LT3467IS5 [Linear]

IC 2.5 A SWITCHING REGULATOR, 1600 kHz SWITCHING FREQ-MAX, PDSO6, 1 MM HEIGHT, PLASTIC, MO-193, TSOT-23, 6 PIN, Switching Regulator or Controller;
LT3467IS5
型号: LT3467IS5
厂家: Linear    Linear
描述:

IC 2.5 A SWITCHING REGULATOR, 1600 kHz SWITCHING FREQ-MAX, PDSO6, 1 MM HEIGHT, PLASTIC, MO-193, TSOT-23, 6 PIN, Switching Regulator or Controller

开关 光电二极管
文件: 总16页 (文件大小:246K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3467/LT3467A  
1.1A Step-Up DC/DC  
Converter with  
Integrated Soft-Start  
U
FEATURES  
DESCRIPTIO  
The LT®3467/LT3467A switching regulators combine a  
42V, 1.1Aswitchwithasoft-startfunction. Pincompatible  
with the LT1930, its low VCESAT bipolar switch enables the  
device to deliver high current outputs in a small footprint.  
The LT3467 switches at 1.3MHz, allowing the use of tiny,  
low cost and low height inductors and capacitors. The  
LT3467A switches at 2.1MHz, allowing the use of even  
smaller components. High inrush current at start-up is  
eliminated using the programmable soft-start function. A  
single external capacitor sets the current ramp rate. A  
constant frequency current mode PWM architecture re-  
sults in low, predictable output noise that is easy to filter.  
1.3MHz Switching Frequency (LT3467)  
2.1MHz Switching Frequency (LT3467A)  
Low VCESAT Switch: 330mV at 1.1A  
High Output Voltage: Up to 40V  
Wide Input Range: 2.4V to 16V  
Dedicated Soft-Start Pin  
5V at 540mA from 3.3V Input (LT3467)  
5V at 430mA from 3.3V Input (LT3467A)  
12V at 270mA from 5V Input (LT3467)  
12V at 260mA from 5V Input (LT3467A)  
Uses Small Surface Mount Components  
Low Shutdown Current: <1μA  
Pin-for-Pin Compatible with the LT1930 and LT1613  
The high voltage switch on the LT3467/LT3467A is rated  
at 42V, making the devices ideal for boost converters up  
to 40V as well as SEPIC and flyback designs. The LT3467  
can generate 5V at up to 540mA from a 3.3V supply or 5V  
at 450mA from four alkaline cells in a SEPIC design. The  
LT3467A can generate 5V at up to 430mA from a 3.3V  
supply or 15V at 135mA from a 3.3V supply. The LT3467/  
LT3467A are available in a low profile (1mm) 6-lead  
SOT-23 package and tiny 3mm x 2mm DFN package.  
Low Profile (1mm) ThinSOTPackage  
Low Profile (0.75mm) 8-Lead (3mm x 2mm)  
DFN Package  
U
APPLICATIO S  
Digital Cameras  
White LED Power Supplies  
Cellular Phones  
Medical Diagnostic Equipment  
Local 5V or 12V Supplies  
TFT-LCD Bias Supplies  
xDSL Power Supplies  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
ThinSOT is a trademark of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
U
Efficiency  
TYPICAL APPLICATIO  
95  
90  
Single Li-Ion Cell to 5V Boost Converter  
V
= 4.2V  
IN  
= 3.3V  
85  
80  
75  
70  
65  
60  
55  
50  
2.7μH  
V
IN  
V
V
IN  
OUT  
5V  
765mA AT V = 4.2V,  
2.6V TO  
4.2V  
V
= 2.6V  
IN  
IN  
4.7μF  
402k  
133k  
540mA AT V = 3.3V,  
IN  
360mA AT V = 2.6V  
V
SW  
IN  
IN  
3.3pF  
SHDN  
OFF ON  
LT3467  
GND  
SS  
FB  
15μF  
0.047μF  
3467 TA01a  
800  
900  
100  
300 400 500  
700  
200  
600  
I
(mA)  
OUT  
3467 TA01b  
3467afc  
1
LT3467/LT3467A  
W W  
U W  
ABSOLUTE AXI U RATI GS  
(Note 1)  
VIN Voltage .............................................................. 16V  
SW Voltage ................................................0.4V to 42V  
FB Voltage .............................................................. 2.5V  
Current Into FB Pin .............................................. 1mA  
SHDN Voltage ......................................................... 16V  
Maximum Junction Temperature ......................... 125°C  
Operating Temperature Range (Note 2)  
E Grade ................................................. 40°C to 85°C  
I Grade................................................ 40°C to 125°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec,  
TSOT Only) ........................................................... 300°C  
U
U
U
PI CO FIGURATIO  
TOP VIEW  
TOP VIEW  
SW 1  
GND 2  
FB 3  
6 V  
IN  
FB  
GND  
SW  
1
2
3
4
8
7
6
5
SHDN  
SS  
5 SS  
9
4 SHDN  
VIN  
SW  
GND  
S6 PACKAGE  
6-LEAD PLASTIC TSOT-23  
DDB PACKAGE  
8-LEAD (3mm × 2mm) PLASTIC DFN  
TJMAX = 125°C, θJA = 165°C/ W, θJC = 102°C/ W  
TJMAX = 125°C, θJA = 80°C/ W  
EXPOSED PAD (PIN 9) IS GROUND  
(MUST BE SOLDERED TO PCB)  
U
W
U
ORDER I FOR ATIO  
LEAD FREE FINISH  
LT3467EDDB#PBF  
LT3467AEDDB#PBF  
LT3467IS6#PBF  
LT3467ES6#PBF  
