LT3050IDDB#TR [Linear]

IC VREG 0.6 V-44.5 V ADJUSTABLE POSITIVE LDO REGULATOR, 0.55 V DROPOUT, PDSO12, 3 X 2 MM, PLASTIC, DFN-12, Adjustable Positive Single Output LDO Regulator;
LT3050IDDB#TR
型号: LT3050IDDB#TR
厂家: Linear    Linear
描述:

IC VREG 0.6 V-44.5 V ADJUSTABLE POSITIVE LDO REGULATOR, 0.55 V DROPOUT, PDSO12, 3 X 2 MM, PLASTIC, DFN-12, Adjustable Positive Single Output LDO Regulator

稳压器
文件: 总20页 (文件大小:344K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3050  
100mA, Low Noise  
Linear Regulator With Precision Current  
Limit And Diagnostic Functions  
DESCRIPTION  
FEATURES  
The LT®3050 is a micro-power, low noise, low dropout  
voltage(LDO)linearregulator. Thedevicesupplies100mA  
n
Output Current: 100mA  
Dropout Voltage: 340mV  
n
n
Input Voltage Range: 1.6V to 45V  
of output current with a dropout voltage of 340mV. A 10nF  
bypass capacitor reduces output noise to 30μV in a  
10Hz to 100kHz bandwidth and soft-starts the reference.  
The LT3050’s 45V input voltage rating combined with its  
precisioncurrentlimitanddiagnosticfunctionsmaketheIC  
an ideal choice for robust, high reliability applications.  
n
n
n
n
Programmable Precision Current Limit: 5ꢀ  
RMS  
Programmable Minimum I  
Monitor  
OUT  
th  
Output Current Monitor: 1/100 of I  
OUT  
Fault Indicator: Current Limit, Minimum I  
or  
OUT  
Thermal Limit  
n
n
n
n
Low Noise: 30μV  
(10Hz to 100kHz)  
RMS  
AsingleresistorprogramstheLT3050’scurrentlimit,accurate  
to 5ꢀ over a wide input voltage and temperature range.  
A single resistor programs the LT3050’s minimum output  
currentmonitor,usefulfordetectingopen-circuitconditions.  
The current monitor function sources a current equal to  
1/100th of output current. A logic FAULT pin asserts low if  
the LT3050 is in current limit, operating below its minimum  
output current (open-circuit) or is in thermal shutdown.  
Adjustable Output (V = V  
= 0.6V)  
REF  
OUT(MIN)  
Output Tolerance: 2ꢀ Over Line, Load and Temperature  
Stable with Low ESR, Ceramic Output Capacitors  
(2.2μF minimum)  
n
n
Shutdown Current: <1μA  
Reverse-Battery, Reverse-Output and  
Reverse-Current Protection  
n
n
Thermal Limit Protection  
The LT3050 optimizes stability and transient response  
with low ESR ceramic capacitors, requiring a minimum  
of 2.2μF. The LT3050 is available as an adjustable device  
with an output voltage range down to the 0.6V reference.  
TheLT3050isavailableinthethermally-enhanced12-Lead  
3mm × 2mm DFN and MSOP packages.  
12-Lead 3mm × 2mm DFN and MSOP Packages  
APPLICATIONS  
n
Protected Antenna Supplies  
Automotive Telematics  
n
n
Industrial Applications (Trucks, Forklifts, etc.)  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
n
High Reliability Applications  
Technology Corporation. All other trademarks are the property of their respective owners.  
External Current Limit  
RIMAX = 1.15k  
TYPICAL APPLICATION  
105  
5V Supply with 100mA Precision Current Limit, 10mA IMIN  
V
= 5V  
OUT  
104  
103  
102  
101  
100  
99  
IN  
OUT  
5V  
1ꢀ  
442k  
V
IN  
= 15V  
12V  
IN  
SHDN  
2.2ꢁF  
1ꢁF  
120k  
V
ADJ  
FAULT  
1ꢀ  
60.4k  
V
V
= 12V  
IN  
IN  
LT3050  
I
MAX  
I
= 5.6V  
TO ꢁP ADC  
0.1ꢁF  
MON  
98  
1.15k  
10nF  
3k  
(THRESHOLD = 100mA)  
97  
(ADC FULL SCALE = 3V)  
96  
I
REF/BYP  
MIN  
11.3k  
95  
0.1ꢁF  
GND  
–75 –50 –25  
0
–25 50 75 100 125 150 175  
10nF  
(THRESHOLD = 10mA)  
TEMPERATURE (°C)  
3050 TA01  
3050 TA01a  
3050f  
1
LT3050  
(Note 1)  
ABSOLUTE MAXIMUM RATINGS  
IN Pin Voltage ........................................................ 50V  
OUT Pin Voltage..................................................... 50V  
Input-to-Output Differential Voltage....................... 50V  
ADJ Pin Voltage ..................................................... 50V  
REF/BYP Pin Voltage........................................–0.3V, 1V  
SHDN Pin Voltage ................................................... 50V  
FAULT Pin Voltage..........................................–0.3V, 50V  
Output Short-Circuit Duration .......................... Indefinite  
Operating Junction Temperature Range (Notes 2, 3)  
E, I Grades.........................................–40°C to 125°C  
MP Grade...........................................–55°C to 125°C  
Storage Temperature Range...................–65°C to 150°C  
Lead Temperature: Soldering, 10 sec.................... 300°C  
(MSOP Package Only)  
I
I
I
Pin Voltage ..............................................–0.3V, 7V  
Pin Voltage ...............................................–0.3V, 7V  
Pin Voltage...............................................–0.3V, 7V  
MON  
MIN  
MAX  
PIN CONFIGURATION  
TOP VIEW  
TOP VIEW  
1
2
3
4
5
6
REF/BYP  
12  
11  
I
I
MON  
1
2
3
4
5
6
REF/BYP  
12  
11  
10 GND  
9
8
7
I
I
MON  
MAX  
I
MIN  
MAX  
I
MIN  
13  
GND  
FAULT  
SHDN  
IN  
10 GND  
FAULT  
SHDN  
IN  
13  
GND  
ADJ  
OUT  
OUT  
9
8
7
ADJ  
OUT  
OUT  
IN  
IN  
MSE PACKAGE  
DDB PACKAGE  
12-LEAD PLASTIC MSOP  
12-LEAD (3mm s 2mm) PLASTIC DFN  
T
JMAX  
= 125°C, θ = 45°C/W, θ = 5°C/W TO 10°C/W  
JA JC  
EXPOSED PAD (PIN 13) IS GND, MUST BE SOLDERED TO PCB  
T
= 125°C, θ = 49°C/W, θ = 13.5°C/W  
JMAX  
JA  
JC  
EXPOSED PAD (PIN 13) IS GND, MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
LT3050EMSE#PBF  
LT3050IMSE#PBF  
LT3050MPMSE#PBF  
LT3050EDDB#PBF  
LT3050IDDB#PBF  
LEAD BASED FINISH  
LT3050EMSE  
TAPE AND REEL  
PART MARKING*  
3050  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LT3050EMSE#TRPBF  
LT3050IMSE#TRPBF  
LT3050MPMSE#TRPBF  
LT3050EDDB#TRPBF  
LT3050IDDB#TRPBF  
TAPE AND REEL  
12-Lead Plastic MSOP  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
TEMPERATURE RANGE  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
3050  
12-Lead Plastic MSOP  
3050  
12-Lead Plastic MSOP  
LFGC  
12-Lead (3mm × 2mm) Plastic DFN  
12-Lead (3mm × 2mm) Plastic DFN  
PACKAGE DESCRIPTION  
LFGC  
PART MARKING*  
3050  
LT3050EMSE#TR  
LT3050IMSE#TR  
12-Lead Plastic MSOP  
LT3050IMSE  
3050  
12-Lead Plastic MSOP  
LT3050MPMSE  
LT3050EDDB  
LT3050MPMSE#TR  
LT3050EDDB#TR  
3050  
12-Lead Plastic MSOP  
LFGC  
12-Lead (3mm × 2mm) Plastic DFN  
12-Lead (3mm × 2mm) Plastic DFN  
LT3050IDDB  
LT3050IDDB#TR  
LFGC  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
3050f  
2
LT3050  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 2)  
PARAMETER  
CONDITIONS  
= 100mA  
MIN  
TYP  
1.6  
MAX  
UNITS  
l
Minimum Input Voltage (Notes 3, 11)  
ADJ Pin Voltage (Notes 3, 4)  
I
2.2  
V
LOAD  
V
= 2.2V, I  
= 1mA  
LOAD  
594  
588  
600  
606  
612  
mV  
mV  
IN  
l
l
l
2.2V < V < 15V, 1mA < I  
< 100mA (Note 15)  
IN  
LOAD  
Line Regulation (Note 3)  
Load Regulation (Note 3)  
Dropout Voltage  
ΔV = 2.2V to 45V, I  
IN  
= 1mA  
0.25  
0.2  
3
4
mV  
mV  
LOAD  
V
IN  
= 2.2V, I  
= 1mA to 100mA  
LOAD  
I
I
= 1mA  
= 1mA  
110  
150  
220  
mV  
mV  
LOAD  
LOAD  
l
l
l
l
V
= V  
(Notes 5, 6)  
IN  
OUT(NOMINAL)  
I
I
= 10mA  
= 10mA  
195  
280  
340  
240  
340  
mV  
mV  
LOAD  
LOAD  
I
I
= 50mA  
= 50mA  
330  
450  
mV  
mV  
LOAD  
LOAD  
I
I
= 100mA  
= 100mA  
400  
550  
mV  
mV  
LOAD  
LOAD  
l
l
l
l
l
GND Pin Current  
= V  
I
I
I
I
I
= 0mA  
45  
60  
175  
0.85  
2.2  
90  
160  
370  
2
ꢁA  
ꢁA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
V
+ 0.6V (Notes 6, 7, 11)  
OUT(NOMINAL)  
= 1mA  
IN  
= 10mA  
= 50mA  
= 100mA  
ꢁA  
mA  
mA  
5.2  
Quiescent Current in Shutdown  
ADJ Pin Bias Current (Notes 3, 12)  
Output Voltage Noise  
V
V
C
= 12V, V  
= 0V  
0.17  
12.5  
90  
1
ꢁA  
nA  
IN  
SHDN  
l
= 12V  
60  
IN  
= 10μF, I  
= 100mA, V  
= 600mV,  
ꢁV  
ꢁV  
OUT  
LOAD  
OUT  
RMS  
BW = 10Hz to 100kHz  
Output Voltage Noise  
C
OUT  
= 10μF, C = 0.01μF, I  
= 100mA, V = 600mV  
OUT  
30  
BYP  
LOAD  
RMS  
BW = 10Hz to 100kHz  
l
l
Shutdown Threshold  
V
V
= Off to On  
= On to Off  
0.7  
0.6  
1.5  
V
V
OUT  
OUT  
0.3  
70  
l
l
SHDN Pin Current (Note 13)  
