LT3024IDE [Linear]

Dual 100mA/500mA Low Dropout, Low Noise,Micropower Regulator; 双100毫安/ 500毫安低压差,低噪声,微功率稳压器
LT3024IDE
型号: LT3024IDE
厂家: Linear    Linear
描述:

Dual 100mA/500mA Low Dropout, Low Noise,Micropower Regulator
双100毫安/ 500毫安低压差,低噪声,微功率稳压器

线性稳压器IC 调节器 电源电路 光电二极管 输出元件
文件: 总20页 (文件大小:260K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3024  
Dual 100mA/500mA  
Low Dropout, Low Noise,  
Micropower Regulator  
FEATURES  
DESCRIPTION  
TheLT®3024isadual, micropower, lownoise, lowdropout  
regulator.Withanexternal0.01μFbypasscapacitor,output  
n
Low Noise: 20μV  
(10Hz to 100kHz)  
RMS  
n
Low Quiescent Current: 30μA/Output  
Wide Input Voltage Range: 1.8V to 20V  
Output Current: 100mA/500mA  
n
n
n
n
n
n
n
noisedropsto20μV  
overa10Hzto100kHzbandwidth.  
RMS  
Designedforuseinbattery-poweredsystems,thelow30μA  
quiescent current per output makes it an ideal choice. In  
shutdown, quiescent current drops to less than 0.1μA.  
Shutdowncontrolisindependentforeachoutput,allowing  
for flexibility in power management. The device is capable  
ofoperatingoveraninputvoltagerangeof1.8Vto20V.The  
device can supply 100mA of output current from Output  
2 with a dropout voltage of 300mV. Output 1 can supply  
500mA of output current with a dropout voltage of 300mV.  
Quiescent current is well controlled in dropout.  
Very Low Shutdown Current: <0.1μA  
Low Dropout Voltage: 300mV at 100mA/500mA  
Adjustable Outputs from 1.22V to 20V  
Stable with 1μF/3.3μF Output Capacitor  
Stable with Aluminum, Tantalum or  
Ceramic Capacitors  
n
n
n
n
n
Reverse Battery Protected  
No Reverse Current  
No Protection Diodes Needed  
Overcurrent and Overtemperature Protected  
Thermally Enhanced 16-Lead TSSOP and 12-Lead  
(4mm × 3mm) DFN Packages  
The LT3024 regulator is stable with output capacitors as  
low as 1μF for the 100mA output and 3.3μF for the 500mA  
output. Small ceramic capacitors can be used without the  
series resistance required by other regulators.  
APPLICATIONS  
Internal protection circuitry includes reverse-battery  
protection, current limiting, thermal limiting and reverse  
current protection. The device is available as an adjust-  
able device with a 1.22V reference voltage. The LT3024  
regulator is available in the thermally enhanced 16-lead  
TSSOP and 12-lead, low profile (4mm × 3mm × 0.75mm)  
DFN packages.  
n
Cellular Phones  
n
Pagers  
n
Battery-Powered Systems  
n
Frequency Synthesizers  
n
Wireless Modems  
L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation. All other  
trademarks are the property of their respective owners.  
TYPICAL APPLICATION  
3.3V/2.5V Low Noise Regulators  
10Hz to 100kHz Output Noise  
3.3V AT 500mA  
20μV NOISE  
IN  
OUT1  
RMS  
V
IN  
0.01μF  
10μF  
10μF  
SHDN1  
SHDN2  
422k  
249k  
1μF  
3.7V TO  
20V  
BYP1  
ADJ1  
LT3024  
V
OUT  
20μV  
RMS  
100μV/DIV  
2.5V AT 100mA  
20μV NOISE  
OUT2  
RMS  
0.01μF  
261k  
BYP2  
ADJ2  
GND  
249k  
3024 TA01b  
3024 TA01a  
3024fa  
1
LT3024  
ABSOLUTE MAXIMUM RATINGS  
(Note 1)  
IN Pin Voltage ......................................................... 20V  
OUT1, OUT2 Pin Voltage......................................... 20V  
Input-to-Output Differential Voltage........................ 20V  
ADJ1, ADJ2 Pin Voltage............................................ 7V  
BYP1, BYP2 Pin Voltage ........................................ 0.6V  
SHDN1, SHDN2 Pin Voltage ................................... 20V  
Output Short-Circut Duration........................... Indefinite  
Operating Junction Temperature Range  
(Note 2) ............................................. –40°C to 125°C  
Storage Temperature Range  
FE Package ........................................ –65°C to 150°C  
DE Package........................................ –65°C to 125°C  
Lead Temperature (Soldering, 10 sec) .................. 300°C  
(FE package only)  
PIN CONFIGURATION  
TOP VIEW  
TOP VIEW  
GND  
BYP1  
OUT1  
OUT1  
GND  
1
2
3
4
5
6
7
8
16  
15  
14  
GND  
BYP1  
OUT1  
OUT1  
GND  
1
2
3
4
5
6
12 ADJ1  
11 SHDN1  
10 IN  
ADJ1  
SHDN1  
13 IN  
17  
13  
12  
11  
10  
9
IN  
9
8
7
IN  
OUT2  
BYP2  
GND  
SHDN2  
ADJ2  
GND  
OUT2  
BYP2  
SHDN2  
ADJ2  
DE12 PACKAGE  
12-LEAD (4mm s 3mm) PLASTIC DFN  
FE PACKAGE  
T
= 150°C, θ = 40°C/W, θ = 10°C/W  
16-LEAD PLASTIC TSSOP  
= 150°C, θ = 38°C/W, θ = 8°C/W  
EXPOSED PAD (PIN 17) IS GND, MUST BE SOLDERED TO PCB  
JMAX  
JA  
JC  
EXPOSED PAD (PIN 13) IS GND, MUST BE SOLDERED TO PCB  
T
JMAX  
JA JC  
ORDER INFORMATION  
LEAD FREE FINISH  
LT3024EDE#PBF  
LT3024IDE#PBF  
LT3024EFE#PBF  
LT3024IFE#PBF  
LEAD BASED FINISH  
LT3024EDE  
TAPE AND REEL  
LT3024EDE#TRPBF  
LT3024IDE#TRPBF  
LT3024EFE#TRPBF  
LT3024IFE#TRPBF  
TAPE AND REEL  
LT3024EDE#TR  
LT3024IDE#TR  
PART MARKING*  
3024  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
TEMPERATURE RANGE  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
16-Lead Plastic TSSOP  
3024  
3024EFE  
3024IFE  
PART MARKING*  
3024  
16-Lead Plastic TSSOP  
PACKAGE DESCRIPTION  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
16-Lead Plastic TSSOP  
LT3024IDE  
3024  
LT3024EFE  
LT3024EFE#TR  
3024EFE  
3024IFE  
LT3024IFE  
LT3024IFE#TR  
16-Lead Plastic TSSOP  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
3024fa  
2
LT3024  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 2)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
Minimum Input Voltage  
(Notes 3, 11)  
Output 2, I  
Output 1, I  
= 100mA  
= 500mA  
1.8  
1.8  
2.3  
2.3  
V
V
LOAD  
LOAD  
ADJ1, ADJ2 Pin Voltage  
(Note 3, 4)  
V
= 2V, I  
= 1mA  
1.205  
1.190  
1.190  
1.220  
1.220  
1.220  
1.235  
1.250  
1.250  
V
V
V
IN  
LOAD  
l
l
Output 2, 2.3V < V < 20V, 1mA < I  
< 100mA  
< 500mA  
IN  
IN  
LOAD  
LOAD  
Output 1, 2.3V < V < 20V, 1mA < I  
l
l
l
l
l
l
l
l
l
l
l
Line Regulation (Note 3)  
Load Regulation (Note 3)  
ΔV = 2V to 20V, I  
= 1mA  
1
1
10  
mV  
IN  
LOAD  
Output 2, V = 2.3V, ΔI  
= 1mA to 100mA  
= 1mA to 100mA  
12  
25  
mV  
mV  
IN  
IN  
LOAD  
LOAD  
V
= 2.3V, ΔI  
Output 1, V = 2.3V, ΔI  
= 1mA to 500mA  
= 1mA to 500mA  
1
12  
25  
mV  
mV  
IN  
IN  
LOAD  
LOAD  
V
= 2.3V, ΔI  
Dropout Voltage (Output 2)  
I
I
= 1mA  
= 1mA  
0.10  
0.17  
0.24  
0.30  
0.13  
0.17  
0.20  
0.30  
0.15  
0.19  
V
V
LOAD  
LOAD  
V
IN  
= V  
(Notes 5, 6, 11)  
OUT(NOMINAL)  
I
I
= 10mA  
= 10mA  
0.22  
0.29  
V
V
LOAD  
LOAD  
I
I
= 50mA  
= 50mA  
0.31  
0.40  
V
V
LOAD  
LOAD  
I
I
