LT3070MPUFD#TR [Linear]

LT3070 - 5A, Low Noise, Programmable Output, 85mV Dropout Linear Regulator; Package: QFN; Pins: 28; Temperature Range: -55°C to 125°C;
LT3070MPUFD#TR
型号: LT3070MPUFD#TR
厂家: Linear    Linear
描述:

LT3070 - 5A, Low Noise, Programmable Output, 85mV Dropout Linear Regulator; Package: QFN; Pins: 28; Temperature Range: -55°C to 125°C

稳压器
文件: 总28页 (文件大小:504K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3070  
5A, Low Noise,  
Programmable Output,  
85mV Dropout  
Linear Regulator  
FeAtures  
Description  
TheLT®3070isalowvoltage,UltraFast™transientre-  
sponseꢀlinearꢀregulator.ꢀTheꢀdeviceꢀsuppliesꢀupꢀtoꢀ5Aꢀofꢀ  
outputcurrentwithatypicaldropoutvoltageof85mV.ꢀ  
A0.01µFreferencebypasscapacitordecreasesoutputꢀ  
n
Output Current: 5A  
n
Dropout Voltage: 85mV Typical  
n
Digitally Programmable V : 0.8V to 1.8V  
OUT  
n
Digital Output Margining: 1ꢀ, ꢁꢀ or 5ꢀ  
n
Low Output Noise: 25µV  
(10Hz to 100kHz)  
voltageꢀnoiseꢀtoꢀ25µV  
.ꢀTheꢀLT3070’sꢀhighꢀbandwidthꢀ  
RMS  
RMS  
n
n
n
n
Parallel Multiple Devices for 10A or More  
permitsꢀtheꢀuseꢀofꢀlowꢀESRꢀceramicꢀcapacitors,ꢀsavingꢀ  
bulkꢀcapacitanceꢀandꢀcost.ꢀTheꢀLT3070’sꢀfeaturesꢀmakeꢀ  
itꢀidealꢀforꢀhighꢀperformanceꢀFPGAs,ꢀmicroprocessorsꢀorꢀ  
sensitiveꢀcommunicationꢀsupplyꢀapplications.ꢀ  
Precision Current Limit: 20ꢀ  
ꢀ 1ꢁꢀAccuracyꢀOverꢀLine,ꢀLoadꢀandꢀTemperature  
ꢀ StableꢀwithꢀLowꢀESRꢀCeramicꢀOutputꢀCapacitorsꢀ  
(15µFꢀMinimum)  
Outputꢀvoltageꢀisꢀdigitallyꢀselectableꢀinꢀ50mVꢀincrementsꢀ  
overꢀaꢀ0.8Vꢀtoꢀ1.8Vꢀrange.ꢀAꢀmarginingꢀfunctionꢀallowsꢀ  
theꢀuserꢀtoꢀadjustꢀsystemꢀoutputꢀvoltageꢀinꢀincrementsꢀofꢀ  
1ꢁ,ꢀ 3ꢁꢀorꢀ 5ꢁ.ꢀTheꢀICꢀincorporatesꢀaꢀuniqueꢀtrackingꢀ  
functiontocontrolabuckregulatorpoweringtheLT3070’sꢀ  
input.ꢀThisꢀtrackingꢀfunctionꢀdrivesꢀtheꢀbuckꢀregulatorꢀtoꢀ  
n
n
n
ꢀ HighꢀFrequencyꢀPSRR:ꢀ30dBꢀatꢀ1MHzꢀ  
ꢀ EnableꢀFunctionꢀTurnsꢀOutputꢀOn/Off  
ꢀ VIOCꢀPinꢀControlsꢀBuckꢀConverterꢀtoꢀMaintainꢀLowꢀ  
PowerꢀDissipationꢀandꢀOptimizeꢀEfficiency  
ꢀ PWRGD/UVLO/ThermalꢀShutdownꢀFlag  
ꢀ CurrentꢀLimitꢀwithꢀFoldbackꢀProtection  
ꢀ ThermalꢀShutdown  
n
n
n
n
maintaintheLT3070’sinputvoltagetoV ꢀ+300mV,ꢀ  
minimizingꢀpowerꢀdissipation.ꢀ  
OUT  
ꢀ 28-Leadꢀ(4mmꢀ×ꢀ5mmꢀ×ꢀ0.75mm)ꢀQFNꢀPackage  
InternalprotectionincludesUVLO,reverse-currentprotec-  
tion,ꢀprecisionꢀcurrentꢀlimitingꢀwithꢀpowerꢀfoldbackꢀandꢀ  
thermalꢀshutdown.ꢀTheꢀLT3070ꢀregulatorꢀisꢀavailableꢀinꢀaꢀ  
thermallyꢀenhancedꢀ28-lead,ꢀ4mmꢀ×ꢀ5mmꢀQFNꢀpackage.  
L,ꢀLT,LTC,ꢀLTM,ꢀLinearꢀTechnologyꢀandꢀtheꢀLinearꢀlogoꢀareꢀregisteredꢀtrademarksꢀandꢀ  
UltraFastꢀandꢀVLDOꢀareꢀtrademarksꢀofꢀLinearꢀTechnologyꢀCorporation.ꢀAllꢀotherꢀtrademarksꢀareꢀ  
theꢀpropertyꢀofꢀtheirꢀrespectiveꢀowners.ꢀPatentsꢀpending.  
ApplicAtions  
n
ꢀ FPGAꢀandꢀDSPꢀSupplies  
n
ꢀ ASICꢀandꢀMicroprocessorꢀSupplies  
n
ꢀ ServersꢀandꢀStorageꢀDevices  
n
ꢀ PostꢀBuckꢀRegulationꢀandꢀSupplyꢀIsolation  
typicAl ApplicAtion  
Dropout Voltage  
0.9V, 5A Regulator  
150  
V
IN  
= V  
OUT(NOMINAL)  
50k  
V
BIAS  
2.2V TO 3.6V  
PWRGD  
2.2µF  
120  
90  
60  
30  
0
BIAS  
V
IN  
1.2V  
IN  
EN  
V
PWRGD  
SENSE  
330µF  
V
0.9V  
5A  
OUT  
V
= 1.8V  
= 3.3V  
OUT  
LT3070  
OUT  
O0  
V
BIAS  
2.2µF*  
4.7µF*  
10µF*  
V
O1  
V
O2  
V
BIAS  
= 0.8V  
= 2.5V  
OUT  
V
*X5R OR X7R CAPACITORS  
MARGSEL  
MARGTOL  
VIOC  
REF/BYP  
GND  
1nF  
0.01µF  
0
1
2
3
4
5
3070 TA01a  
OUTPUT CURRENT (A)  
3070 TA01b  
3070fa  
REF/BYPꢀOutput........................................... –0.3Vꢀtoꢀ4V  
OutputꢀShort-CircuitꢀDuration……...................Indefinite  
OperatingꢀJunctionꢀTemperatureꢀ(Noteꢀ2)  
ꢀ LT3070E/LT3070Iꢀ............................. ꢀ–40°Cꢀtoꢀ125°C  
ꢀ LT3070MPꢀ......................................... –55°Cꢀtoꢀ125°C  
StorageꢀTemperatureꢀRangeꢀ.................. –65°Cꢀtoꢀ150°C  
                 