Ripple Rejection (Note 3)  
V
V
= 0V  
= 45V  
1
3
ꢁA  
ꢁA  
SHDN  
SHDN  
0.9  
85  
V
–V  
OUT  
= 2V (AVG), V  
= 0.5V ,  
P-P  
dB  
IN  
RIPPLE  
f
= 120Hz, I  
= 100mA  
LOAD  
RIPPLE  
l
l
FAULT Pin Logic Low Voltage  
FAULT Pin Leakage Current  
V
= 2.2V, FAULT Asserted, I  
= 100μA  
140  
250  
1
mV  
ꢁA  
IN  
FAULT  
FAULT = 5V, FAULT Not Asserted  
0.01  
Input Reverse Leakage Current  
Reverse Output Current (Note 14)  
Internal Current Limit (Note 3)  
V
V
V
= –45V, V  
= 0  
300  
10  
ꢁA  
IN  
OUT  
= 1.2V, V = 0  
0.2  
ꢁA  
OUT  
IN  
= 2.2V, V  
OUT  
= 0, I Pin Grounded  
MAX  
240  
mA  
IN  
ΔV  
OUT  
l
l
l
l
= –5ꢀ  
110  
47.8  
72.1  
94.4  
External Programmed Current Limit (Note 8) 5.6V < V < 15V, V  
= 5V, R  
= 2.26K  
= 1.5K  
IN  
OUT  
IMAX  
IMAX  
IMAX  
50.4  
75.9  
99.3  
52.9  
79.7  
mA  
mA  
mA  
FAULT Pin Threshold  
5.6V < V < 15V, V = 5V, R  
IN  
OUT  
FAULT Pin Threshold  
5.6V < V < 15V, V = 5V, R  
= 1.15K  
IN  
OUT  
104.3  
FAULT Pin Threshold  
3050f  
3
LT3050  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 2)  
PARAMETER  
Minimum I  
CONDITIONS  
5.6V < V < 15V, V  
MIN  
0.9  
9
TYP  
1
MAX  
1.1  
UNITS  
mA  
l
l
l
Threshold Accuracy (Note 9)  
= 5V, R  
= 5V, R  
= 110K  
= 11.3K  
MIN  
IN  
OUT  
OUT  
IMIN  
IMIN  
I
Threshold Accuracy (Note 9)  
5.6V < V < 15V, V  
10  
11  
mA  
MIN  
IN  
Current Monitor Ratio (Note10)  
Ratio = I /I  
I
= 5mA, 25mA, 50mA, 75mA, 100mA  
95  
100  
105  
LOAD  
OUT MON  
V
IMON  
= V  
= 5V, 5.6V < V < 15V  
OUT IN  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime. Absolute maximum input-to-output differential  
voltage is not achievable with all combinations of rated IN pin and OUT pin  
voltages. With the IN pin at 50V, the OUT pin may not be pulled below 0V.  
The total differential voltage from IN to OUT must not exceed 50V.  
Note 7: GND pin current is tested with V = V  
current source load. GND pin current increases in dropout. See GND pin  
current curves in the Typical Performance Characteristics section.  
+ 0.5V and a  
OUT(NOMINAL)  
IN  
Note 8: Current limit varies inversely with the external resistor value tied  
from the I  
pin to GND. For detailed information on how to set the  
MAX  
I
pin resistor value, please see the Operation section. If a programmed  
MAX  
current limit is not needed, the I  
pin must be tied to GND and internal  
MAX  
Note 2: The LT3050 is tested and specified under pulse load conditions  
protection circuitry implements short-circuit protection as specified.  
such that T ~ T . The LT3050E is 100ꢀ production tested at T = 25°C.  
J
A
A
Note 9: The I fault condition asserts if the output current falls below the  
MIN  
Performance at –40°C and 125°C is assured by design, characterization  
and correlation with statistical process controls. The LT3050I is  
guaranteed over the full –40°C to 125°C operating junction temperature  
range. The LT3050MP is 100ꢀ tested over the –55°C to 125°C operating  
junction temperature range.  
I
threshold defined by an external resistor from the I  
pin to GND.  
MIN  
MIN  
For detailed information on how to set the I  
see the Operation section. I  
specification in the Electrical Characteristics section are not guaranteed  
to 10ꢀ tolerance. If the I fault condition is not needed, the I pin  
pin resistor value, please  
MIN  
settings below the Minimum I  
Accuracy  
MIN  
MIN  
MIN  
MIN  
Note 3: The LT3050 is tested and specified for these conditions with ADJ  
must be left floating (unconnected).  
pin connected to the OUT pin.  
Note 10: The current monitor ratio varies slightly when V  
≠ V . For  
OUT  
IMON  
Note 4: Maximum junction temperature limits operating conditions.  
Regulated output voltage specifications do not apply for all possible  
combinations of input voltage and output current. If operating at the  
maximum input voltage, limit the output current range. If operating at the  
maximum output current, limit the input voltage range.  
detailed information on how to calculate the output current from the I  
MON  
pin, please see the Operation section. If the current monitor function is not  
needed, the I pin must be tied to GND.  
MON  
Note 11: To satisfy requirements for minimum input voltage, current limit  
is tested at V = V +1V or V = 2.2V, whichever is greater.  
IN  
OUT(NOMINAL)  
IN  
Note 5: Dropout voltage is the minimum differential IN-to-OUT voltage  
needed to maintain regulation at a specified output current. In dropout,  
Note 12: ADJ pin bias current flows out of the ADJ pin:  
Note 13: SHDN pin current flows into the SHDN pin.  
Note 14: Reverse output current is tested with the IN pin grounded and the  
OUT pin forced to the specified voltage. This current flows into the OUT pin  
and out of the GND pin.  
the output voltage equals (V - V  
). For some output voltages,  
DROPOUT  
IN  
minimum input voltage requirements limit dropout voltage.  
Note 6: To satisfy minimum input voltage requirements, the LT3050 is  
tested and specified for these conditions with an external resistor divider  
Note 15: 100mA of output current does not apply to the full range of input  
voltage due to the internal current limit foldback.  
(60k bottom, 440k top) which sets V  
to 5V. The external resistor  
OUT  
divider adds 10μA of DC load on the output. This external current is not  
factored into GND pin current.  
3050f  
4
LT3050  
TYPICAL PERFORMANCE CHARACTERISTICS TJ = 25°C, unless otherwise noted.  
Guaranteed Dropout Voltage  
Dropout Voltage  
Typical Dropout Voltage  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
=TEST POINTS  
I
= 100mA  
= 50mA  
L
I
L
T
= 125°C  
= 25°C  
T
≤ 125°C  
J
J
I
L
= 10mA  
T
J
T
≤ 25°C  
J
I
L
= 1mA  
0
0
0
–75 –50 –25  
0
25 50 75 100 125 150 175  
0
10 20 30 40 50 60 70 80 90 100  
0
10 20 30 40 50 60 70 80 90 100  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
TEMPERATURE (°C)  
3050 G01  
3050 G02  
3050 G03  
Quiescent Current  
ADJ Pin Voltage  
5V Quiescent Current  
80  
70  
60  
50  
40  
30  
20  
10  
0
612  
610  
608  
606  
604  
602  
600  
598  
596  
594  
592  
590  
588  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
V
L
= V  
= 5V  
= 5ꢁA  
= 12V  
SHDN  
IN  
OUT  
I
V
V
= V , R = 500k  
IN L  
SHDN  
SHDN  
V
IN  
= 12V  
ALL OTHER PINS = 0V  
= 0 , R = 0  
V
L
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
0
5
10 15 20 25 30 35 40 45  
(V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
V
IN  
3050 G06  
3050 G04  
3050 G05  
SHDN Pin Threshold  
GND Pin Current  
GND Pin Current vs ILOAD  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
V
V
= 5.6V  
OUT  
I = 1mA  
L
V
OUT  
= 5V  
IN  
= 5V  
R
R
= 50, I = 100mA  
L
L
L
OFF TO ON  
= 100, I = 50mA  
L
ON TO OFF  
R
= 5k, I = 1mA  
L
L
R
= 500, I = 10mA  
L
L
0
10 20 30 40 50 60 70 80 90 100  
(mA)  
–75 –50 –25  
0
25 50 75 100 125 150 175  
0
1
2
3
4
5
6
7
8
9 10 11 12  
I
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
LOAD  
3050 G08  
3050 G09  
3050 G07  
3050f  
5
LT3050  
TYPICAL PERFORMANCE CHARACTERISTICS TJ = 25°C, unless otherwise noted.  
SHDN Pin Input Current  
SHDN Pin Input Current  
ADJ Pin Bias Current  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
V
SHDN  
= 45V  
0
–75 –50 –25  
0
25 50 75 100 125 150 175  
0
10  
20  
30  
40  
50  
–75 –50 –25  
0
25 50 75 100 125 150 175  
TEMPERATURE (°C)  
SHDN PIN VOLTAGE (V)  
TEMPERATURE (°C)  
3050 G10  
3050 G11  
3050 G12  
Internal Current Limit  
vs Output Voltage  
Internal Current Limit  
Internal Current Limit  
350  
300  
250  
200  
150  
100  
50  
250  
225  
200  
175  
150  
125  
100  
75  
225  
200  
175  
150  
125  
100  
75  
V
V
= 12V  
= 0V  
V
IN  
– V  
= 1V  
OUT(NOMINAL)  
IN  
OUT  
T
T
T
T
= 125°C  
= 25°C  
= –40°C  
= –55°C  
T
T
T
T
= 125°C  
= 25°C  
= –40°C  
= –55°C  
J
J
J
J
J
J
J
J
50  
50  
CURRENT LIMIT  