LT3467AES6#PBF  
LEAD BASED FINISH  
LT3467EDDB  
TAPE AND REEL  
PART MARKING*  
LCPX  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
LT3467EDDB#TRPBF  
LT3467AEDDB#TRPBF  
LT3467IS6#TRPBF  
LT3467ES6#TRPBF  
LT3467AES6#TRPBF  
TAPE AND REEL  
8-Lead (3mm × 2mm) Plastic DFN  
8-Lead (3mm × 2mm) Plastic DFN  
6-Lead Plastic TSOP-23  
LCKD  
LTACH  
LTACH  
6-Lead Plastic TSOP-23  
LTBCC  
6-Lead Plastic TSOP-23  
–40°C to 85°C  
PART MARKING*  
LCPX  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
LT3467EDDB#TR  
LT3467AEDDB#TR  
LT3467IS6#TR  
8-Lead (3mm × 2mm) Plastic DFN  
8-Lead (3mm × 2mm) Plastic DFN  
6-Lead Plastic TSOP-23  
LT3467AEDDB  
LT3467IS5  
LCKD  
LTACH  
LTACH  
LT3467ES6  
LT3467ES6#TR  
6-Lead Plastic TSOP-23  
LT3467AES67  
LT3467AES6#TR  
LTBCC  
6-Lead Plastic TSOP-23  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
3467afc  
2
LT3467/LT3467A  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating  
temperature range, otherwise specifications are TA = 25°C. VIN = 3V, VSHDN = VIN unless otherwise noted. Specifications are for both  
the LT3467 and LT3467A unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
2.4  
UNITS  
Minimum Operating Voltage  
Maximum Operating Voltage  
Feedback Voltage  
2.2  
V
V
16  
1.230  
1.220  
1.255  
1.270  
1.280  
V
V
FB Pin Bias Current  
(Note 3)  
10  
50  
2
nA  
mA  
μA  
Quiescent Current  
V
V
= 2.4V, Not Switching  
1.2  
SHDN  
SHDN  
Quiescent Current in Shutdown  
Reference Line Regulation  
Switching Frequency  
= 0.5V, V = 3V  
0.01  
0.01  
1
IN  
2.6V V 16V  
0.05  
%/V  
IN  
LT3467  
LT3467A  
LT3467A  
1
1.6  
1.6  
1.3  
2.1  
1.6  
2.7  
MHz  
MHz  
MHz  
Maximum Duty Cycle  
LT3467  
LT3467  
LT3467A  
LT3467A  
88  
87  
82  
78  
94  
88  
%
%
%
%
Minimum Duty Cycle  
Switch Current Limit  
10  
%
At Minimum Duty Cycle  
At Maximum Duty Cycle (Note 4)  
1.4  
0.8  
1.8  
1.2  
2.5  
1.9  
A
A
Switch V  
I
= 1.1A  
= 5V  
330  
500  
1
mV  
μA  
V
CESAT  
SW  
Switch Leakage Current  
SHDN Input Voltage High  
SHDN Input Voltage Low  
SHDN Pin Bias Current  
V
0.01  
SW  
2.4  
0.5  
V
V
V
= 3V  
16  
0
32  
0.1  
μA  
μA  
SHDN  
SHDN  
= 0V  
SS Charging Current  
V
= 0.5V  
2
3
4.5  
μA  
SS  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
operating temperature range are assured by design, characterization and  
correlation with statistical process controls. LT3467IS6 is guaranteed and  
tested over the full –40°C to 125°C operating temperature range.  
Note 3: Current flows out of the pin.  
Note 2: The LT3467E/LT3467AE are guaranteed to meet performance  
specifications from 0°C to 85°C. Specifications over the –40°C to 85°C  
Note 4: See Typical Performance Characteristics for guaranteed current  
limit vs duty cycle.  
3467afc  
3
LT3467/LT3467A  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Quiescent Current vs  
Temperature  
FB Pin Voltage vs Temperature  
SHDN Current vs SHDN Voltage  
1.26  
1.25  
1.24  
1.23  
1.22  
1.21  
1.20  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
140  
120  
100  
80  
T
= 25°C  
A
60  
40  
20  
0
–25 –10 5 20 35 50 65 80 125  
95 110  
–25 –10  
5
20 35 50 65 80  
125  
95 110  
–40  
–40  
0
2
4
6
12 14 16 18  
8
10  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
V
(V)  
SHDN  
3467 G03  
3467 G02  
3467 G01  
Oscillator Frequency vs  
Temperature  
Switch Saturation Voltage vs  
Switch Current  
Current Limit vs Duty Cycle  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
T
= 25°C  
A
LT3467A  
TYPICAL  
T
= 25°C  
A
T
= 85°C  
A
V
CESAT  
LT3467  
GUARANTEED  
100mV  
/DIV  
T
= –40°C  
A
3467 G05  
–25  
0
25  
50  
75  
10  
50  
70 80  
–50  
100  
20 30 40  
60  
90  
SW CURRENT 200mA/DIV  
DC (%)  
TEMPERATURE (°C)  
3467 G04  
3467 G06  
Soft-Start Current vs Soft-Start  
Voltage  
Peak Switch Current vs Soft-Start  
Voltage  
Start-Up Waveform  
(Figure 2 Circuit)  
6
5
4
3
2
1
0
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
T
= 25°C  
T = 25°C  
A
A
V
SHDN  
2V/DIV  
V
OUT  
1V/DIV  
I
SUPPLY  
0.5A/DIV  
3467 G09  
0
50 100 150 200 250 300 350 400 450 500  
(mV)  
0.5ms/DIV  
0
50 100 150 200 250 300 350 400 450 500  
(mV)  
V
V
SS  
SS  
3467 G07  
3467 G08  
3467afc  
4
LT3467/LT3467A  
U
U
U
PI FU CTIO S  
(DFN/TSOT)  
FB (Pin 1/Pin 3): Feedback Pin. Reference voltage is  
1.255V. Connect resistive divider tap here. Minimize trace  
area at FB. Set VOUT = 1.255V(1 + R1/R2).  