BIAS............................................................. –0.3Vꢀtoꢀ4V  
          
LT3070  
Absolute mAximum rAtings  
pin conFigurAtion  
(Note 1)  
TOP VIEW  
IN,ꢀOUT..................................................... –0.3Vꢀtoꢀ3.3V  
28 27 26 25 24 23  
V ,ꢀV ,ꢀV ꢀInputsꢀ.................................... –0.3Vꢀtoꢀ4V  
O2 O1 O0  
VIOC  
PWRGD  
REF/BYP  
GND  
IN  
1
2
3
4
5
6
7
8
22  
21  
20  
19  
18  
17  
16  
15  
MARGTOL  
MARGSEL  
GND  
MARGSEL,ꢀMARGTOLꢀInputꢀ........................ –0.3Vꢀtoꢀ4V  
ENꢀInput....................................................... –0.3Vꢀtoꢀ4V  
SENSEꢀInput................................................. –0.3Vꢀtoꢀ4V  
VIOC,ꢀPWRGDꢀOutputs................................ –0.3Vꢀtoꢀ4V  
SENSE  
OUT  
29  
GND  
IN  
OUT  
IN  
OUT  
IN  
OUT  
9
10 11 12 13 14  
UFD PACKAGE  
28-LEAD (4mm s 5mm) PLASTIC QFN  
T
JMAX  
ꢀ=ꢀ125°C,ꢀθ ꢀ=ꢀ30°C/WꢀTOꢀ35°C/Wꢀ  
JA  
EXPOSEDꢀPADꢀ(PINꢀ29)ꢀISꢀGND,ꢀMUSTꢀBEꢀSOLDEREDꢀTOꢀPCB  
orDer inFormAtion  
LEAD FREE FINISH  
LT3070EUFD#PBF  
LT3070IUFD#PBF  
LT3070MPUFD#PBF  
LEAD BASED FINISH  
LT3070EUFD  
TAPE AND REEL  
PART MARKING*  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LT3070EUFD#TRPBF  
LT3070IUFD#TRPBF  
LT3070MPUFD#TRPBF  
TAPE AND REEL  
3070  
–40°Cꢀtoꢀ125°C  
–40°Cꢀtoꢀ125°C  
–55°Cꢀtoꢀ125°C  
TEMPERATURE RANGE  
–40°Cꢀtoꢀ125°C  
–40°Cꢀtoꢀ125°C  
–55°Cꢀtoꢀ125°C  
28-Leadꢀ(4mmꢀ×ꢀ5mm)ꢀPlasticꢀQFN  
28-Leadꢀ(4mmꢀ×ꢀ5mm)ꢀPlasticꢀQFN  
28-Leadꢀ(4mmꢀ×ꢀ5mm)ꢀPlasticꢀQFN  
PACKAGE DESCRIPTION  
3070  
3070  
PART MARKING*  
3070  
LT3070EUFD#TR  
28-Leadꢀ(4mmꢀ×ꢀ5mm)ꢀPlasticꢀQFN  
28-Leadꢀ(4mmꢀ×ꢀ5mm)ꢀPlasticꢀQFN  
28-Leadꢀ(4mmꢀ×ꢀ5mm)ꢀPlasticꢀQFN  
LT3070IUFD  
LT3070IUFD#TR  
3070  
LT3070MPUFD  
LT3070MPUFD#TR  
3070  
ConsultꢀLTCꢀMarketingꢀforꢀpartsꢀspecifiedꢀwithꢀwiderꢀoperatingꢀtemperatureꢀranges.ꢀ*Theꢀtemperatureꢀgradeꢀisꢀidentifiedꢀbyꢀaꢀlabelꢀonꢀtheꢀshippingꢀcontainer.  
Forꢀmoreꢀinformationꢀonꢀleadꢀfreeꢀpartꢀmarking,ꢀgoꢀto:ꢀhttp://www.linear.com/leadfree/ꢀꢀ  
Forꢀmoreꢀinformationꢀonꢀtapeꢀandꢀreelꢀspecifications,ꢀgoꢀto:ꢀhttp://www.linear.com/tapeandreel/  
3070fa  
LT3070  
electricAl chArActeristics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. COUT = 15µF (Note 9), VIN = VOUT + 0.ꢁV (Note 5), VBIAS = 2.5V unless  
otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
0.95  
2.2  
TYP  
MAX  
3.0  
UNITS  
l
l
INꢀPinꢀVoltageꢀRange  
BIASꢀPinꢀVoltageꢀRangeꢀ(Noteꢀ3)  
RegulatedꢀOutputꢀVoltage  
V ꢀ≥ꢀV ꢀ+ꢀ150mV,ꢀI =ꢀ5A  
V
V
IN  
OUT  
OUT  
3.6  
l
l
l
l
l
l
l
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
ꢀ=ꢀ0.8V,ꢀ10mAꢀ≤ꢀI ꢀ≤ꢀ5A,ꢀ1.05Vꢀ≤ꢀV ꢀ≤ꢀ1.25Vꢀ  
0.792ꢀ  
0.891ꢀ  
0.990ꢀ  
1.089ꢀ  
1.188ꢀ  
1.485ꢀ  
1.782  
0.800ꢀ  
0.900ꢀ  
1.000ꢀ  
1.100ꢀ  
1.200ꢀ  
1.500ꢀ  
1.800  
0.808ꢀ  
0.909ꢀ  
1.010ꢀ  
1.111ꢀ  
1.212ꢀ  
1.515ꢀ  
1.818  
Vꢀ  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
IN  
IN  
ꢀ=ꢀ0.9V,ꢀ10mAꢀ≤ꢀI ꢀ≤ꢀ5A,ꢀ1.15Vꢀ≤ꢀV ꢀ≤ꢀ1.35Vꢀ  
Vꢀ  
Vꢀ  
Vꢀ  
Vꢀ  
Vꢀ  
V
ꢀ=ꢀ1V,ꢀ10mAꢀ≤ꢀI ꢀ≤ꢀ5A,ꢀ1.25Vꢀ≤ꢀV ꢀ≤ꢀ1.45Vꢀ  
IN  
ꢀ=ꢀ1.1V,ꢀ10mAꢀ≤ꢀI ꢀ≤ꢀ5A,ꢀ1.35Vꢀ≤ꢀV ꢀ≤ꢀ1.55Vꢀ  
IN  
IN  
IN  
IN  
ꢀ=ꢀ1.2V,ꢀ10mAꢀ≤ꢀI ꢀ≤ꢀ5A,ꢀ1.45Vꢀ≤ꢀV ꢀ≤ꢀ1.65V,ꢀV  
ꢀ=ꢀ3.3Vꢀ  
ꢀ=ꢀ3.3Vꢀ  
ꢀ=ꢀ3.3V  
BIAS  
BIAS  
BIAS  
ꢀ=ꢀ1.5V,ꢀ10mAꢀ≤ꢀI ꢀ≤ꢀ5A,ꢀ1.75Vꢀ≤ꢀV ꢀ≤ꢀ1.95V,ꢀV  
ꢀ=ꢀ1.8V,ꢀ10mAꢀ≤ꢀI ꢀ≤ꢀ5A,ꢀ2.05Vꢀ≤ꢀV ꢀ≤ꢀ2.25V,ꢀV  
l
l
RegulatedꢀOutputꢀVoltageꢀMarginingꢀ MARGTOLꢀ=ꢀ0V,ꢀMARGSELꢀ=ꢀV  
0.8ꢀ  
–1.2  
1ꢀ  
–1  
1.2ꢀ  
–0.8  
ꢁꢀ  
BIAS  
(Noteꢀ3)  
MARGTOLꢀ=ꢀ0V,ꢀMARGSELꢀ=ꢀ0V,ꢀI ꢀ=ꢀ10mA  
OUT  
l
l
MARGTOLꢀ=ꢀFLOAT,ꢀMARGSELꢀ=ꢀV  
2.7ꢀ  
–3.3  
3ꢀ  
–3  
3.3ꢀ  
–2.7  
ꢁꢀ  
BIAS  
MARGTOLꢀ=ꢀFLOAT,ꢀMARGSELꢀ=ꢀ0V,ꢀI ꢀ=ꢀ10mA  
OUT  
l
l
MARGTOLꢀ=ꢀV  
MARGTOLꢀ=ꢀV  
,ꢀMARGSEL=ꢀV  
4.6ꢀ  
–5.4  
5ꢀ  
–5  
5.4ꢀ  
–4.6  
ꢁꢀ  
BIAS  
BIAS  
BIAS  
,ꢀMARGSELꢀ=ꢀ0V,ꢀI ꢀ=ꢀ10mA  
OUT  
l
l
LineꢀRegulationꢀtoꢀV  
LineꢀRegulationꢀtoꢀV  
LoadꢀRegulation,ꢀꢀ  
1.0ꢀ  
1.0  
mVꢀ  
mV  
V
V
ꢀ=ꢀ0.8V,V ꢀ=ꢀ1.05Vꢀtoꢀ2.7V,ꢀV  
ꢀ=ꢀ3.3V,ꢀI ꢀ=ꢀ10mAꢀ  
OUT  
IN  
OUT  
OUT  
IN  
BIAS  
BIAS  
ꢀ=ꢀ1.8V,V ꢀ=ꢀ2.05Vꢀtoꢀ2.7V,ꢀV  
ꢀ=ꢀ3.3V,ꢀI ꢀ=ꢀ10mA  
OUT  
IN  
l
l
2.0ꢀ  
1.0  
mVꢀ  
mV  
V
OUT  
V
OUT  
ꢀ=ꢀ0.8V,V  
ꢀ=ꢀ1.8V,V  
ꢀ=ꢀ2.2Vꢀtoꢀ3.6V,ꢀV ꢀ=ꢀ1.1V,ꢀI ꢀ=ꢀ10mAꢀꢀ  
IN OUT  
BIAS  
BIAS  
BIAS  
ꢀ=ꢀ3.25Vꢀtoꢀ3.6V,ꢀV ꢀ=ꢀ2.1V,ꢀI ꢀ=ꢀ10mA  
IN  
OUT  
V
V
V
V
V
ꢀ=ꢀ2.5V,ꢀV ꢀ=ꢀ1.05V,ꢀV ꢀ=ꢀ0.8V  
–1.5  
–2  
–3.0ꢀ  
–5.5  
mVꢀ  
mV  
BIAS  
BIAS  
BIAS  
BIAS  
BIAS  
IN  
OUT  
l
l
l
l
I ꢀ=ꢀ10mAꢀtoꢀ5A  
OUT  
ꢀ=ꢀ2.5V,ꢀV ꢀ=ꢀ1.25V,ꢀV ꢀ=ꢀ1.0V  
–4.0ꢀ  
–7.5  
mVꢀ  
mV  
IN  
OUT  
ꢀ=ꢀ3.3V,ꢀV ꢀ=ꢀ1.45V,ꢀV ꢀ=ꢀ1.2V  
–2  
–4.0ꢀ  
–7.5  
mVꢀ  
mV  
IN  
OUT  
ꢀ=ꢀ3.3V,ꢀV ꢀ=ꢀ1.75V,ꢀV ꢀ=ꢀ1.5V  
–2.5  
–3  
–5.0ꢀ  
–9.0  
mVꢀ  
mV  
IN  
OUT  
ꢀ=ꢀ3.3V,ꢀV ꢀ=ꢀ2.05V,ꢀV ꢀ=ꢀ1.8V  
–7.0ꢀ  
–13  
mVꢀ  
mV  
IN  
OUT  
l
l
DropoutꢀVoltage,ꢀꢀ  
I
I
ꢀ=ꢀ1A,ꢀV ꢀ=ꢀ1V  
20  
50  
35  
mV  
OUT  
OUT  
V ꢀ=ꢀV  
IN  
ꢀ(Noteꢀ6)  
OUT(NOMINAL)  
ꢀ=ꢀ2.5A,ꢀV ꢀ=ꢀ1V  
65ꢀ  
85  
mVꢀ  
mV  
OUT  
OUT  
l
I
ꢀ=ꢀ5A,ꢀV ꢀ=ꢀ1V  
85  
120ꢀ  
150  
mVꢀ  
mV  
OUT  
OUT  
l
l
l
SENSEꢀPinꢀCurrent  
V ꢀ=ꢀ1.1V,ꢀV  
BIAS  
ꢀ=ꢀ0.8Vꢀ  
SENSE  
IN  
35ꢀ  
200  
50ꢀ  
300  
65ꢀ  
400  
µAꢀ  
µA  
IN  
V
ꢀ=ꢀ3.3V,ꢀV ꢀ=ꢀ2.1V,ꢀV  
ꢀ=ꢀ1.8V  
SENSE  
l
l
GroundꢀPinꢀCurrent,ꢀꢀ  
V ꢀ=ꢀ1.3V,ꢀV ꢀ=ꢀ1V  
I
I
ꢀ=ꢀ10mAꢀ  
OUT  
ꢀ=ꢀ5A  
OUT  
0.65ꢀ  
0.9  
1.1ꢀ  
1.35  
1.8ꢀ  
2.3  
mAꢀ  
mA  
IN  
OUT  
3070fa  
LT3070  
electricAl chArActeristics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. COUT = 15µF (Note 9), VIN = VOUT + 0.ꢁV (Note 5), VBIAS = 2.5V unless  
otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
BIASꢀPinꢀCurrentꢀinꢀNapꢀModeꢀ  
ENꢀ=ꢀLowꢀ(AfterꢀPORꢀCompleted)  
120  
200  
320  
µA  
l
l
l
l
l
l
BIASꢀPinꢀCurrent,ꢀꢀ  
I
I
I
I
I
I
ꢀ=ꢀ10mAꢀ  
ꢀ=ꢀ100mAꢀ  
ꢀ=ꢀ500mAꢀ  
ꢀ=ꢀ1Aꢀ  
0.75ꢀ  
1.25ꢀ  
2.0ꢀ  
2.6ꢀ  
3.5ꢀ  
4.5  
1.08ꢀ  
1.8ꢀ  
3.0ꢀ  
3.8ꢀ  
5.2ꢀ  
6.9  
1.5ꢀ  
2.4ꢀ  
4.0ꢀ  
5.0ꢀ  
7.0ꢀ  
10.0  
mAꢀ  
mAꢀ  
mAꢀ  
mAꢀ  
mAꢀ  
mA  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
V ꢀ=ꢀ1.3V,ꢀV ꢀ=ꢀ1Vꢀ  
IN  
OUT  
ꢀ=ꢀ2.5Aꢀ  
ꢀ=ꢀ5A  
l
l
l
CurrentꢀLimitꢀ(Noteꢀ5)  
V ꢀ–ꢀV ꢀ<ꢀ0.3V,ꢀV  
ꢀ=ꢀ3.3Vꢀ  
ꢀ=ꢀ3.3Vꢀ  
ꢀ=ꢀ3.3V  
5.1ꢀ  
3.2ꢀ  
1.2  
6.4ꢀ  
4.5ꢀ  
2.5  
7.7ꢀ  
5.8ꢀ  
4.3  
Aꢀ  
Aꢀ  
A
IN  
OUT  
BIAS  
BIAS  
BIAS  
V ꢀ–ꢀV ꢀ=ꢀ1.0V,ꢀV  
IN  
OUT  
V ꢀ–ꢀV ꢀ=ꢀ1.7V,ꢀV  
IN  
OUT  
l
ReverseꢀOutputꢀCurrentꢀ(Noteꢀ8)  
V ꢀ=ꢀ0V,ꢀV ꢀ=ꢀ1.8V  
300  
450  
µA  
IN  
OUT  
l
l
PWRGDꢀV ꢀThreshold  
PercentageꢀofꢀV  
PercentageꢀofꢀV  
,ꢀV ꢀRisingꢀ  
OUT(NOMINAL) OUT  
OUT(NOMINAL) OUT  
87ꢀ  
82  
90ꢀ  
85  
93ꢀ  
88  
ꢁꢀ  
OUT  
,ꢀV ꢀFalling  
l
PWRGDꢀV  
I
ꢀ=ꢀ200µAꢀ(FaultꢀCondition)  
PWRGD  
50  
150  
mV  
OL  
l
l
V
ꢀUndervoltageꢀLockoutꢀ  
BIAS  
V
V
ꢀRisingꢀ  
BIAS  
ꢀFalling  
BIAS  
1.1ꢀ  
0.9  
1.55ꢀ  
1.4  
2.1ꢀ  
1.7  
Vꢀ  
V
l
V -V ꢀServoꢀVoltageꢀbyꢀVIOC  
IN OUT  
250  
300  
350  
mV  
l
l
VIOCꢀOutputꢀCurrent  
V ꢀ=ꢀV  
IN  
ꢀ+ꢀ150mV,ꢀSourcingꢀOutꢀofꢀtheꢀPinꢀ  
OUT(NOMINAL)  
ꢀ+ꢀ450mV,ꢀSinkingꢀIntoꢀtheꢀPin  
OUT(NOMINAL)  
160ꢀ  
170  
235ꢀ  
255  
310ꢀ  
340  
µAꢀ  
µA  
IN  
V ꢀ=ꢀV  
l
l
l
V ꢀInputꢀThresholdꢀ(Logic-0ꢀState),ꢀ InputꢀFalling  
O2 O1 O0  
0.25  
V
IL  
V
,ꢀV ,ꢀV ,ꢀMARGSEL,ꢀMARGTOL  
V ꢀInputꢀRangeꢀ(Logic-ZꢀState),ꢀ  
0.75  
V
ꢀ–ꢀ0.9  
BIAS  
V
IZ  
V
,ꢀV ,ꢀV ,ꢀMARGSEL,ꢀMARGTOL  
O2 O1 O0  
V ꢀInputꢀThresholdꢀ(Logic-1ꢀState),ꢀ InputꢀRising  
V
ꢀ–ꢀ0.25  
BIAS  
V
IH  
V
,ꢀV ,ꢀV ,ꢀMARGSEL,ꢀMARGTOL  
O2 O1 O0  
InputꢀHysteresisꢀ(BothꢀThresholds),ꢀ  
,ꢀV ,ꢀV ,ꢀMARGSEL,ꢀMARGTOL  
60  
25  
25  
mV  
µA  
µA  
V
O2 O1 O0  
l
l
InputꢀCurrentꢀHigh,ꢀꢀ  
,ꢀV ,ꢀV ,ꢀMARGSEL,ꢀMARGTOLꢀ  
V ꢀ=ꢀV  
ꢀ=ꢀ2.5V,ꢀCurrentꢀFlowsꢀIntoꢀPin  
40  
40  
IH  
BIAS  
V
O2 O1 O0  
InputꢀCurrentꢀLow,ꢀꢀ  
,ꢀV ,ꢀV ,ꢀMARGSEL,ꢀMARGTOLꢀ  
V ꢀ=ꢀ0V,ꢀV  
IL  
ꢀ=ꢀ2.5V,ꢀCurrentꢀFlowsꢀOutꢀofꢀPin  
BIAS  
V
O2 O1 O0  
l
l
ENꢀPinꢀThreshold  
V
V
ꢀ=ꢀOffꢀtoꢀOnꢀ  
OUT  
ꢀ=ꢀOnꢀtoꢀOff  
OUT  
1.4  
Vꢀ  
V
0.9  
l
l
ENꢀPinꢀLogicꢀHighꢀCurrent  
ENꢀPinꢀLogicꢀLowꢀCurrent  
V
V
ꢀ=ꢀV  
ꢀ=ꢀ2.5V  
BIAS  
2.5  
4.0  
6.5  
0.1  
µA  
µA  
EN  
EN  
ꢀ=ꢀ0V  
3070fa  
LT3070  
electricAl chArActeristics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. COUT = 15µF (Note 9), VIN = VOUT + 0.ꢁV (Note 5), VBIAS = 2.5V unless  
otherwise noted.  
PARAMETER  
ꢀRippleꢀRejection  
CONDITIONS  
=ꢀV ꢀ+ꢀ1.5V ,ꢀV  
MIN  
TYP  
MAX  
UNITS  
V
V
ꢀ=0.5V ꢀ,ꢀf ꢀ=ꢀ120Hz,ꢀꢀ  
P-P RIPPLE  
75  
dB  
BIAS  
BIASꢀ  
OUT  
AVG RIPPLE  
V ꢀ–ꢀV ꢀ=ꢀ300mV,ꢀI ꢀ=ꢀ2.5A  
IN  
OUT  
OUT  
V ꢀRippleꢀRejectionꢀꢀ  
V
IN  
ꢀ=ꢀ2.5V,ꢀV  
OUT  
ꢀ=ꢀ50mV ,ꢀf ꢀ=ꢀ120Hz,ꢀꢀ  
P-Pꢀ RIPPLE  
OUT  
66  
10  
25  
dB  
IN  
BIAS  
RIPPLE  
(Notesꢀ3,ꢀ4,ꢀ5)  
V ꢀ–ꢀV ꢀ=ꢀ300mV,ꢀI ꢀ=ꢀ2.5Aꢀ  
ReferenceꢀVoltageꢀNoiseꢀꢀ  
(REF/BYPꢀPin)  
C
ꢀ=ꢀ10nF,ꢀBWꢀ=ꢀ10Hzꢀtoꢀ100kHz  
µV  
µV  
REF/BYP  
RMS  
RMS  
OutputꢀVoltageꢀNoise  
V
OUT  
ꢀ=ꢀ1V,ꢀI ꢀ=ꢀ5A,ꢀC  
=ꢀ10nF,ꢀC =ꢀ15µF,ꢀꢀ  
REF/BYPꢀ OUTꢀ  
OUT  
BWꢀ=ꢀ10Hzꢀtoꢀ100kHzꢀ  
Note 5:ꢀTheꢀLT3070ꢀincorporatesꢀsafeꢀoperatingꢀareaꢀprotectionꢀcircuitry.ꢀ  
Note 1:ꢀStressesꢀbeyondꢀthoseꢀlistedꢀunderꢀAbsoluteꢀMaximumꢀRatingsꢀ  
mayꢀcauseꢀpermanentꢀdamageꢀtoꢀtheꢀdevice.ꢀExposureꢀtoꢀanyꢀAbsoluteꢀ  
MaximumꢀRatingꢀconditionꢀforꢀextendedꢀperiodsꢀmayꢀaffectꢀdeviceꢀ  
reliabilityꢀandꢀlifetime.  
CurrentꢀlimitꢀdecreasesꢀasꢀtheꢀV -V ꢀvoltageꢀincreases.ꢀCurrentꢀlimitꢀ  
IN OUT  
foldbackꢀstartsꢀatꢀV ꢀ–ꢀV ꢀ>ꢀ500mV.ꢀSeeꢀtheꢀTypicalꢀPerformanceꢀ  
IN  
OUT  
CharacteristicsꢀforꢀaꢀgraphꢀofꢀCurrentꢀLimitꢀvsꢀV ꢀ–ꢀV ꢀvoltage.ꢀTheꢀ  
IN  
OUT  
currentꢀlimitꢀfoldbackꢀfeatureꢀisꢀindependentꢀofꢀtheꢀthermalꢀshutdownꢀ  
circuity.  
Note 2:ꢀTheꢀLT3070ꢀregulatorsꢀareꢀtestedꢀandꢀspecifiedꢀunderꢀpulseꢀloadꢀ  
conditionsꢀsuchꢀthatꢀT ꢀꢀT .ꢀTheꢀLT3070Eꢀisꢀ100ꢁꢀtestedꢀatꢀT ꢀ=ꢀ25°C.ꢀ  
J
A
A
Note 6:ꢀDropoutꢀvoltage,ꢀV ,ꢀisꢀtheꢀminimumꢀinputꢀtoꢀoutputꢀvoltageꢀ  
Performanceꢀatꢀ–40°Cꢀandꢀ125°Cꢀisꢀassuredꢀbyꢀdesign,ꢀcharacterizationꢀ  
andꢀcorrelationꢀwithꢀstatisticalꢀprocessꢀcontrols.ꢀTheꢀLT3070Iꢀisꢀ  
guaranteedꢀoverꢀtheꢀ–40°Cꢀtoꢀ125°Cꢀoperatingꢀjunctionꢀtemperatureꢀrange.ꢀ  
TheꢀLT3070MPꢀisꢀ100ꢁꢀtestedꢀandꢀguaranteedꢀoverꢀtheꢀ–55°Cꢀtoꢀ125°Cꢀ  
operatingꢀjunctionꢀtemperatureꢀrange.ꢀ  
DO  
differentialꢀatꢀaꢀspecifiedꢀoutputꢀcurrent.ꢀInꢀdropout,ꢀtheꢀoutputꢀvoltageꢀ  
equalsꢀV ꢀ–ꢀV .ꢀ  
IN  
DO  
Note 7:ꢀGNDꢀpinꢀcurrentꢀisꢀtestedꢀwithꢀV ꢀ=ꢀV  
ꢀ+ꢀ300mVꢀandꢀaꢀ  
OUT(NOMINAL)  
IN  
currentꢀsourceꢀload.ꢀVIOCꢀisꢀaꢀbufferedꢀoutputꢀdeterminedꢀbyꢀtheꢀvalueꢀofꢀ  
ꢀasꢀprogrammedꢀbyꢀtheꢀV -V ꢀpins.ꢀVIOC’sꢀoutputꢀisꢀindependentꢀofꢀ  
V
OUT  
Note ꢁ:ꢀToꢀmaintainꢀproperꢀperformanceꢀandꢀregulation,ꢀtheꢀBIASꢀsupplyꢀ  
O2 O0  
theꢀmarginingꢀfunction.  
voltageꢀmustꢀbeꢀhigherꢀthanꢀtheꢀINꢀsupplyꢀvoltage.ꢀForꢀaꢀgivenꢀV ,ꢀtheꢀ  
OUTꢀ  
BIASꢀvoltageꢀmustꢀsatisfyꢀtheꢀfollowingꢀconditions:ꢀ2.2Vꢀ≤ꢀV  
ꢀ≤ꢀ3.6Vꢀ  
Note 8:ꢀReverseꢀoutputꢀcurrentꢀisꢀtestedꢀwithꢀtheꢀINꢀpinsꢀgroundedꢀandꢀtheꢀ  
OUTꢀ+ꢀSENSEꢀpinsꢀforcedꢀtoꢀtheꢀratedꢀoutputꢀvoltage.ꢀThisꢀisꢀmeasuredꢀasꢀ  
currentꢀintoꢀtheꢀOUTꢀ+ꢀSENSEꢀpins.  
BIAS  
andꢀV  
ꢀ≥ꢀ(1.25ꢀ•ꢀV ꢀ+ꢀ1V).ꢀForꢀV ꢀ≤ꢀ0.95V,ꢀtheꢀminimumꢀBIASꢀ  
BIAS  
OUT OUT  
voltageꢀisꢀlimitedꢀtoꢀ2.2V.  
Note 4:ꢀOperatingꢀconditionsꢀareꢀlimitedꢀbyꢀmaximumꢀjunctionꢀ  
Note 9:ꢀFrequencyꢀCompensation:ꢀTheꢀLT3070ꢀmustꢀbeꢀfrequencyꢀ  
temperature.ꢀTheꢀregulatedꢀoutputꢀvoltageꢀspecificationꢀdoesꢀnotꢀapplyꢀ  
forꢀallꢀpossibleꢀcombinationsꢀofꢀinputꢀvoltageꢀandꢀoutputꢀcurrent.ꢀWhenꢀ  
operatingꢀatꢀmaximumꢀoutputꢀcurrent,ꢀlimitꢀtheꢀinputꢀvoltageꢀrangeꢀtoꢀ  
V ꢀ<ꢀV ꢀ+ꢀ500mV.  
compensatedꢀatꢀitsꢀOUTꢀpinsꢀwithꢀaꢀminimumꢀC ꢀofꢀ15µFꢀconfiguredꢀ  
OUT  
asꢀaꢀclusterꢀofꢀ(15×)ꢀ1µFꢀceramicꢀcapacitorsꢀorꢀasꢀaꢀgraduatedꢀclusterꢀ  
ofꢀ10µF/4.7µF/2.2µFꢀceramicꢀcapacitorsꢀofꢀtheꢀsameꢀcaseꢀsize.ꢀLinearꢀ  
TechnologyꢀonlyꢀrecommendsꢀX5RꢀorꢀX7Rꢀdielectricꢀcapacitors.ꢀ  
IN  
OUT  
3070fa  
LT3070  
typicAl perFormAnce chArActeristics  
Dropout Voltage vs IOUT  
Dropout Voltage vs Temperature  