= 100mA  
= 100mA  
0.35  
0.45  
V
V
LOAD  
LOAD  
Dropout Voltage (Output 1)  
= V (Notes 5, 6, 11)  
I
I
= 10mA  
= 10mA  
0.19  
0.25  
V
V
LOAD  
LOAD  
V
IN  
OUT(NOMINAL)  
I
I
= 50mA  
= 50mA  
0.22  
0.32  
V
V
LOAD  
LOAD  
I
I
= 100mA  
= 100mA  
0.34  
0.44  
V
V
LOAD  
LOAD  
I
I
= 500mA  
= 500mA  
0.35  
0.45  
V
V
LOAD  
LOAD  
l
l
l
l
l
GND Pin Current (Output 2)  
= V (Notes 5, 7)  
I
I
I
I
I
= 0mA  
20  
55  
45  
90  
400  
2
μA  
μA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
V
= 1mA  
IN  
OUT(NOMINAL)  
= 10mA  
= 50mA  
= 100mA  
230  
1
μA  
mA  
mA  
2.2  
4
l
l
l
l
l
l
GND Pin Current (Output 1)  
= V (Notes 5, 7)  
I
I
I
I
I
I
= 0mA  
30  
65  
1.1  
2
75  
120  
1.6  
3
μA  
μA  
mA  
mA  
mA  
mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
V
= 1mA  
IN  
OUT(NOMINAL)  
= 50mA  
= 100mA  
= 250mA  
= 500mA  
5
8
11  
16  
Output Voltage Noise  
C
= 10μF, C  
= 0.01μF, I  
= Full Current,  
20  
μV  
RMS  
OUT  
BYP  
LOAD  
BW = 10Hz to 100kHz  
ADJ Pin Bias Current  
Shutdown Threshold  
ADJ1, ADJ2 (Notes 3, 8)  
30  
100  
1.4  
nA  
l
l
V
OUT  
V
OUT  
= Off to On  
= On to Off  
0.8  
0.65  
V
V
0.25  
55  
l
l
SHDN1/SHDN2 Pin Current  
(Note 9)  
V
V
, V  
= 0V  
= 20V  
0
1
0.5  
3
μA  
μA  
SHDN1 SHDN2  
, V  
SHDN1 SHDN2  
Quiescent Current in Shutdown  
Ripple Rejection  
V
V
= 6V, V  
= 0V, V = 0V  
SHDN2  
0.01  
65  
0.1  
μA  
dB  
IN  
SHDN1  
= 2.72V (Avg), V  
= Full Current  
= 0.5V , f  
= 120Hz,  
IN  
RIPPLE  
P-P RIPPLE  
I
LOAD  
3024fa  
3
LT3024  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 2)  
PARAMETER  
CONDITIONS  
Output 2, V = 7V, V  
MIN  
110  
520  
TYP  
MAX  
UNITS  
Current Limit  
= 0V  
OUT  
200  
mA  
mA  
IN  
l
V
= 2.3V, ΔV  
= –0.1V  
IN  
OUT  
Output 1, V = 7V, V  
= 0V  
700  
5
mA  
mA  
IN  
OUT  
l
l
V
= 2.3V, ΔV  
= –0.1V  
IN  
OUT  
Input Reverse Leakage Current  
V
V
= –20V, V  
= 0V  
1
mA  
μA  
IN  
OUT  
Reverse Output Current (Notes 3,10)  
= 1.22V, V < 1.22V  
10  
OUT  
IN  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 6: Dropout voltage is the minimum input to output voltage differential  
needed to maintain regulation at a specified output current. In dropout, the  
output voltage will be equal to: V – V  
.
IN  
DROPOUT  
Note 7: GND pin current is tested with V = 2.44V and a current source  
IN  
Note 2: The LT3024 is tested and specified under pulse load conditions  
load. This means the device is tested while operating in its dropout region  
or at the minimum input voltage specification. This is the worst-case GND  
pin current. The GND pin current will decrease slightly at higher input  
voltages. Total GND pin current is equal to the sum of GND pin currents  
from Output 1 and Output 2.  
such that T T . The LT3024E is 100% tested at T = 25°C. Performance  
J
A
A
at 40°C and 125°C is assured by design, characterization and correlation  
with statistical process controls. The LT3024I is guaranteed over the full  
–40°C to 125°C operating junction temperature range.  
Note 3: The LT3024 is tested and specified for these conditions with the  
ADJ1/ADJ2 pin connected to the corresponding OUT1/OUT2 pin.  
Note 8: ADJ1 and ADJ2 pin bias current flows into the pin.  
Note 9: SHDN1 and SHDN2 pin current flows into the pin.  
Note 4: Operating conditions are limited by maximum junction  
temperature. The regulated output voltage specification will not apply  
for all possible combinations of input voltage and output current. When  
operating at maximum input voltage, the output current range must be  
limited. When operating at maximum output current, the input voltage  
range must be limited.  
Note 5: To satisfy requirements for minimum input voltage, the LT3024 is  
tested and specified for these conditions with an external resistor divider  
(two 250k resistors) for an output voltage of 2.44V. The external resistor  
divider will add a 5μA DC load on the output.  
Note 10: Reverse output current is tested with the IN pin grounded and the  
OUT pin forced to the rated output voltage. This current flows into the OUT  
pin and out the GND pin.  
Note 11: For the LT3024 dropout voltage will be limited by the minimum  
input voltage specification under some output voltage/load conditions.  
See the curve of Minimum Input Voltage in the Typical Performance  
Characteristics.  
3024fa  
4
LT3024  
TYPICAL PERFORMANCE CHARACTERISTICS  
Output 2  
Typical Dropout Voltage  
Output 2  
Guaranteed Dropout Voltage  
Output 2 Dropout Voltage  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
= TEST POINTS  
T
≤ 125°C  
≤ 25°C  
J
T
= 125°C  
J
I
L
= 100mA  
T
J
I
L
= 50mA  
T
= 25°C  
J
I
L
= 10mA  
I
= 1mA  
L
0
0
0
40  
40  
50 60 70 80 90 100  
–50 –25  
0
25  
50  
75 100 125  
0
10 20 30  
50 60 70 80 90 100  
0
10 20 30  
TEMPERATURE (°C)  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
3024 G03  
3024 G01  
3024 G02  
Output 1  
Typical Dropout Voltage  
Output 1  
Guaranteed Dropout Voltage  
Output 1 Dropout Voltage  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
= TEST POINTS  
I
= 500mA  
L
I
= 250mA  
T
= 125°C  
L
J
T
≤ 125°C  
≤ 25°C  
J
I
= 100mA  
L
I
L
= 50mA  
T
J
T
= 25°C  
J
I
= 1mA  
L
I
L
= 10mA  
0
0
0
200  
200  
250 300 350 400 450 500  
–50 –25  
0
25  
50  
75 100 125  
0
50 100 150  
250 300 350 400 450 500  
0
50 100 150  
TEMPERATURE (°C)  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
3024 G06  
3024 G04  
3024 G05  
Quiescent Current (Per Output)  
ADJ1 or ADJ2 Pin Voltage  
1.240  
1.235  
1.230  
1.225  
1.220  
1.215  
1.210  
1.205  
1.200  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
I
= 1mA  
L
V
SHDN  
= V  
IN  
V
= 6V  
= 250k, I = 5μA  
L
IN  
L
R
0
–25  
0
25  
50  
75  
125  
–25  
0
25  
50  
75  
125  
–50  
100  
–50  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3024 G07  
3024 G08  
3024fa  
5
LT3024  
TYPICAL PERFORMANCE CHARACTERISTICS  
Output 2  
GND Pin Current vs ILOAD  
Quiescent Current (Per Output)  
Output 2 GND Pin Current  
40  
35  
30  
25  
20  
15  
10  
5
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
T
= 25°C  
= 250k  
V
IN  
= V + 1V  
OUT(NOMINAL)  
J
L
T
= 25°C  
J
R
*FOR V  
= 1.22V  
OUT  
V
= V  
IN  
SHDN  
R
L
= 12.2Ω  
L
I
= 100mA*  
R
= 24.4Ω  
= 50mA*  
L
I
L
R
L
= 1.22k  
L
R
L
= 122Ω  
L
I
= 1mA*  
I
= 10mA*  
V
SHDN  
= 0V  
0
0
2
4
6
8
10 12 14 16 18 20  
4
40  
10 20 30  
50 60 70 80 90 100  
0
1
2
3
5
6
7
8
9
10  
0