VIN (Pin 6/Pin 6): Input Supply Pin. Must be locally  
bypassed.  
SS (Pin 7/Pin 5): Soft-Start Pin. Place a soft-start capaci-  
torhere.Uponstart-up,4μAofcurrentchargesthecapaci-  
tor to 1.255V. Use a larger capacitor for slower start-up.  
Leave floating if not in use.  
GND (Pins 2, 5, 9/Pin 2): Ground. Tie directly to local  
ground plane.  
SW (Pins 3, 4/Pin 1): Switch Pin. (Collector of internal  
NPN power switch) Connect inductor/diode here and  
minimize the metal trace area connected to this pin to  
minimize EMI.  
SHDN (Pin 8/Pin 4): Shutdown Pin. Tie to 2.4V or more to  
enable device. Ground to shut down.  
W
BLOCK DIAGRA  
250k  
SS  
SW  
1.255V  
V
IN  
+
COMPARATOR  
REFERENCE  
A1  
DRIVER  
Q1  
A2  
R
Q
R
C
S
+
V
OUT  
R1 (EXTERNAL)  
C
C
+
0.01Ω  
Σ
FB  
R2 (EXTERNAL)  
RAMP  
GENERATOR  
SHUTDOWN  
SHDN  
FB  
GND  
3467 F01  
1.3MHz  
OSCILLATOR*  
*2.1MHz FOR LT3467A  
Figure 1. Block Diagram  
3467afc  
5
LT3467/LT3467A  
U
OPERATIO  
The LT3467 uses a constant frequency, current-mode  
control scheme to provide excellent line and load regula-  
tion. Refer to the Block Diagram above. At the start of each  
oscillator cycle, the SR latch is set which turns on the  
power switch Q1. A voltage proportional to the switch  
current is added to a stabilizing ramp and the resulting  
sum is fed into the positive terminal of the PWM compara-  
tor A2. When this voltage exceeds the level at the negative  
input of A2, the SR latch is reset, turning off the power  
switch. The level at the negative input of A2 is set by the  
erroramplifierA1,andissimplyanamplifiedversionofthe  
difference between the feedback voltage and the reference  
voltage of 1.255V. In this manner, the error amplifier sets  
the correct peak current level to keep the output in regu-  
lation. If the error amplifier’s output increases, more  
current is delivered to the output. Similarly, if the error  
decreases, less current is delivered. The soft-start feature  
of the LT3467 allows for clean start-up conditions by  
limiting the rate of voltage rise at the output of comparator  
A1 which, in turn, limits the peak switch current. The soft-  
start pin is connected to a reference voltage of 1.255V  
through a 250k resistor, providing 4μA of current to  
charge the soft-start capacitor. Typical values for the soft-  
start capacitor range from 10nF to 200nF. The LT3467 has  
a current limit circuit not shown in the Block Diagram. The  
switch current is constantly monitored and not allowed to  
exceedthemaximumswitchcurrent(typically1.4A). Ifthe  
switch current reaches this value, the SR latch is reset  
regardlessofthestateofcomparatorA2. Thiscurrentlimit  
protects the power switch as well as the external compo-  
nents connected to the LT3467.  
The Block Diagram for the LT3467A (not shown) is  
identical except that the oscillator frequency is 2.1MHz.  
U
W U U  
APPLICATIONS INFORMATION  
Switching Frequency and Inductor Selection  
Duty Cycle  
TheLT3467switchesat1.3MHz,allowingforsmallvalued  
inductors to be used. 4.7μH or 10μH will usually suffice.  
The LT3467A switches at 2.1MHz, allowing for even  
smaller valued inductors to be used. 0.9μH to 6.8μH will  
usuallysuffice. Chooseaninductorthatcanhandleatleast  
1.2A without saturating, and ensure that the inductor has  
alowDCR(copper-wireresistance)tominimizeI2Rpower  
losses. Note that in some applications, the current han-  
dling requirements of the inductor can be lower, such as  
in the SEPIC topology where each inductor only carries  
one half of the total switch current. For better efficiency,  
use similar valued inductors with a larger volume. Many  
different sizes and shapes are available from various  
manufacturers.Chooseacorematerialthathaslowlosses  
at1.3MHz, (2.1MHzfortheLT3467A)suchasferritecore.  