Dropout Voltage vs Temperature  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
150  
120  
90  
30  
25  
V
= V  
V
I
= V  
IN OUT(NOMINAL)  
OUT  
V
I
= V  
OUT(NOMINAL)  
OUT  
IN  
OUT(NOMINAL)  
IN  
T = 25°C  
J
= 1A  
= 2.5A  
20  
15  
V
BIAS  
= 1.8V  
= 3.3V  
OUT  
V
60  
30  
0
10  
5
V
V
= 0.8V  
= 2.5V  
OUT  
BIAS  
V
V
V
= 1.8V, V  
= 0.8V, V  
= 1.2V, V  
= 3.3V  
= 2.5V  
= 3.3V  
V
V
V
= 1.8V, V  
= 0.8V, V  
= 1.2V, V  
= 3.3V  
= 2.5V  
= 3.3V  
OUT  
OUT  
OUT  
BIAS  
BIAS  
BIAS  
OUT  
OUT  
OUT  
BIAS  
BIAS  
BIAS  
0
–75 –50 –25  
0
25 50 75 100 125 150 175  
0
1
2
3
4
5
–75 –50 –25  
0
25 50 75 100 125 150 175  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
OUTPUT CURRENT (A)  
3070 G03  
3070 G01  
3070 G02  
Output Voltage (0.8V)  
vs Temperature  
Dropout Voltage vs Temperature  
Dropout Voltage vs VBIAS  
200  
180  
160  
140  
120  
100  
80  
0.808  
0.806  
0.804  
0.802  
0.800  
0.798  
0.796  
0.794  
0.792  
150  
120  
90  
I
= 5A  
I
= 10mA  
V
I
= V  
OUT(NOMINAL)  
OUT  
OUT  
J
LOAD  
IN  
T = 25°C  
= 5A  
60  
30  
0
60  
40  
V
V
V
= 1.8V, V  
= 0.8V, V  
= 1.2V, V  
= 3.3V  
= 2.5V  
= 3.3V  
OUT = 1.8V  
OUT = 1.5V  
OUT = 0.8V  
OUT  
OUT  
OUT  
BIAS  
BIAS  
BIAS  
20  
0
2.2  
2.6 2.8 3.0  
3.2 3.4 3.6  
–75 –50 –25  
0
25 50 75 100 125 150 175  
2.4  
–75 –50 –25  
0
25 50 75 100 125 150 175  
BIAS VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3070 G05  
3070 G06  
3070 G04  
Output Voltage (1V)  
vs Temperature  
Output Voltage (1.2V)  
vs Temperature  
Output Voltage (1.5V)  
vs Temperature  
1.010  
1.008  
1.006  
1.004  
1.002  
1.000  
0.998  
0.996  
0.994  
0.992  
0.990  
1.212  
1.208  
1.515  
1.510  
I
= 10mA  
I
= 10mA  
I
= 10mA  
LOAD  
LOAD  
LOAD  
1.204  
1.200  
1.505  
1.500  
1.196  
1.192  
1.188  
1.495  
1.490  
1.485  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3070 G07  
3070 G08  
3070 G09  
3070fa  
LT3070  
typicAl perFormAnce chArActeristics  
Output Voltage (1.8V)  
vs Temperature  
REF/BYP Pin Voltage  
vs Temperature  
GND Pin Current vs IOUT  
606  
604  
1.818  
1.814  
1.810  
1.806  
1.802  
1.798  
1.794  
1.790  
1.786  
1.782  
3.0  
2.5  
I
= 10mA  
V
= V  
+ 300mV  
C
= 0.01µF  
REF/BYP  
LOAD  
IN  
OUT  
T = 25°C  
J
602  
600  
2.0  
1.5  
598  
596  
594  
1.0  
0.5  
0
V
V
V
= 1.8V, V  
= 1.2V, V  
= 0.8V, V  
= 3.3V  
= 3.3V  
= 2.5V  
OUT  
OUT  
OUT  
BIAS  
BIAS  
BIAS  
–75 –50 –25  
0
25 50 75 100 125 150 175  
0
1
2
3
4
5
–75 –50 –25  
0
25 50  
175  
75 100 125 150  
TEMPERATURE (°C)  
OUTPUT CURRENT (A)  
TEMPERATURE (°C)  
3070 G10  
3070 G12  
3070 G11  
BIAS Pin Undervoltage Lockout  
Threshold  
BIAS Pin Current in Nap Mode  
BIAS Pin Current vs IOUT  
400  
350  
300  
250  
200  
150  
100  
50  
10  
9
8
7
6
5
4
3
2
1
0
2.5  
2.0  
1.5  
V
J
= V  
+ 300mV  
OUT  
V
V
= 2.5V  
IN  
BIAS  
EN  
T = 25°C  
= 0V  
V
RISING  
BIAS  
V
BIAS  
= 1.8V  
= 3.3V  
OUT  
V
V
V
= 0.8V  
OUT  
BIAS  
V
BIAS  
FALLING  
= 2.5V  
1.0  
0.5  
0
0
0
1
2
3
4
5
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
OUTPUT CURRENT (A)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3070 G14  
3070 G15  
3070 G13  
EN Pin Thresholds  
PWRGD Threshold Voltage  
PWRGD VOL vs Temperature  
100  
80  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.00  
0.95  
0.90  
0.85  
0.80  
V
= 2.5V  
V
= 2.5V  
BIAS  
V
BIAS  
V
OUT  
= 2.5V  
= 1V  
BIAS  
I
= 200µA  
PWRGD  
EN PIN RISING  
60  
V
RISING  
OUT  
EN PIN FALLING  
40  
20  
0
V
FALLING  
OUT  
–75 –50 –25  
0
25 50 75 100 125 150  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–50 –25  
50  
75 100 125 150 175  
–75  
0
25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3070 G50  
3070 G16  
3070 G17  
3070fa  
LT3070  
typicAl perFormAnce chArActeristics  
Logic Input Threshold Voltages  
Logic Low to Hi-Z State Transitions  
Logic Input Threshold Voltages  
Logic Hi-Z to High State Transitions  
EN Pin Logic High Current  
0.8  
0.7  
0.6  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
3.0  
2.9  
2.8  
SEE APPLICATIONS INFORMATION  
FOR MORE DETAILS  
V
= 3.3V  
V
= V  
= 2.5V  
BIAS  
BIAS  
EN  
LOGIC Hi-Z TO HIGH THRESHOLD IS  
RELATIVE TO V VOLTAGE  
BIAS  
SEE APPLICATIONS INFORMATION  
FOR MORE DETAILS  
INPUT RISING  
LOGIC LOW TO Hi-Z  
INPUT RISING  
LOGIC Hi-Z TO HIGH  
INPUT FALLING  
LOGIC Hi-Z TO LOW  
0.5  
0.4  
0.3  
2.7  
2.6  
2.5  
INPUT FALLING  
LOGIC HIGH TO Hi-Z  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
75 100 125 150 175  
0
25 50  
–75 –50 –25  
0
25 50 75 100 125 150 175  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3070 G18  
3070 G16  
3070 G19  
Logic Pin Input Current,  
High State  
Logic Pin Input Current,  
Low State  
SENSE Pin Current  
65  
60  
55  
50  
45  
40  
35  
30  
25  
40  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
V
V
= 2.5V  
= 0.8V  
V
= V  
= 2.5V  
V
V
= 2.5V  
= 0V  
BIAS  
OUT  
LOGIC  
BIAS  
BIAS  
LOGIC  
CURRENT FLOWS INTO THE PIN  
CURRENT FLOWS INTO SENSE  
CURRENT FLOWS OUT OF THE PIN  
0
0
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3070 G23  
3070 G21  
3070 G22  
SENSE Pin Current  
Current Limit vs Temperature  
Current Limit vs VIN – VOUT  
400  
375  
350  
325  
300  
275  
250  
225  
200  
7.50  
7.25  
7.00  
6.75  
6.50  
6.25  
6.00  
5.75  
5.50  
5.25  
5.00  
8
7
6
5
4
3
2
1
0
V
T
= 3.3V  
V
V
= 3.3V  
= 1.8V  
V
IN  
– V  
= 300mV  
OUT(NOMINAL)  
BIAS  
J
BIAS  
OUT  
= 25°C  
CURRENT FLOWS INTO SENSE  
V
V
V
= 1.8V  
= 1.2V  
= 0.8V  
V
V
V
= 1.8V, V  
= 1.2V, V  
= 0.8V, V  
= 3.3V  
= 3.3V  
= 2.5V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
BIAS  
BIAS  
BIAS  
1.00 1.25  
0
0.25 0.50 0.75  
1.50 1.75 2.00  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
IN-TO-OUT VOLTAGE DIFFERENTIAL (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3070 G26  
3070 G24  
3070 G25  
3070fa  
LT3070  
typicAl perFormAnce chArActeristics  
BIAS Pin Ripple Rejection  
IN Pin Ripple Rejection  
IN Pin Ripple Rejection  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
V
V
= 1.3V  
IN  
= 1V  
OUT  
OUT  
I
= 5A  
80  
C
OUT  
= 10µF + 4.7µF + 2.2µF  
70  
60  
50  
40  
30  
20  
10  
0
C
C
= 117µF  
= 16.9µF  
C
C
= 117µF  
= 16.9µF  
OUT  
OUT  
OUT  
OUT  
V
V
V
I
= 1V  
V
V
V
I
= 1V  
OUT  
IN  
BIAS  
OUT  
OUT  
V
V
V
= 2.5V + 500mV  
= 2.7V + 500mV  
= 3.3V + 500mV  
= 1.3V + 50mV RIPPLE  
= 1.3V + 50mV RIPPLE  
IN P-P  
BIAS  
BIAS  
BIAS  
P-P  
P-P  
P-P  
P-P  
= 2.5V  
= 1A  
= 2.5V  
= 5A  
BIAS  
OUT  
10  
100  
1k  
10k 100k  
1M  
10M  
10  
100  
1k  
10k 100k  
1M  
10M  
10  
100  
1k  
10k 100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
3070 G27  
3070 G28  
3070 G29  
Minimum BIAS Voltage  
vs Temperature  
Minimum BIAS Voltage vs IOUT  
Minimum BIAS Voltage vs VOUT  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
4.0  
3.8  
3.6  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
3.6  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
V
$V  
= V  
OUT  
V
V
V
V
+ 300mV  
OUT(NOMINAL)  
IN  
V
V
V
= 1.8V  
= 1.2V  
= 0.8V  
I
= 5A  
I
= 5A  
OUT  
OUT  
OUT  
OUT  
OUT  
J
= –1%, T = 25°C  
J
T = 25°C  
= 1.8V  
OUT  
= 1.5V  
OUT  
OUT  
OUT  
= 1.2V  
= 0.8V TO 1V  
1
2
4
–75 –50 –25  
0
25 50 75 100 125 150 175  
0
5
0.7  
0.9  
1.1  
1.3  
1.5  
1.7  
1.9  
3
TEMPERATURE (°C)  
OUTPUT CURRENT (A)  
OUTPUT VOLTAGE (V)  
3070 G51  
3070 G30  
3070 G31  
Load Regulation  
Bias Voltage Line Regulation  
Bias Voltage Line Regulation  
400  
300  
800  
700  
600  
500  
400  
300  
200  
100  
0
0
–2  
–4  
V
V
V
I
= 3.25V TO 3.6V  
V
V
V
I
= 2.2V TO 3.6V  
BIAS  
IN  
OUT  
OUT  
BIAS  
IN  
OUT  
OUT  
= 2.1V  
= 1.1V  
= 1.8V  
= 10mA  
= 0.8V  
= 10mA  
200  
100  
0
–6  
–8  
V
V
= V  
+ 300mV  
OUT(NOMINAL)  
–100  
–200  
–300  
–400  
IN  
= 3.3V  
BIAS  
$I  
= 100mA TO 5A  
OUT  
V
V
V
= 0.8V  
= 1.2V  
= 1.8V  
OUT  
OUT  
OUT  
–10  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3070 G32  
3070 G34  
3070 G33  
3070fa  
LT3070  
typicAl perFormAnce chArActeristics  
Output Voltage Start-Up Time  
vs CREF/BYP  
Input Voltage Line Regulation  
Input Voltage Line Regulation  
300  
250  
20  
18  
16  
14  
12  
10  
8
300  
250  
V
V
V
I
= 3.3V  
V
I
= 2.5V TO 3.3V  
BIAS  
V
V
V
I
= 3.3V  
BIAS  
IN  
OUT  
BIAS  
IN  
OUT  
= 2.05V TO 2.7V  
= 1.8V  
= 10mA  
= 1.05V TO 2.7V  
= 0.8V  
OUT  
C
= 10µF + 4.7µF + 2.2µF  
OUT  
= 10mA  
T = 25°C  
J
= 10mA  
OUT  
OUT  
SEE APPLICATIONS  
INFORMATION FOR  
START-UP DETAILS  
200  
150  
200  
150  
100  
50  
0
100  
50  
0
6
4
2
0
–75 –50 –25  
0
25 50 75 100 125 150 175  
0
0.1  
0.3  
0.4  
0.5  
–75 –50 –25  
0
25 50 75 100 125 150 175  
0.2  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
REF/BYP CAPACITANCE (µF)  
3070 G36  
3070 G37  
3070 G35  
RMS Output Noise  
vs Output Current  
Nap Mode Recovery Time vs IOUT  
Output Noise Spectral Density  
400  
350  
300  
250  
1.0  
0.1  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
V
= 3.3V  
OUT(NOM)  
EN = LOW TO HIGH  
BIAS  
IN  
V
V
OUT  
C
C
= 2.5V  
= 1V  
V
V
C
= V  
+ 300mV  
OUT(NOMINAL)  
BIAS  
OUT  
IN  
= V  
+ 300mV  
= 3.3V  
BIAS  
OUT  
I
= 5A  
= 16.9µF  
I
= 5A (SET BY A RESISTOR LOAD)  
OUT  
= 16.9µF  
OUT  
REF/BYP  
T = 25°C  
J
= 0.01µF  
V
C
V
C
V
C
= 1.8V,  
= 117µF  
= 1.2V,  
= 117µF  
= 0.8V,  
= 117µF  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
200  
150  
0.01  
0.001  
100  
50  
0
V
V
V
= 1.8V  
= 1.2V  
= 0.8V  
OUT  
OUT  
OUT  
1
2
4
0
5
3
0.01  
0.1  
1
10  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
3070 G38  
3070 G39  
3070 G40  
Input Voltage Line Transient  
Response  
Output Noise (10Hz to 100kHz)  
V
OUT  
1mV/DIV  
V
OUT  
100µV/DIV  
V
IN  
50mV/DIV  
3070 G42  
3070 G41  
V
V
I
= 1.3V  
= 1V  
20µs/DIV  
V
I
= 1V  
1ms/DIV  
IN  
OUT  
OUT  
OUT  
OUT  
= 5A  
= 5A  
C
= 16.9µF  
OUT  
C
= 16.9µF  
OUT  
3070fa  
ꢀ0  
LT3070  
typicAl perFormAnce chArActeristics  
Bias Voltage Line Transient  
Response  
VIOC Amplifier IN-to-OUT Servo  
Voltage  
VIOC Amplifier Output Current  
vs Temperature  
350  
340  
330  
320  
310  
300  
290  
280  
270  
260  
250  
300  
275  
V
= 2.5V  
BIAS  
V
OUT  
10mV/DIV  
I
SOURCING  
VIOC  
250  
225  
I
SINKING  
VIOC  
V
BIAS  
200mV/DIV  
200  
175  
150  
3070 G43  
V
V
V
I
= 1.3V  
20µs/DIV  
IN  
= 2.5V  
= 1V  
BIAS  
OUT  
OUT  
= 5A  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
C
= 16.9µF  
OUT  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3070 G44  
3070 G45  
Transient Load Response  
Transient Load Response  
V
V
OUT  
OUT  
50mV/DIV  
AC-COUPLED  
50mV/DIV  
AC-COUPLED  
I
OUT  
I
OUT  
2A/DIV  
∆I = 500mA  
TO 5A  
2A/DIV  
∆I = 500mA  
TO 5A  
3070 G46  
3070 G47  
V
C
I
= 1V  
20µs/DIV  
= 10µF + 4.7µF + 2.2µF  
/t = 100ns  
V
C
I
= 1V  
= 117µF  
/t  
20µs/DIV  
= 100ns  
OUT  
OUT  
OUT  
OUT  
t
t
OUT RISE FALL  
OUT RISE FALL  
Transient Load Response  
Transient Load Response  
V
V
OUT  
OUT  
50mV/DIV  
50mV/DIV  
AC-COUPLED  
AC-COUPLED  
I
I
OUT  
OUT  
2A/DIV  
∆I = 500mA  
TO 5A  
2A/DIV  
∆I = 500mA  
TO 5A  
3070 G48  
3070 G49  
V
C
= 1V  
20µs/DIV  
= 10µF + 4.7µF + 2.2µF  
/t = 1µs  
V
C
= 1V  
20µs/DIV  
= 1µs  
OUT  
OUT  
OUT  
OUT  
= 117µF  
I
t
I
t
/t  
OUT RISE FALL  
OUT RISE FALL  
3070fa  
ꢀꢀ  
SENSE (Pin 19):ꢀKelvinꢀSenseꢀforꢀOUT  
                                                                       