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
OUTPUT CURRENT (mA)  
3024 G09  
3024 G10  
3024 G11  
Output 1  
GND Pin Current vs ILOAD  
Output 1 GND Pin Current  
Output 1 GND Pin Current  
12  
10  
8
12  
10  
8
1200  
1000  
800  
600  
400  
200  
0
V
IN  
= V  
+ 1V  
T
= 25°C  
OUT(NOMINAL)  
J
V
= V  
IN  
SHDN  
R
L
= 24.4Ω  
*FOR V  
= 1.22V  
L
OUT  
I
= 50mA*  
R
L
= 2.44Ω  
L
I
= 500mA*  
T
= 25°C  
= V  
J
IN  
R
L
L
= 4.07Ω  
V
SHDN  
6
6
I
= 300mA*  
*FOR V  
= 1.22V  
OUT  
R
L
= 122Ω  
4
4
L
I
= 10mA*  
R
L
= 12.2Ω  
L
I
= 100mA*  
2
2
R
I
= 1.22k  
= 1mA*  
L
L
0
0
4
200  
250 300 350 400 450 500  
0
1
2
3
5
6
7
8
9
10  
0
50 100 150  
4
0
1
2
3
5
6
7
8
9
10  
INPUT VOLTAGE (V)  
OUTPUT CURRENT (mA)  
INPUT VOLTAGE (V)  
3024 G13  
3024 G14  
3024 G12  
SHDN1 or SHDN2 Pin Threshold  
(On-to-Off)  
SHDN1 or SHDN2 Pin Threshold  
(Off-to-On)  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
I
= 1mA  
L
I
= FULL  
= 1mA  
L
I
L
–50  
0
25  
50  
75 100 125  
125  
–25  
–50  
0
25  
50  
75  
–25  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3024 G15  
3024 G16  
3024fa  
6
LT3024  
TYPICAL PERFORMANCE CHARACTERISTICS  
SHDN1 or SHDN2 Pin Input  
Current  
SHDN1 or SHDN2 Pin Input  
Current  
ADJ1 or ADJ2 Pin Bias Current  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
= 20V  
SHDN  
–50  
0
25  
50  
75 100 125  
50  
4
–25  
–50  
–25  
0
25  
75 100 125  
0
1
2
3
5
6
7
8
9
10  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SHDN PIN VOLTAGE (V)  
3024 G18  
3024 G19  
3024 G17  
Output 2 Current Limit  
Output 2 Current Limit  
Output 1 Current Limit  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
350  
300  
250  
200  
150  
100  
50  
350  
300  
250  
200  
150  
100  
50  
V
= 0V  
V
V
= 7V  
OUT  
V
OUT  
= 0V  
OUT  
J
IN  
T
= 25°C  
= 0V  
0
0
0
2
3
4
5
6
7
–50 –25  
0
25  
50  
75 100 125  
0
2
3
4
5
6
7
1
1
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
3024 G20  
3024 G21  
3024 G22  
Reverse Output Current  
Output 1 Current Limit  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
100  
V
V
= 7V  
OUT  
IN  
T
V
V
= 25°C  
A
= 0V  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
= 0V  
IN  
OUT  
= V  
ADJ  
CURRENT FLOWS  
INTO OUTPUT PIN  
–50  
0
25  
50  
75 100 125  
4
–25  
0
1
2
3
5
6
7
8
9
10  
TEMPERATURE (°C)  
OUTPUT VOLTAGE (V)  
3024 G23  
3024 G24  
3024fa  
7
LT3024  
TYPICAL PERFORMANCE CHARACTERISTICS  
Output 2  
Input Ripple Rejection  
Output 2  
Input Ripple Rejection  
Reverse Output Current  
80  
70  
60  
50  
40  
30  
20  
10  
0
18  
15  
12  
9
80  
70  
60  
50  
40  
30  
20  
10  
0
V
V
= 0V  
OUT  
IN  
= V  
= 1.22V  
ADJ  
C
= 0.01μF  
BYP  
C
= 1000pF  
BYP  
C
= 100pF  
BYP  
C
= 10μF  
OUT  
6
C
= 1μF  
OUT  
I
V
C
= 100mA  
3
L
I
V
C
= 100mA  
L
IN  
OUT  
= 2.3V + 50mV  
RIPPLE  
10  
IN  
BYP  
RMS  
= 2.3V + 50mV  
RIPPLE  
RMS  
= 0  
= 10μF  
0
50  
TEMPERATURE (°C)  
100 125  
0.01  
0.1  
1
100  
1000  
–50 –25  
0
25  
75  
0.01  
0.1  
1
10  
100  
1000  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
3024 G26  
3024 G27  
3024 G25  
Output 1  
Input Ripple Rejection  
Output 2  
Input Ripple Rejection  
Output 1  
Input Ripple Rejection  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
C
= 0.01μF  
BYP  
C
OUT  
= 10μF  
C
BYP  
= 1000pF  
C
BYP  
= 100pF  
V
= V  
+
I
= 500mA  
= V  
I
= 500mA  
IN  
OUT (NOMINAL)  
L
IN  
L
V
C
= 4.7μF  
1V + 0.5V RIPPLE  
P-P  
OUT  
V
+
= V  
+
OUT(NOMINAL)  
IN  
OUT(NOMINAL)  
AT f = 120Hz  
1V + 50mV  
C
RIPPLE  
1V + 50mV  
C
RIPPLE  
1k  
RMS  
RMS  
I
L
= 50mA  
= 0  
= 10μF  
BYP  
OUT  
–25  
0
25  
50  
75  
125  
–50  
100  
10  
100  
1k  
10k  
100k  
1M  
10  
100  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
3024 G29  
3024 G30  
3024 G28  
Output 1 Ripple Rejection  
Output 2 Minimum Input Voltage  
2.5  
68  
66  
64  
62  
60  
58  
56  
54  
52  
V
OUT  
= 1.22V  
2.0  
1.5  
1.0  
0.5  
0
I
L
= 100mA  
I
L
= 50mA  
V
= V  
+
OUT (NOMINAL)  
IN  
1V + 0.5V RIPPLE  
P-P  
AT f = 120Hz  
I
= 500mA  
L
–25  
0
25  
50  
75  
125  
–50  
100  
50  
125  
–50  
0
25  
75 100  
–25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3024 G31  
3024 G32  
3024fa  
8
LT3024  
TYPICAL PERFORMANCE CHARACTERISTICS  
Output 1 Minimum Input Voltage  
Channel-to-Channel Isolation  
Channel-to-Channel Isolation  
100  
90  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
V
OUT  
= 1.22V  
CHANNEL 2  
I
L
= 500mA  
80  
V
OUT1  
20mV/DIV  
70  
CHANNEL 1  
I
L
= 1mA  
60  
50  
V
OUT2  
20mV/DIV  
40  
30  
20  
10  
0
GIVEN CHANNEL IS TESTED  
WITH 50mV  
SIGNAL ON  
RMS  
3024 G50  
OPPOSING CHANNEL, BOTH  
CHANNELS DELIVERING FULL  
CURRENT  
50μs/DIV  
C
C
C
= 22μF  
= 10μF  
BYP2  
OUT1  
OUT2  
BYP1  
L1  
L2  
= C = 0.01μF  
–50  
0
25  
50  
75 100 125  
–25  
10  
100  
1k  
10k  
100k  
1M  
ΔI = 50mA TO 500mA  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
ΔI = 10mA TO 100mA  
V
3024 G34  
3024 G33  
= 6V, V  
= V  
= 5V  
IN  
OUT1  
OUT2  
Output 2 Load Regulation  
Output 1 Load Regulation  
Output Noise Spectral Density  
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
–10  
5
0
10  
1
ΔI = 1mA TO 500mA  
L
C
C
L
= 10μF  
= 0  
OUT  
BYP  
I
= FULL LOAD  
V
OUT  
SET FOR 5V  
V
OUT  
=V  
ADJ  
–5  
0.1  
0.01  
Δ
IL  
= 1mA TO 100mA  
–10  
–25  
0
25  
50  
75  
125  
–50 –25  
0
25  
50  
75 100 125  
–50  
100  
0.01  
0.1  
1
10  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FREQUENCY (kHz)  
3024 G37  
3024 G35  
3024 G36  
RMS Output Noise  
vs Bypass Capacitor  
Output Noise Spectral Density  
10  
1
140  
120  
100  
80  
C
I
= 10μF  
C
= 10μF  
OUT  
L
V
= 5V  
OUT  
OUT  
= FULL LOAD  
I
f
= FULL LOAD  
L
BW  
= 10Hz TO 100kHz  
V
SET FOR 5V  
OUT  
CHANNEL 2  
C
= 1000pF  
BYP  
C
= 100pF  
BYP  
CHANNEL 1  
= 1.22V  
V
OUT  
V
=V  
OUT  
ADJ  
60  
CHANNEL 2  
0.1  
40  
C
BYP  
= 0.01μF  
CHANNEL 1  
20  
0.01  
0.01  
0
10  
100  
1000  
10000  
0.1  
1
10  
100  
FREQUENCY (kHz)  
C
BYP  
(pF)  
3023 G38  
3024 G39  
3024fa  
9
LT3024  
TYPICAL PERFORMANCE CHARACTERISTICS  
Output 2  
RMS Output Noise vs Load  
Current (10Hz to 100kHz)  
Output 1  
RMS Output Noise vs Load  
Current (10Hz to 100kHz)  
10Hz to 100kHz Output Noise  
BYP = 0pF  
C
160  
140  
120  
100  
80  
160  
140  
120  
100  
80  
C
OUT  
= 10μF  
C
= 10μF  
OUT  
C
= 0μF  
BYP  
BYP  
C
= 0  
BYP  
BYP  
C
= 0.01μF  
C
= 0.01μF  
V
OUT  
SET FOR 5V  
V
OUT  