The typical maximum duty cycle of the LT3467 is 94%  
(88% for the LT3467A). The duty cycle for a given  
application is given by:  
| VOUT | + | VD | – | V |  
| VOUT | + | VD | – | VCESAT  
IN  
DC =  
|
Where VD is the diode forward voltage drop and VCESAT  
is in the worst case 330mV (at 1.1A)  
The LT3467 and LT3467A can be used at higher duty  
cycles,butmustbeoperatedinthediscontinuousconduc-  
tion mode so that the actual duty cycle is reduced.  
Setting Output Voltage  
R1 and R2 determine the output voltage.  
V
OUT = 1.255V (1+ R1/R2)  
3467afc  
6
LT3467/LT3467A  
U
W U U  
APPLICATIONS INFORMATION  
L1  
2.7μH  
D1  
V
IN  
V
OUT  
2.6V TO  
4.2V  
5V  
765mA AT V = 4.2V,  
C1  
R1  
402k  
IN  
IN  
IN  
4.7μF  
540mA AT V = 3.3V,  
360mA AT V = 2.6V  
V
SW  
IN  
C4  
3.3pF  
SHDN  
OFF ON  
LT3467  
SS  
FB  
C2  
R2  
133k  
C3  
GND  
15μF  
0.047μF  
C1, C2: X5R OR X7R, 6.3V  
3467 TA05a  
D1: ON SEMICONDUCTOR MBRM120  
L1: SUMIDA CR43-2R7  
Supply Current of Figure 2 During  
Startup without Soft-Start Capacitor  
Figure 2. Single Li-Ion Cell to 5V Boost Converter  
(Same as 1st Page Application)  
VOUT  
1V/DIV  
Table 1. Inductor Manufacturers.  
Sumida  
TDK  
(847) 956-0666  
(847) 803-6100  
(714) 852-2001  
(408) 432-8331  
www.sumida.com  
www.tdk.com  
Murata  
FDK  
www.murata.com  
www.fdk.co.jp  
ISUPPLY  
0.5A/DIV  
0.1ms/DIV  
Soft-Start  
The soft-start feature provides a way to limit the inrush  
current drawn from the supply upon startup. An internal  
250k resistor charges the external soft start capacitor to  
1.255V. After the capacitor reaches 0.15V the rate of  
voltage rise at the output of the comparator A1 tracks the  
rate of voltage rise of the soft-start capacitor. This limits  
the inrush current drawn from the supply during startup.  
Once the part is shut down, the soft start capacitor is  
quicklydischargedto0.4V,thenslowlydischargedthrough  
the 250k resistor to ground. If the part is to be shut down  
and re-enabled in a short period of time while soft-start is  
used, you must ensure that the soft-start capacitor has  
enough time to discharge before re-enabling the part.  
Typical values of the soft-start capacitor range from 10nF  
to 200nF.  
Supply Current of Figure 2 During  
Startup with 47nF Soft-Start Capacitor  
VOUT  
1V/DIV  
ISUPPLY  
0.5A/DIV  
0.5ms/DIV  
3467afc  
7
LT3467/LT3467A  
U
W U U  
APPLICATIONS INFORMATION  
A phase lead zero can be intentionally introduced by  
placing a capacitor (C4) in parallel with the resistor (R1)  
betweenVOUT andVFB asshowninFigure2.Thefrequency  
of the zero is determined by the following equation.  
CAPACITOR SELECTION  
Low ESR (equivalent series resistance) capacitors should  
beusedattheoutputtominimizetheoutputripplevoltage.  
Multi-layer ceramic capacitors are an excellent choice, as  
they have extremely low ESR and are available in very  
small packages. X5R dielectrics are preferred, followed by  
X7R, as these materials retain the capacitance over wide  
voltage and temperature ranges. A 4.7μF to 15μF output  
capacitor is sufficient for most applications, but systems  
withverylowoutputcurrentsmayneedonlya1μFor2.2μF  
outputcapacitor. SolidtantalumorOSCONcapacitorscan  
be used, but they will occupy more board area than a  
ceramicandwillhaveahigherESR.Alwaysuseacapacitor  
with a sufficient voltage rating.  
1
ƒZ =  
2π R1• C4  
By choosing the appropriate values for the resistor and  
capacitor, the zero frequency can be designed to improve  
the phase margin of the overall converter. The typical  
target value for the zero frequency is between 35kHz to  
55kHz. Figure 3 shows the transient response of the step-  
up converter from Figure 8 without the phase lead capaci-  
tor C4. Although adequate for many applications, phase  
margin is not ideal as evidenced by 2-3 “bumps” in both  
the output voltage and inductor current. A 22pF capacitor  
for C4 results in ideal phase margin, which is revealed in  
Figure 4 as a more damped response and less overshoot.  
Ceramic capacitors also make a good choice for the input  
decoupling capacitor, which should be placed as close as  
possible to the LT3467. A 1μF to 4.7μF input capacitor is  
sufficient for most applications. Table 2 shows a list of  
several ceramic capacitor manufacturers. Consult the  
manufacturers for detailed information on their entire  
selection of ceramic parts.  
DIODE SELECTION  
ASchottkydiodeisrecommendedforusewiththeLT3467  
and the LT3467A. The Philips PMEG 2005 is a very good  
choice. Where the switch voltage exceeds 20V, use the  
PMEG 3005 (a 30V diode). Where the switch voltage  
exceeds 30V, use the PMEG 4005 (a 40V diode). These  
diodes are rated to handle an average forward current of  
0.5A. In applications where the average forward current of  
the diode exceeds 0.5A, a Philips PMEG 2010 rated at 1A  
is recommended. For higher efficiency, use a diode with  
better thermal characteristics such as the On Semicon-  
ductor MBRM120 (a 20V diode) or the MBRM140 (a 40V  
diode).  