.ꢀTheꢀSENSEꢀpinꢀisꢀ  
theinvertinginputtotheerroramplifier.Optimumregulationꢀ  
isꢀobtainedꢀwhenꢀtheꢀSENSEꢀpinꢀisꢀconnectedꢀtoꢀtheꢀOUTꢀ  
pinsoftheregulator.Incriticalapplications,theresistanceꢀ  
LT3070  
pin Functions  
VIOC (Pin 1):VoltageforIn-to-OutControl.TheICin-  
IN (Pins 5, 6, 7, 8):InputSupply.Thesepinssupplyꢀ  
corporatesꢀaꢀuniqueꢀtrackingꢀfunctionꢀtoꢀcontrolꢀaꢀbuckꢀ powerꢀtoꢀtheꢀhighꢀcurrentꢀpassꢀtransistor.ꢀTieꢀallꢀINꢀpinsꢀ  
regulatorꢀpoweringꢀtheꢀLT3070’sꢀinput.ꢀTheꢀVIOCꢀpinꢀisꢀ togetherꢀforꢀproperꢀperformance.ꢀTheꢀLT3070ꢀrequiresꢀaꢀ  
theꢀoutputꢀofꢀthisꢀtrackingꢀfunctionꢀthatꢀdrivesꢀtheꢀbuckꢀ bypassꢀcapacitorꢀatꢀINꢀtoꢀmaintainꢀstabilityꢀandꢀlowꢀinputꢀ  
regulatorꢀtoꢀmaintainꢀtheꢀLT3070’sꢀinputꢀvoltageꢀatꢀV ꢀ+ꢀ impedanceꢀoverꢀfrequency.ꢀAꢀ47µFꢀinputꢀbypassꢀcapacitorꢀ  
OUT  
300mV.ꢀThisꢀfunctionꢀmaximizesꢀefficiencyꢀandꢀminimizesꢀ sufficesꢀforꢀmostꢀbatteryꢀandꢀpowerꢀplaneꢀimpedances.ꢀ  
powerꢀdissipation.ꢀSeeꢀtheꢀApplicationsꢀInformationꢀsec-  
Minimizinginputtraceinductanceoptimizesperformance.ꢀ  
tionꢀforꢀmoreꢀinformationꢀonꢀproperꢀcontrolꢀofꢀtheꢀbuckꢀ ApplicationsꢀthatꢀoperateꢀwithꢀlowꢀV -V ꢀdifferentialꢀ  
IN OUT  
regulator.  
voltagesandthathavelarge,fastloadtransientsmayrequireꢀ  
muchꢀhigherꢀinputꢀcapacitorꢀrequirementsꢀtoꢀpreventꢀtheꢀ  
inputꢀsupplyꢀfromꢀdroopingꢀandꢀallowingꢀtheꢀregulatorꢀtoꢀ  
enterꢀdropout.ꢀSeeꢀtheꢀApplicationsꢀInformationꢀsectionꢀ  
forꢀmoreꢀinformationꢀonꢀinputꢀcapacitorꢀrequirements.ꢀ  
PWRGD (Pin 2):PowerGood.ThePWRGDꢀpinꢀisꢀanꢀopen-  
drainꢀNMOSꢀoutputꢀthatꢀactivelyꢀpullsꢀlowꢀifꢀanyꢀoneꢀofꢀ  
theseꢀfaultꢀmodesꢀisꢀdetected:  
•ꢀ V ꢀisꢀlessꢀthanꢀ90ꢁꢀofꢀV  
ꢀonꢀtheꢀrisingꢀ  
OUT(NOMINAL)  
OUT  
edgeꢀofꢀV  
OUT (Pins 15, 16, 17, 18):Output.Thesepinssupplyꢀ  
powerꢀtoꢀtheꢀload.ꢀTieꢀallꢀOUTꢀpinsꢀtogetherꢀforꢀproperꢀ  
performance.ꢀAꢀminimumꢀoutputꢀcapacitanceꢀofꢀ15µFꢀisꢀ  
requiredꢀforꢀstability.ꢀLTCꢀrecommendsꢀlowꢀESR,ꢀX5Rꢀorꢀ  
X7Rꢀdielectricꢀceramicꢀcapacitorsꢀforꢀbestꢀperformance.ꢀ  
Aꢀparallelꢀceramicꢀcapacitorꢀcombinationꢀofꢀ10µFꢀ+ꢀ4.7µFꢀ  
+ꢀ2.2µFꢀorꢀ15ꢀ1µFꢀceramicꢀcapacitorsꢀinꢀparallelꢀprovideꢀ  
excellentꢀstabilityꢀandꢀloadꢀtransientꢀresponse.ꢀLargeꢀloadꢀ  
transientꢀapplicationsꢀrequireꢀlargerꢀoutputꢀcapacitorsꢀtoꢀ  
limitꢀpeakꢀvoltageꢀtransients.ꢀSeeꢀtheꢀApplicationsꢀInfor-  
mationꢀsectionꢀforꢀmoreꢀinformationꢀonꢀoutputꢀcapacitorꢀ  
.
OUTꢀ  
•ꢀ V ꢀdropsꢀbelowꢀ85ꢁꢀofꢀV  
ꢀforꢀmoreꢀthanꢀ  
OUT(NOMINAL)  
OUT  
25µs.  
•ꢀ Junctionꢀtemperatureꢀtypicallyꢀexceedsꢀ145°C.  
•ꢀ V ꢀisꢀlessꢀthanꢀitsꢀundervoltageꢀlockoutꢀthreshold.  
BIAS  
•ꢀ TheꢀOUT-to-INꢀreverse-currentꢀdetectorꢀactivates.  
SeeꢀtheꢀApplicationsꢀInformationꢀsectionꢀforꢀmoreꢀinfor-  
mationꢀonꢀPWRGDꢀfaultꢀmodes.  
REF/BYP (Pin ꢁ):ꢀReferenceꢀFilter.ꢀTheꢀpinꢀisꢀtheꢀoutputꢀ requirements.ꢀ  
ofꢀtheꢀbandgapꢀreferenceꢀandꢀhasꢀanꢀimpedanceꢀofꢀap-  
proximatelyꢀ19kΩ.ꢀThisꢀpinꢀmustꢀnotꢀbeꢀexternallyꢀloaded.ꢀ  
BypassingꢀtheꢀREF/BYPꢀpinꢀtoꢀGNDꢀwithꢀaꢀ10nFꢀcapacitorꢀ  
decreasesꢀoutputꢀvoltageꢀnoiseꢀandꢀprovidesꢀaꢀsoft-startꢀ  
functionꢀtoꢀtheꢀreference.ꢀLTCꢀrecommendsꢀtheꢀuseꢀofꢀaꢀ  
highꢀquality,ꢀlowꢀleakageꢀcapacitor.ꢀSeeꢀtheꢀApplicationsꢀ  
Informationsectionformoreinformationonnoiseandꢀ  
outputꢀvoltageꢀmarginingꢀconsiderations.  
(R )ofPCBtracesbetweentheregulatorandtheloadcauseꢀ  
P
smallꢀvoltageꢀdrops,ꢀcreatingꢀaꢀloadꢀregulationꢀerrorꢀatꢀtheꢀ  
pointofload.ConnectingtheSENSEpinattheloadinsteadꢀ  
ofꢀdirectlyꢀtoꢀOUTꢀeliminatesꢀthisꢀvoltageꢀerror.ꢀFigureꢀ1ꢀ  
GND (Pins 4, 9-14, 20, 26, 29):Ground.Theexposedpadꢀ illustratesthisKelvin-Senseconnectionmethod.Notethatꢀ  
(Pinꢀ29)ꢀofꢀtheꢀQFNꢀpackageꢀisꢀanꢀelectricalꢀconnectionꢀtoꢀ thevoltagedropacrosstheexternalPCBtracesaddstotheꢀ  
GND.Toensureproperelectricalandthermalperformance,ꢀ dropoutꢀvoltageꢀofꢀtheꢀregulator.ꢀTheꢀSENSEꢀpinꢀinputꢀbiasꢀ  
solderꢀPinꢀ29ꢀtoꢀtheꢀPCBꢀgroundꢀandꢀtieꢀtoꢀallꢀGNDꢀpinsꢀ currentꢀdependsꢀonꢀtheꢀselectedꢀoutputꢀvoltage.ꢀSENSEꢀ  
ofꢀtheꢀpackage.ꢀTheseꢀGNDꢀpinsꢀareꢀfusedꢀtoꢀtheꢀinternalꢀ pinꢀinputꢀcurrentꢀvariesꢀfromꢀ50µAꢀtypicallyꢀatꢀV ꢀ=ꢀ0.8Vꢀ  
OUT  
dieꢀattachꢀpaddleꢀandꢀtheꢀexposedꢀpadꢀtoꢀoptimizeꢀheatꢀ toꢀ300µAꢀtypicallyꢀatꢀV ꢀ=ꢀ1.8V.  
OUT  
sinkingandthermalresistancecharacteristics.SeetheAp-  
plicationsꢀInformationꢀsectionꢀforꢀthermalꢀconsiderationsꢀ  
andꢀcalculatingꢀjunctionꢀtemperature.ꢀ  
3070fa  
ꢀꢁ  
ablesnegativevoltagemargining.Thelogichighꢀ  
                                     