AT FAULT  
THRESHOLD  
CURRENT LIMIT  
AT FAULT  
THRESHOLD  
25  
25  
0
0
0
–75 –50 –25  
0
25 50 75 100 125 150 175  
0
5
10 15 20 25 30 35 40 45  
0
5
10 15 20 25 30 35 40 45  
TEMPERATURE (°C)  
INPUT/OUTPUT DIFFERENTIAL (V)  
OUTPUT VOLTAGE (V)  
3050 G13  
3050 G14  
3050 G15  
Reverse Output Current  
Reverse Output Current  
Input Ripple Rejection  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
V
= V  
= 1.2V  
ADJ  
ALL PINS GROUNDED EXCEPT FOR OUT  
C
= 10nF  
= 100pF  
= 0  
OUT  
IN  
REF/BYP  
= 0  
C
C
REF/BYP  
REF/BYP  
I
ADJ  
I
= 100mA  
L
C
V
V
= 10ꢁF  
= 5V  
OUT  
OUT  
I
OUT  
= 5.8V + 50mV  
RIPPLE  
IN  
RMS  
0
0
10  
20  
V
30  
(V)  
40  
50  
–75 –50 –25  
0
25 50 75 100 125 150 175  
10  
100  
1K  
10K 100K 1M  
10M  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
OUT  
3050 G16  
3050 G17  
3050 G18  
3050f  
6
LT3050  
TYPICAL PERFORMANCE CHARACTERISTICS TJ = 25°C, unless otherwise noted.  
Input Ripple Rejection  
Ripple Rejection vs Temperature  
Minimum Input Voltage  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
I
=100mA  
C
C
= 10ꢁF  
= 2.2ꢁF  
C
C
= 10μF  
L
OUT  
OUT  
OUT  
REF/BYP  
= 10nF  
I
= 100mA  
L
I
V
V
= 100mA  
= 5V  
IN  
C
V
V
= 100pF  
L
OUT  
REF/BYP  
= 5V  
OUT  
= 5.8V + 0.5V RIPPLE AT f = 120Hz  
= 5.8V + 50mV  
RIPPLE  
P-P  
IN  
RMS  
–75 –50 –25  
0
25 50 75 100 125 150 175  
10  
100  
1K  
10K 100K 1M  
10M  
–75 –50 –25  
0
25 50 75 100 125 150 175  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
3050 G19a  
3050 G19  
3050 G20  
Output Noise Spectral Density  
CREF/BYP = 0  
Output Noise Spectral Density  
vs CREF/BYP  
Load Regulation  
4
3
10  
1
10  
1
ΔI = 1mA TO 100mA  
L
C
= 100pF  
REF/BYP  
V
OUT  
= 5V  
V
V
= 0.6V  
OUT  
IN  
= 2.2V  
2
1
V
OUT  
= 0.6V  
0
V
V
V
V
V
V
V
= 5V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
–1  
–2  
–3  
–4  
= 3.3V  
= 2.5V  
= 1.8V  
= 1.5V  
= 1.2V  
= 0.6V  
0.1  
0.01  
0.1  
0.01  
C
= 10nF  
REF/BYP  
C
= 1nF  
REF/BYP  
C
I
= 10ꢁF  
C
I
= 10ꢁF  
OUT  
= 100mA  
OUT  
L
= 100mA  
L
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
–75 –50 –25  
0
25 50 75 100 125 150 175  
10  
100  
1K  
FREQUENCY (Hz)  
10K  
100k  
TEMPERATURE (°C)  
3050 G21  
3050 G22  
3050 G23  
RMS Output Noise vs Load Current  
vs CREF/BYP  
RMS Output Noise vs Load Current  
CREF/BYP = 10nF  
Startup Time  
vs REF/BYP Capacitor  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
170  
160  
150  
140  
130  
120  
110  
100  
90  
V
C
= 0.6V  
= 10ꢁF  
f
= 10Hz TO 100kHz  
= 10ꢁF  
OUT  
OUT  
OUT  
OUT  
V
= 5V  
OUT  
C
C
= 0  
REF/BYP  
V
OUT  
= 2.5V  
C
= 10pF  
V
= 3.3V  
REF/BYP  
OUT  
V
OUT  
= 1.8V  
V
= 1.5V  
OUT  
C
= 100pF  
REF/BYP  
80  
70  
60  
C
= 1nF  
50  
REF/BYP  
40  
V
V
= 1.2V  
= 0.6V  
OUT  
OUT  
C
= 10nF  
30  
REF/BYP  
20  
C
1
= 100nF  
REF/BYP  
10  
0
0.01  
0.1  
10  
100  
0.01  
0.1  
1
10  
100  
0
10 20 30 40 50 60 70 80 90 100  
LOAD CURRENT (mA)  
REF/BYP CAPACITOR (nF)  
LOAD CURRENT (mA)  
3050 G33  
3050 G24  
3050 G25  
3050f  
7
LT3050  
TYPICAL PERFORMANCE CHARACTERISTICS TJ = 25°C, unless otherwise noted.  
5V 10Hz to 100kHz Output Noise  
CREF/BYP = 0  
5V 10Hz to 100kHz Output Noise  
CREF/BYP = 10nF  
Transient Response  
V
OUT  
100mV/DIV  
V
V
OUT  
500ꢁV/DIV  
OUT  
I
= 10mA TO 100mA  
= 6V  
OUT  
IN  
500ꢁV/DIV  
V
V
C
= 5V  
OUT  
OUT  
I
OUT  
= C = 10ꢁF  
IN  
50mA/DIV  
3050 G27  
3050 G26  
3050 G28  
C
L
= 10ꢁF  
1ms/DIV  
C
L
= 10ꢁF  
1ms/DIV  
200ꢁs/DIV  
OUT  
OUT  
I
= 100mA  
I = 100mA  
SHDN Transient Response  
CREF/BYP = 10nF  
SHDN Transient Response  
CREF/BYP =0  
Transient Response (Load Dump)  
OUT  
OUT  
V
OUT  
5V/DIV  
5V/DIV  
20mV/DIV  
I =100mA  
I
= 100mA  
L
L
45V  
12V  
REF/BYP  
REF/BYP  
500mV/DIV  
500mV/DIV  
V
= 5V  
= 50mA  
= 2.2ꢁF  
OUT  
OUT  
V
IN  
I
SHDN  
1V/DIV  
SHDN  
1V/DIV  
10V/DIV  
C
OUT  
3050 G30  
3050 G31  
3050 G29  
2ms/DIV  
2ms/DIV  
1ms/DIV  
External Current Limit  
RIMAX = 2.26k  
External Current Limit  
RIMAX = 1.5k  
External Current Limit  
RIMAX = 1.5k  
52.8  
52.3  
51.8  
51.3  
50.8  
50.3  
49.8  
49.3  
48.8  
48.3  
47.8  
79.50  
78.75  
78.00  
77.25  
76.50  
75.75  
75.00  
74.25  
73.50  
72.75  
72.00  
105  
104  
103  
102  
101  
100  
99  
V
OUT  
= 5V  
V
= 5V  
V
OUT  
= 5V  
OUT  
V
IN  
= 15V  
V
= 15V  
V
= 15V  
IN  
IN  
V
V
= 12V  
V
V
= 12V  
IN  
IN  
IN  
IN  
V
V
= 12V  
IN  
IN  
= 5.6V  
= 5.6V  
= 5.6V  
98  
97  
96  
95  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
–25 50 75 100 125 150 175  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3050 G34  
3050 G35  
3050 G36  
3050f  
8
LT3050  
TYPICAL PERFORMANCE CHARACTERISTICS TJ = 25°C, unless otherwise noted.  
Minimum Output Current  
Threshold RIMIN = 11.3k  
Minimum Output Current  
Threshold RIMIN = 110k  
11.00  
10.75  
10.50  
1.100  
1.075  
1.050  
1.025  
1.000  
0.975  
0.950  
0.925  
0.900  
V
OUT  
= 5V  
V
OUT  
= 5V  
10.25  
10.00  
V
IN  
= 15V  
V
IN  
= 15V  
V
V
= 12V  
IN  
IN  
V
V
= 12V  
IN  
IN  
= 5.6V  
= 5.6V  
9.75  
9.50  
9.25  
9.00  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3050 G38  
3050 G37  
IOUT/IMON Current Ratio  
VOUT = 5V, VIN = 12V  
IOUT/IMON Current Ratio  
VOUT = 5, VIN = 5.6V  
IOUT/IMON Current Ratio  
VOUT = 5V, VIN = 5.6V  
102  
101  
100  
99  
102  
101  
100  
99  
102  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
V
IMON  
= 5V  
V
V
= 5V  
= 4V  
IMON  
IMON  
98  
98  
125°C  
25°C  
–55°C  
97  
97  
V
V
V
V
= 3V  
= 2V  
= 1V  
= 0V  
IMON  
IMON  
96  
96  
V
V
V
V
V
V
= 5V  
= 4V  
= 3V  
= 2V  
= 1V  
= 0V  
IMON  
IMON  
IMON  
IMON  
IMON  
IMON  
95  
95  
V
IMON  
= 0V  
IMON  
IMON  
94  
94  
93  
93  
92  
92  
0
25  
50  
75  
(mA)  
100  
125  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
I
OUT  
I
(mA)  
I
(mA)  
OUT  
OUT  
3050 G39  
3050 G40  
3050 G41  
IOUT/IMON Current Ratio  
VOUT = 5V, VIN = 12V  
IOUT Calculated From IMON  
VOUT = 5V  
103  
102  
101  
100  
9
5
4
V
70 + V – V  
IN  
IMON  
OUT  
OUT  
I
= I  
OUT MONR •  
R
70 + V – V  
IN  
IMON  
V
IMON  
= 5V  
3
(SEE PAGE 12 FOR DETAILS)  
2
125°C  
25°C  
–55°C  
1
98  
0
97  
–1  
–2  
–3  
–4  
–5  
V
V
V
V
V
V
=5.6V, R  
=5.6V, R  
=5.6V, R  
=1k  
V
= 0V  
IN  
IN  
IN  
IN  
IN  
IN  
IMON  
IMON  
=2k  
IMON  
=3k  
IMON  
96  
95  
=12V, R  
=12V, R  
=12V, R  
=1k  
=2k  
=3k  
IMON  
IMON  
IMON  
94  
93  
0
25  
50  
I
75  
(mA)  
100  
125  
0
25  
50  
75  
(mA)  
100  
125  
I
OUT  
OUT  
3050 G42  
3050 G43  
3050f  
9
LT3050  
PIN FUNCTIONS  
REF/BYP (Pin 1): Bypass/Soft-Start. Connecting a single  
capacitor from this pin to GND bypasses the LT3050’s  
reference noise and soft-starts the reference. A 10nF  
bypass capacitor typically reduces output voltage noise to  
microamperes,andtheSHDNpincurrent,typicallylessthan  
2μA. If unused, connect the SHDN pin to IN. The LT3050  
does not function if the SHDN pin is not connected. The  
SHDN pin cannot be driven below GND unless tied to the  
IN pin. If the SHDN pin is driven below GND while IN is  
powered, the output may turn on. SHDN pin logic cannot  
be referenced to a negative rail.  
30μV  
in a 10Hz to 100kHz bandwidth. Soft-start time  
RMS  
is directly proportional to the REF/BYP capacitor value.  
If the LT3050 is placed in shutdown, REF/BYP is actively  
pulled low by an internal device to reset soft-start. If low  
noise or soft-start performance is not required, this pin  
must be left floating (unconnected). Do not drive this pin  
with any active circuitry. Because the REF/BYP pin is the  
reference input to the error amplifier, stray capacitance at  
this point should be minimized. Special attention should  
begiventoanystraycapacitancesthatcancoupleexternal  
signalsontotheREF/BYPpinproducingundesirableoutput  
transients or ripple. A minimum REF/BYP capacitance of  
100pF is recommended.  