SET FOR 5V  
V
OUT  
100μV/DIV  
V
=V  
ADJ  
OUT  
60  
60  
V
= V  
ADJ  
OUT  
40  
40  
3024 G42  
V
SET FOR 5V  
= V  
V
OUT  
SET FOR 5V  
OUT  
1ms/DIV  
20  
20  
C
L
= 10μF  
OUT  
V
OUT  
V
=V  
ADJ  
ADJ  
OUT  
10  
I
= 100mA  
0
0.01  
0
0.01  
V SET FOR 5V  
OUT  
0.1  
1
10  
100  
1000  
0.1  
1
100  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
3024 G40  
3024 G41  
10Hz to 100kHz Output Noise  
CBYP = 100pF  
10Hz to 100kHz Output Noise  
CBYP = 1000pF  
10Hz to 100kHz Output Noise  
CBYP = 0.01µF  
V
V
OUT  
V
OUT  
100μV/DIV  
OUT  
100μV/DIV  
100μV/DIV  
3024 G43  
3024 G45  
3024 G44  
1ms/DIV  
1ms/DIV  
1ms/DIV  
C
I
= 10μF  
C
L
= 10μF  
OUT  
L
OUT  
C
I
= 10μF  
OUT  
OUT  
= 100mA  
I
= 100mA  
= 100mA  
L
V
SET FOR 5V  
V
SET FOR 5V  
V
SET FOR 5V  
OUT  
OUT  
3024fa  
10  
LT3024  
TYPICAL PERFORMANCE CHARACTERISTICS  
Output 2 Transient Response  
CBYP = 0pF  
Output 2 Transient Response  
CBYP = 0.01µF  
V
C
C
= 6V, V  
= 10μF  
OUT  
SET FOR 5V  
OUT  
V
C
C
= 6V, V  
= 10μF  
OUT  
SET FOR 5V  
OUT  
IN  
IN  
IN  
IN  
0.2  
0.1  
0.04  
0.02  
0
= 10μF  
= 10μF  
0
–0.1  
–0.2  
–0.02  
–0.04  
100  
50  
0
100  
50  
0
800  
TIME (μs)  
80  
0
400  
1200  
1600  
2000  
0
20 40 60  
100 120 140 160 180 200  
TIME (μs)  
3024 G46  
3024 G47  
Output 1 Transient Response  
CBYP = 0pF  
Output 1 Transient Response  
CBYP = 0.01µF  
V
C
C
= 6V, V  
= 10μF  
OUT  
SET FOR 5V  
OUT  
V
C
C
= 6V, V  
= 10μF  
OUT  
SET FOR 5V  
OUT  
IN  
IN  
IN  
IN  
0.4  
0.2  
0.10  
0.05  
0
= 10μF  
= 10μF  
0
–0.2  
–0.4  
–0.05  
–0.10  
600  
400  
200  
0
600  
400  
200  
0
400  
TIME (μs)  
40  
50 60 70 80 90 100  
TIME (μs)  
0
200  
600  
800  
1000  
0
10 20 30  
3024 G48  
3024 G49  
3024fa  
11  
LT3024  
PIN FUNCTIONS (DFN/TSSOP)  
GND (Pins 4, 13)/(Pins 1, 5, 8, 9, 16, 17): Ground. The  
ExposedPadmustbesolderedtoPCBgroundforoptimum  
thermal performance.  
SHDN1/SHDN2 (Pins 11/8)/(Pins 14/11): Shutdown. The  
SHDN1/SHDN2 pins are used to put the corresponding  
output of the LT3024 regulator into a low power shutdown  
state. The output will be off when the pin is pulled low.  
The SHDN1/SHDN2 pins can be driven either by 5V logic  
or open-collector logic with pull-up resistors. The pull-up  
resistors are required to supply the pull-up current of the  
open-collectorgates,normallyseveralmicroamperes,and  
theSHDN1/SHDN2pincurrent,typically1μA.Ifunused,the  
ADJ1/ADJ2 (Pins 12/7)/(Pins 15/10): Adjust Pin. These  
are the input to the error amplifiers. These pins are inter-  
nally clamped to 7V. They have a bias current of 30nA  
which flows into the pin (see curve of ADJ1/ADJ2 Pin  
Bias Current vs Temperature in the Typical Performance  
Characteristics section). The ADJ1 and ADJ2 pin voltage  
is 1.22V referenced to ground and the output voltage  
range is 1.22V to 20V.  
pin must be connected to V . The device will not function  
IN  
if the SHDN1/SHDN2 pins are not connected.  
IN (Pins 9, 10)/(Pins 12, 13): Input. Power is supplied  
to the device through the IN pin. A bypass capacitor is  
required on this pin if the device is more than six inches  
away from the main input filter capacitor. In general, the  
output impedance of a battery rises with frequency, so  
it is advisable to include a bypass capacitor in battery-  
powered circuits. A bypass capacitor in the range of 1μF  
to 10μF is sufficient. The LT3024 regulator is designed to  
withstand reverse voltages on the IN pin with respect to  
ground and the OUT pin. In the case of a reverse input,  
which can happen if a battery is plugged in backwards, the  
device will act as if there is a diode in series with its input.  
There will be no reverse current flow into the regulator  
and no reverse voltage will appear at the load. The device  
will protect both itself and the load.  
BYP1/BYP2 (Pins 1/6)/(Pins 2/7): Bypass. The BYP1/  
BYP2 pins are used to bypass the reference of the LT3024  
regulator to achieve low noise performance from the  
regulator. The BYP1/BYP2 pins are clamped internally to  
0.6V (one V ) from ground. A small capacitor from the  
BE  
corresponding output to this pin will bypass the reference  
to lower the output voltage noise. A maximum value of  
0.01μF can be used for reducing output voltage noise to  
a typical 20μV  
over a 10Hz to 100kHz bandwidth. If  
RMS  
not used, this pin must be left unconnected.  
OUT1/OUT2(Pins2,3/5)/(Pins3,4/6):Output.Theoutputs  
supply power to the loads. A minimum output capacitor of  
1μF is required to prevent oscillations on Output 2; Output  
1 requires a minimum of 3.3μF. Larger output capacitors  
will be required for applications with large transient loads  
tolimitpeakvoltagetransients. SeetheApplicationsInfor-  
mationsectionformoreinformationonoutputcapacitance  
and reverse output characteristics.  
3024fa  
12  
LT3024  
APPLICATIONS INFORMATION  
TheLT3024isadual100mA/500mAlowdropoutregulator  
with micropower quiescent current and shutdown. The  
device is capable of supplying 100mA from Output 2 at a  
dropout voltage of 300mV. Output 1 delivers 500mA at a  
dropout voltage of 300mV. The two regulators have com-  
IN OUT1/OUT2  
LT3024  
V
OUT  
R2  
R1  
+
V
= 1.22V 1+  
+ I  
(
R2  
)(  
)
OUT  
ADJ  
V
IN  
R2  
R1  
V
= 1.22V  
ADJ  
ADJ1/ADJ2  
GND  
I
= 30nA AT 25°C  
ADJ  
OUTPUT RANGE = 1.22V TO 20V  
monV andGNDpinsandarethermallycoupled,however,  
IN  
3024 F01  
thetwooutputsoftheLT3024operateindependently.They  
can be shut down independently and a fault condition on  
one output will not affect the other output electrically.  
Figure 1. Adjustable Operation  
value of R1 should be no greater than 250k to minimize  
errors in the output voltage caused by the ADJ pin bias  
current. Note that in shutdown the output is turned off and  
the divider current will be zero. Curves of ADJ Pin Voltage  
vs Temperature and ADJ Pin Bias Current vs Temperature  
appear in the Typical Performance Characteristics.  
Output voltage noise can be lowered to 20μV  
over a  
RMS  
10Hz to 100kHz bandwidth with the addition of a 0.01μF  
reference bypass capacitor. Additionally, the reference  
bypass capacitor will improve transient response of the  
regulator, lowering the settling time for transient load  
conditions.Thelowoperatingquiescentcurrent(30μAper  
output) drops to less than 1μA in shutdown. In addition to  
the low quiescent current, the LT3024 regulator incorpo-  