thresholdꢀ  
LT3070  
pin Functions  
V , V and V (Pins 2ꢁ, 24, 25):ꢀOutputꢀVoltageꢀSe-  
+
O0 O1  
O2  
V
BIAS  
lect.ꢀTheseꢀthree-stateꢀpinsꢀcombineꢀtoꢀselectꢀaꢀnominalꢀ  
outputꢀvoltageꢀfromꢀ0.8Vꢀtoꢀ1.8Vꢀinꢀincrementsꢀofꢀ50mV.ꢀ  
Outputꢀvoltageꢀisꢀlimitedꢀtoꢀ1.8Vꢀmaximumꢀbyꢀanꢀinternalꢀ  
overrideofV ꢀwhenV ꢀ=high.Theinputlogiclowꢀ  
BIAS  
EN  
IN  
SENSE  
OUT  
R
P
LT3070  
V
V
V
O2  
O1  
O0  
PWRGD  
O1  
O2  
+
thresholdꢀisꢀlessꢀthanꢀ250mVꢀreferencedꢀtoꢀGNDꢀandꢀtheꢀ  
LOAD  
V
IN  
MARGSEL  
MARGTOL  
VIOC  
logicꢀhighꢀthresholdꢀisꢀgreaterꢀthanꢀV  
ꢀ–ꢀ250mV.ꢀTheꢀ  
BIAS  
rangeꢀbetweenꢀtheseꢀtwoꢀthresholdsꢀasꢀsetꢀbyꢀaꢀwindowꢀ  
REF/BYP  
GND  
comparatorꢀdefinesꢀtheꢀlogicꢀHi-Zꢀstate.ꢀSeeꢀTableꢀ1ꢀinꢀtheꢀ  
ApplicationsꢀInformationꢀsectionꢀthatꢀdefinesꢀtheꢀV ,ꢀV ꢀ  
O2 O1  
R
P
3070 F01  
andꢀV ꢀsettingsꢀversusꢀV  
.
O0  
OUTꢀ  
BIAS (Pin 27):ꢀBiasꢀSupply.ꢀThisꢀpinꢀsuppliesꢀcurrentꢀtoꢀ  
theꢀinternalꢀcontrolꢀcircuitryꢀandꢀtheꢀoutputꢀstageꢀdrivingꢀ  
thepasstransistor.TheLT3070requiresaminimum2.2µFꢀ  
bypasscapacitorforstabilityandproperoperation.Toꢀ  
ensureꢀproperꢀoperation,ꢀtheꢀBIASꢀvoltageꢀmustꢀsatisfyꢀ  
Figure 1. Kelvin Sense Connection  
MARGSEL (Pin 21):ꢀMarginingꢀEnableꢀandꢀPolarityꢀSelec-  
tion.ꢀThisꢀthree-stateꢀpinꢀdeterminesꢀbothꢀtheꢀpolarityꢀandꢀ  
theꢀactiveꢀstateꢀofꢀtheꢀmarginingꢀfunction.ꢀTheꢀlogicꢀlowꢀ  
thresholdꢀisꢀlessꢀthanꢀ250mVꢀreferencedꢀtoꢀGNDꢀandꢀen-  
theꢀfollowingꢀconditions:ꢀ2.2Vꢀ≤ꢀV  
ꢀ≤ꢀ3.6VꢀandꢀV  
ꢀ≥ꢀ  
BIAS  
BIAS  
(1.25ꢀ•ꢀV ꢀ+ꢀ1V).ꢀForꢀV ꢀ≤ꢀ0.95V,ꢀtheꢀminimumꢀBIASꢀ  
OUT  
OUT  
voltageꢀisꢀlimitedꢀtoꢀ2.2V.  
isgreaterthanV ꢀ250mVandenablespositivevoltageꢀ  
BIAS  
EN (Pin 28):ꢀEnable.ꢀThisꢀpinꢀenables/disablesꢀtheꢀoutputꢀ  
margining.Thevoltagerangebetweenthesetwologicꢀ  
thresholdsassetbyawindowcomparatordefinestheꢀ  
logicꢀHi-Zꢀstateꢀandꢀdisablesꢀtheꢀmarginingꢀfunction.ꢀ  
deviceonly.Theinternalreferenceandallsupportfunctionsꢀ  
areactiveifV  
isaboveitsUVLOthreshold.Pullingꢀ  
BIAS  
ENlowkeepsthereferencecircuitactive,butdisablesꢀ  
theꢀoutputꢀpassꢀtransistorꢀandꢀputsꢀtheꢀLT3070ꢀintoꢀaꢀlowꢀ  
powernapmode.DrivetheENpinwitheitheradigitallogicꢀ  
portꢀorꢀanꢀopen-collectorꢀNPNꢀorꢀanꢀopen-drainꢀNMOSꢀ  
MARGTOL (Pin 22):ꢀ Marginingꢀ Tolerance.ꢀ Thisꢀ three-  
statepinselectstheabsolutevalueofmargining(1ꢁ,ꢀ  
3ꢁꢀorꢀ5ꢁ)ꢀifꢀenabledꢀbyꢀtheꢀMARGSELꢀinput.ꢀTheꢀlogicꢀ  
lowꢀthresholdꢀisꢀlessꢀthanꢀ250mVꢀreferencedꢀtoꢀGNDꢀandꢀ  
terminatedꢀwithꢀaꢀpull-upꢀresistorꢀtoꢀV  
.ꢀTheꢀpull-upꢀ  
BIAS  
enableseitherꢀ 1ꢁchangeinV dependingonthestateꢀ  
OUT  
resistorꢀmustꢀbeꢀlessꢀthanꢀ35kꢀtoꢀmeetꢀtheꢀV ꢀconditionꢀ  
IH  
ofꢀtheꢀMARGSELꢀpin.ꢀTheꢀlogicꢀhighꢀthresholdꢀisꢀgreaterꢀ  
ofꢀtheꢀENꢀpin.ꢀIfꢀunused,ꢀconnectꢀENꢀtoꢀBIAS.  
thanꢀV  
OUT  
ꢀ–ꢀ250mVꢀandꢀenablesꢀeitherꢀ 5ꢁꢀchangeꢀinꢀ  
BIAS  
V
ꢀdependingꢀonꢀtheꢀstateꢀofꢀtheꢀMARGSELꢀpin.ꢀTheꢀ  
voltageꢀrangeꢀbetweenꢀtheseꢀtwoꢀlogicꢀthresholdsꢀasꢀsetꢀ  
byꢀaꢀwindowꢀcomparatorꢀdefinesꢀtheꢀlogicꢀHi-Zꢀstateꢀandꢀ  
enableseitherꢀ 3ꢁchangeinV dependingonthestateꢀ  
OUT  
ofꢀtheꢀMARGSELꢀpin.ꢀ  
3070fa  
ꢀꢂ  
LT3070  
block DiAgrAm  
UVLO AND  
BIAS  
27  
THERMAL  
SHUTDOWN  
IN  
5-8  
+
I
SENSE  
REF/BYP  
+
EAMP  
BUF  
OUT  
15-18  
LDO CORE  
SENSE  
19  
2
PWRGD  
DETECT  
+
VIOC  
GND  
V
+ 300mV  
1
OUT(NOM)  
REF/BYP  
600mV  
V
3
REF  
4,9-14,20,26,29  
PROGRAM CONTROL  
EN  
28  
V
V
V
O0  
MARGSEL MARGTOL  
22  
O2  
O1  
25 24 23 21  
3070 BD  
LOGIC HIGH STATE  
V
– 0.25V  
BIAS  
+
LOGIC Hi-Z STATE  
V
BIAS  
HIGH IF IN > V  
HIGH IF IN < V  
– 0.25V  
– 0.9V  
BIAS  
V
– 0.9V  
+
+
BIAS  
100k  
V
, V , VO0  
O2 O1  
BIAS  
AND IN > 0.75V  
TO LOGIC  
MARGSEL OR  
MARGTOL  
0.75V  
100k  
HIGH IF IN < 0.25V  
LOGIC LOW STATE  
+
0.25V  
3070fa  
ꢀꢃ  
LT3070  
ApplicAtions inFormAtion  
Introduction  
Thisꢀ combinesꢀ theꢀ efficiencyꢀ ofꢀ aꢀ switchingꢀ regulatorꢀ  
withsuperiorlinearregulatorresponse.Italsopermitsꢀ  
thermalꢀmanagementꢀofꢀtheꢀsystemꢀevenꢀwithꢀaꢀmaximumꢀ  
5Aꢀoutputꢀload.ꢀ  
Currentꢀ generationꢀ FPGAꢀ andꢀ ASICꢀ processorsꢀ placeꢀ  
stringentꢀdemandsꢀonꢀtheꢀpowerꢀsuppliesꢀthatꢀpowerꢀtheꢀ  
core,I/Oandtransceiverchannels.Thesemicroprocessorsꢀ  
mayꢀcycleꢀloadꢀcurrentꢀfromꢀnearꢀzeroꢀtoꢀampsꢀinꢀtensꢀofꢀ LT3070internalprotectionincludesinputundervoltageꢀ  
nanoseconds.ꢀOutputꢀvoltageꢀspecifications,ꢀespeciallyꢀinꢀ lockout(UVLO),reverse-currentprotection,precisioncur-  
theꢀ1Vꢀrange,ꢀrequireꢀtightꢀtolerancesꢀincludingꢀtransientꢀ rentꢀlimitingꢀwithꢀpowerꢀfoldbackꢀandꢀthermalꢀshutdown.ꢀ  
responseaspartoftherequirement.SomeASICprocessorsꢀ TheꢀLT3070ꢀregulatorꢀisꢀavailableꢀinꢀaꢀthermallyꢀenhancedꢀ  
requireꢀonlyꢀaꢀsingleꢀoutputꢀvoltageꢀfromꢀwhichꢀtheꢀcoreꢀ 28-lead,ꢀ4mmꢀ×ꢀ5mmꢀQFNꢀpackage.  
andꢀI/Oꢀcircuitryꢀoperate.ꢀSomeꢀhighꢀperformanceꢀFPGAꢀ  
TheLT3070’sarchitecturedrivesaninternalN-channelꢀ  
processorsrequireseparatepowersupplyvoltagesfortheꢀ  
powerꢀMOSFETꢀasꢀaꢀsourceꢀfollower.ꢀThisꢀconfigurationꢀ  
processorꢀcore,ꢀtheꢀI/O,ꢀandꢀtheꢀtransceivers.ꢀOften,ꢀtheseꢀ  
permitsꢀaꢀuserꢀtoꢀobtainꢀanꢀextremelyꢀlowꢀdropout,ꢀUltra-  
supplyꢀvoltagesꢀmustꢀbeꢀlowꢀnoiseꢀandꢀhighꢀbandwidthꢀ  
Fastꢀtransientꢀresponseꢀregulatorꢀwithꢀexcellentꢀhighꢀfre-  
toꢀachieveꢀtheꢀlowestꢀbit-errorꢀrates.ꢀTheseꢀrequirementsꢀ  
quencyPSRRperformance.TheLT3070achievessuperiorꢀ  
mandateꢀtheꢀneedꢀforꢀveryꢀaccurate,ꢀlowꢀnoise,ꢀhighꢀcur-  
regulatorꢀbandwidthꢀandꢀtransientꢀloadꢀperformanceꢀbyꢀ  
rent,ꢀveryꢀhighꢀspeedꢀregulatorꢀcircuitsꢀthatꢀoperateꢀatꢀlowꢀ  
eliminatingexpensivebulktantalumorelectrolyticcapaci-  
inputꢀandꢀoutputꢀvoltages.  
torsꢀinꢀtheꢀmostꢀmodernꢀandꢀdemandingꢀmicroprocessorꢀ  
TheꢀLT3070ꢀisꢀaꢀlowꢀvoltage,ꢀUltraFastꢀtransientꢀresponseꢀ applications.ꢀUsersꢀrealizeꢀsignificantꢀcostꢀsavingsꢀasꢀallꢀ  
linearꢀregulator.ꢀTheꢀdeviceꢀsuppliesꢀupꢀtoꢀ5Aꢀofꢀoutputꢀ additionalbulkcapacitanceisremoved.Theadditionalꢀ  
currentꢀwithꢀaꢀtypicalꢀdropoutꢀvoltageꢀofꢀ85mV.ꢀAꢀ0.01µFꢀ savingsꢀofꢀinsertionꢀcost,ꢀpurchasing/inventoryꢀcostꢀandꢀ  
referencebypasscapacitordecreasesoutputvoltagenoiseꢀ boardꢀspaceꢀareꢀreadilyꢀapparent.ꢀPrecisionꢀincrementalꢀ  
toꢀ25µV  
ꢀ(BWꢀ=ꢀ10Hzꢀtoꢀ100kHz).ꢀTheꢀLT3070’sꢀhighꢀ outputꢀvoltageꢀcontrolꢀaccommodatesꢀlegacyꢀandꢀfutureꢀ  
RMS  
bandwidthprovidesUltraFasttransientresponseusinglowꢀ microprocessorꢀpowerꢀsupplyꢀvoltages.ꢀ  
ESRꢀceramicꢀoutputꢀcapacitorsꢀ(15µFꢀminimum),ꢀsavingꢀ  
Outputꢀcapacitorꢀnetworksꢀsimplifyꢀtoꢀdirectꢀparallelꢀcom-  
binationsofceramiccapacitors.Often,thehighfrequencyꢀ  
ceramicꢀdecouplingꢀcapacitorsꢀrequiredꢀbyꢀtheseꢀvariousꢀ  
bulkꢀcapacitance,ꢀPCBꢀareaꢀandꢀcost.ꢀ  
TheLT3070’sfeaturespermitstate-of-the-artꢀlinearregula-  
torperformance.TheLT3070isidealforhighperformanceꢀ FPGAꢀandꢀASICꢀprocessorsꢀareꢀsufficientꢀtoꢀstabilizeꢀtheꢀ  
FPGAs,ꢀmicroprocessors,ꢀsensitiveꢀcommunicationꢀsup-  
system(seeStabilityandOutputCapacitancesection).Thisꢀ  
plies,ꢀandꢀhighꢀcurrentꢀlogicꢀapplicationsꢀthatꢀalsoꢀoperateꢀ regulatorꢀdesignꢀprovidesꢀampleꢀbandwidthꢀandꢀrespondsꢀ  
overꢀlowꢀinputꢀandꢀoutputꢀvoltages.ꢀ  
toꢀtransientꢀloadꢀchangesꢀinꢀaꢀfewꢀhundredꢀnanosecondsꢀ  
versusꢀregulatorsꢀthatꢀrespondꢀinꢀmanyꢀmicroseconds.ꢀ  
OutputvoltagefortheLT3070isdigitallyselectableinꢀ  
50mVꢀincrementsꢀoverꢀaꢀ0.8Vꢀtoꢀ1.8Vꢀrange.ꢀAꢀmarginingꢀ TheꢀLT3070ꢀalsoꢀincorporatesꢀprecisionꢀcurrentꢀlimiting,ꢀ  
functionꢀallowsꢀtheꢀuserꢀtoꢀadjustꢀsystemꢀoutputꢀvoltageꢀ enable/disablecontrolofoutputvoltageandintegratedꢀ  
inꢀincrementsꢀofꢀ 1ꢁ,ꢀ 3ꢁꢀorꢀ 5ꢁ.ꢀ  
overvoltageꢀ andꢀ thermalꢀ shutdownꢀ protection.ꢀ Theꢀ  
LT3070’sꢀ uniqueꢀ designꢀ combinesꢀ theꢀ benefitsꢀ ofꢀ lowꢀ  
dropoutꢀ voltage,ꢀ highꢀ functionalꢀ integration,ꢀ precisionꢀ  
performanceꢀandꢀUltraFastꢀtransientꢀresponse,ꢀasꢀwellꢀasꢀ  
providingsignificantcostsavingsontheoutputcapacitanceꢀ  
neededꢀinꢀfastꢀloadꢀtransientꢀapplications.ꢀ  
TheꢀICꢀincorporatesꢀaꢀuniqueꢀtrackingꢀfunction,ꢀwhichꢀifꢀ  
enabledbytheuser,controlsanupsteamregulatorpower-  
ingtheLT3070’sinput(seeFigure8).Thistrackingfunctionꢀ  
drivesꢀtheꢀbuckꢀregulatorꢀtoꢀmaintainꢀtheꢀLT3070’sꢀinputꢀ  
voltagetoV ꢀ+300mV.Thisinput-to-outputvoltageꢀ  
OUT  
controlallowstheusertochangetheregulatoroutputꢀ Asꢀlowerꢀvoltageꢀapplicationsꢀbecomeꢀincreasinglyꢀpreva-  
voltage,ꢀandꢀhaveꢀtheꢀswitchingꢀregulatorꢀpoweringꢀtheꢀ lentꢀwithꢀhigherꢀfrequencyꢀswitchingꢀpowerꢀsupplies,ꢀtheꢀ  
LT3070’sꢀinputꢀtoꢀtrackꢀtoꢀtheꢀoptimumꢀinputꢀvoltageꢀwithꢀ LT3070ꢀ offersꢀ superiorꢀ regulationꢀ andꢀ anꢀ appreciableꢀ  
noꢀcomponentꢀchanges.  
3070fa  
ꢀꢄ  
tivestateofthemarginingfunction.Thelogiclowꢀthresholdꢀ  
                                                                             