IN (Pin 5,6): Input. These pins supply power to the  
device. The LT3050 requires a local IN bypass capacitor  
if it is located more than six inches from the main input  
filter capacitor. In general, battery output impedance rises  
with frequency, so adding a bypass capacitor in battery  
powered circuits is advisable. A minimum input of 1ꢁF  
generally suffices.  
OUT (Pin 7,8): Output. These pins supply power to the  
load. Stability requirements demand a minimum 2.2μF  
ceramic output capacitor to prevent oscillations. Large  
loadtransientapplicationsrequirelargeroutputcapacitors  
to limit peak voltage transients. See the Applications  
Information section for details on transient response and  
reverseoutputcharacteristics. Permissibleoutputvoltage  
range is 600mV to 44.5V.  
I
(Pin 2): Minimum Output Current Programming  
MIN  
Pin. This pin is the collector of a PNP current mirror that  
outputs 1/200th of the power PNP load current. This pin  
is also the input to the minimum output current fault  
comparator. Connecting a resistorbetween I  
sets the minimum output current fault threshold. For  
and GND  
MIN  
ADJ(Pin9):Adjust.Thispinistheerroramplifier’sinverting  
terminal. Its typical bias of 16nA current flows out of the  
pin (see curve of ADJ Pin Bias Current vs. Temperature  
in the Typical Performance Characteristics section). The  
typical ADJ pin voltage is 600mV referenced to GND.  
detailed information on how to set the I  
value, please see the Operation section.  
pin resistor  
MIN  
A small external decoupling capacitor (10nF minimum)  
is required to improve I PSRR. If minimum output  
MIN  
current programming is not required, the I  
be left floating (unconnected).  
pin must  
MIN  
GND (PIN 10, Exposed Pad Pin 13): Ground. The exposed  
pad of the DFN and MSOP packages is an electrical  
connection to GND. To ensure proper electrical and  
thermal performance, solder Pin 13 to the PCB ground  
and tie directly to Pin 10. Connect the bottom of the output  
voltage setting resistor divider directly to GND (Pin 10)  
for optimum load regulation performance.  
FAULT (Pin 3): Fault Pin. This is an open collector logic  
pin which asserts during current limit, thermal limit or  
a minimum current fault condition. The maximum low  
logic output level is defined for sinking 100μA of current.  
Off state logic may be as high as 45V without damaging  
internal circuitry regardless of the V used.  
IN  
I
(Pin 11): Precision Current Limit Programming  
MAX  
SHDN(Pin4):Shutdown.PullingtheSHDNpinlowputsthe  
LT3050intoalowpowerstateandturnstheoutputoff.Drive  
the SHDN pin with either logic or an open collector/drain  
with a pull-up resistor. The resistor supplies the pull-up  
current to the open collector/drain logic, normally several  
Pin. This pin is the collector of a current mirror PNP that  
th  
is 1/200 the size of the output power PNP. This pin is  
also the input to the current limit amplifier. Current limit  
threshold is set by connecting a resistor between the I  
pin and GND.  
MAX  
3050f  
10  
LT3050  
PIN FUNCTIONS  
For detailed information on how to set the I pin resistor  
value, please see the Operation section.  
of the power PNP current. When OUT = I  
current exactly equals 1/100 that of the output current.  
For detailed information on how to calculate the output  
, the pin  
MIN  
MON  
th  
The I  
pin requires a 10nF decoupling capacitor to  
MAX  
currentfromtheI  
pin,pleaseseetheOperationsection.  
MON  
ground. If not used, tie I  
to GND.  
MAX  
The I  
pin requires a small (22nF minimum) external  
MON  
I
(Pin 12): Output Current Monitor. This pin is the  
decoupling capacitor. If the I  
be tied to GND.  
pin is not used, it must  
MON  
MON  
th  
collector of a PNP current mirror that outputs 1/100  
BLOCK DIAGRAM  
IN  
5, 6  
R1  
D1  
QI  
QI  
QI  
MAX  
1/200  
MIN  
MON  
1/200  
1/100  
QPOWER  
1
THERMAL/  
CURRENT LIMITS  
30k  
R4  
ADJ  
+
9
OUT  
7, 8  
Q3  
CURRENT  
LIMIT  
Q2  
IDEAL DIODE  
D3  
100k  
R3  
AMPLIFIER  
ERROR  
AMPLIFIER  
I
MAX  
11  
12  
+
D2  
I
MON  
I
MIN  
COMPARATOR  
100k  
R2  
+
I
MIN  
600mV  
REFERENCE  
SHDN  
2
3
+
4
FAULT  
U1  
QFAULT  
GND  
10, 13  
REF/BYP  
1
3050 BD01  
3050f  
11  
LT3050  
OPERATION  
I
Pin Operation (Current Monitor)  
A small decoupling capacitor (22nF minimum) from I  
MON  
MON  
to GND is required to improve I  
pin power supply  
MON  
The I  
pin is the collector of a PNP which mirrors the  
MON  
rejection. If the current monitor is not needed, it must be  
tied to GND.  
LT3050 output PNP at a ratio of 1:100 (see block diagram  
on page 11). The current sourced by the I  
pin is  
MON  
th  
~1/100 of the current sourced by the OUT pin when the  
Open Circuit Detection (I  
Pin)  
MIN  
I
and OUT pin voltages are equal and the device is not  
MON  
The I  
pin is the collector of a PNP which mirrors the  
operating in dropout. If the I  
and OUT pin voltages  
MIN  
MON  
LT3050 output at a ratio of approximately 1:200 (see block  
diagram on page 11). The I fault comparator asserts  
are not the same, the ratio deviates from 1/100 due to  
the Early voltages of the I  
to the equation:  
and OUT PNPs according  
MIN  
MON  
the FAULT pin if the I  
pin voltage is below 0.6V. This  
MIN  
low output current fault threshold voltage (I  
) is set  
OPEN  
¥
´
I
70V V  
1
by attaching a resistor from I  
to GND.  
IMON  
IN  
¦
IMON µ  
MIN  
v
IOUT IMONR  
70V V  
IN OUT  
§
119.85(1.68 – 36.8 •IOPEN )VOUT  
IOPEN  
144424443  
RIMIN  
=
Early Voltage Compensation  
where the Early voltage of the PNPs is 70V and I  
is  
MONR  
current ratio.  
This equation is empirically derived and partially  
compensates for early voltage effects in the I current  
a variable which represents the I  
to I  
OUT  
MON  
I
varies with V to V  
voltage according to the  
MIN  
MONR  
IN  
OUT  
mirror. It is valid for an input voltage range from 0.6V  
above the output to 10V above the output. It is valid for  
output voltages up to 12V. The accuracy of this equation  
for setting the resistor value is approximately 2ꢀ. Unit  
values are Amps, Volts, and Ohms.  
empirically derived equation:  
= 97 + 5 • log (1+V – V ) for (V – V )  
OUT  
I
MONR  
≥0.5  
10  
IN  
OUT  
IN  
I
= 96 + 2 • (V – V ) for (V – V ) < 0.5  
IN OUT IN OUT  
MONR  
The I  
pin current can be converted into a voltage for  
Iftheopencircuitdetectionfunctionisnotneeded,theI  
MIN  
MON  
use by monitoring circuitry simply by connecting the I  
pin to a resistor.  
pinmustbeleftoating(unconnected).Asmalldecoupling  
capacitor (10nF minimum) from I to GND is required  
MON  
MIN  
to improve I  
pin power supply rejection and to prevent  
MIN  
Connecting a resistor from I  
to GND converts the  
MON  
FAULT pin glitches.  
I
pin current into a voltage that can be monitored by  
MON  
circuitry such as an ADC.  
See the Typical Performance Characteristics section for  
additional information.  
For example, a 1.2k resistor results in a I  
pin voltage  
MON  
of 1.2V for an output current of 100mA and an output  
voltage of 1.2V.  
The output current of the device can be calculated from  
the I  
pin voltage by the following equation:  
MON  
¥
´
V
70V VOUT  
IMON  
IN  
IOUT IMONR  
v
v
¦
µ
{
OUT  
RIMON  
70V V  
§
IN  
IMON  
123  
144424443  
I
Ratio  
I
Early VoltageCompensation  
IMON  
I
MON  
3050f  
12  
LT3050  
OPERATION  
External Programmable Current Limit (I  
requires a 10nF decoupling capacitor.  
Pin)  
MAX  
See the Typical Performance Characteristics section for  
additional information.  
The I  
pin is the collector of a PNP which mirrors the  
MAX  
LT3050outputataratioofapproximately1:200(seeBlock  
Diagram). The I pin is also the input to the precision  
MAX  
FAULT Pin Operation  
current limit amplifier. If the output load increases to the  
point where it causes the I pin voltage to reach 0.6V,  