rates several protection features which make it ideal for  
use in battery-powered systems. The device is protected  
against both reverse input and reverse output voltages.  
In battery backup applications where the output can be  
held up by a backup battery when the input is pulled to  
ground, the LT3024 acts like it has a diode in series with  
its output and prevents reverse current flow. Additionally,  
in dual supply applications where the regulator load is  
returned to a negative supply, the output can be pulled  
below ground by as much as 20V and still allow the device  
to start and operate.  
The device is tested and specified with the ADJ pin tied to  
the corresponding OUT pin for an output voltage of 1.22V.  
Specifications for output voltages greater than 1.22V will  
be proportional to the ratio of the desired output voltage  
to 1.22V: V /1.22V. For example, load regulation on  
OUT  
Output 2 for an output current change of 1mA to 100mA  
is –1mV typical at V  
regulation is:  
= 1.22V. At V  
= 12V, load  
OUT  
OUT  
(12V/1.22V)(–1mV) = –9.8mV  
Bypass Capacitance and Low Noise Performance  
The LT3024 regulator may be used with the addition of a  
bypass capacitor from V  
to the corresponding BYP pin  
OUT  
to lower output voltage noise. A good quality low leakage  
capacitor is recommended. This capacitor will bypass the  
reference of the regulator, providing a low frequency noise  
pole. The noise pole provided by this bypass capacitor will  
Adjustable Operation  
The LT3024 has an output voltage range of 1.22V to 20V.  
The output voltage is set by the ratio of two external resis-  
tors as shown in Figure 1. The device servos the output  
to maintain the corresponding ADJ pin voltage at 1.22V  
referenced to ground. The current in R1 is then equal to  
1.22V/R1 and the current in R2 is the current in R1 plus  
the ADJ pin bias current. The ADJ pin bias current, 30nA  
at 25°C, flows through R2 into the ADJ pin. The output  
voltagecanbecalculatedusingtheformulainFigure1.The  
lower the output voltage noise to as low as 20μV  
with  
RMS  
the addition of a 0.01μF bypass capacitor. Using a bypass  
capacitor has the added benefit of improving transient  
response. With no bypass capacitor and a 10μF output  
capacitor,a10mAto100mAloadsteponOutput2willsettle  
to within 1% of its final value in less than 100μs. With the  
addition of a 0.01μF bypass capacitor, the output will stay  
3024fa  
13  
LT3024  
APPLICATIONS INFORMATION  
within1%forthesameloadstep. Bothoutputsexhibitthis  
improvementintransientresponse(seeTransientReponse  
in Typical Performance Characteristics section). However,  
regulator start-up time is proportional to the size of the  
bypass capacitor, slowing to 15ms with a 0.01μF bypass  
capacitor and 10μF output capacitor.  
shaded region of Figures 2 and 3 define the regions over  
which the LT3024 regulator is stable. The minimum ESR  
needed is defined by the amount of bypass capacitance  
used, while the maximum ESR is 3Ω.  
Extra consideration must be given to the use of ceramic  
capacitors. Ceramic capacitors are manufactured with a  
variety of dielectrics, each with different behavior across  
temperature and applied voltage. The most common  
dielectrics used are specified with EIA temperature char-  
acteristic codes of Z5U, Y5V, X5R and X7R. The Z5U and  
Y5V dielectrics are good for providing high capacitances  
in a small package, but they tend to have strong voltage  
and temperature coefficients as shown in Figures 4 and 5.  
When used with a 5V regulator, a 16V 10μF Y5V capacitor  
can exhibit an effective value as low as 1μF to 2μF for the  
DC bias voltage applied and over the operating tempera-  
ture range. The X5R and X7R dielectrics result in more  
stable characteristics and are more suitable for use as the  
output capacitor. The X7R type has better stability across  
temperature, while the X5R is less expensive and is avail-  
able in higher values. Care still must be exercised when  
using X5R and X7R capacitors; the X5R and X7R codes  
only specify operating temperature range and maximum  
capacitancechangeovertemperature.Capacitancechange  
due to DC bias with X5R and X7R capacitors is better than  
Y5VandZ5Ucapacitors,butcanstillbesignificantenough  
to drop capacitor values below appropriate levels. Capaci-  
tor DC bias characteristics tend to improve as component  
casesizeincreases, butexpectedcapacitanceatoperating  
voltage should be verified.  
Output Capacitance and Transient Response  
The LT3024 regulator is designed to be stable with a wide  
range of output capacitors. The ESR of the output capaci-  
tor affects stability, most notably with small capacitors. A  
minimum output capacitor of 1μF with an ESR of 3Ω or  
less is recommended for Output 2 to prevent oscillations.  
A minimum output capacitor of 3.3μF with an ESR of 3Ω  
or less is recommended for Output 1. The LT3024 is a  
micropower device and output transient response will be  
a function of output capacitance. Larger values of output  
capacitance decrease the peak deviations and provide im-  
provedtransientresponseforlargerloadcurrentchanges.  
Bypasscapacitors,usedtodecoupleindividualcomponents  
powered by the LT3024, will increase the effective output  
capacitor value. With larger capacitors used to bypass the  
reference(forlownoiseoperation),largervaluesofoutput  
capacitorsareneeded.For100pFofbypasscapacitanceon  
Output2, 2.2μFofoutputcapacitorisrecommended. With  
a 330pF bypass capacitor or larger on this output, a 3.3μF  
output capacitor is recommended. For Output 1, 4.7μF of  
output capacitor is recommended for 100pF of bypass  
capacitance. With 1000pF or larger bypass capacitor on  
thisoutput,a6.8μFoutputcapacitorisrecommended.The  
4.0  
3.5  
4.0  
3.5  
3.0  
3.0  
STABLE REGION  
2.5  
STABLE REGION  
2.5  
2.0  
2.0  
C
BYP  
= 0  
C
= 0  
1.5  
1.0  
0.5  
0
1.5  
1.0  
0.5  
0
BYP  
C
= 100pF  
C
BYP  
= 100pF  
BYP  
C
BYP  
= 330pF  
C
= 330pF  
BYP  
C
BYP  
≥ 1000pF  
C
BYP  
> 3300pF  
1
3
6
9 10  
1
3
6
9 10  
8
2
4
5
7
8
2
4
5
7
OUTPUT CAPACITANCE (μF)  
OUTPUT CAPACITANCE (μF)  
3024 F02  
3024 F03  
Figure 2. Output 2 Stability  
Figure 3. Output 1 Stability  
3024fa  
14  
LT3024  
APPLICATIONS INFORMATION  
20  
40  
20  
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10μF  
0
X5R  
X5R  
0
–20  
–20  
–40  
–60  
–80  
–100  
–40  
Y5V  
–60  
Y5V  
–80  
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10μF  