Table 2. Ceramic Capacitor Manufacturers  
Taiyo Yuden  
AVX  
(408) 573-4150  
(803) 448-9411  
(714) 852-2001  
www.t-yuden.com  
www.avxcorp.com  
www.murata.com  
Murata  
ThedecisiontouseeitherlowESR(ceramic)capacitorsor  
the higher ESR (tantalum or OSCON) capacitors can affect  
the stability of the overall system. The ESR of any capaci-  
tor, along with the capacitance itself, contributes a zero to  
the system. For the tantalum and OSCON capacitors, this  
zero is located at a lower frequency due to the higher value  
of the ESR, while the zero of a ceramic capacitor is at a  
much higher frequency and can generally be ignored.  
3467afc  
8
LT3467/LT3467A  
U
W U U  
APPLICATIONS INFORMATION  
LAYOUT HINTS  
The high speed operation of the LT3467/LT3467A de-  
mands careful attention to board layout. You will not get  
advertised performance with careless layout. Figure 5A  
shows the recommended component placement for the  
ThinSOT package. Figure 5B shows the recommended  
component placement for the DFN package. Note the  
VIA’s under the exposed PAD. These should connect to a  
local ground plane for better thermal performance.  
LOAD CURRENT  
100mA/DIV  
AC COUPLED  
VOUT  
200mV/DIV  
AC COUPLED  
IL1  
5A/DIV  
AC COUPLED  
20μs/DIV  
3467 F03  
Figure 3. Transient Response of Figure 8's Step-Up  
Converter without Phase Lead Capacitor  
LOAD CURRENT  
100mA/DIV  
AC COUPLED  
VOUT  
200mV/DIV  
AC COUPLED  
IL1  
5A/DIV  
AC COUPLED  
Figure 5A.  
Suggested Layout—ThinSOT  
20μs/DIV  
3467 F04  
Figure 4. Transient Response of Figure 8's Step-Up  
Converter with 22pF Phase Lead Capacitor  
SETTING OUTPUT VOLTAGE  
To set the output voltage, select the values of R1 and R2  
(see Figure 2) according to the following equation.  
VOUT  
1.255V  
R1= R2  
– 1  
A good value for R2 is 13.3k which sets the current in the  
resistor divider chain to 1.255V/13.3k = 94μA.  
3467afc  
9
LT3467/LT3467A  
U
W U U  
APPLICATIONS INFORMATION  
Compensation—Theory  
From Figure 6, the DC gain, poles and zeroes can be  
calculated as follows:  
Like all other current mode switching regulators, the  
LT3467/LT3467A needs to be compensated for stable and  
efficient operation. Two feedback loops are used in the  
LT3467/LT3467A: a fast current loop which does not  
require compensation, and a slower voltage loop which  
does. Standard Bode plot analysis can be used to under-  
stand and adjust the voltage feedback loop.  
2
Output Pole: P1=  
2 • π RL • COUT  
1
Error Amp Pole: P2=  
2 • π RO • CC  
1
Error Amp Zero: Z1=  
2 • π RC • CC  
As with any feedback loop, identifying the gain and phase  
contribution of the various elements in the loop is critical.  
Figure 6 shows the key equivalent elements of a boost  
converter. Because of the fast current control loop, the  
power stage of the IC, inductor and diode have been  
1.255  
1
2
DC GAIN: A=  
• V • gma RO • gmp RL •  
IN  
2
VOUT  
1
ESR Zero: Z2 =  
replaced by the equivalent transconductance amplifier g  
.
mp  
2 • π RESR • COUT  
g
acts as a current source where the output current is  
mp  
2 RL  
proportional to the V voltage. Note that the maximum output  
V
C
IN  
RHP Zero: Z3=  
current of g is finite due to the current limit in the IC.  
2 • π • VOUT2 L  
mp  
fS  
3
High Frequency Pole: P3>  
1
g
mp  
V
OUT  
Phase Lead Zero : Z4 =  
+
C
R
R
L
2 • π R1• CPL  
PL  
ESR  
C
OUT  
1
1.255V  
REFERENCE  
+
Phase Lead Pole :P4 =  
V
C
R1R2  
R1+ R2  
g
ma  
R1  
R2  
2 • π • CPL  
R
R
O
C
C
C
3467 F06  
C : COMPENSATION CAPACITOR  
C
The Current Mode zero is a right half plane zero which can  
be an issue in feedback control design, but is manageable  
with proper external component selection.  
C
C
: OUTPUT CAPACITOR  
OUT  
: PHASE LEAD CAPACITOR  
PL  
ma  
mp  
g
g
: TRANSCONDUCTANCE AMPLIFIER INSIDE IC  
: POWER STAGE TRANSCONDUCTANCE AMPLIFIER  
R : COMPENSATION RESISTOR  
C
L
R : OUTPUT RESISTANCE DEFINED AS V  
R : OUTPUT RESISTANCE OF g  
DIVIDED BY I  
LOAD(MAX)  
OUT  
O
ma  
R1, R2: FEEDBACK RESISTOR DIVIDER NETWORK  
: OUTPUT CAPACITOR ESR  
R
ESR  
Figure 6. Boost Converter Equivalent Model  
3467afc  
10  
LT3467/LT3467A  
U
W U U  
APPLICATIONS INFORMATION  
Table 3. Bode Plot Parameters  
Using the circuit of Figure 2 as an example, the following  
tableshowstheparametersusedtogeneratetheBodeplot  
shown in Figure 7.  