thecurrentlimitamplifiertakescontrolofoutputregulation  
so that the I pin clamps at 0.6V, regardless of the  
output voltage. The current limit threshold (I  
by attaching a resistor (R  
MAX  
The FAULT pin is an open collector logic pin which asserts  
duringinternalcurrentlimit,precisioncurrentlimit,thermal  
limit, or a minimum current fault. There is no internal  
pull-up on the FAULT pin; an external pull-up resistor is  
required. The FAULT pin provides drive for up to 100μA  
of pull-down current. Off state logic may be as high as  
45V, regardless of the input voltage used. When asserted,  
the FAULT pin drive circuitry adds 50μA (nominal) of GND  
pin current.  
MAX  
) is set  
LIMIT  
to GND:  
) from I  
IMAX  
MAX  
119.220.894VOUT  
RIMAX  
=
ILIMIT  
This equation is empirically derived and partially  
compensates for early voltage effects in the I current  
mirror. It is valid for an input voltage range from 0.6V  
above the output to 10V above the output. It is valid for  
output voltages up to 12V. The accuracy of this equation  
for setting the resistor value is approximately 1ꢀ. Unit  
values are Amps, Volts, and Ohms.  
MAX  
Depending on the I  
capacitance, BYP capacitance,  
MIN  
and OUT capacitance, the FAULT pin may assert during  
startup. Consideration should be given to masking the  
FAULT signal during startup. The FAULT pin circuitry is  
inactive (not asserted) during shutdown and when the  
OUT pin is pulled above the IN pin.  
In cases where the IN to OUT voltage exceeds 10V, fold-  
back current limit will lower the internal current level limit,  
possibly causing it to preempt the external programmable  
Operation in Dropout  
The LT3050 contains circuitry which prevents the PNP  
output power device from saturating in dropout. This also  
current limit. See the Internal Current Limit vs V – V  
IN  
OUT  
graph in the Typical Performance Characteristics section.  
keepstheI  
, I , andI  
MON MIN  
currentmirrorsfunctioning  
MAX  
accurately, even in dropout. However, this anti-saturation  
circuitry becomes less active at lower output currents, so  
there is some degradation of current mirror function for  
output currents less than 10mA.  
If the external programmable current limit is not needed,  
the I  
pin must be connected to GND. The I  
pin  
MAX  
MAX  
3050f  
13  
LT3050  
APPLICATIONS INFORMATION  
The LT3050 is a micropower, low noise and low dropout  
voltage,100mAlinearregulatorwithmicropowershutdown,  
programmablecurrentlimit,anddiagnosticfunctions.The  
device supplies up to 100mA at a typical dropout voltage  
of 340mV and operates over a 2.2V to 45V input range.  
to ground. The current in R1 is then equal to 0.6V/R1, and  
the current in R2 is the current in R1 minus the ADJ pin  
bias current.  
V
OUT  
IN  
OUT  
LT3050  
Asingleexternalcapacitorcanprovidelownoisereference  
performance and output soft-start functionality. For  
example,connectinga10nFcapacitorfromtheREF/BYPpin  
V
IN  
R2  
R1  
SHDN ADJ  
GND  
to GND lowers output noise to 30μV  
over a 10Hz to  
RMS  
3050 F01  
100kHz bandwidth. This capacitor also soft-starts the  
reference and prevents output voltage overshoot at turn-on.  
R2  
R1  
VOUT = 0.6V 1+  
– I  
(
R2  
ADJ  
)
The LT3050’s quiescent current is merely 45μA but  
provides fast transient response with a minimum low ESR  
2.2μF ceramic output capacitor. In shutdown, quiescent  
current is less than 1μA and the reference soft-start  
capacitor is reset.  
V
ADJ = 0.6V  
ADJ = 16nA at 25°C  
OUTPUT RANGE = 0.6V to 44.5V  
I
The LT3050 optimizes stability and transient response  
with low ESR, ceramic output capacitors. The regulator  
does not require the addition of ESR as is common with  
other regulators. The LT3050 typically provides 0.1ꢀ line  
regulation and 0.1ꢀ load regulation. Internal protection  
circuitry includes reverse-battery protection, reverse-  
outputprotection,reverse-currentprotection,currentlimit  
with fold-back and thermal shutdown.  
Figure 1. Adjustable Operation  
The ADJ pin bias current, 16nA at 25°C, flows from the  
ADJ pin through R1 to GND. Calculate the output voltage  
using the formula in Figure 1. The value of R1 should be  
no greater than 124k to provide a minimum 5μA load  
current so that output voltage errors, caused by the ADJ  
pin bias current, are minimized. Note that in shutdown,  
the output is turned off and the divider current is zero.  
CurvesofADJPinVoltagevsTemperatureandADJPinBias  
CurrentvsTemperatureappearintheTypicalPerformance  
Characteristics Section.  
This “bullet-proof” protection set makes it ideal for use in  
battery-powered, automotive and industrial systems.  
In battery backup applications where the output is held  
up by a backup battery and the input is pulled to ground,  
the LT3050 acts like it has a diode in series with its output  
and prevents reverse current flow.  
The LT3050 is tested and specified with the ADJ pin tied  
to the OUT pin, yielding V  
= 0.6V. Specifications for  
OUT  
output voltages greater than 0.6V are proportional to the  
ratio of the desired output voltage to 0.6V: V /0.6V. For  
OUT  
Adjustable Operation  
example, load regulation for an output current change  
of 1mA to 100mA is –0.2mV (typical) at V  
= 0.6V.  
The LT3050 has an output voltage range of 0.6V to 44.5V.  
The output voltage is set by the ratio of two external  
resistors, as shown in Figure 1. The device servos the  
output to maintain the ADJ pin voltage at 0.6V referenced  
OUT  
at V  
= 12V, load regulation is:  
OUT  
12V  
0.6V  
–0.2mV = – 4mV  
(
)
3050f  
14  
LT3050  
APPLICATIONS INFORMATION  
Table1shows1resistordividervaluesforsomecommon  
output voltages with a resistor divider current of 5ꢁA.  
Output Capacitance and Transient Response  
The LT3050 regulator is stable with a wide range of output  
capacitors.TheESRoftheoutputcapacitoraffectsstability,  
mostnotablywithsmallcapacitors.Useaminimumoutput  
capacitor of 2.2μF to prevent oscillations. The LT3050 is a  
micropower device and output load transient response is  
a function of output capacitance. Larger values of output  
capacitance decrease the peak deviations and provide  
improved transient response for larger load current  
changes. Bypass capacitors, used to decouple individual  
componentspoweredbytheLT3050,increasetheeffective  
output capacitor value. For applications with large load  
current transients, a low ESR ceramic capacitor in parallel  
with a bulk tantalum capacitor often provides an optimally  
damped response.  
Table 1. Output Voltage Resistor Divider Valves  
V
(V)  
R1 (kΩ)  
118  
R2 (kΩ)  
118  
OUT  
1.2  
1.5  
1.8  
2.5  
3
121  
182  
124  
249  
115  
365  
124  
499  
3.3  
5
124  
562  
115  
845  
Bypass Capacitance and Output Voltage Noise  
The LT3050 regulator provides low output voltage noise  
over the 10Hz to 100kHz bandwidth while operating at  
full load with the addition of a bypass capacitor from the  
REF/BYPpintoGND.Agoodquality,lowleakagecapacitor  
isrecommended.Thiscapacitorbypassesthereferenceof  
the regulator, providing a low frequency noise pole for the  
internal reference. The noise pole provided by this bypass  
capacitor decreases the output voltage noise to as low  
Give extra consideration to the use of ceramic capacitors.  
Manufacturers make ceramic capacitors with a variety of  
dielectrics,eachwithdifferentbehavioracrosstemperature  
and applied voltage. The most common dielectrics are  
specified with EIA temperature characteristic codes of  
Z5U, Y5V, X5R and X7R. The Z5U and Y5V dielectrics  
provide high C-V products in a small package at low cost,  
butexhibitstrongvoltageandtemperaturecoefficients, as  
shown in Figures 2 and 3. When used with a 5V regulator,  
a 16V 10μF Y5V capacitor can exhibit an effective value  
as low as 1μF to 2μF for the DC bias voltage applied, and  