–100  
0
8
12 14  
2
4
6
10  
16  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
DC BIAS VOLTAGE (V)  
3024 F04  
3024 F05  
Figure 4. Ceramic Capacitor DC Bias Characteristics  
Figure 5. Ceramic Capacitor Temperature Characteristics  
Voltage and temperature coefficients are not the only  
sources of problems. Some ceramic capacitors have a  
piezoelectric response. A piezoelectric device generates  
voltage across its terminals due to mechanical stress,  
similar to the way a piezoelectric accelerometer or  
microphone works. For a ceramic capacitor the stress can  
beinducedbyvibrationsinthesystemorthermaltransients.  
The resulting voltages produced can cause appreciable  
amounts of noise, especially when a ceramic capacitor is  
used for noise bypassing. A ceramic capacitor produced  
Figure 6’s trace in response to light tapping from a pencil.  
Similar vibration induced behavior can masquerade as  
increased output voltage noise.  
Thermal Considerations  
The power handling capability of the device will be limited  
by the maximum rated junction temperature (125°C). The  
power dissipated by the device will be made up of two  
components for each output:  
1. Output current multiplied by the input/output voltage  
differential: (I )(V – V ), and  
OUT  
IN  
OUT  
2. GND pin current multiplied by the input voltage:  
(I )(V ).  
GND  
IN  
The ground pin current can be found by examining the  
GND Pin Current curves in the Typical Performance Char-  
acteristics section. Power dissipation will be equal to the  
sum of the two components listed above.  
C
C
LOAD  
= 10μF  
= 0.01μF  
= 100mA  
OUT  
BYP  
The LT3024 regulator has internal thermal limiting de-  
signed to protect the device during overload conditions.  
For continuous normal conditions, the maximum junction  
temperature rating of 125°C must not be exceeded. It is  
important to give careful consideration to all sources of  
thermal resistance from junction to ambient. Additional  
heat sources mounted nearby must also be considered.  
I
V
OUT  
500μV/DIV  
For surface mount devices, heat sinking is accomplished  
by using the heat spreading capabilities of the PC board  
3024 F06  
100ms/DIV  
Figure 6. Noise Resulting from Tapping on a Ceramic Capacitor  
3024fa  
15  
LT3024  
APPLICATIONS INFORMATION  
and its copper traces. Copper board stiffeners and plated  
through-holes can also be used to spread the heat gener-  
ated by power devices.  
The power dissipated by each output will be equal to:  
(V – V ) + I (V  
I
)
GND IN(MAX)  
OUT(MAX) IN(MAX)  
OUT  
Where for Output 1:  
The following tables list thermal resistance for several  
different board sizes and copper areas. All measurements  
were taken in still air on 3/32" FR-4 board with one ounce  
copper.  
I
= 500mA  
= 5V  
OUT  
OUT(MAX)  
V
IN(MAX)  
I
at (I  
= 500mA, V = 5V) = 9mA  
GND  
IN  
For Output 2:  
= 100mA  
Table 1. FE Package, 16-Lead TSSOP  
COPPER AREA  
I
OUT(MAX)  
THERMAL RESISTANCE  
TOPSIDE*  
BACKSIDE BOARD AREA (JUNCTION-TO-AMBIENT)  
V
= 5V  
IN(MAX)  
2
2
2
2
2
2
2
2
2
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
38°C/W  
43°C/W  
48°C/W  
60°C/W  
I
at (I  
= 100mA, V = 5V) = 2mA  
OUT IN  
GND  
2
1000mm  
So for Output 1:  
2
225mm  
2
P = 500mA (5V – 3.3V) + 9mA (5V) = 0.90W  
For Output 2:  
100mm  
*Device is mounted on topside.  
Table 2. UE Package, 12-Lead DFN  
COPPER AREA  
P = 100mA (5V – 2.5V) + 2mA (5V) = 0.26W  
THERMAL RESISTANCE  
The thermal resistance will be in the range of 35°C/W to  
55°C/W depending on the copper area. So the junction  
temperature rise above ambient will be approximately  
equal to:  
TOPSIDE*  
BACKSIDE BOARD AREA (JUNCTION-TO-AMBIENT)  
2
2
2
2
2
2
2
2
2
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
40°C/W  
45°C/W  
50°C/W  
62°C/W  
2
1000mm  
2
225mm  
(0.90W + 0.26W) 50°C/W = 57.8°C  
2
100mm  
*Device is mounted on topside.  
The maximum junction temperature will then be equal to  
the maximum junction temperature rise above ambient  
plus the maximum ambient temperature or:  
The thermal resistance junction-to-case (θ ), measured  
JC  
at the Exposed Pad on the back of the die is 10°C/W for  
the DFN package and 8°C/W for the TSSOP package.  
T
= 50°C + 57.8°C = 107.8°C  
JMAX  
Calculating Junction Temperature  
Protection Features  
Example: Given Output 1 set for an output voltage of  
3.3V, Output 2 set for an output voltage of 2.5V, an input  
voltage range of 3.8V to 5V, an output current range of  
0mA to 500mA for Output 1, an output current range of  
0mA to 100mA for Output 2 and a maximum ambient  
temperature of 50°C, what will the maximum junction  
temperature be?  
The LT3024 regulator incorporates several protection fea-  
tureswhichmakeitidealforuseinbattery-poweredcircuits.  
In addition to the normal protection features associated  
with monolithic regulators, such as current limiting and  
thermal limiting, the device is protected against reverse  
inputvoltages,reverseoutputvoltagesandreversevoltages  
from output to input. The two regulators have common  
3024fa  
16  
LT3024  
APPLICATIONS INFORMATION  
V and GND pins and are thermally coupled, however, the  
1.22V reference when the output is forced to 20V. The top  
resistor of the resistor divider must be chosen to limit the  
current into the ADJ pin to less than 5mA when the ADJ  
pin is at 7V. The 13V difference between output and ADJ  
pin divided by the 5mA maximum current into the ADJ pin  
yields a minimum top resistor value of 2.6k.  
IN  
two outputs of the LT3024 operate independently. They  
can be shut down independently and a fault condition on  
one output will not affect the other output electrically.  
Current limit protection and thermal overload protection  
areintendedtoprotectthedeviceagainstcurrentoverload  
conditionsattheoutputofthedevice.Fornormaloperation,  
the junction temperature should not exceed 125°C.  
In circuits where a backup battery is required, several  
different input/output conditions can occur. The output  
voltage may be held up while the input is either pulled  
to ground, pulled to some intermediate voltage or is left  
open circuit. Current flow back into the output will follow  
the curve shown in Figure 7.  
The input of the device will withstand reverse voltages  
of 20V. Current flow into the device will be limited to less  
than 1mA (typically less than 100μA) and no negative  