Parameter  
Value  
10.4  
15  
Units  
Ω
Comment  
R
L
Application Specific  
Application Specific  
Application Specific  
Not Adjustable  
Not Adjustable  
Adjustable  
C
μF  
OUT  
R
10  
mΩ  
MΩ  
pF  
ESR  
50  
40  
0
R
0.4  
60  
O
–45  
C
C
30  
–90  
C
3.3  
100  
402  
133  
5
pF  
PL  
20  
–135  
–180  
–225  
–270  
–315  
–360  
–405  
–450  
R
kΩ  
kΩ  
kΩ  
V
Not Adjustable  
Adjustable  
C
10  
R1  
R2  
0
Adjustable  
–10  
–20  
–30  
–40  
–50  
V
Application Specific  
Application Specific  
Not Adjustable  
Not Adjustable  
Application Specific  
Not Adjustable  
OUT  
V
3.3  
35  
V
IN  
GAIN  
g
g
μmho  
mho  
μH  
ma  
PHASE  
7.5  
2.7  
1.3*  
mp  
100  
1k  
10k  
100k  
1M  
L
FREQUENCY (Hz)  
3467 F07  
f
MHz  
S
*2.1MHz for LT3467A  
Figure 7.Bode Plot of 3.3V to 5V Application  
From Figure 7, the phase is –138° when the gain reaches  
0dB giving a phase margin of 42°. This is more than  
adequate. The crossover frequency is 37kHz.  
U
TYPICAL APPLICATIO S  
Li-Ion to 6V  
Lithium-Ion to 6V Step-Up DC/DC Converter  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
V
= 4.2V  
L1  
IN  
D1  
2.2μH  
V
IN  
V
V
= 3.8V  
OUT  
6V  
IN  
2.7V  
V
= 2.7V  
TO 4.2V  
IN  
R1  
275mA AT V = 2.7V  
IN  
501k  
V
SW  
490mA AT V = 3.8V  
IN  
C1  
2.2μF  
IN  
C3  
1.8pF  
590mA AT V = 4.2V  
IN  
SHDN  
C4  
SHDN  
LT3467  
SS  
FB  
C2  
15μF  
R2  
133k  
GND  
0.047μF  
C1, C2: X5R OR X7R, 6.3V  
3467 TA02  
D1: ON SEMICONDUCTOR MBRM120  
L1: SUMIDA CR43-2R2  
50 100  
300 400 500 600 700  
(mA)  
200  
I
OUT  
3467 TA02b  
3467afc  
11  
LT3467/LT3467A  
U
TYPICAL APPLICATIO S  
4-Cell to 5V SEPIC Converter  
C3  
1μF  
L1  
10μH  
D1  
V
4V TO 6.5V  
OUT  
5V  
325mA AT V = 4V  
C1  
IN  
400mA AT V = 5V  
IN  
2.2μF  
V
SW  
IN  
450mA AT V = 6.5V  
IN  
255k  
SHDN  
SHDN  
C5  
4.7pF  
4-CELL  
BATTERY  
LT3467  
L2  
10μH  
C2  
10μF  
SS  
FB  
C4  
0.047μF  
GND  
84.5k  
D1: PHILIPS PMEG 2010  
L1, L2: MURATA LQH32CN100K33L  
C1, C3: X5R or X7R, 10V  
C2: X5R or X7R, 6.3V  
3467 TA03  
5V to 40V Boost Converter  
L1  
2.7μH  
D1  
V
OUT  
V
IN  
40V  
5V  
20mA  
C1  
4.7μF  
V
SW  
IN  
SHDN  
LT3467  
R1  
412k  
SHDN  
C2  
1μF  
FB  
SS  
C3  
0.1μF  
R2  
13.3k  
GND  
C1: X5R or X7R, 6.3V  
C2: X5R or X7R, 50V  
3467 TA04a  
D1: ON SEMICONDUCTOR, MBRM140  
L1: SUMIDA CD43-2R7  
15V Dual Output Converter with Output Disconnect  
C4  
1μF  
L1  
10μH  
D1  
V
IN  
5V  
15V  
100mA  
C1  
R3  
R1  
2.2μF  
C5  
1μF  
V
SW  
1Ω  
147k  
IN  
OFF ON  
SHDN  
D2  
C2  
2.2μF  
LT3467  
GND  
SS  
FB  
C6  
0.047μF  
R2  
13.3k  
D3  
C3  
2.2μF  
C1: X5R or X7R, 6.3V  
C2 TO C5: X5R or X7R, 16V  
D1 TO D4: PHILIPS PMEG 2005  
L1: SUMIDA CR43-100  
R4  
D4  
1Ω  
–15V  
100mA  
3467 TA05  
3467afc  
12  
LT3467/LT3467A  
U
TYPICAL APPLICATIO S  
9V, 18V, 9V Triple Output TFT-LCD Bias Supply with Soft-Start  
D1  
D2  
C3  
18V  
10mA  
C4  
0.1μF  
1μF  
L1  
4.7μH  
Start-Up Waveforms  
D5  
V
9V  
220mA  
IN  
3.3V  
C1  
2.2μF  
9V OUTPUT  
5V/DIV  
R1  
124k  
V
SW  
IN  
V
SHDN  
SHDN  
LT3467  
–9V OUTPUT  
5V/DIV  
C5  
10μF  
SS  
FB  
3.3V  
GND  
C7  
0.1μF  
R2  
20k  
0V  
18V OUTPUT  
10V/DIV  
C2  
0.1μF  
C1: X5R OR X7R, 6.3V  
C2,C3, C5, C6: X5R OR X7R, 10V  
C4: X5R OR X7R, 25V  
D1 TO D4: PHILIPS BAT54S OR EQUIVALENT  
D5: PHILIPS PMEG 2005  
L1: PANASONIC ELT5KT4R7M  
I
L1 0.5A/DIV  
D4  
D3  
C6  
1μF  
2ms/DIV  
–9V  
10mA  
3467 TA07a  
8V, 23V, –8V Triple Output TFT-LCD Bias Supply with Soft-Start  
D1  
C3  
D2  
D3  
D4  
23V  
10mA  
C4  
C5  
0.1μF  
C6  
1μF  
0.1μF  
0.1μF  