over the operating temperature range. The X5R and X7R  
dielectrics yield much more stable characteristics and are  
more suitable for use as the output capacitor.  
as 30μV  
with the addition of a 10nF bypass capacitor  
RMS  
whentheoutputvoltageis0.6V.Forhigheroutputvoltages  
(generated by using a resistor divider), the output voltage  
noise increases proportionately.  
Higher values of output voltage noise are often measured  
if care is not exercised with regard to circuit layout and  
testing. Crosstalk from nearby traces induces unwanted  
noise onto the LT3050’s output. Power supply ripple  
rejection must also be considered. The LT3050 regulator  
doesnothaveunlimitedpowersupplyrejectionandpasses  
a small portion of the input noise through to the output.  
The X7R type works over a wider temperature range and  
has better temperature stability, while the X5R is less  
expensive and is available in higher values. Care still must  
beexercisedwhenusingX5RandX7Rcapacitors;theX5R  
and X7R codes only specify operating temperature range  
and maximum capacitance change over temperature.  
Capacitance change due to DC bias with X5R and X7R  
capacitors is better than Y5V and Z5U capacitors, but can  
still be significant enough to drop capacitor values below  
appropriate levels. Capacitor DC bias characteristics tend  
toimproveascomponentcasesizeincreases,butexpected  
capacitance at operating voltage should be verified.  
During start-up, the internal reference will soft-start the  
reference if a bypass capacitor is present. Regulator start-  
up time is directly proportional to the size of the bypass  
capacitor, slowing to 5.5ms with a 10nF bypass capacitor  
and 2.2μF output capacitor.  
3050f  
15  
LT3050  
APPLICATIONS INFORMATION  
20  
V
C
C
= 5V  
OUT  
OUT  
BOTH CAPACITORS ARE 16V,  
= 10ꢁF  
1210 CASE SIZE, 10ꢁF  
0
= 10nF  
REF/BYP  
X5R  
V
–20  
OUT  
1mV/DIV  
–40  
–60  
Y5V  
3050 F04  
–80  
10ms/DIV  
Figure 4. Noise Resulting from Tapping on a Ceramic Capacitor  
–100  
0
8
12 14  
2
4
6
10  
16  
DC BIAS VOLTAGE (V)  
3050 F02  
Overload Recovery  
Figure 2. Ceramic Capacitor DC Bias Characteristics  
Like many IC power regulators, the LT3050 has safe  
operating area protection. The safe area protection  
decreases current limit as input-to-output voltage  
increases, and keeps the power transistor inside a safe  
operating region for all values of input-to-output voltage.  
The LT3050 provides some output current at all values of  
input-to-output voltage up to the device breakdown.  
40  
20  
X5R  
0
–20  
–40  
Whenpowerisrstapplied, theinputvoltagerisesandthe  
output follows the input; allowing the regulator to start-up  
intoveryheavyloads. Duringstart-up, astheinputvoltage  
is rising, the input-to-output voltage differential is small,  
allowing the regulator to supply large output currents.  
With a high input voltage, a problem can occur wherein  
the removal of an output short will not allow the output  
to recover. Other regulators, such as the LT1083/LT1084/  
LT1085familyandLT1764Aalsoexhibitthisphenomenon,  
so it is not unique to the LT3050. The problem occurs with  
a heavy output load when the input voltage is high and the  
outputvoltageislow.Commonsituationsare:immediately  
after the removal of a short-circuit or if the shutdown pin  
is pulled high after the input voltage is already turned on.  
The load line for such a load intersects the output current  
curve at two points. If this happens, there are two stable  
output operating points for the regulator. With this double  
intersection, the input power supply needs to be cycled  
down to zero and brought up again to make the output  
recover.  
Y5V  
–60  
–80  
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10ꢁF  
–100  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
3050 F03  
Figure 3. Ceramic Capacitor Temperature Characteristics  
Voltage and temperature coefficients are not the only  
sources of problems. Some ceramic capacitors have a  
piezoelectric response. A piezoelectric device generates  
voltageacrossitsterminalsduetotechnicalstress,similar  
to the way a piezoelectric accelerometer or microphone  
works. For a ceramic capacitor, the stress is induced by  
vibrationsinthesystemorthermaltransients.Theresulting  
voltages produced cause appreciable amounts of noise.  
A ceramic capacitor produced the trace in Figure 4 in  
response to light tapping from a pencil. Similar vibration  
induced behavior can masquerade as increased output  
voltage noise.  
3050f  
16  
LT3050  
APPLICATIONS INFORMATION  
Thermal Considerations  
Table 1. MSOP Measured Thermal Resistance  
COPPER AREA  
The LT3050’s maximum rated junction temperature of  
125°Climitsitspowerhandlingcapability.Twocomponents  
comprise the power dissipated by the device:  
THERMAL RESISTANCE  
TOPSIDE  
BACKSIDE BOARD AREA (JUNCTION-TO-AMBIENT)  
2500 sq mm 2500 sq mm 2500 sq mm  
1000 sq mm 2500 sq mm 2500 sq mm  
225 sq mm 2500 sq mm 2500 sq mm  
100 sq mm 2500 sq mm 2500 sq mm  
40°C/W  
41°C/W  
43°C/W  
45°C/W  
1. Output current multiplied by the input/output  
voltage differential: I  
• (V – V ), and  
OUT  
IN OUT  
2. GND pin current multiplied by the input voltage:  
• V  
Table 2. DFN Measured Thermal Resistance  
I
GND  
IN  
COPPER AREA  
TOPSIDE  
THERMAL RESISTANCE  
(JUNCTION-TO-AMBIENT)  
GND pin current is determined using the GND Pin Current  
curvesintheTypicalPerformanceCharacteristicssection.  
Power dissipation equals the sum of the two components  
listed above.  
BOARD AREA  
2500 sq mm  
2500 sq mm  
2500 sq mm  
2500 sq mm  
2500 sq mm  
1000 sq mm  
225 sq mm  
100 sq mm  
44°C/W  
45°C/W  
47°C/W  
49°C/W  
The LT3050 regulator has internal thermal limiting that  
protects the device during overload conditions. For  
continuousnormalconditions,donotexceedthemaximum  
junction temperature of 125°C. Carefully consider all  
sources of thermal resistance from junction-to-ambient  
including other heat sources mounted in proximity to the  
LT3050.  
Calculating Junction Temperature  
Example: Given an output voltage of 5V, an input voltage  
range of 12V 5ꢀ, a maximum output current range of  
75mAandamaximumambienttemperatureof85°C, what  
will the maximum junction temperature be?  
The undersides of the LT3050 DFN and MSOP packages  
have exposed metal from the lead frame to the die  
attachment. Thesepackagesallowheattodirectlytransfer  
from the die junction to the printed circuit board metal  
to control maximum operating junction temperature.  
The dual-in-line pin arrangement allows metal to extend  
beyondtheendsofthepackageonthetopside(component  
side) of a PCB. Connect this metal to GND on the PCB.  
The multiple IN and OUT pins of the LT3050 also assist  
in spreading heat to the PCB.  
The power dissipated by the device equals:  
I
* (V  
– V ) + I  
* V  
OUT(MAX)  
IN(MAX)  
OUT  
GND IN(MAX)  
where,  
I
= 75mA  
= 12.6V  
OUT(MAX)  
V
IN(MAX)  
I
at (I = 75mA, V = 12V) = 1.5mA  
OUT IN  
GND  
So,  
P = 75mA • (12.6V - 5V) + 1.5mA • 12.6V = 0.589W  
For surface mount devices, heat sinking is accomplished  
by using the heat spreading capabilities of the PC board  
and its copper traces. Copper board stiffeners and plated  
through-holes also can spread the heat generated by  
powerdevices.Thefollowingtableslistthermalresistance  
as a function of copper area in a fixed board size. All  
measurements were taken in still air on a four-layer FR-4  
board with one ounce solid internal planes and two ounce  
externaltraceplaneswithatotalboardthicknessof1.6mm.  
For further information on thermal resistance and using  
thermal information, refer to JEDEC standard JESD51,  
notably JESD51-12.  
Using a DFN package, the thermal resistance ranges from  
44°C/W to 49°C/W depending on the copper area. So the  
junction temperature rise above ambient approximately  
equals:  
0.589W • 49°C/W = 28.86°C  