voltage will appear at the output. The device will protect  
both itself and the load. This provides protection against  
batteries which can be plugged in backward.  
When the IN pin of the LT3024 is forced below either OUT  
pin or either OUT pin is pulled above the IN pin, input cur-  
rent for the corresponding regulator will typically drop to  
less than 2μA. This can happen if the input of the device  
is connected to a discharged (low voltage) battery and the  
output is held up by either a backup battery or a second  
regulator circuit. The state of the SHDN1/SHDN2 pin will  
have no effect on the reverse output current when the  
output is pulled above the input.  
The output of the LT3024 can be pulled below ground  
withoutdamagingthedevice.Iftheinputisleftopencircuit  
or grounded, the output can be pulled below ground by  
20V. The output will act like an open circuit; no current will  
flow out of the pin. If the input is powered by a voltage  
source, the output will source the short-circuit current of  
the device and will protect itself by thermal limiting. In  
this case, grounding the SHDN1/SHDN2 pins will turn off  
the device and stop the output from sourcing the short-  
circuit current.  
100  
T
V
V
= 25°C  
A
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
= 0V  
IN  
OUT  
= V  
ADJ  
CURRENT FLOWS  
INTO OUTPUT PIN  
The ADJ pins can be pulled above or below ground by as  
much as 7V without damaging the device. If the input is  
left open circuit or grounded, the ADJ pins will act like an  
open circuit when pulled below ground and like a large  
resistor (typically 100k) in series with a diode when pulled  
above ground.  
InsituationswheretheADJpinsareconnectedtoaresistor  
divider that would pull the pins above their 7V clamp volt-  
age if the output is pulled high, the ADJ pin input current  
must be limited to less than 5mA. For example, a resistor  
divider is used to provide a regulated 1.5V output from the  
4
0
1
2
3
5
6
7
8
9
10  
OUTPUT VOLTAGE (V)  
3024 F07  
Figure 7. Reverse Output Current  
3024fa  
17  
LT3024  
PACKAGE DESCRIPTION  
DE/UE Package  
12-Lead Plastic DFN (4mm × 3mm)  
(Reference LTC DWG # 05-08-1695 Rev D)  
0.70 0.05  
3.30 0.05  
3.60 0.05  
2.20 0.05  
1.70 0.05  
PACKAGE OUTLINE  
0.25 0.05  
0.50 BSC  
2.50 REF  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
0.40 0.10  
4.00 0.10  
(2 SIDES)  
R = 0.115  
TYP  
7
12  
R = 0.05  
TYP  
3.30 0.10  
3.00 0.10  
(2 SIDES)  
1.70 0.10  
PIN 1  
TOP MARK  
(NOTE 6)  
PIN 1 NOTCH  
R = 0.20 OR  
0.35 × 45°  
CHAMFER  
(UE12/DE12) DFN 0806 REV D  
6
1
0.25 0.05  
0.75 0.05  
0.200 REF  
0.50 BSC  
2.50 REF  
BOTTOM VIEW—EXPOSED PAD  
0.00 – 0.05  
NOTE:  
1. DRAWING PROPOSED TO BE A VARIATION OF VERSION  
(WGED) IN JEDEC PACKAGE OUTLINE M0-229  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
3024fa  
18  
LT3024  
PACKAGE DESCRIPTION  
FE Package  
16-Lead Plastic TSSOP (4.4mm)  
(Reference LTC DWG # 05-08-1663)  
Exposed Pad Variation BB  
4.90 – 5.10*  
(.193 – .201)  
3.58  
(.141)  
3.58  
(.141)  
16 1514 13 12 1110  
9
6.60 0.10  
2.94  
(.116)  
4.50 0.10  
SEE NOTE 4  
6.40  
(.252)  
BSC  
2.94  
(.116)  
0.45 0.05  
1.05 0.10  
0.65 BSC  
5
7
8
1
2
3
4
6
RECOMMENDED SOLDER PAD LAYOUT  
1.10  
(.0433)  
MAX  
4.30 – 4.50*  
(.169 – .177)  
0.25  
REF  
0° – 8°  
0.65  
(.0256)  
BSC  
0.09 – 0.20  
(.0035 – .0079)  
0.50 – 0.75  
(.020 – .030)  
0.05 – 0.15  
(.002 – .006)  
0.195 – 0.30  
FE16 (BB) TSSOP 0204  
(.0077 – .0118)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: MILLIMETERS 4. RECOMMENDED MINIMUM PCB METAL SIZE  
FOR EXPOSED PAD ATTACHMENT  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.150mm (.006") PER SIDE  
MILLIMETERS  
(INCHES)  
2. DIMENSIONS ARE IN  
3. DRAWING NOT TO SCALE  
3024fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
19  
LT3024  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
V : 4.2V to 30V, V  
LT1129  
700mA, Micropower, LDO  
= 3.75V, I = 50μA, I = 16μA, DD, SOT-223, S8,TO220,  
OUT(MIN) Q SD  
IN  
TSSOP20 Packages  
LT1175  
500mA, Micropower Negative LDO  
3A, Negative LDO  
Guaranteed Voltage Tolerance and Line/Load Regulation, V : –20V to –4.3V,  
IN  
V
= –3.8V, I = 45μA, I = 10μA, DD,SOT-223, S8 Packages  
OUT(MIN)  
Q SD  
LT1185  
Accurate Programmable Current Limit, Remote Sense, V : –35V to –4.2V, V  
IN OUT(MIN)  
= –2.40V, I = 2.5mA, I <1μA, TO220-5 Package  
Q
SD  
LT1761  
100mA, Low Noise Micropower, LDO  
150mA, Low Noise Micropower, LDO  
500mA, Low Noise Micropower, LDO  
3A, Low Noise, Fast Transient Response, LDO  
150mA, Very Low Drop-Out LDO  
300mA, Low Noise Micropower, LDO  
Low Noise < 20μV  
OUT(MIN) =  
Stable with 1μF Ceramic Capacitors, V : 1.8V to 20V,  
RMS, IN  
V
1.22V, I = 20μA, I <1μA, ThinSOT Package  
Q SD  
LT1762  
Low Noise < 20μV  
MS8 Package  
V : 1.8V to 20V, V  
= 1.22V, I = 25μA, I <1μA,  
Q SD  
RMS, IN  
OUT(MIN)  
LT1763  
Low Noise < 20μV  
S8 Package  
V : 1.8V to 20V, V  
= 1.22V, I = 30μA, I <1μA,  
Q SD  
RMS, IN  
OUT(MIN)  
LT1764/LT1764A  
LTC1844  
LT1962  
Low Noise < 40μV  
OUT(MIN)  
"A" Version Stable with Ceramic Capacitors, V : 2.7V to 20V,  
RMS, IN  
V
= 1.21V, I = 1mA, I <1μA, DD, TO220 Packages  
Q
SD  
Low Noise < 30μV  
OUT(MIN)  
, Stable with 1μF Ceramic Capacitors, V : 1.6V to 6.5V,  
IN  
RMS  
V
= 1.25V, I = 40μA, I <1μA, ThinSOT Package  
Q SD  
Low Noise < 20μV  
MS8 Package  
V : 1.8V to 20V, V = 1.22V, I = 30μA, I <1μA,  
OUT(MIN) Q SD  
RMS, IN  
LT1963/LT1963A  
LT1964  
1.5A, Low Noise, Fast Transient Response, LDO Low Noise < 40μV  
"A" Version Stable with Ceramic Capacitors, V : 2.1V to 20V,  
RMS, IN  
Q
V
= 1.21V, I = 1mA, I <1μA, DD, TO220, SOT-223, S8 Packages  
OUT(MIN)  
SD  
200mA, Low Noise Micropower, Negative LDO  
Dual 100mA, Low Noise, Micropower LDO  
Low Noise < 30μV  
OUT(MIN)  
Stable with Ceramic Capacitors, V : –0.9V to –20V,  
RMS, IN  
V
= –1.21V, I = 30μA, I = 3μA, ThinSOT Package  
Q
SD  
LT3023  
Low Noise < 20μV  
OUT(MIN)  
Stable with 1μF Ceramic Capacitors, V : 1.8V to 20V,  
RMS, IN  
V
= 1.22V, I = 40μA, I <1μA, MS10E, DFN Packages  
Q
SD  
LTC3407  
Dual 600mA. 1.5MHz Synchronous Step Down V : 2.5V to 5.5V, V  
= 0.6 V, I = 40μA, I <1μA, MSE Package  
OUT(MIN) Q SD  
IN  
DC/DC Converter  
3024fa  
LT 0208 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
© LINEAR TECHNOLOGY CORPORATION 2004  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT3024IDE#PBF