LT3070  
ApplicAtions inFormAtion  
componentꢀcostꢀsavings.ꢀTheꢀLT3070ꢀstepsꢀtoꢀtheꢀnextꢀ REF/BYP—Voltage Reference  
levelofperformanceforthelatestgenerationFPGAs,DSPsꢀ  
Thispinisthebufferedoutputoftheinternalbandgapꢀ  
andꢀmicroprocessors.ꢀTheꢀsimpleꢀversatilityꢀandꢀbenefitsꢀ  
derivedfromthesecircuitsexceedthepowersupplyneedsꢀ  
ofꢀtoday’sꢀhighꢀperformanceꢀmicroprocessors.  
referenceꢀandꢀhasꢀanꢀoutputꢀimpedanceꢀofꢀ19kΩ.ꢀTheꢀ  
designincludesaninternalcompensationpoleatf ꢀ=4kHz.ꢀ  
C
Aꢀ10nFꢀREF/BYPꢀcapacitorꢀtoꢀGNDꢀcreatesꢀaꢀlowpassꢀpoleꢀ  
atꢀf ꢀ=ꢀ840Hz.ꢀTheꢀ10nFꢀcapacitorꢀdecreasesꢀreferenceꢀ  
LP  
Programming Output Voltage  
voltageꢀnoiseꢀtoꢀaboutꢀ10µV  
ꢀandꢀsoft-startsꢀtheꢀrefer-  
RMS  
Threetri-levelinputpins,V ,V ꢀandV ,selecttheꢀ  
ence.ꢀTheꢀLT3070ꢀonlyꢀsoft-startsꢀtheꢀreferenceꢀvoltageꢀ  
duringꢀanꢀinitialꢀturn-onꢀsequence.ꢀIfꢀtheꢀENꢀpinꢀisꢀtoggledꢀ  
lowafterinitialturn-on,thereferenceremainspowered-up.ꢀ  
Therefore,ꢀtogglingꢀtheꢀENꢀpinꢀfromꢀlowꢀtoꢀhighꢀdoesꢀnotꢀ  
soft-startꢀtheꢀreference.ꢀOnlyꢀbyꢀturningꢀtheꢀBIASꢀsupplyꢀ  
voltageonandoffwillthereferencebesoft-started.Outputꢀ  
voltagenoiseistheRMSsumofthereferencevoltageꢀ  
noiseꢀinꢀadditionꢀtoꢀtheꢀamplifierꢀnoise.ꢀ  
O2 O1  
O0  
valueꢀofꢀoutputꢀvoltage.ꢀTableꢀ1ꢀillustratesꢀtheꢀ3-bitꢀdigitalꢀ  
wordꢀtoꢀoutputꢀvoltageꢀresultingꢀfromꢀsettingꢀtheseꢀpinsꢀ  
high,ꢀlowꢀorꢀallowingꢀthemꢀtoꢀfloat.ꢀ  
Theseꢀpinsꢀmayꢀbeꢀtiedꢀhighꢀorꢀlowꢀbyꢀeitherꢀpin-strappingꢀ  
themꢀtoꢀV ꢀorꢀdrivingꢀthemꢀwithꢀdigitalꢀports.ꢀPinsꢀthatꢀ  
BIAS  
floatmayeitheractuallyfloatorrequirelogicthathasꢀ  
Hi-Zꢀoutputꢀcapability.ꢀThisꢀallowsꢀoutputꢀvoltageꢀtoꢀbeꢀ  
dynamicallyꢀchangedꢀifꢀnecessary.  
TheREF/BYPpinmustnotbeDCloadedbyanythingexceptꢀ  
forꢀapplicationsꢀthatꢀparallelꢀotherꢀLT3070ꢀregulatorsꢀforꢀ  
higherꢀoutputꢀcurrents.ꢀConsultꢀtheꢀApplicationsꢀSectionꢀ  
onꢀParallelingꢀforꢀfurtherꢀdetails.ꢀ  
Outputꢀvoltageꢀisꢀselectableꢀfromꢀaꢀminimumꢀofꢀ0.8Vꢀtoꢀ  
amaximumof1.8Vinincrementsof50mV.TheMSB,ꢀ  
V ,setsthepedestalvoltage,andtheLSB’s,V andꢀ  
O2  
O1ꢀ  
V ꢀincrementꢀV .ꢀ  
O0  
OUTꢀ  
Output Voltage Margining  
Outputꢀvoltageꢀisꢀlimitedꢀtoꢀ1.8Vꢀmaximumꢀbyꢀanꢀinternalꢀ  
overrideꢀofꢀV ꢀ(defaultꢀtoꢀlow)ꢀwhenꢀV ꢀ=ꢀhigh.ꢀ  
Twotri-levelinputpins,MARGSEL(polarity)andMARGTOLꢀ  
(scale),ꢀselectꢀtheꢀpolarityꢀandꢀamountꢀofꢀoutputꢀvoltageꢀ  
margining.ꢀMarginingꢀisꢀprogrammableꢀinꢀincrementsꢀofꢀ  
1ꢁ,ꢀ 3ꢁꢀandꢀ 5ꢁ.ꢀMarginingꢀisꢀinternallyꢀimplementedꢀ  
asꢀaꢀscalingꢀofꢀtheꢀreferenceꢀvoltage.ꢀ  
O1  
O2  
Table 1: VO2 to VO0 Settings vs Output Voltage  
V
V
V
V
V
V
V
V
OUT(NOM)  
O2  
O1  
O0  
OUT(NOM)  
O2  
O1  
O0  
0
0
0
0
0
0
0
0
0
Z
Z
0
0
0
Z
Z
Z
1
1
1
0
0
0
Z
1
0
Z
1
0
Z
1
0
Z
0.80V  
Z
Z
Z
Z
Z
Z
Z
1
1
1
0
Z
Z
Z
1
1
1
X
X
X
1
0
Z
1
0
Z
1
0
Z
1
1.35V  
0.85V  
0.90V  
0.95V  
1.00V  
1.05V  
1.10V  
1.15V  
1.20V  
1.25V  
1.30V  
1.40V  
1.45V  
1.50V  
1.55V  
1.60V  
1.65V  
1.70V  
1.75V  
1.80V  
Tableꢀ2ꢀillustratesꢀtheꢀ2-bitꢀdigitalꢀwordꢀtoꢀoutputꢀvoltageꢀ  
marginingꢀresultingꢀfromꢀsettingꢀtheseꢀpinsꢀhigh,ꢀlowꢀorꢀ  
allowingꢀthemꢀtoꢀfloat.ꢀ  
Theseꢀpinsꢀmayꢀbeꢀsetꢀhighꢀorꢀlowꢀbyꢀeitherꢀpin-strappingꢀ  
themꢀtoꢀV  
ꢀorꢀdrivingꢀthemꢀwithꢀdigitalꢀports.ꢀPinsꢀthatꢀ  
BIAS  
floatmayeitheractuallyfloatorrequirelogicthathasꢀ  
“Hi-Z”ꢀoutputꢀcapability.ꢀThisꢀallowsꢀoutputꢀvoltageꢀtoꢀbeꢀ  
dynamicallyꢀmarginedꢀifꢀnecessary.  
TheMARGSELpindeterminesboththepolarityandtheac-  
Xꢀ=ꢀDon’tꢀCare,ꢀ0ꢀ=ꢀLow,ꢀZꢀ=ꢀFloat,ꢀ1ꢀ=ꢀHigh  
islessthan250mVreferencedtoGNDandenablesnegativeꢀ  
Theꢀinputꢀlogicꢀlowꢀthresholdꢀisꢀlessꢀthanꢀ250mVꢀrefer-  
encedꢀtoꢀGNDꢀandꢀtheꢀlogicꢀhighꢀthresholdꢀisꢀgreaterꢀthanꢀ  
voltagemargining.Thelogichighthresholdisgreaterthanꢀ  
V
ꢀ–ꢀ250mVꢀandꢀenablesꢀpositiveꢀvoltageꢀmargining.ꢀ  
BIAS  
V
–ꢀ250mV.ꢀTheꢀrangeꢀbetweenꢀtheseꢀtwoꢀthresholdsꢀ  
Theꢀvoltageꢀrangeꢀbetweenꢀtheseꢀtwoꢀlogicꢀthresholdsꢀasꢀ  
setꢀbyꢀaꢀwindowꢀcomparatorꢀdefinesꢀtheꢀlogicꢀHi-Zꢀstateꢀ  
andꢀdisablesꢀtheꢀmarginingꢀfunction.  
3070fa  
BIASꢀ  
assetbyawindowcomparatordefinesthelogicHi-Zꢀ  
state.  
ꢀꢅ  
LT3070  
ApplicAtions inFormAtion  
TheꢀMARGTOLꢀpinꢀselectsꢀtheꢀabsoluteꢀvalueꢀofꢀmargin-  
ingꢀ(1ꢁ,ꢀ3ꢁꢀorꢀ5ꢁ)ꢀifꢀenabledꢀbyꢀtheꢀMARGSELꢀinput.ꢀ edgeofV  
typicalꢀBIASꢀpinꢀUVLOꢀthresholdꢀisꢀ1.55Vꢀonꢀtheꢀrisingꢀ  
.TheUVLOcircuitincorporatesabout150mVꢀ  
BIAS  
Theꢀlogicꢀlowꢀthresholdꢀisꢀlessꢀthanꢀ250mVꢀreferencedꢀtoꢀ ofꢀhysteresisꢀonꢀtheꢀfallingꢀedgeꢀofꢀV  
.ꢀ  
BIAS  
GNDꢀandꢀenablesꢀeitherꢀ 1ꢁꢀchangeꢀinꢀV ꢀdependingꢀ  
OUT  
High Efficiency Linear Regulator—Input-to-Output  
Voltage Control  
onꢀtheꢀstateꢀofꢀtheꢀMARGSELꢀpin.ꢀTheꢀlogicꢀhighꢀthresholdꢀ  
isꢀgreaterꢀthanꢀV  
ꢀ–ꢀ250mVꢀandꢀenablesꢀeitherꢀ 5ꢁꢀ  
BIAS  
changeꢀinꢀV ꢀdependingꢀonꢀtheꢀstateꢀofꢀtheꢀMARGSELꢀ  
OUT  
TheVIOC(voltageinput-to-outputcontrol)pinisafunctionꢀ  
tocontrolaswitchingregulatorandfacilitateadesignsolu-  
tionthatmaximizessystemefficiencyathighloadcurrentsꢀ  
andꢀstillꢀprovidesꢀlowꢀdropoutꢀvoltageꢀperformance.  
pin.Thevoltagerangebetweenthesetwologicthresholdsꢀ  
assetbyawindowcomparatordefinesthelogicHi-Zstateꢀ  
andꢀenablesꢀeitherꢀ 3ꢁꢀchangeꢀinꢀV ꢀdependingꢀonꢀtheꢀ  
OUT  
stateꢀofꢀtheꢀMARGSELꢀpin.  
TheVIOCpinistheoutputofanintegratedtranscon-  
ductanceꢀamplifierꢀthatꢀsourcesꢀandꢀsinksꢀaboutꢀ250µAꢀ  
ofꢀcurrent.ꢀItꢀtypicallyꢀregulatesꢀtheꢀoutputꢀofꢀmostꢀLTC®ꢀ  
switchingꢀregulatorsꢀorꢀLTM®ꢀpowerꢀmodules,ꢀbyꢀsinkingꢀ  
currentfromtheITHcompensationnode.TheVIOCfunctionꢀ  
controlsꢀaꢀbuckꢀregulatorꢀpoweringꢀtheꢀLT3070’sꢀinputꢀbyꢀ  
Table 2: Programming Margining  
MARGSEL  
MARGTOL  
ꢀ OF V  
OUT(NOM)  
0
0
0
Z
Z
Z
1
1
1
0
Z
1
0
Z
1
0
Z
1
–1  
–3  
–5  
0
maintainingꢀtheꢀLT3070’sꢀinputꢀvoltageꢀtoꢀV ꢀ+ꢀ300mV.ꢀ  
OUT  
0
This300mVV -V differentialvoltageischosentoꢀ  
IN OUT  
0
provideꢀfastꢀtransientꢀresponseꢀandꢀgoodꢀhighꢀfrequencyꢀ  
PSRRwhileminimizingpowerdissipationandmaximizingꢀ  
efficiency.ꢀForꢀexample,ꢀ1.5Vꢀtoꢀ1.2Vꢀconversionꢀandꢀ1.3Vꢀ  
toꢀ1Vꢀconversionꢀyieldꢀ1.5Wꢀmaximumꢀpowerꢀdissipationꢀ  
atꢀ5Aꢀfullꢀoutputꢀcurrent.  
1
3
5
Enable Function—Turning On and Off  
Figureꢀ2ꢀdepictsꢀthatꢀtheꢀswitcher’sꢀfeedbackꢀresistorꢀnet-  
worksetsthemaximumswitchingregulatoroutputvoltageꢀ  
ifthelinearregulatorisdisabled.However,oncetheLT3070ꢀ  
isenabled,theVIOCfeedbackloopdecreasestheswitchingꢀ  
TheꢀENꢀpinꢀenables/disablesꢀtheꢀoutputꢀdeviceꢀonly.ꢀTheꢀ  
LT3070ꢀreferenceꢀandꢀallꢀsupportꢀfunctionsꢀremainꢀactiveꢀ  
ifꢀV  
ꢀisꢀaboveꢀitsꢀUVLOꢀthreshold.ꢀPullingꢀtheꢀENꢀpinꢀ  
BIAS  
lowputstheLT3070intonapmode.Innapmode,theꢀ  
referenceꢀcircuitꢀisꢀactive,ꢀbutꢀtheꢀoutputꢀisꢀdisabledꢀandꢀ  
quiescentꢀcurrentꢀdecreases.  
regulatorꢀoutputꢀvoltageꢀbackꢀtoꢀV ꢀ+ꢀ300mV.  
OUT  
UsingꢀtheꢀVIOCꢀfunctionꢀcreatesꢀaꢀfeedbackꢀloopꢀbetweenꢀ  
theꢀLT3070ꢀandꢀtheꢀswitchingꢀregulator.ꢀAsꢀsuch,ꢀtheꢀfeed-  
backꢀloopꢀmustꢀbeꢀfrequencyꢀcompensatedꢀforꢀstability.ꢀ  
Fortunately,theconnectionofVIOCtomanyLTCswitchingꢀ  
regulatorꢀITHꢀpinsꢀrepresentsꢀaꢀhighꢀimpedanceꢀcharac-  
teristicꢀwhichꢀisꢀtheꢀoptimumꢀcircuitꢀnodeꢀtoꢀfrequencyꢀ  
compensatethefeedbackloop.Figure2illustratestheꢀ  
typicalfrequencycompensationnetworkusedattheVIOCꢀ  
nodeꢀtoꢀGND.  
DriveꢀtheꢀENꢀpinꢀwithꢀeitherꢀaꢀdigitalꢀlogicꢀportꢀorꢀanꢀopen-  
collectorNPNoranopen-drainNMOSterminatedwithꢀ  
aꢀpull-upꢀresistorꢀtoꢀV  
.ꢀTheꢀpull-upꢀresistorꢀmustꢀbeꢀ  
IH  
BIAS  
lessꢀthanꢀ35kꢀtoꢀmeetꢀtheꢀV ꢀconditionꢀofꢀtheꢀENꢀpin.ꢀIfꢀ  
unused,ꢀconnectꢀENꢀtoꢀBIAS.  
Input Undervoltage Lockout on BIAS Pin  
Anꢀ internalꢀ undervoltageꢀ lockoutꢀ (UVLO)ꢀ comparatorꢀ  
TheꢀVIOCꢀamplifierꢀcharacteristicsꢀare:  
monitorsꢀtheꢀBIASꢀsupplyꢀvoltage.ꢀIfꢀV  
ꢀdropsꢀbelowꢀ  
BIAS  
ꢀ g ꢀ=ꢀ3.2mS,ꢀI  
=ꢀ 250µA,ꢀBWꢀ=ꢀ10MHz.  
OUTꢀ  
theUVLOthreshold,allfunctionsshutdown,thepassꢀ  
m
transistorꢀisꢀgatedꢀoffꢀandꢀoutputꢀcurrentꢀfallsꢀtoꢀzero.ꢀTheꢀ  
IftheVIOCfunctionisnotused,terminatetheVIOCpintoGNDꢀ  
withꢀaꢀsmallꢀcapacitorꢀ(1000pF)ꢀtoꢀpreventꢀoscillations.  
3070fa  
ꢀꢆ  
LT3070  
ApplicAtions inFormAtion  
LT3070  
IN  
OUT  
LOAD  
SWITCHING REGULATOR  
REF  
+
+
PWM  
FB  
VIOC  
V
+
OUT  
V
300mV  
REF  
REFERENCE  
I
TH  
3070 F02  
Figure 2. VIOC Control Block Diagram  
PWRGD—Power Good  
LowESR,X5RorX7Rceramicchipcapacitorsaretheꢀ  
LTCꢀrecommendedꢀchoiceꢀforꢀstabilizingꢀtheꢀLT3070.ꢀAd-  
ditionalꢀbulkꢀcapacitorsꢀdistributedꢀbeyondꢀtheꢀimmediateꢀ  
decouplingcapacitorsareacceptableastheirparasiticESLꢀ  
andꢀESR,ꢀcombinedꢀwithꢀtheꢀdistributedꢀPCBꢀinductanceꢀ  
isolatesthemfromtheprimarycompensationpoleprovidedꢀ  
byꢀtheꢀlocalꢀsurfaceꢀmountꢀceramicꢀcapacitors.ꢀ  
PWRGDpinisanopen-drainNMOSdigitaloutputthatꢀ  
activelyꢀpullsꢀlowꢀifꢀanyꢀoneꢀofꢀtheseꢀfaultꢀmodesꢀisꢀde-  
tected:  
•ꢀ V ꢀisꢀlessꢀthanꢀ90ꢁꢀofꢀV  
ꢀonꢀtheꢀrisingꢀ  
OUT  
edgeꢀofꢀV  
OUT(NOMINAL)  
.
OUTꢀ  
•ꢀ V ꢀdropsꢀbelowꢀ85ꢁꢀofꢀV  
ꢀforꢀmoreꢀthanꢀ  
TheLT3070requiresaminimumoutputcapacitanceofꢀ  
15µFforstability.LTCstronglyrecommendsthattheoutputꢀ  
capacitornetworkconsistofseverallowvalueceramicꢀ  
capacitorsꢀinꢀparallel.ꢀ  
OUT  
25µs.  
OUT(NOMINAL)  
•ꢀ V ꢀisꢀlessꢀthanꢀitsꢀundervoltageꢀlockoutꢀthreshold.  
BIAS  
•ꢀ TheꢀOUT-to-INꢀreverse-currentꢀdetectorꢀactivates.  
•ꢀ Junctionꢀtemperatureꢀexceedsꢀ145°Cꢀtypically.*  
Why Do Multiple, Small-Value Output Capacitors  
Connected in Parallel Work Better?  
ꢀ *Theꢀjunctionꢀtemperatureꢀdetectorꢀisꢀanꢀearlyꢀwarningꢀ  
indicatorꢀthatꢀtripsꢀapproximatelyꢀ20°Cꢀbeforeꢀthermalꢀ  
shutdownꢀengages.ꢀ  
TheꢀLT3070’sꢀunity-gainꢀbandwidthꢀwithꢀC ꢀofꢀ15µFꢀisꢀ  
OUT  
about1MHzatitsfull-loadcurrentof5A.Surfacemountedꢀ  
MLCCꢀ capacitorsꢀ haveꢀ aꢀ self-resonanceꢀ frequencyꢀ ofꢀ  
f =1/(2π√LC),whichmustbepushedtoafrequencyhigherꢀ  
Stability and Output Capacitance  
R
thanꢀtheꢀregulatorꢀbandwidth.ꢀStandardꢀMLCCꢀcapacitorsꢀ  
areacceptable.Tokeeptheresonantfrequencygreaterꢀ  
thanꢀ1MHz,ꢀtheꢀproductꢀ1/(2π√LC)ꢀmustꢀbeꢀgreaterꢀthanꢀ  
1MHz.Atthisbandwidth,PCBviascanaddsignificantꢀ  
inductance,ꢀthusꢀtheꢀfundamentalꢀdecouplingꢀcapacitorsꢀ  
mustꢀbeꢀmountedꢀonꢀtheꢀsameꢀplaneꢀasꢀtheꢀLT3070.  
TheꢀLT3070’sꢀfeedbackꢀloopꢀrequiresꢀanꢀoutputꢀcapacitorꢀ  
forꢀstability.ꢀChooseꢀC ꢀcarefullyꢀandꢀmountꢀitꢀinꢀcloseꢀ  
OUT  
proximitytotheLT3070’sOUTandGNDpins.Includewideꢀ  
routingꢀplanesꢀforꢀOUTꢀandꢀGNDꢀtoꢀminimizeꢀinductance.ꢀ  
Ifꢀpossible,ꢀmountꢀtheꢀregulatorꢀimmediatelyꢀadjacentꢀtoꢀ  
theapplicationloadtominimizedistributedinductanceꢀ  
forꢀ optimalꢀ loadꢀ transientꢀ performance.ꢀ Point-of-Loadꢀ  
applicationsꢀ presentꢀ theꢀ bestꢀ caseꢀ layoutꢀ scenarioꢀ forꢀ  
extractingꢀfullꢀLT3070ꢀperformance.ꢀ  
Typical0603or0805case-sizecapacitorshaveanESLofꢀ  
~800pHandPCBmountingcancontributeupto~200pH.ꢀ  
Thus,ꢀ itꢀ becomesꢀ necessaryꢀ toꢀ reduceꢀ theꢀ parasiticꢀ  
3070fa  
ꢀꢇ  
LT3070  
ApplicAtions inFormAtion  
inductancebyusingaparallelcapacitorcombination.ꢀ applications,ꢀthisꢀtotalꢀvalueꢀofꢀcapacitanceꢀmayꢀbeꢀcloseꢀ  
Aꢀsuitableꢀmethodologyꢀmustꢀcontrolꢀthisꢀparallelingꢀasꢀ toꢀtheꢀLT3070’sꢀminimumꢀ15µFꢀcapacitanceꢀrequirement.ꢀ  
capacitorswiththesameself-resonantfrequency,f ,willꢀ Thismayreducetherequiredvalueofcapacitancedirectlyꢀ  
R
formꢀaꢀtankꢀcircuitꢀthatꢀcanꢀinduceꢀringingꢀofꢀtheirꢀownꢀ atꢀtheꢀLT3070’sꢀoutput.ꢀMultipleꢀlowꢀvalueꢀcapacitorsꢀinꢀ  
accord.SmallamountsofESR(5mΩto20mΩ)havesomeꢀ parallelꢀpresentꢀaꢀfavorableꢀfrequencyꢀcharacteristicꢀthatꢀ  
benefitꢀinꢀdampeningꢀtheꢀresonantꢀloop,ꢀbutꢀhigherꢀESRsꢀ pushesmanyoftheparasiticpoles/zeroesbeyondtheꢀ  
degradeꢀtheꢀcapacitorꢀresponseꢀtoꢀtransientꢀloadꢀstepsꢀ LT3070’sꢀunity-gainꢀcrossoverꢀfrequency.ꢀThisꢀtechniqueꢀ  
withꢀrise/fallꢀtimesꢀlessꢀthanꢀ1µs.ꢀTheꢀmostꢀareaꢀefficientꢀ illustratesthemethodthatextractsthefullbandwidthꢀ  
parallelꢀcapacitorꢀcombinationꢀisꢀaꢀgraduatedꢀ4/2/1ꢀscaleꢀ performanceꢀofꢀtheꢀLT3070.  
ofꢀf ꢀofꢀtheꢀsameꢀcaseꢀsize.ꢀUnderꢀtheseꢀconditions,ꢀtheꢀ  
R
Giveadditionalconsiderationtotheuseofceramiccapaci-  
tors.Ceramiccapacitorsaremanufacturedwithavarietyofꢀ  
dielectrics,eachwithdifferentbehavioracrosstemperatureꢀ  
andꢀappliedꢀvoltage.ꢀTheꢀmostꢀcommonꢀdielectricsꢀusedꢀ  
arespecifiedwithEIAtemperaturecharacteristiccodesofꢀ  
Z5U,ꢀY5V,ꢀX5RꢀandꢀX7R.ꢀTheꢀZ5UꢀandꢀY5Vꢀdielectricsꢀareꢀ  
goodꢀforꢀprovidingꢀhighꢀcapacitancesꢀinꢀaꢀsmallꢀpackage,ꢀ  
buttheytendtohavestrongvoltageandtemperatureꢀ  
coefficientsꢀasꢀshownꢀinꢀFiguresꢀ4ꢀandꢀ5.ꢀWhenꢀusedꢀwithꢀ  
aꢀ5Vꢀregulator,ꢀaꢀ16Vꢀ10µFꢀY5Vꢀcapacitorꢀcanꢀexhibitꢀanꢀ  
effectivevalueaslowas1µFꢀtoꢀ2µFꢀforꢀtheꢀDCꢀbiasꢀvoltageꢀ  
appliedandovertheoperatingtemperaturerange.TheX5Rꢀ  
andꢀX7Rꢀdielectricsꢀresultꢀinꢀmoreꢀstableꢀcharacteristicsꢀ  
andaremoresuitableforuseastheoutputcapacitor.ꢀ  
TheX7Rtypehasbetterstabilityacrosstemperature,ꢀ  
whileꢀtheꢀX5Rꢀisꢀlessꢀexpensiveꢀandꢀisꢀavailableꢀinꢀhigherꢀ  
values.ꢀCareꢀstillꢀmustꢀbeꢀexercisedꢀwhenꢀusingꢀX5Rꢀandꢀ  
individualESLsarerelativelyuniform,andtheresonanceꢀ  
peaksꢀareꢀdeconstructivelyꢀspreadꢀbeyondꢀtheꢀregulatorꢀ  
bandwidth.ꢀTheꢀrecommendedꢀparallelꢀcombinationꢀthatꢀ  
approximatesꢀ15µFꢀisꢀ10µFꢀ+ꢀ4.7µFꢀ+ꢀ2.2µF.ꢀCapacitorsꢀ  
withꢀcaseꢀsizesꢀlargerꢀthanꢀ0805ꢀhaveꢀhigherꢀESLꢀandꢀ  
lowerꢀ ESRꢀ (<5mΩ).ꢀ Therefore,ꢀ moreꢀ capacitorsꢀ withꢀ  
smallerꢀvaluesꢀ(<10µF)ꢀmustꢀbeꢀchosen.ꢀUsersꢀshouldꢀ  
considerꢀnewꢀgeneration,ꢀlowꢀinductanceꢀcapacitorsꢀtoꢀ  
pushꢀoutꢀf ꢀandꢀmaximizeꢀstability.ꢀReferꢀtoꢀtheꢀsurfaceꢀ  
R
mountꢀceramicꢀcapacitorꢀmanufacturer’sꢀdataꢀsheetsꢀforꢀ  
capacitorꢀspecifications.ꢀFigureꢀ3ꢀillustratesꢀanꢀoptimumꢀ  
PCBꢀlayoutꢀforꢀtheꢀparallelꢀoutputꢀcapacitorꢀcombination,ꢀ  
butꢀalsoꢀillustratesꢀtheꢀGNDꢀconnectionꢀbetweenꢀtheꢀINꢀ  
capacitorandtheOUTcapacitorstominimizetheACꢀ  
GNDꢀloopꢀforꢀfastꢀloadꢀtransients.ꢀThisꢀtightꢀbypassingꢀ  
connectionꢀminimizesꢀEMIꢀandꢀoptimizesꢀbypassing.ꢀ  
ManyoftheapplicationsinwhichtheLT3070excels,ꢀ X7Rcapacitors;theX5RandX7Rcodesonlyspecifyꢀ  
suchꢀasꢀFPGA,ꢀASICꢀprocessorꢀorꢀDSPꢀsupplies,ꢀtypicallyꢀ operatingꢀtemperatureꢀrangeꢀandꢀmaximumꢀcapacitanceꢀ  
requireahighfrequencydecouplingcapacitornetworkforꢀ changeꢀ overꢀ temperature.ꢀ Capacitanceꢀ changeꢀ dueꢀ toꢀ  
thedevicebeingpowered.Thisnetworkgenerallyconsistsꢀ DCꢀbiasꢀwithꢀX5RꢀandꢀX7RꢀcapacitorsꢀisꢀbetterꢀthanꢀY5Vꢀ  
ofꢀmanyꢀlowꢀvalueꢀceramicꢀcapacitorsꢀinꢀparallel.ꢀInꢀsomeꢀ andꢀZ5Uꢀcapacitors,ꢀbutꢀcanꢀstillꢀbeꢀsignificantꢀenoughꢀtoꢀ  
dropcapacitorvaluesbelowappropriatelevels.Capacitorꢀ  
DCꢀbiasꢀcharacteristicsꢀtendꢀtoꢀimproveꢀasꢀcomponentꢀ  
caseꢀsizeꢀincreases,ꢀbutꢀexpectedꢀcapacitanceꢀatꢀoperat-  
LT3070  
SENSE  
IN OUT  
GND  
ingꢀvoltageꢀshouldꢀbeꢀverified.ꢀVoltageꢀandꢀtemperatureꢀ  
coefficientsꢀareꢀnotꢀtheꢀonlyꢀsourcesꢀofꢀproblems.ꢀSomeꢀ  
ceramiccapacitorshaveapiezoelectricresponse.Apiezo-  
electricꢀdeviceꢀgeneratesꢀvoltageꢀacrossꢀitsꢀterminalsꢀdueꢀ  
toꢀmechanicalꢀstress,ꢀsimilarꢀtoꢀtheꢀwayꢀaꢀpiezoelectricꢀ  
microphoneworks.Foraceramiccapacitorthestressꢀ  
canꢀbeꢀinducedꢀbyꢀvibrationsꢀinꢀtheꢀsystemꢀorꢀthermalꢀ  
transients.ꢀ  
Lo-Z  
INPUT  
LOAD PLANE  
2.2µF  
4.7µF  
10µF  
47µF  
3070 F03  
Figure ꢁ. Example PCB Layout  
3070fa  
ꢀꢈ  
LT3070  
ApplicAtions inFormAtion  
20  
theꢀLT3070ꢀbackꢀtoꢀtheꢀpowerꢀsupplyꢀground),ꢀlargeꢀinputꢀ  
capacitorsꢀareꢀrequiredꢀtoꢀavoidꢀanꢀunstableꢀapplication.ꢀ  
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10µF  
0
X5R  
ThisꢀisꢀdueꢀtoꢀtheꢀinductanceꢀofꢀtheꢀwireꢀformingꢀanꢀLCꢀ  
tankꢀcircuitꢀwithꢀtheꢀinputꢀcapacitorꢀandꢀnotꢀaꢀresultꢀofꢀtheꢀ  
LT3070ꢀbeingꢀunstable.ꢀTheꢀselfꢀinductance,ꢀorꢀisolatedꢀ  
inductance,ꢀofꢀaꢀwireꢀisꢀdirectlyꢀproportionalꢀtoꢀitsꢀlength.ꢀ  
However,ꢀtheꢀdiameterꢀofꢀaꢀwireꢀdoesꢀnotꢀhaveꢀaꢀmajorꢀ  
influenceꢀonꢀitsꢀselfꢀinductance.ꢀForꢀexample,ꢀoneꢀinchꢀofꢀ  
18-AWG,ꢀ0.04ꢀinchꢀdiameterꢀwireꢀhasꢀ28nHꢀofꢀselfꢀinduc-  
tance.ꢀTheꢀselfꢀinductanceꢀofꢀaꢀ2-AWGꢀisolatedꢀwireꢀwithꢀ  
aꢀdiameterꢀofꢀ0.26ꢀinchꢀisꢀaboutꢀhalfꢀtheꢀinductanceꢀofꢀaꢀ  
18-AWGꢀwire.ꢀTheꢀoverallꢀselfꢀinductanceꢀofꢀaꢀwireꢀcanꢀ  
beꢀreducedꢀinꢀtwoꢀways.ꢀOneꢀisꢀtoꢀdivideꢀtheꢀcurrentꢀflow-  
ingꢀtowardsꢀtheꢀLT3070ꢀbetweenꢀtwoꢀparallelꢀconductorsꢀ  
whichꢀflowsꢀinꢀtheꢀsameꢀdirectionꢀinꢀeach.ꢀInꢀthisꢀcase,ꢀ  
theꢀfartherꢀtheꢀwiresꢀareꢀplacedꢀapartꢀfromꢀeachꢀother,ꢀtheꢀ  
moreꢀinductanceꢀwillꢀbeꢀreduced,ꢀupꢀtoꢀaꢀ50ꢁꢀreductionꢀ  
whenꢀplacedꢀaꢀfewꢀinchesꢀapart.ꢀSplittingꢀtheꢀwiresꢀbasi-  
callyꢀconnectsꢀtwoꢀequalꢀinductorsꢀinꢀparallel.ꢀHowever,ꢀ  
whenꢀplacedꢀinꢀcloseꢀproximityꢀfromꢀeachꢀother,ꢀmutualꢀ  
inductanceꢀisꢀaddedꢀtoꢀtheꢀoverallꢀselfꢀinductanceꢀofꢀtheꢀ  
wires.Themosteffectivewaytoreduceoverallinductanceꢀ  
isꢀtoꢀplaceꢀtheꢀforwardꢀandꢀreturn-currentꢀconductorsꢀ(theꢀ  
wireꢀforꢀtheꢀinputꢀandꢀtheꢀwireꢀforꢀtheꢀreturnꢀground)ꢀinꢀ  
verycloseproximity.Two18-AWGwiresseparatedbyꢀ  
0.05ꢀinchꢀreduceꢀtheꢀoverallꢀselfꢀinductanceꢀtoꢀaboutꢀone-  
fourthꢀofꢀaꢀsingleꢀisolatedꢀwire.ꢀIfꢀtheꢀLT3070ꢀisꢀpoweredꢀ  
byꢀaꢀbatteryꢀmountedꢀinꢀcloseꢀproximityꢀwithꢀgroundꢀandꢀ  
powerplanesonthesamecircuitboard,a47µFinputꢀ  
capacitorꢀisꢀsufficientꢀforꢀstability.ꢀHowever,ꢀifꢀtheꢀLT3070ꢀ  
isꢀpoweredꢀbyꢀaꢀdistantꢀsupply,ꢀuseꢀaꢀlowꢀESR,ꢀlargeꢀvalueꢀ  
inputꢀcapacitorꢀonꢀtheꢀorderꢀofꢀ330µF.ꢀAsꢀpowerꢀsupplyꢀ  
outputꢀimpedanceꢀvaries,ꢀtheꢀminimumꢀinputꢀcapacitanceꢀ  
neededꢀforꢀapplicationꢀstabilityꢀalsoꢀvaries.  
–20  
–40  
–60  
Y5V  
–80  
–100  
10 12  
DC BIAS VOLTAGE (V)  
0
2
4
6
8
14 16  
3070 F04  
Figure 4. Ceramic Capacitor DC Bias Characteristics  
40  
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10µF  
20  
X5R  
0
–20  
Y5V  
–40  
–60  
–80  
–100  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
3070 F05  
Figure 5. Ceramic Capacitor Temperature Characteristics  
Stability and Input Capacitance  
Theꢀ LT3070ꢀ isꢀ stableꢀ withꢀ aꢀ minimumꢀ capacitanceꢀ ofꢀ  
47µFꢀconnectedꢀtoꢀitsꢀINꢀpins.ꢀUseꢀlowꢀESRꢀcapacitorsꢀtoꢀ  
minimizeinstantaneousvoltagedropsunderlargeloadꢀ  
transientꢀconditions.ꢀLargeꢀV ꢀdroopsꢀduringꢀlargeꢀloadꢀ  
IN  
transientsꢀmayꢀcauseꢀtheꢀregulatorꢀtoꢀenterꢀdropoutꢀwithꢀ  
correspondingꢀ degradationꢀ inꢀ loadꢀ transientꢀ response.ꢀ  
Increasedꢀvaluesꢀofꢀinputꢀandꢀoutputꢀcapacitanceꢀmayꢀbeꢀ  
necessarydependingonanapplication’srequirements.ꢀ  
Sufficientꢀ inputꢀ capacitanceꢀ isꢀ criticalꢀ asꢀ theꢀ circuitꢀ isꢀ  
intentionallyoperatedclosetodropouttominimizepower.ꢀ  
Ideally,ꢀtheꢀoutputꢀimpedanceꢀofꢀtheꢀsupplyꢀthatꢀpowersꢀ  
INꢀshouldꢀbeꢀlessꢀthanꢀ10mΩꢀtoꢀsupportꢀaꢀ5Aꢀloadꢀwithꢀ  
largeꢀtransients.  
Bias Pin Capacitance Requirements  
TheBIASpinsuppliescurrenttomostoftheinternalꢀ  
controlꢀcircuitryꢀandꢀtheꢀoutputꢀstageꢀdrivingꢀtheꢀpassꢀ  
transistor.TheLT3070requiresaminimum2.2µFby-  
passꢀ capacitorꢀ forꢀ stabilityꢀ andꢀ properꢀ operation.ꢀ Toꢀ  
ensureꢀ properꢀ operation,ꢀ theꢀ BIASꢀ voltageꢀ mustꢀ sat-  
isfyꢀtheꢀfollowingꢀconditions:ꢀ2.2Vꢀ≤ꢀV  
ꢀ≤ꢀ3.6Vꢀandꢀ  
BIAS  
V
ꢀ ≥ꢀ (1.25ꢀ •ꢀ V ꢀ +ꢀ 1V).ꢀ Forꢀ V ꢀ ≤ꢀ 0.95V,ꢀ theꢀ  
Inꢀcasesꢀwhereꢀwireꢀisꢀusedꢀtoꢀconnectꢀaꢀpowerꢀsupplyꢀ  
toꢀtheꢀinputꢀofꢀtheꢀLT3070ꢀ(andꢀalsoꢀfromꢀtheꢀgroundꢀofꢀ  
BIAS  
OUT OUT  
minimumꢀBIASꢀvoltageꢀisꢀlimitedꢀtoꢀ2.2V.ꢀ  
3070fa  
ꢁ0  
TheꢀLT3070ꢀprovidesꢀaꢀKelvinꢀsenseꢀpinꢀforꢀV  
                                     