The maximum junction temperature equals the maximum  
ambient temperature plus the maximum junction  
temperature rise above ambient or:  
T
= 85°C + 28.86°C = 113.86°C  
JMAX  
3050f  
17  
LT3050  
APPLICATIONS INFORMATION  
Protection Features  
The LT3050 incurs no damage if its output is pulled below  
ground. If the input is left open-circuit or grounded, the  
output can be pulled below ground by 50V. No current  
flows through the pass transistor from the output.  
However, current flows in (but is limited by) the resistor  
divider that sets the output voltage. Current flows from  
the bottom resistor in the divider and from the ADJ pin’s  
internal clamp through the top resistor in the divider to  
the external circuitry pulling OUT below ground. If the  
input is powered by a voltage source, the output sources  
current equal to its current limit capability and the LT3050  
protects itself by thermal limiting. In this case, grounding  
the SHDN pin turns off the device and stops the output  
from sourcing current.  
The LT3050 incorporates several protection features  
that make it ideal for use in battery-powered circuits. In  
addition to the normal protection features associated with  
monolithicregulators,suchascurrentlimitingandthermal  
limiting, the device also protects against reverse-input  
voltages, reverse-output voltages and reverse output-to-  
input voltages.  
Current limit protection and thermal overload protection  
protect the device against current overload conditions at  
the output of the device. For normal operation, do not  
exceed a junction temperature of 125°C.  
TheLT3050INpinwithstandsreversevoltagesof50V. The  
devicelimitscurrentowtolessthan300μA(typicallyless  
than 10μA) and no negative voltage appears at OUT. The  
device protects both itself and the load against batteries  
that are plugged in backwards.  
1.0  
ALL PINS GROUNDED EXCEPT FOR OUT  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
The SHDN pin cannot be driven below GND unless tied  
to the IN pin. If the SHDN pin is driven below GND while  
IN is powered, the output may turn on. SHDN pin logic  
cannot be referenced to a negative rail.  
0
10  
20  
V
30  
(V)  
40  
50  
OUT  
3050 F05  
Figure 5. Reverse Output Current  
3050f  
18  
LT3050  
PACKAGE DESCRIPTION  
DDB Package  
12-Lead Plastic DFN (3mm × 2mm)  
(Reference LTC DWG # 05-08-1723 Rev Ø)  
0.64 0.05  
(2 SIDES)  
R = 0.115  
TYP  
7
0.40 0.10  
12  
3.00 0.10  
(2 SIDES)  
R = 0.05  
TYP  
0.70 0.05  
2.55 0.05  
1.15 0.05  
2.00 0.10  
PIN 1 BAR  
(2 SIDES)  
TOP MARK  
PIN 1  
R = 0.20 OR  
0.25 s 45°  
(SEE NOTE 6)  
PACKAGE  
OUTLINE  
0.64 0.10  
(2 SIDES)  
CHAMFER  
6
1
(DDB12) DFN 0106 REV Ø  
0.25 0.05  
0.23 0.05  
0.75 0.05  
0.200 REF  
0.45 BSC  
0.45 BSC  
2.39 0.05  
(2 SIDES)  
2.39 0.10  
(2 SIDES)  
0 – 0.05  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING IS NOT A JEDEC PACKAGE OUTLINE  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAG  
MSE Package  
12-Lead Plastic MSOP Exposed Die Pad  
(Reference LTC DWG # 05-08-1666 Rev B)  
BOTTOM VIEW OF  
EXPOSED PAD OPTION  
2.845 p 0.102  
(.112 p .004)  
2.845 p 0.102  
(.112 p .004)  
0.889 p 0.127  
(.035 p .005)  
1
6
0.35  
REF  
5.23  
(.206)  
MIN  
1.651 p 0.102  
(.065 p .004)  
3.20 – 3.45  
(.126 – .136)  
0.12 REF  
DETAIL “B”  
CORNER TAIL IS PART OF  
THE LEADFRAME FEATURE.  
FOR REFERENCE ONLY  
DETAIL “B”  
12  
4.039 p 0.102  
(.159 p .004)  
(NOTE 3)  
7
NO MEASUREMENT PURPOSE  
0.65  
(.0256)  
BSC  
0.42 p 0.038  
(.0165 p .0015)  
TYP  
0.406 p 0.076  
RECOMMENDED SOLDER PAD LAYOUT  
(.016 p .003)  
12 11 10 9 8 7  
REF  
DETAIL “A”  
0.254  
(.010)  
3.00 p 0.102  
(.118 p .004)  
(NOTE 4)  
0o – 6o TYP  
4.90 p 0.152  
(.193 p .006)  
GAUGE PLANE  
0.53 p 0.152  
(.021 p .006)  
1
2 3 4 5 6  
DETAIL “A”  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
0.18  
(.007)  
SEATING  
PLANE  
0.22 – 0.38  
(.009 – .015)  
TYP  
0.1016 p 0.0508  
(.004 p .002)  
MSOP (MSE12) 0608 REV B  
0.650  
(.0256)  
BSC  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
3050f  
19  
LT3050  
TYPICAL APPLICATION  
5V Protected Antenna Supply with 100mA Current Limit, 10mA IMIN  
IN  
OUT  
5V  
2.2ꢁF  
1ꢀ  
12V  
IN  
1ꢁF  
SHDN  
FAULT  
120k  
442k  
V
ADJ  
1ꢀ  
60.4k  
LT3050  
I
MAX  
1.15k  
I
10nF  
TO ꢁP ADC  
0.1ꢁF  
MON  
(THRESHOLD = 100mA)  
3k  
(ADC FULL SCALE = 3V)  
I
MIN  
REF/BYP  
GND  
11.3k  
0.1ꢁF  
10nF  
(THRESHOLD = 10mA)  
3050 TA02  
RELATED PARTS  
PART  
DESCRIPTION  
COMMENTS  
300mV Dropout Voltage, Low Noise: 20μV  
NUMBER  
LT1761  
LT1762  
LT1763  
LT1962  
LT1963/A  
100mA, Low Noise LDO  
150mA, Low Noise LDO  
500mA, Low Noise LDO  
300mA, Low Noise LDO  
, V = 1.8V to 20V, ThinSOT Package  
RMS IN  
300mV Dropout Voltage, Low Noise: 20μV  
300mV Dropout Voltage, Low Noise: 20μV  
, V = 1.8V to 20V, MS8 Package  
RMS IN  
, V = 1.8V to 20V, SO-8 Package  
RMS IN  
270mV Dropout Voltage, Low Noise: 20μV  
340mV Dropout Voltage, Low Noise: 40μV  
, V = 1.8V to 20V, MS8 Package  
RMS IN  
1.5A Low Noise, Fast Transient  
Response LDO  
, V = 2.5V to 20V, A” Version Stable with Ceramic  
RMS IN  
Capacitors, TO-220, DD-PAK, SOT-223 and SO-8 Packages  
LT1965  
LT3008  
1.1A, Low Noise, Low Dropout Linear  
Regulator  
290mV Dropout Voltage, Low Noise: 40μV , V : 1.8V to 20V, V : 1.2V to 19.5V, Stable with  
RMS IN  
OUT  
Ceramic Capacitors, TO-220, DD-PAK, MSOP and 3 × 3 DFN Packages  
20mA, 45V, 3uA I Micropower LDO  
300mV Dropout Voltage, Low I : 3μA, V = 2.0V to 45V, V = 0.6V to 39.5V; ThinSOT and  
Q
Q
IN  
OUT  
2mm × 2mm DFN-6 Packages  
LT3009  
LT3010  
20mA, 3uA I Micropower LDO  
280mV Dropout Voltage, Low I : 3μA, V = 1.6V to 20V, ThinSOT and SC-70 Packages  
Q
Q
IN  
50mA, High Voltage, Micropower LDO  
V : 3V to 80V, V : 1.275V to 60V, VDO = 0.3V, I = 30μA, ISD < 1μA, Low Noise: <100μV  
,
IN  
OUT  
Q
RMS  
Stable with 1μF Output Capacitor, Exposed MS8 Package  
LT3011  
LT3012  
LT3013  
50mA, High Voltage, Micropower LDO  
with PWRGD  
V : 3V to 80V, V : 1.275V to 60V, VDO = 0.3V, I = 46μA, ISD < 1μA, Low Noise: <100μV  
,
IN  
OUT  
Q
RMS  
Power Good, Stable with 1μF Output Capacitor, 3 × 3 DFN-10 and Exposed MS12E Packages  
250mA, 4V to 80V, Low Dropout  
Micropower Linear Regulator  
V : 4V to 80V, V : 1.24V to 60V, VDO = 0.4V, I = 40μA, ISD < 1μA, TSSOP-16E and  
IN  
OUT  
Q
4mm × 3mm DFN-12 Packages  
250mA, 4V to 80V, Low Dropout  
Micropower Linear Regulator with PWRGD TSSOP-16E and 4mm × 3mm DFN-12 Packages  
V : 4V to 80V, V : 1.24V to 60V, VDO = 0.4V, I = 65μA, ISD < 1μA, Power Good feature;  
IN  
OUT  
Q
LT3014/HV 20mA, 3V to 80V, Low Dropout  
Micropower Linear Regulator  
V : 3V to 80V (100V for 2ms, “HV” version), V : 1.22V to 60V, VDO = 0.35V, I = 7μA, ISD <  
IN OUT Q  
1μA, ThinSOT and 3mm × 3mm DFN-8 Packages  
LT3060  
100mA, Low Noise LDO with Soft Start  
300mV Dropout Voltage, Low Noise: 20μV , V = 1.8V to 45V, DFN Package  
RMS IN  
LT3080/-1 1.1A, Parallelable, Low Noise, Low  
Dropout Linear Regulator  
300mV Dropout Voltage (2-supply operation), Low Noise: 40μV  
, V : 1.2V to 36V, V : 0V  
RMS IN OUT  
to 35.7V, Current-Based Reference with 1-Resistor V  
set; Directly Parallelable (no op amp  
OUT  
required), Stable with Ceramic Caps, TO-220, SOT-223, MSOP and 3mm × 3mm DFN Packages;  
“–1” Version has Integrated Internal Ballast Resistor  
LT3085  
500mA, Parallelable. Low Noise, Low  
Dropout Linear Regulator  
275mV Dropout Voltage (2-supply operation), Low Noise: 40ꢁV  
, V : 1.2V to 36V, V : 0V  
RMS IN OUT  
to 35.7V, Current-Based Reference with 1-Resistor V  
set; Directly Parallelable (no op amp  
OUT  
required), Stable with Ceramic Caps, MSOP-8 and 2mm × 3mm DFN Packages  
3050f  
LT 1209 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
© LINEAR TECHNOLOGY CORPORATION 2009  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT3050IDDB#TRM

