN(MAX) = 6V  
IGND at (IOUT = 50mA, VIN = 6V) = 1mA  
The ADJ1 and ADJ2 pins can be pulled above or below  
ground by as much as 7V without damaging the device. If  
the input is left open circuit or grounded, the ADJ1 and  
ADJ2 pins will act like an open circuit when pulled below  
ground and like a large resistor (typically 100k) in series  
with a diode when pulled above ground.  
so:  
P2 = 50mA(6V – 2.5V) + 1mA(6V) = 0.18W  
The thermal resistance will be in the range of 40°C/W to  
60°C/W depending on the copper area. So the junction  
temperature rise above ambient will be approximately  
equal to:  
InsituationswheretheADJ1andADJ2pinsareconnected  
to a resistor divider that would pull the pins above their 7V  
clamp voltage if the output is pulled high, the ADJ1/ADJ2  
pin input current must be limited to less than 5mA. For  
example, a resistor divider is used to provide a regulated  
1.5V output from the 1.22V reference when the output is  
forced to 20V. The top resistor of the resistor divider must  
be chosen to limit the current into the ADJ pin to less than  
5mA when the ADJ1/ADJ2 pin is at 7V. The 13V difference  
between output and ADJ1/ADJ2 pin divided by the 5mA  
maximum current into the ADJ1/ADJ2 pin yields a mini-  
mum top resistor value of 2.6k.  
(0.28W + 018W)(60°C/W) = 27.8°C  
The maximum junction temperature will then be equal to  
the maximum junction temperature rise above ambient  
plus the maximum ambient temperature or:  
TJMAX = 50°C + 27.8°C = 77.8°C  
Protection Features  
The LT3023 regulator incorporates several protection  
features which makes it ideal for use in battery-powered  
circuits. In addition to the normal protection features  
associated with monolithic regulators, such as current  
3023f  
12  
LT3023  
W U U  
APPLICATIO S I FOR ATIO  
U
100  
90  
80  
760  
60  
50  
40  
30  
20  
10  
0
In circuits where a backup battery is required, several  
different input/output conditions can occur. The output  
voltage may be held up while the input is either pulled to  
ground, pulledtosomeintermediatevoltageorisleftopen  
circuit. Current flow back into the output will follow the  
curve shown in Figure 6.  
T
V
V
= 25°C  
A
= 0V  
IN  
OUT  
= V  
ADJ  
CURRENT FLOWS  
INTO OUTPUT PIN  
When the IN pin of the LT3023 is forced below the OUT1  
or OUT2 pins or the OUT1/OUT2 pins are pulled above the  
IN pin, input current will typically drop to less than 2µA.  
This can happen if the input of the device is connected to  
a discharged (low voltage) battery and the output is held  
up by either a backup battery or a second regulator circuit.  
The state of the SHDN1/SHDN2 pins will have no effect on  
thereverseoutputcurrentwhentheoutputispulledabove  
the input.  
4
0
1
2
3
5
6
7
8
9
10  
OUTPUT VOLTAGE (V)  
3023 F06  
Figure 6. Reverse Output Current  
U
TYPICAL APPLICATIO S  
Noise Bypassing Slows Startup, Allows Outputs to Track  
V
SHDN1/SHDN2  
1V/DIV  
V
OUT1  
1V/DIV  
V
OUT2  
V
1V/DIV  
IN  
3.7V TO 20V  
3.3V  
IN  
OUT1  
AT 100mA  
0.01µF  
0.01µF  
10µF  
422k  
1µF  
BYP1  
ADJ1  
3023 TA02b  
2ms/DIV  
249k  
LT3023  
Startup Time  
OFF ON  
2.5V  
AT 100mA  
SHDN1  
SHDN2  
OUT2  
100  
10  
1
10µF  
261k  
BYP2  
ADJ2  
GND  
249k  
3023 TA02a  
0.1  
10  
100  
1000  
10000  
C
BYP  
(pF)  
3023 TA02c  
3023f  
13  
LT3023  
U
PACKAGE DESCRIPTIO  
DD Package  
10-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1699)  
0.675 ±0.05  
3.50 ±0.05  
2.15 ±0.05 (2 SIDES)  
1.65 ±0.05  
PACKAGE  
OUTLINE  
0.25 ± 0.05  
0.50  
BSC  
2.38 ±0.05  
(2 SIDES)  
R = 0.115  
TYP  
6
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
0.38 ± 0.10  
10  
3.00 ±0.10  
(4 SIDES)  
1.65 ± 0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(SEE NOTE 5)  
(DD10) DFN 0403  
5
1
0.25 ± 0.05  
0.50 BSC  
0.75 ±0.05  
0.200 REF  
2.38 ±0.10  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-2).  
CHECK THE LTC WEBSITE DATA SHEET FOR CURRENT STATUS OF VARIATION ASSIGNMENT  
2. ALL DIMENSIONS ARE IN MILLIMETERS  
3. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
4. EXPOSED PAD SHALL BE SOLDER PLATED  
5. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
3023f  
14  
LT3023  
U
PACKAGE DESCRIPTIO  
MSE Package  
10-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1663)  
BOTTOM VIEW OF  
EXPOSED PAD OPTION  
2.06 ± 0.102  
(.081 ± .004)  
2.794 ± 0.102  
(.110 ± .004)  
0.889 ± 0.127  
(.035 ± .005)  
1
1.83 ± 0.102  
(.072 ± .004)  
5.23  
(.206)  
MIN  
2.083 ± 0.102 3.20 – 3.45  
(.082 ± .004) (.126 – .136)  
10  
0.50  
(.0197)  
BSC  
0.305 ± 0.038  
(.0120 ± .0015)  
TYP  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 3)  
0.497 ± 0.076  
(.0196 ± .003)  
REF  
10 9  
8
7 6  
RECOMMENDED SOLDER PAD LAYOUT  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 4)  
4.90 ± 0.152  
(.193 ± .006)  
DETAIL “A”  
0.254  
(.010)  
0° – 6° TYP  
1
2
3
4 5  
GAUGE PLANE  
0.53 ± 0.152  
(.021 ± .006)  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.17 – 0.27  
(.007 – .011)  
TYP  
0.127 ± 0.076  
(.005 ± .003)  
MSOP (MSE) 0603  
0.50  
(.0197)  
BSC  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
3023f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LT3023  
TYPICAL APPLICATIO S  
U
Startup Sequencing  
Turn-On Waveforms  
V
SHDN1  
1V/DIV  
V
IN  
3.7V TO 20V  
3.3V  
AT  
V
OUT1  
IN  
OUT1  
1V/DIV  
100mA  
V
OUT2  
0.01µF  
0.01µF  
10µF  
LT3023  
1µF  
1V/DIV  
BYP1  
ADJ1  
422k  
35.7k  
249k  
28k  
3023 TA03b  
2ms/DIV  
2.5V  
AT  
100mA  
OFF ON  
SHDN1  
SHDN2  
OUT2  
10µF  
Turn-Off Waveforms  
261k  
249k  
BYP2  
ADJ2  
GND  
V
SHDN1  
0.47µF  
1V/DIV  
3023 TA03a  
V
OUT1  
1V/DIV  
OUT2  
V
1V/DIV  
3023 TA03c  
2ms/DIV  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
700mA, Micropower, LDO  
COMMENTS  
V : 4.2V to 30V, V  
LT1129  
: 3.75V, I : 50µA, I : 16µA,  
OUT(MIN) Q SD  
IN  
DD, SOT-223, S8,TO220, TSSOP20 Packages  
Guaranteed Voltage Tolerance and Line/Load Regulation  
V : –20V to –4.3V, V : –3.8V, I : 45µA, I : 10µA,  
LT1175  
500mA, Micropower Negative LDO  
IN  
OUT(MIN)  
Q
SD  
DD,SOT-223, S8 Packages  
Accurate Programmable Current Limit, Remote Sense  
V : –35V to –4.2V, V : –2.40V, I : 2.5mA, I : <1µA, TO220-5 Package  
LT1185  
3A, Negative LDO  
IN  
OUT(MIN)  
Q
SD  
LT1761  
100mA, Low Noise Micropower, LDO  
150mA, Low Noise Micropower, LDO  
500mA, Low Noise Micropower, LDO  
Low Noise < 20µV  
IN  
Stable with 1µF Ceramic Capacitors,  
OUT(MIN):  
RMS,  
V : 1.8V to 20V, V  
1.22V, I : 20µA, I : <1µA, ThinSOT Package  
Q SD  
LT1762  
Low Noise < 20µV  
V : 1.8V to 20V, V  
RMS,  
: 1.22V, I : 25µA, I : <1µA, MS8 Package  
IN  
OUT(MIN)  
Q
SD  
LT1763  
Low Noise < 20µV  
V : 1.8V to 20V, V  
RMS,  
: 1.22V, I : 30µA, I : <1µA, S8 Package  
IN  
OUT(MIN)  
Q
SD  
LT1764/LT1764A  
LTC1844  
3A, Low Noise, Fast Transient Response, LDO  
150mA, Very Low Drop-Out LDO  
Low Noise < 40µV  
IN  
"A" Version Stable with Ceramic Capacitors,  
OUT(MIN)  
RMS,  
V : 2.7V to 20V, V  
: 1.21V, I : 1mA, I : <1µA, DD, TO220 Packages  
Q SD  
Low Noise < 30µV  
IN  
, Stable with 1µF Ceramic Capacitors,  
RMS  
V : 1.6V to 6.5V, V  
: 1.25V, I : 40µA, I : <1µA, ThinSOT Package  
OUT(MIN) Q SD  
LT1962  
300mA, Low Noise Micropower, LDO  
1.5A, Low Noise, Fast Transient Response, LDO  
Low Noise < 20µV  
RMS,  
V : 1.8V to 20V, V  
: 1.22V, I : 30µA, I : <1µA, MS8 Package  
Q SD  
IN  
OUT(MIN)  
LT1963/LT1963A  
Low Noise < 40µV  
IN  
DD, TO220, SOT-223, S8 Packages  
"A" Version Stable with Ceramic Capacitors,  
RMS,  
OUT(MIN)  
V : 2.1V to 20V, V  
: 1.21V, I : 1mA, I : <1µA,  
Q SD  
LT1964  
200mA, Low Noise Micropower, Negative LDO  
Low Noise < 30µV Stable with Ceramic Capacitors,  
RMS,  
V : –0.9V to –20V, V  
: –1.21V, I : 30µA, I : 3µA, ThinSOT Package  
Q SD  
IN  
OUT(MIN)  
LTC3407  
Dual 600mA. 1.5MHz Synchronous Step Down  
DC/DC Converter  
V : 2.5V to 5.5V, V  
IN  
: 0.6 V, I : 40µA, I : <1µA, MSE Package  
OUT(MIN) Q SD  
3023f  
LT/TP 1103 1K • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
LINEAR TECHNOLOGY CORPORATION 2003  