,ꢀallowingꢀ  
OUT  
LT3070  
ApplicAtions inFormAtion  
Load Regulation  
valuesꢀofꢀinput-to-outputꢀvoltageꢀupꢀtoꢀtheꢀabsoluteꢀmaxi-  
mumꢀvoltageꢀrating.ꢀSeeꢀtheꢀCurrentꢀLimitꢀvsꢀV ꢀcurveꢀinꢀ  
IN  
theꢀTypicalꢀPerformanceꢀCharacteristics.ꢀ  
theꢀapplicationꢀtoꢀcorrectꢀforꢀparasiticꢀpackageꢀandꢀPCBꢀ  
I-Rꢀdrops.ꢀHowever,LTCꢀrecommendsꢀthatꢀtheꢀSENSEꢀpinꢀ Duringstart-up,aftertheBIASvoltagehascleareditsUVLOꢀ  
terminateincloseproximitytotheLT3070’sOUTpins.ꢀ thresholdꢀandꢀV ꢀisꢀincreasing,ꢀoutputꢀvoltageꢀincreasesꢀ  
IN  
Thisminimizesparasiticinductanceandoptimizesregula-  
tion.ꢀTheꢀLT3070ꢀhandlesꢀmoderateꢀlevelsꢀofꢀoutputꢀlineꢀ  
atꢀtheꢀrateꢀofꢀcurrentꢀlimitꢀchargingꢀC .ꢀ  
OUTꢀ  
Withꢀaꢀhighꢀinputꢀvoltage,ꢀaꢀproblemꢀcanꢀoccurꢀwhereꢀtheꢀ  
removalꢀofꢀanꢀoutputꢀshortꢀwillꢀnotꢀallowꢀtheꢀoutputꢀvolt-  
agetorecover.Otherregulatorswithcurrentlimitfoldbackꢀ  
alsoꢀexhibitꢀthisꢀphenomenon,ꢀsoꢀitꢀisꢀnotꢀuniqueꢀtoꢀtheꢀ  
LT3070.ꢀTheꢀloadꢀlineꢀforꢀsuchꢀaꢀloadꢀmayꢀintersectꢀtheꢀ  
impedance,ꢀbutꢀexcessiveꢀimpedanceꢀbetweenꢀV ꢀandꢀ  
OUT  
C
ꢀcausesꢀexcessiveꢀphaseꢀshiftꢀinꢀtheꢀfeedbackꢀloopꢀ  
OUT  
andꢀadverselyꢀaffectsꢀstability.  
Figureꢀ1ꢀinꢀtheꢀPinꢀFunctionsꢀsectionꢀillustratesꢀtheꢀKelvin-  
Senseꢀconnectionꢀmethodꢀthatꢀeliminatesꢀvoltageꢀdropsꢀ outputꢀcurrentꢀcurveꢀatꢀtwoꢀpoints:ꢀnormalꢀoperationꢀandꢀ  
duetoPCBtraceresistance.However,notethatthevoltageꢀ theꢀSOAꢀrestrictedꢀloadꢀcurrentꢀsettings.ꢀAꢀcommonꢀsitu-  
dropꢀacrossꢀtheꢀexternalꢀPCBꢀtracesꢀaddsꢀtoꢀtheꢀdropoutꢀ ationꢀisꢀimmediatelyꢀafterꢀtheꢀremovalꢀofꢀaꢀshortꢀcircuit,ꢀ  
voltageꢀofꢀtheꢀregulator.ꢀTheꢀSENSEꢀpinꢀinputꢀbiasꢀcurrentꢀ butꢀwithꢀaꢀstaticꢀloadꢀ≥ꢀ1A.ꢀInꢀthisꢀsituation,ꢀremovalꢀofꢀtheꢀ  
dependsꢀonꢀtheꢀselectedꢀoutputꢀvoltage.ꢀSENSEꢀpinꢀinputꢀ loadꢀorꢀreductionꢀofꢀI ꢀtoꢀ<1Aꢀwillꢀclearꢀthisꢀconditionꢀ  
OUT  
currentvariesfrom50µAtypicallyatV ꢀ=0.8Vto300µAꢀ andꢀallowꢀV ꢀtoꢀreturnꢀtoꢀnormalꢀregulation.  
OUT  
OUT  
typicallyꢀatꢀV ꢀ=ꢀ1.8V.  
OUT  
Reverse Voltage  
Short-Circuit and Overload Recovery  
TheꢀLT3070ꢀincorporatesꢀaꢀcircuitꢀthatꢀdetectsꢀifꢀV ꢀde-  
creasesbelowV .Thisreverse-voltagedetectorhasꢀ  
IN  
LikeꢀmanyꢀICꢀpowerꢀregulators,ꢀtheꢀLT3070ꢀhasꢀsafeꢀop-  
eratingꢀareaꢀ(SOA)ꢀprotection.ꢀTheꢀsafeꢀareaꢀprotectionꢀ aꢀtypicalꢀthresholdꢀofꢀaboutꢀ(V ꢀ–ꢀV )ꢀ=ꢀ–6mV.ꢀIfꢀtheꢀ  
OUTꢀ  
IN  
OUT  
decreasescurrentlimitasinput-to-outputvoltageincreasesꢀ thresholdꢀisꢀexceeded,ꢀthisꢀdetectorꢀcircuitꢀturnsꢀoffꢀtheꢀ  
andkeepsthepowertransistorinsideasafeoperatingꢀ drivetotheinternalNMOSpasstransistor,therebyturningꢀ  
regionꢀforꢀallꢀvaluesꢀofꢀinput-to-outputꢀvoltageꢀupꢀtoꢀtheꢀ offꢀtheꢀoutput.ꢀTheꢀoutputꢀpullsꢀlowꢀwithꢀtheꢀloadꢀcurrentꢀ  
absoluteꢀmaximumꢀvoltageꢀrating.ꢀV  
ꢀmustꢀbeꢀaboveꢀ dischargingꢀtheꢀoutputꢀcapacitance.ꢀThisꢀcircuit’sꢀintentꢀ  
BIAS  
theꢀUVLOꢀthresholdꢀforꢀanyꢀfunction.ꢀTheꢀLT3070ꢀhasꢀaꢀ isꢀtoꢀlimitꢀandꢀpreventꢀback-feedꢀcurrentꢀfromꢀOUTꢀtoꢀINꢀ  
precisionꢀcurrentꢀlimitꢀspecifiedꢀatꢀ 20ꢁꢀthatꢀisꢀactiveꢀifꢀ ifꢀtheꢀinputꢀvoltageꢀcollapsesꢀdueꢀtoꢀaꢀfaultꢀorꢀoverloadꢀ  
V ꢀisꢀaboveꢀUVLO.ꢀ  
BIAS  
condition.  
Underꢀ conditionsꢀ ofꢀ maximumꢀ I  
IN OUT  
ꢀ andꢀ maximumꢀ  
LOAD  
Thermal Considerations  
V -V ꢀtheꢀdevice’sꢀpowerꢀdissipationꢀpeaksꢀatꢀaboutꢀ  
Theꢀ LT3070’sꢀ maximumꢀ ratedꢀ junctionꢀ temperatureꢀ ofꢀ  
125°Cꢀlimitsꢀitsꢀpowerꢀhandlingꢀcapabilityꢀandꢀisꢀdomi-  
natedꢀbyꢀtheꢀoutputꢀcurrentꢀmultipliedꢀbyꢀtheꢀinput/outputꢀ  
voltageꢀdifferential:ꢀ  
3W.ꢀIfꢀambientꢀtemperatureꢀisꢀhighꢀenough,ꢀdieꢀjunctionꢀ  
temperatureꢀwillꢀexceedꢀtheꢀ125°Cꢀmaximumꢀoperatingꢀ  
temperature.ꢀ Ifꢀ thisꢀ occurs,ꢀ theꢀ LT3070ꢀ reliesꢀ onꢀ twoꢀ  
additionalthermalsafetyfeatures.Atabout145°C,theꢀ  
PWRGDꢀoutputꢀpullsꢀlowꢀprovidingꢀanꢀearlyꢀwarningꢀofꢀanꢀ  
impendingthermalshutdowncondition.At165°Ctypically,ꢀ  
theꢀLT3070’sꢀthermalꢀshutdownꢀengagesꢀandꢀtheꢀoutputꢀisꢀ  
shutꢀdownꢀuntilꢀtheꢀICꢀtemperatureꢀfallsꢀbelowꢀtheꢀthermalꢀ  
hysteresislimit.TheSOAprotectiondecreasescurrentlimitꢀ  
asꢀtheꢀIN-to-OUTꢀvoltageꢀincreasesꢀandꢀkeepsꢀtheꢀpowerꢀ  
dissipationꢀatꢀsafeꢀlevelsꢀforꢀallꢀvaluesꢀofꢀinput-to-outputꢀ  
voltage.ꢀTheꢀLT3070ꢀprovidesꢀsomeꢀoutputꢀcurrentꢀatꢀallꢀ  
ꢀ I ꢀ•ꢀ(V ꢀ–ꢀV )ꢀ  
OUT  
IN  
OUT  
TheꢀLT3070’sꢀinternalꢀpowerꢀandꢀthermalꢀlimitingꢀcircuitryꢀ  
protectꢀitꢀunderꢀoverloadꢀconditions.ꢀForꢀcontinuousꢀnor-  
malꢀloadꢀconditions,ꢀdoꢀnotꢀexceedꢀtheꢀmaximumꢀjunctionꢀ  
temperatureof125°C.Givecarefulconsiderationtoallꢀ  
sourcesꢀofꢀthermalꢀresistanceꢀfromꢀjunctionꢀtoꢀambient.ꢀ  
Thisincludesjunctiontocase,case-to-heatsinkinterface,ꢀ  
3070fa  
ꢁꢀ  
LT3070  
ApplicAtions inFormAtion  
heatsinkresistanceorcircuitboardtoambientastheꢀ where:  
applicationdictates.Also,consideradditionalheatsourcesꢀ  
ꢀ I  
ꢀ=ꢀ4A  
OUT(MAX)  
mountedinproximitytotheLT3070.TheLT3070isasurfaceꢀ  
mountꢀdeviceꢀandꢀasꢀsuch,ꢀheatꢀsinkingꢀisꢀaccomplishedꢀ  
byꢀusingꢀtheꢀheatꢀspreadingꢀcapabilitiesꢀofꢀtheꢀPCꢀboardꢀ  
andꢀ itsꢀ copperꢀ traces.ꢀ Surfaceꢀ mountꢀ heatꢀ sinksꢀ andꢀ  
platedꢀthrough-holesꢀcanꢀalsoꢀbeꢀusedꢀtoꢀspreadꢀtheꢀheatꢀ  
generatedꢀ byꢀ powerꢀ devices.ꢀ Junction-to-caseꢀ thermalꢀ  
resistanceꢀisꢀspecifiedꢀfromꢀtheꢀICꢀjunctionꢀtoꢀtheꢀbottomꢀ  
ofꢀtheꢀcaseꢀdirectlyꢀbelowꢀtheꢀdie.ꢀThisꢀisꢀtheꢀlowestꢀresis-  
tanceꢀpathꢀforꢀheatꢀflow.ꢀProperꢀmountingꢀisꢀrequiredꢀtoꢀ  
ꢀ V  
ꢀ=ꢀ1.26V  
IN(MAX)  
ꢀ I  
ꢀatꢀ(I ꢀ=ꢀ4A,ꢀV  
ꢀ=ꢀ2.5V)ꢀ=ꢀ6.91mA  
BIAS  
OUT  
BIAS  
ꢀ I ꢀatꢀ(I ꢀ=ꢀ4A,ꢀV ꢀ=ꢀ2.5V)ꢀ=ꢀ0.87mA  
BIAS  
GND  
OUT  
thus:  
P=4A(1.26V0.9V)+(6.91mA0.87mA)0.9V+ꢀ  
0.87mA(2.5V)ꢀ=ꢀ1.448W  
ensureꢀtheꢀbestꢀpossibleꢀthermalꢀflowꢀfromꢀthisꢀareaꢀofꢀtheꢀ Withꢀ theꢀ QFNꢀ packageꢀ solderedꢀ toꢀ maximumꢀ copperꢀ  
packagetotheheatsinkingmaterial.Notethattheexposedꢀ area,ꢀtheꢀthermalꢀresistanceꢀisꢀ30°C/W.ꢀSoꢀtheꢀjunctionꢀ  
padꢀisꢀelectricallyꢀconnectedꢀtoꢀGND.ꢀ  
temperatureꢀriseꢀaboveꢀambientꢀequals:  
Tableꢀ3ꢀlistsꢀthermalꢀresistanceꢀasꢀaꢀfunctionꢀofꢀcopperꢀ ꢀ 1.448Wꢀatꢀ30°C/Wꢀ=ꢀ43.44°C  
areaꢀinꢀaꢀfixedꢀboardꢀsize.ꢀAllꢀmeasurementsꢀwereꢀtakenꢀ  
Theꢀmaximumꢀjunctionꢀtemperatureꢀequalsꢀtheꢀmaximumꢀ  
ambienttemperatureplusthemaximumjunctiontempera-  
tureꢀriseꢀaboveꢀambientꢀor:ꢀ  
inꢀstillꢀairꢀonꢀaꢀ4-layerꢀFR-4ꢀboardꢀwithꢀ1ꢀozꢀsolidꢀinternalꢀ  
planesꢀandꢀ2ꢀozꢀtop/bottomꢀexternalꢀtraceꢀplanesꢀwithꢀaꢀ  
totalboardthicknessof1.6mm.PCBlayers,copperweight,ꢀ  
boardꢀlayoutꢀandꢀthermalꢀviasꢀaffectꢀtheꢀresultantꢀthermalꢀ  
resistance.ꢀForꢀfurtherꢀinformationꢀonꢀthermalꢀresistanceꢀ  
andꢀhighꢀthermalꢀꢀconductivityꢀtestꢀboards,ꢀreferꢀtoꢀJEDECꢀ  
standardꢀ JESD51,ꢀ notablyꢀ JESD51-12ꢀ andꢀ JESD51-7.ꢀ  
Achievingꢀlowꢀthermalꢀresistanceꢀnecessitatesꢀattentionꢀ  
toꢀdetailꢀandꢀcarefulꢀPCBꢀlayout.  
ꢀ T ꢀ=ꢀ50°Cꢀ+ꢀ43.44°Cꢀ=ꢀ93.44°C  
JMAX  
Applicationsꢀ thatꢀ cannotꢀ supportꢀ extensiveꢀ PCBꢀ spaceꢀ  
forꢀheatꢀsinkingꢀtheꢀLT3070ꢀrequireꢀaꢀderatingꢀofꢀoutputꢀ  
currentꢀorꢀincreasedꢀairflow.ꢀ  
Paralleling Devices for Higher I  
OUT  
Table ꢁ, UFD Plastic Package, 28-Lead QFN  
MultipleLT3070smaybeparalleledtoobtainhigheroutputꢀ  
current.Thisparallelingconceptborrowsfromtheschemeꢀ  
employedꢀbyꢀtheꢀLT3080.  
COPPER AREA  
THERMAL RESISTANCE  
TOPSIDE* BACK SIDE BOARD AREA (JUNCTION-TO-AMBIENT)  
2
2
2
2
2
2
2
2
2
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
30°C/W  
32°C/W  
33°C/W  
35°C/W  
Toaccomplishthisparalleling,tietheREF/BYPpinsofꢀ  
theparalleledregulatorstogether.Thiseffectivelygivesꢀ  
anꢀaveragedꢀvalueꢀofꢀmultipleꢀ600mVꢀreferenceꢀvoltageꢀ  
sources.ꢀTieꢀtheꢀOUTꢀpinsꢀofꢀtheꢀparalleledꢀregulatorsꢀtoꢀ  
theꢀcommonꢀloadꢀplaneꢀthroughꢀaꢀsmallꢀpieceꢀofꢀPCꢀtraceꢀ  
ballastꢀorꢀanꢀactualꢀsurfaceꢀmountꢀsenseꢀresistorꢀbeyondꢀ  
theꢀprimaryꢀoutputꢀcapacitorsꢀofꢀeachꢀregulator.ꢀTheꢀre-  
quiredꢀballastꢀisꢀdependentꢀuponꢀtheꢀapplicationꢀoutputꢀ  
voltageꢀandꢀpeakꢀloadꢀcurrent.ꢀTheꢀrecommendedꢀballastꢀ  
isꢀthatꢀvalueꢀwhichꢀcontributesꢀ1ꢁꢀtoꢀloadꢀregulation.ꢀForꢀ  
example,ꢀtwoꢀLT3070ꢀregulatorsꢀconfiguredꢀtoꢀoutputꢀ1V,ꢀ  
sharingꢀaꢀ10Aꢀloadꢀrequireꢀ2mΩꢀofꢀballastꢀatꢀeachꢀoutput.ꢀ  
TheꢀKelvinꢀSENSEꢀpinsꢀconnectꢀtoꢀtheꢀregulatorꢀsideꢀofꢀ  
theꢀballastꢀresistorsꢀtoꢀkeepꢀtheꢀindividualꢀcontrolꢀloopsꢀ  
fromꢀconflictingꢀwithꢀeachꢀotherꢀ(seeꢀFiguresꢀ8ꢀandꢀ9).ꢀ  
3070fa  
2
1000mm  
2
225mm  
100mm  
2
*Deviceꢀisꢀmountedꢀonꢀtopside  
Calculating Junction Temperature  
Example:ꢀGivenꢀanꢀoutputꢀvoltageꢀofꢀ0.9V,ꢀanꢀinputꢀvoltageꢀ  
rangeof1.2Vꢀ 5ꢁ,aBIASvoltageof2.5V,amaximumout-  
putꢀcurrentꢀofꢀ4Aꢀandꢀaꢀmaximumꢀambientꢀtemperatureꢀofꢀ  
50°C,ꢀwhatꢀwillꢀtheꢀmaximumꢀjunctionꢀtemperatureꢀbe?  
Theꢀpowerꢀdissipatedꢀbyꢀtheꢀdeviceꢀequals:  
I
ꢀ•ꢀ(V  
BIAS  
ꢀ–ꢀV )ꢀ+ꢀ(I  
–ꢀI )ꢀ•ꢀV  
OUT(MAX)  
IN(MAX)  
OUT  
BIASꢀ GND  
OUT  
+ꢀI ꢀ•ꢀV  
GND  
ꢁꢁ  
LT3070  
ApplicAtions inFormAtion  
Keepꢀthisꢀballastꢀtraceꢀareaꢀfreeꢀofꢀsolderꢀtoꢀmaintainꢀaꢀ noiseꢀreductionꢀofꢀreferenceꢀnoise.ꢀTheꢀLT3070ꢀdeviatesꢀ  
controlledꢀresistance.  
fromthetraditionalvoltagereferencebygeneratingaꢀ  
lowꢀvoltageꢀV ꢀfromꢀaꢀreferenceꢀcurrentꢀintoꢀanꢀinter-  
REF  
Tableꢀ4ꢀshowsꢀaꢀsimpleꢀguidelineꢀforꢀPCBꢀtraceꢀresistanceꢀ  
asꢀaꢀfunctionꢀofꢀweightꢀandꢀtraceꢀwidth.  
nalꢀ resistorꢀ 19k.ꢀ Thisꢀ intermediateꢀ impedanceꢀ nodeꢀ  
(REF/BYP)facilitatesexternalfilteringdirectly.A10nFfilterꢀ  
Table 4. PC Board Trace Resistance  
capacitorꢀminimizesꢀreferenceꢀnoiseꢀtoꢀ10µV  
ꢀatꢀtheꢀ  
RMS  
WEIGHT (Oz)  
100 MIL WIDTH*  
200 MIL WIDTH*  
600mVꢀREF/BYPꢀpin,ꢀequivalentlyꢀaꢀ17µVꢀcontributionꢀtoꢀ  
1
2
5.43  
2.71  
2.71  
1.36  
outputꢀnoiseꢀatꢀV ꢀ=ꢀ1V.ꢀSeeꢀtheꢀTypicalꢀPerformanceꢀ  
OUT  
CharacteristicsꢀforꢀNoiseꢀvsꢀOutputꢀVoltageꢀperformanceꢀ  
asꢀaꢀfunctionꢀofꢀC  
.
*Traceꢀresistanceꢀisꢀmeasuredꢀinꢀmilliohms/in  
REF/BYPꢀ  
Thisꢀ approachꢀ alsoꢀ accommodatesꢀ referenceꢀ sharingꢀ  
betweenꢀLT3070ꢀregulatorsꢀthatꢀareꢀhookedꢀupꢀinꢀcur-  
rentꢀsharingꢀapplications.ꢀTheꢀREF/BYPꢀfilterꢀcapacitorꢀ  
delaysꢀtheꢀinitialꢀpower-upꢀtimeꢀbyꢀaꢀfactorꢀofꢀtheꢀRCꢀtimeꢀ  
Quieting the Noise  
TheꢀLT3070ꢀoffersꢀnumerousꢀnoiseꢀperformanceꢀadvan-  
tages.ꢀEachꢀLDOꢀhasꢀseveralꢀsourcesꢀofꢀnoise.ꢀAnꢀLDO’sꢀ  
mostꢀcriticalꢀnoiseꢀsourceꢀisꢀtheꢀreference,ꢀfollowedꢀbyꢀ  
theꢀLDOꢀerrorꢀamplifier.Traditionalꢀlowꢀnoiseꢀregulatorsꢀ  
bufferthevoltagereferenceouttoanexternalpin(usuallyꢀ  
throughalargevalueresistor)toallowforbypassingandꢀ  
constant.ꢀV ꢀremainsꢀactiveꢀinꢀnapꢀmode,ꢀthusꢀstart-upꢀ  
REF  
timeꢀisꢀsignificantlyꢀreducedꢀandꢀwellꢀcontrolledꢀcomingꢀ  
outꢀofꢀnapꢀmodeꢀ(EN:LOHI).  
50k  
V
BIAS  
PWRGD  
2.5V TO 3.6V  
2.2µF  
BIAS  
V
IN  
IN  
PWRGD  
SENSE  
1.5V  
330µF  
EN  
V
1.2V  
5A  
OUT  
LT3070  
OUT  
V
O0  
V
O1  
V
O2  
2.2µF*  
4.7µF*  
10µF*  
NC  
NC  
MARGSEL  
MARGTOL  
VIOC  
*X5R OR X7R CAPACITORS  
REF/BYP  
GND  
1nF  
0.01µF  
3070 F06  
Figure 6. 1.5V to 1.2V Linear Regulator  
3070fa  
ꢁꢂ  
LT3070  
ApplicAtions inFormAtion  
V
BIAS  
3.3V  
47µF  
6.3V  
s3  
1Ω  
50k  
SV  
IN  
PWRGD  
2.2µF*  
NC  
2.2µF  
0.1µF  
BIAS  
PGOOD RUN PV  
PV  
SV TRACK  
IN  
IN  
IN  
0.2µH  
EN  
IN  
PWRGD  
SENSE  
OUT  
1.3V/5A  
SGND  
SW  
SW  
SW  
SW  
V
1V  
5A  
OUT  
47µF  
PV  
PV  
IN  
IN  
LT3070  
NC  
NC  
V
O0  
V
O1  
V
O2  
4.7µF*  
10µF*  
20k  
10k  
PLLLPF  
*X5R OR X7R CAPACITORS  
I
TH  
NC  
NC  
MARGTOL  
MARGSEL  
LTC3415EUHF  
MGN  
BSEL  
100µF  
6.3V  
s2  
NC  
NC  
NC  
CLKOUT  
PHMODE  
CLKIN  
VIOC  
REF/BYP  
GND  
V
FB  
SV  
IN  
2k  
4.7nF  
PGND  
0.01µF  
1nF  
I
THM  
SGND  
PGND PGND  
MODE  
3070 F07  
PGND PGND PGND PGND  
NOTE: LTC3415 SWITCHER, 2MHz INTERNAL OSCILLATOR  
LTC3415 AND LT3070 ON SAME PCB POWER PLANE  
Figure 7. Regulator with VIOC Buck Control  
V
BIAS  
3.3V  
50k  
47µF  
6.3V  
s3  
PWRGD  
1Ω  
2.2µF  
SV  
IN  
NC  
PGOOD RUN PV  
0.1µF  
BIAS  
PV  
SV TRACK  
IN  
IN  
IN  
0.2µH  
EN  
IN  
PWRGD  
SENSE  
OUT  
1.3V/7A  
SGND  
SW  
SW  
SW  
SW  
V
OUT  
47µF  
1V  
PV  
IN  
PV  
IN  
LT3070  
3.5A  
2.2µF*  
4.7µF*  
10µF*  
NC  
NC  
V
O0  
V
O1  
V
O2  
R
TRACE  
PLLLPF  
3mΩ  
*X5R OR X7R CAPACITORS  
CONTROLLED  
I
TH  
NC  
NC  
MARGTOL  
MARGSEL  
MGN  
BSEL  
P.O.L. 1  
LTC3415EUHF  
NC  
NC  
CLKOUT  
PHMODE  
VIOC  
REF/BYP  
GND  
17.5k  
1%  
POWER  
PLANE  
1V/8A  
1nF  
0.01µF  
V
FB  
15k  
1%  
100µF  
6.3V  
s2  
P.O.L. 2  
PGND  
2.2µF  
NC  
CLKIN  
MODE  
I
THM  
SGND  
PGND PGND  
R
TRACE  
3mΩ  
BIAS  
PGND PGND PGND PGND  
CONTROLLED  
EN  
IN  
PWRGD  
SENSE  
OUT  
V
OUT  
47µF  
1V  
NOTE: LTC3415 SWITCHER, 2MHz INTERNAL OSCILLATOR  
LTC3415 AND LT3070 s2 ON SAME PCB POWER PLANE  
LT3070  
3.5A  
2.2µF*  
4.7µF*  
10µF*  
NC  
NC  
V
V
V
O0  
O1  
O2  
*X5R OR X7R CAPACITORS  
NC  
NC  
MARGTOL  
MARGSEL  
VIOC  
REF/BYP  
1nF  
GND  
0.01µF  
3070 F08  
Figure 8. 1V, 7A Point-of-Load Current Sharing Regulators  
3070fa  
ꢁꢃ  
LT3070  
typicAl ApplicAtions  
50k  
V
IN  
3.3V  
PWRGD  
2.2µF  
BIAS  
EN  
IN  
PWRGD  
SENSE  
OUT  
V
1V  
4A  
OUT  
47µF  
NC  
NC  
V
O0  
V
O1  
V
O2  
LT3070  
2.2µF*  
4.7µF*  
10µF*  
R
TRACE  
2.5mΩ  
CONTROLLED  
NC  
NC  
MARGTOL  
MARGSEL  
VIOC  
*X5R OR X7R CAPACITORS  
0.01µF  
P.O.L. 1  
REF/BYP  
POWER  
PLANE  
1V/7A  
1nF  
GND  
V
IN  
3.3V  
V
IN  
3.3V  
P.O.L. 2  
2.2µF  
NC  
NC  
NC  
NC  
NC  
R
TRACE  
BIAS  
2.5mΩ  
EN  
IN  
V
PWRGD  
SENSE  
OUT  
SW1 CLKIN1 CLKOUT1 CLKIN2 CLKOUT2  
CONTROLLED  
V
1.3V/8A  
BUCK1  
V
V
OUT1  
MGN1  
FB1  
IN1  
SV  
V
1V  
4A  
OUT  
100µF  
6.3V  
X5R  
47µF  
10µF  
NC  
NC  
IN1  
O0  
20k  
LT3070  
RUN1  
2.2µF*  
10µF*  
10µF*  
10µF*  
4.7µF*  
V
V
O1  
PLLLPF1  
MODE1  
PHMODE1  
TRACK1  
ITH1  
O2  
ITHM1  
BSEL1  
PGOOD1  
10k  
2k  
4.7nF  
NC  
NC  
MARGTOL  
MARGSEL  
VIOC  
*X5R OR X7R CAPACITORS  
0.01µF  
NC  
NC  
REF/BYP  
GND  
LTM4616  
V
2.1V/8A  
BUCK2  
1nF  
V
V
OUT2  
MGN2  
FB2  
IN2  
SV  
100µF  
6.3V  
X5R  
10µF  
IN2  
RUN2  
V
IN  
3.3V  
PLLLPF2  
MODE2  
PHMODE2  
TRACK2  
ITH2  
2.2µF  
ITHM2  
BSEL2  
PGOOD2  
BIAS  
NC  
NC  
EN  
IN  
PWRGD  
SENSE  
OUT  
V
1.8V  
5A  
OUT  
SW2 SGND1 GND1 SGND2 GND2  
47µF  
V
O0  
V
O1  
V
O2  
LT3070  
2.2µF*  
4.7µF*  
NC  
NC  
NC  
NC  
MARGTOL  
MARGSEL  
VIOC  
*X5R OR X7R CAPACITORS  
0.01µF  
20k  
NOTE: THE TWO LTM4616 MODULE CHANNELS ARE  
INDEPENDENTLY CONTROLLED BY THE VIOC  
CONTROLS FROM THE LINEAR REGULATORS  
REF/BYP  
GND  
1nF  
2k  
4.7nF  
10k  
V
IN  
3.3V  
2.2µF  
BIAS  
EN  
IN  
PWRGD  
SENSE  
OUT  
V
1.5V  
3A  
OUT  
47µF  
V
O0  
V
O1  
V
O2  
LT3070  
2.2µF*  
4.7µF*  
NC  
NC  
NC  
NC  
MARGTOL  
MARGSEL  
VIOC  
*X5R OR X7R CAPACITORS  
REF/BYP  
1nF  
GND  
0.01µF  
3070 F09  
Figure 9. Triple Output Supply Providing 1V, 8A and 1.8V, 5A and 1.5V, A  
3070fa  
ꢁꢄ  
LT3070  
pAckAge Description  
UFD Package  
28-Lead Plastic QFN (4mm × 5mm)  
(ReferenceꢀLTCꢀDWGꢀ#ꢀ05-08-1712ꢀRevꢀB)  
0.70 p0.05  
4.50 p 0.05  
3.10 p 0.05  
2.50 REF  
2.65 p 0.05  
3.65 p 0.05  
PACKAGE OUTLINE  
0.25 p0.05  
0.50 BSC  
3.50 REF  
4.10 p 0.05  
5.50 p 0.05  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
PIN 1 NOTCH  
R = 0.20 OR 0.35  
s 45o CHAMFER  
2.50 REF  
R = 0.115  
TYP  
R = 0.05  
TYP  
0.75 p 0.05  
4.00 p 0.10  
(2 SIDES)  
27  
28  
0.40 p 0.10  
PIN 1  
TOP MARK  
(NOTE 6)  
1
2
5.00 p 0.10  
(2 SIDES)  
3.50 REF  
3.65 p 0.10  
2.65 p 0.10  
(UFD28) QFN 0506 REV B  
0.25 p 0.05  
0.50 BSC  
0.200 REF  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING PROPOSED TO BE MADE A JEDEC PACKAGE OUTLINE MO-220 VARIATION (WXXX-X).  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
3070fa  
ꢁꢅ  
LT3070  
revision history  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
5/10  
Entireꢀdataꢀsheetꢀrevised  
1ꢀtoꢀ28  
3070fa  
InformationfurnishedbyLinearTechnologyCorporationisbelievedtobeaccurateandreliable.ꢀ  
However,ꢀnoꢀresponsibilityꢀisꢀassumedꢀforꢀitsꢀuse.ꢀLinearꢀTechnologyꢀCorporationꢀmakesꢀnoꢀrepresenta-  
tionꢀthatꢀtheꢀinterconnectionꢀofꢀitsꢀcircuitsꢀasꢀdescribedꢀhereinꢀwillꢀnotꢀinfringeꢀonꢀexistingꢀpatentꢀrights.  
ꢁꢆ  
LT3070  
typicAl ApplicAtion  
50k  
V
BIAS  
PWRGD  
2.5V TO 3.6V  
2.2µF  
BIAS  
V
IN  
IN  
PWRGD  
SENSE  
1.5V  
330µF  
EN  
V
1.2V  
5A  
OUT  
LT3070  
OUT  
V
O0  
V
O1  
V
O2  
2.2µF*  
4.7µF*  
10µF*  
NC  
NC  
MARGSEL  
MARGTOL  
VIOC  
*X5R OR X7R CAPACITORS  
REF/BYP  
GND  
1nF  
0.01µF  
3070 TA02  
1.5V to 1.2V Linear Regulator  
relAteD pArts  
PART  
DESCRIPTION  
COMMENTS  
LT1763  
500mA,ꢀLowꢀNoiseꢀLDO  
300mVꢀDropoutꢀVoltage,ꢀLowꢀNoise:ꢀ20µV  
,ꢀV :ꢀ1.8Vꢀtoꢀ20V,ꢀ  
RMS IN  
SO-8ꢀPackage  
LT1764/LT1764A  
LT1963/LT1963A  
3A,ꢀFastꢀTransientꢀResponse,ꢀLowꢀNoiseꢀLDO  
1.5AꢀLowꢀNoise,ꢀFastꢀTransientꢀResponseꢀLDO  
340mVꢀDropoutꢀVoltage,ꢀLowꢀNoise:ꢀ40µV  
,ꢀV :ꢀ2.7Vꢀtoꢀ20V,ꢀꢀ  
RMS IN  
TO-220ꢀandꢀDDꢀPackagesꢀ“A”ꢀVersionꢀStableꢀAlsoꢀwithꢀCeramicꢀCaps  
340mVꢀDropoutꢀVoltage,ꢀLowꢀNoise:ꢀ40µV  
,ꢀV :ꢀ2.5Vꢀtoꢀ20V,ꢀꢀ  
RMS IN  
“A”ꢀVersionꢀStableꢀwithꢀCeramicꢀCaps,ꢀTO-220,ꢀDD,ꢀSOT-223ꢀandꢀ  
SO-8ꢀPackages  
LT1965  
LT3021  
1.1A,ꢀLowꢀNoise,ꢀLowꢀDropoutꢀLinearꢀRegulator  
500mA,ꢀLowꢀVoltage,ꢀVLDO™ꢀLinearꢀRegulator  
290mVꢀDropoutꢀVoltage,ꢀLowꢀNoise:ꢀ40µV  
,ꢀV :ꢀ1.8Vꢀtoꢀ20V,ꢀ  
RMS IN  
V
:ꢀ1.2Vꢀtoꢀ19.5V,ꢀStableꢀwithꢀCeramicꢀCaps,ꢀTO-220,ꢀDD-Pak,ꢀ  
OUTꢀ  
MSOPꢀandꢀ3mmꢀ×ꢀ3mmꢀDFNꢀPackages  
V :ꢀ0.9Vꢀtoꢀ10V,ꢀDropoutꢀVoltageꢀ=ꢀ160mVꢀ(Typ),ꢀAdjustableꢀOutputꢀ  
IN  
REF  
(V ꢀ=ꢀV  
ꢀ=ꢀ200mV),ꢀFixedꢀOutputꢀVoltages:ꢀ1.2V,ꢀ1.5V,ꢀ1.8V,ꢀ  
OUT(MIN)  
StableꢀwithꢀLowꢀESR,ꢀCeramicꢀOutputꢀCapacitorsꢀ16-PinꢀDFNꢀꢀ  
(5mmꢀ×ꢀ5mm)ꢀandꢀ8-LeadꢀSOꢀPackages  
LT3080/LT3080-1  
LT3085  
1.1A,ꢀParallelable,ꢀLowꢀNoise,ꢀLowꢀDropoutꢀLinearꢀRegulator 300mVꢀDropoutꢀVoltageꢀ(2-SupplyꢀOperation),ꢀLowꢀNoise:ꢀ40µV  
,ꢀ  
,ꢀ  
RMS  
V :ꢀ1.2Vꢀtoꢀ36V,ꢀV :ꢀ0Vꢀtoꢀ35.7V,ꢀCurrent-BasedꢀReferenceꢀwithꢀ  
IN  
OUTꢀ  
1ꢀResistorꢀV ꢀSet;ꢀDirectlyꢀParallelableꢀ(NoꢀOpꢀAmpꢀRequired),ꢀ  
OUT  
StableꢀwithꢀCeramicꢀCaps,ꢀTO-220,ꢀSOT-223,ꢀMSOP-8ꢀandꢀ3mmꢀ  
×ꢀ3mmꢀDFN-8ꢀPackages;ꢀLT3080-1ꢀhasꢀIntegratedꢀInternalꢀBallastꢀ  
Resistor  
500mA,ꢀParallelable,ꢀLowꢀNoise,ꢀLowꢀDropoutꢀꢀ  
LinearꢀRegulator  
275mVꢀDropoutꢀVoltageꢀ(2-SupplyꢀOperation),ꢀLowꢀNoise:ꢀ40µV  
RMS  
V :ꢀ1.2Vꢀtoꢀ36V,ꢀV :ꢀ0Vꢀtoꢀ35.7V,ꢀCurrent-BasedꢀReferenceꢀwithꢀ  
IN  
OUTꢀ  
1ꢀResistorꢀV ꢀSet;ꢀDirectlyꢀParallelableꢀ(NoꢀOpꢀAmpꢀRequired),ꢀ  
OUT  
StableꢀwithꢀCeramicꢀCaps,ꢀMSOP-8ꢀandꢀ2mmꢀ×ꢀ3mmꢀDFN-6ꢀ  
Packages  
LTC3025-1/ꢀ  
LTC3025-2  
500mAꢀMicropowerꢀVLDOꢀLinearꢀRegulatorꢀꢀ  
inꢀ2mmꢀ×ꢀ2mmꢀDFNꢀ  
V ꢀ=ꢀ0.9Vꢀtoꢀ5.5V,ꢀDropoutꢀVoltage:ꢀ75mV,ꢀLowꢀNoiseꢀ80µV  
,ꢀ  
IN  
RMS  
LowꢀI :ꢀ54µA,ꢀFixedꢀOutput:ꢀ1.2Vꢀ(LTC3025-2);ꢀAdjustableꢀOutputꢀ  
Q
Range:ꢀ0.4Vꢀtoꢀ3.6Vꢀ(LTC3025-1)ꢀ2mmꢀ×ꢀ2mmꢀ6-LeadꢀDFNꢀPackage  
LTC3026ꢀ  
1.5A,ꢀLowꢀInputꢀVoltageꢀVLDOꢀRegulatorꢀ  
V :ꢀ1.14Vꢀtoꢀ3.5Vꢀ(BoostꢀEnabled),ꢀ1.14Vꢀtoꢀ5.5Vꢀ(withꢀExternalꢀ  
IN  
5V),ꢀV ꢀ=ꢀ0.1V,ꢀI ꢀ=ꢀ950µA,ꢀStableꢀwithꢀ10µFꢀCeramicꢀCapacitors,ꢀ  
DO  
Q
10-LeadꢀMSOPꢀandꢀDFN-10ꢀPackages  
3070fa  
LT 0510 REV A • PRINTED IN USA  
Linear Technology Corporation  
1630ꢀ McCarthyꢀ Blvd.,ꢀ Milpitas,ꢀ CAꢀ 95035-7417  
ꢁꢇ  
ꢀ  
LINEAR TECHNOLOGY CORPORATION 2009  
(408)ꢀ432-1900ꢀ FAX:(408)434-0507ꢀ www.linear.com  