Start-Up Waveforms  
L1  
4.7μH  
D7  
V
IN  
8V  
270mA  
8V OUTPUT  
5V/DIV  
3.3V  
SHDN  
3.3V  
C1  
R1  
V
SW  
2.2μF  
IN  
–8V OUTPUT  
5V/DIV  
113k  
V
SHDN  
C7  
10μF  
LT3467  
SS  
FB  
23V OUTPUT  
10V/DIV  
GND  
R2  
21k  
0V  
C9  
C2  
0.1μF  
0.1μF  
IL1 0.5A/DIV  
C1: X5R OR X7R, 6.3V  
D5  
D6  
C2 TO C4, C7, C8: X5R OR X7R, 10V  
C5: X5R OR X7R, 16V  
2ms/DIV  
C8  
C6: X5R OR X7R, 25V  
1μF  
D1 TO D6: PHILIPS BAT54S OR EQUIVALENT  
D7: PHILIPS PMEG 2005  
–8V  
3467 TA08a  
10mA  
L1: PANASONIC ELT5KT4R7M  
3467afc  
13  
LT3467/LT3467A  
TYPICAL APPLICATIO S  
U
Single Li-Ion Cell to 5V Boost Converter  
Efficiency  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
L1  
D1  
0.9μH  
V
IN  
V
OUT  
5V  
2.6V  
TO 4.2V  
R1  
8.06k  
600mA AT V = 4.2V  
IN  
V
= 4.2V  
IN  
V
SW  
360mA AT V = 3.3V  
IN  
C1  
IN  
V
= 3.3V  
C4*  
75pF  
IN  
250mA AT V = 2.6V  
IN  
4.7μF  
SHDN  
OFF ON  
C3  
V
= 2.6V  
IN  
LT3467A  
SS  
FB  
C2*  
22μF  
R2  
2.67k  
GND  
0.047μF  
C1, C2: X5R OR X7R, 6.3V  
D1: PHILIPS PMEG 2010  
L1: FDK MIPW3226D0R9M  
*C2 CAN BE 10μF IN A 1210 OR LARGER PACKAGE WITH  
THE ADDITION OF C4, OTHERWISE C4 IS OPTIONAL  
3467 TA10a  
50 100 150 200 250 300 350 400 450 500  
(mA)  
I
OUT  
3467 TA09b  
2.6V – 3.3V to 5V Boost Converter  
Efficiency  
90  
85  
80  
75  
70  
65  
60  
55  
50  
L1  
D1  
1.5μH  
V
IN  
V
OUT  
5V  
2.6V  
TO 3.3V  
V
= 3.3V  
R1  
430mA AT V = 3.3V  
270mA AT V = 2.6V  
IN  
IN  
IN  
V
= 2.6V  
IN  
8.06k  
V
SW  
C1  
IN  
C4  
56pF  
4.7μF  
SHDN  
LT3467A  
OFF ON  
C3  
SS  
FB  
C2  
10μF  
R2  
2.67k  
GND  
0.047μF  
C1, C2: X5R OR X7R, 6.3V  
D1: PHILIPS PMEG 2010  
L1: FDK MIP3226D1R5M  
3467 TA09a  
50 100 150 200 250 300 350 400 450 500  
(mA)  
I
OUT  
3467 TA08b  
3.3V to 15V, 135mA Step-Up Converter  
Efficiency  
90  
80  
70  
60  
50  
40  
30  
L1  
D1  
6.8μH  
V
IN  
V
OUT  
3.3V  
15V  
R1  
135mA  
16.5k  
V
SW  
C1  
4.7μF  
IN  
C4  
68pF  
SHDN  
LT3467A  
OFF ON  
C3  
SS  
FB  
C2  
2.2μF  
R2  
1.5k  
GND  
0.047μF  
C1: X5R OR X7R, 6.3V  
C2: X5R OR X7R, 16V  
D1: PHILIPS PMEG 2010  
3467 TA11a  
140  
20  
40  
60  
80 100 120  
160  
L1: SUMIDA CMD4D13-6R8MC  
I
(mA)  
OUT  
3467 TA10b  
3467afc  
14  
LT3467/LT3467A  
U
PACKAGE DESCRIPTIO  
DDB Package  
8-Lead Plastic DFN (3mm × 2mm)  
(Reference LTC DWG # 05-08-1702 Rev B)  
0.61 0.05  
(2 SIDES)  
R = 0.115  
0.40 0.10  
3.00 0.10  
(2 SIDES)  
TYP  
R = 0.05  
TYP  
5
8
0.70 0.05  
2.55 0.05  
1.15 0.05  
2.00 0.10  
PIN 1 BAR  
(2 SIDES)  
TOP MARK  
PIN 1  
R = 0.20 OR  
0.25 × 45°  
(SEE NOTE 6)  
PACKAGE  
OUTLINE  
0.56 0.05  
(2 SIDES)  
CHAMFER  
4
1
(DDB8) DFN 0905 REV B  
0.25 0.05  
0.25 0.05  
0.75 0.05  
0.200 REF  
0.50 BSC  
2.20 0.05  
(2 SIDES)  
0.50 BSC  
2.15 0.05  
(2 SIDES)  
0 – 0.05  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING CONFORMS TO VERSION (WECD-1) IN JEDEC PACKAGE OUTLINE M0-229  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE  
S6 Package  
6-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1636)  
2.90 BSC  
(NOTE 4)  
0.62  
MAX  
0.95  
REF  
1.22 REF  
1.4 MIN  
1.50 – 1.75  
2.80 BSC  
3.85 MAX 2.62 REF  
(NOTE 4)  
PIN ONE ID  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.30 – 0.45  
6 PLCS (NOTE 3)  
0.95 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
S6 TSOT-23 1005  
NOTE:  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
3467afc  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tation that the interconnection ofits circuits as described herein willnotinfringe on existing patentrights.  