相关型号:

LT3023EMSE#TRPBF

暂无描述
Linear

LT3023IDD

暂无描述
Linear

LT3023IDD#PBF

LT3023 - Dual 100mA, Low Dropout, Low Noise, Micropower Regulator; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3023IMSE

LT3023 - Dual 100mA, Low Dropout, Low Noise, Micropower Regulator; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3024

Dual 100mA/500mA Low Dropout, Low Noise, Micropower Regulator
Linear

LT3024EDE

Dual 100mA/500mA Low Dropout, Low Noise, Micropower Regulator
Linear

LT3024EDE#PBF

LT3024 - Dual 100mA/500mA Low Dropout, Low Noise, Micropower Regulator; Package: DFN; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3024EDE#TR

LT3024 - Dual 100mA/500mA Low Dropout, Low Noise, Micropower Regulator; Package: DFN; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3024EDE#TRPBF

LT3024 - Dual 100mA/500mA Low Dropout, Low Noise, Micropower Regulator; Package: DFN; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3024EDE-PBF

Dual 100mA/500mA Low Dropout, Low Noise,Micropower Regulator
Linear

LT3024EDE-TR

Dual 100mA/500mA Low Dropout, Low Noise,Micropower Regulator
Linear

LT3024EDE-TRPBF

Dual 100mA/500mA Low Dropout, Low Noise,Micropower Regulator
Linear