相关型号:

LT3070MPUFDPBF

5A, Low Noise, Programmable Output, 85mV Dropout Linear Regulator
Linear

LT3070MPUFDTR

5A, Low Noise, Programmable Output, 85mV Dropout Linear Regulator
Linear

LT3070MPUFDTRPBF

5A, Low Noise, Programmable Output, 85mV Dropout Linear Regulator
Linear

LT3070_1

5A, Low Noise, Programmable Output, 85mV Dropout Linear Regulator
Linear

LT3071

5A, Low Noise, Programmable Output, 85mV Dropout Linear Regulator with Analog Margining
Linear

LT3071EUFD

5A, Low Noise, Programmable Output, 85mV Dropout Linear Regulator with Analog Margining
Linear

LT3071EUFD#PBF

LT3071 - 5A, Low Noise, Programmable Output, 85mV Dropout Linear Regulator with Analog Margining; Package: QFN; Pins: 28; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3071EUFD#TR

IC VREG 0.8 V-1.8 V ADJUSTABLE POSITIVE LDO REGULATOR, 0.15 V DROPOUT, PQCC28, 5 X 4 MM, 0.75 MM HEIGHT, PLASTIC, MO-220, QFN-28, Adjustable Positive Single Output LDO Regulator
Linear

LT3071EUFD#TRPBF

LT3071 - 5A, Low Noise, Programmable Output, 85mV Dropout Linear Regulator with Analog Margining; Package: QFN; Pins: 28; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3071EUFD-PBF

5A, Low Noise, Programmable Output, 85mV Dropout Linear Regulator with Analog Margining
Linear

LT3071EUFD-TR

5A, Low Noise, Programmable Output, 85mV Dropout Linear Regulator with Analog Margining
Linear

LT3071EUFD-TRPBF

5A, Low Noise, Programmable Output, 85mV Dropout Linear Regulator with Analog Margining
Linear