LT3024 - Dual 100mA/500mA Low Dropout, Low Noise, Micropower Regulator; Package: DFN; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3024IDE#TR

LT3024 - Dual 100mA/500mA Low Dropout, Low Noise, Micropower Regulator; Package: DFN; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3024IDE#TRPBF

LT3024 - Dual 100mA/500mA Low Dropout, Low Noise, Micropower Regulator; Package: DFN; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3024IDE-PBF

Dual 100mA/500mA Low Dropout, Low Noise,Micropower Regulator
Linear

LT3024IDE-TR

Dual 100mA/500mA Low Dropout, Low Noise,Micropower Regulator
Linear

LT3024IDE-TRPBF

Dual 100mA/500mA Low Dropout, Low Noise,Micropower Regulator
Linear

LT3024IFE

Dual 100mA/500mA Low Dropout, Low Noise,Micropower Regulator
Linear

LT3024IFE#PBF

LT3024 - Dual 100mA/500mA Low Dropout, Low Noise, Micropower Regulator; Package: TSSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3024IFE#TR

LT3024 - Dual 100mA/500mA Low Dropout, Low Noise, Micropower Regulator; Package: TSSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3024IFE#TRPBF

LT3024 - Dual 100mA/500mA Low Dropout, Low Noise, Micropower Regulator; Package: TSSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3024IFE-PBF

Dual 100mA/500mA Low Dropout, Low Noise,Micropower Regulator
Linear

LT3024IFE-TR

Dual 100mA/500mA Low Dropout, Low Noise,Micropower Regulator
Linear