暂无描述
Linear

LT3050IDDB#TRMPBF

LT3050 - 100mA, Linear Regulator with Precision Current Limit and Diagnostic Outputs; Package: DFN; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3050IDDB#TRPBF

LT3050 - 100mA, Linear Regulator with Precision Current Limit and Diagnostic Outputs; Package: DFN; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3050IDDB-3.3

100mA, Linear Regulator with Precision Current Limit and Diagnostic Outputs
Linear

LT3050IDDB-3.3#PBF

LT3050 - 100mA, Linear Regulator with Precision Current Limit and Diagnostic Outputs; Package: DFN; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3050IDDB-3.3#TR

IC VREG 3.3 V FIXED POSITIVE LDO REGULATOR, 0.55 V DROPOUT, PDSO12, 3 X 2 MM, PLASTIC, DFN-12, Fixed Positive Single Output LDO Regulator
Linear

LT3050IDDB-3.3#TRM

Fixed Positive LDO Regulator, 3.3V, 0.55V Dropout, PDSO12
Linear

LT3050IDDB-3.3#TRMPBF

LT3050 - 100mA, Linear Regulator with Precision Current Limit and Diagnostic Outputs; Package: DFN; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3050IDDB-3.3#TRPBF

LT3050 - 100mA, Linear Regulator with Precision Current Limit and Diagnostic Outputs; Package: DFN; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3050IDDB-3.3-PBF

100mA, Linear Regulator with Precision Current Limit and Diagnostic Outputs
Linear

LT3050IDDB-3.3-TR

100mA, Linear Regulator with Precision Current Limit and Diagnostic Outputs
Linear

LT3050IDDB-3.3-TRPBF

100mA, Linear Regulator with Precision Current Limit and Diagnostic Outputs
Linear