15  
LT3467/LT3467A  
L1  
4.7μH  
D1  
V
OUT  
V
IN  
5V  
12V  
C1  
270mA  
R1  
2.2μF  
115k  
V
SW  
IN  
C4*  
22pF  
C2  
10μF  
LT3467  
GND  
SS  
FB  
C3  
0.047μF  
R2  
13.3k  
3467 TA06a  
Figure 8. 5V to 12V, 270mA Step-Up Converter  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1615/LT1615-1  
300mA/80mA (I ), High Efficiency Step-Up DC/DC Converter V : 1V to 15V, V  
= 34V, I = 20μA,  
SW  
IN  
OUT(MAX) Q  
<1μA, ThinSOT Package  
I
SD  
LT1618  
1.5A (I ), 1.25MHz, High Efficiency  
90% Efficiency, V : 1.6V to 18V, V  
= 35V,  
OUT(MAX)  
SW  
IN  
Step-Up DC/DC Converter  
I = 1.8mA, I <1μA, MS Package  
Q
SD  
LTC1700  
No R  
TM, 530kHz, Synchronous Step-Up DC/DC Controller 95% Efficiency, V : 0.9V to 5V, I = 200μA, I <10μA,  
SENSE IN Q SD  
MS Package  
LTC1871  
Wide Input Range, 1MHz, No R  
Flyback and SEPIC Controller  
Current Mode Boost,  
92% Efficiency, V : 2.5V to 36V, I = 250μA, I <10μA,  
SENSE  
IN  
Q
SD  
MS Package  
LT1930/LT1930A  
LT1946/LT1946A  
LT1961  
1A (I ), 1.2MHz/2.2MHz, High Efficiency  
High Efficiency, V : 2.6V to 16V, V  
Q SD  
= 34V,  
SW  
IN  
OUT(MAX  
Step-Up DC/DC Converter  
I = 4.2mA/5.5mA, I <1μA, ThinSOT Package  
1.5A (I ), 1.2MHz/2.7MHz, High Efficiency  
High Efficiency, V : 2.45V to 16V, V  
= 34V,  
SW  
IN  
OUT(MAX)  
Step-Up DC/DC Converter with Soft-Start  
I = 3.2mA, I <1μA, MS8 Package  
Q
SD  
1.5A (I ), 1.25MHz, High Efficiency  
90% Efficiency, V : 3V to 25V, V  
Q SD  
= 35V,  
SW  
IN  
OUT(MAX)  
Step-Up DC/DC Converter  
I = 0.9mA, I <6μA, MS8E Package  
LTC3400/LTC3400B  
LTC3401  
600mA (I ), 1.2MHz, Synchronous Step-Up DC/DC Converter 92% Efficiency, V : 0.85V to 5V, V  
= 5V,  
OUT(MAX)  
SW  
IN  
I = 19μA/300μA, I <1μA, ThinSOT Package  
Q
SD  
1A (I ), 3MHz, Synchronous Step-Up DC/DC Converter  
97% Efficiency, V : 0.5V to 5V, V  
= 5.5V,  
SW  
IN  
OUT(MAX)  
OUT(MAX)  
I = 38μA, I <1μA, MS Package  
Q
SD  
LTC3402  
2A (I ), 3MHz, Synchronous Step-Up DC/DC Converter  
97% Efficiency, V : 0.5V to 5V, V  
= 5.5V,  
SW  
IN  
I = 38μA, I <1μA, MS Package  
Q
SD  
LT3464  
85mA (I ), High Efficiency Step-Up DC/DC Converter  
V : 2.3V to 10V, V  
Q SD  
= 34V,  
SW  
IN  
OUT(MAX)  
with Integrated Schottky and PNP Disconnect  
I = 25μA, I <1μA, ThinSOT Package  
No R  
is a trademark of Linear Technology Corporation.  
SENSE  
3467afc  
LT 0707 REV C • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
© LINEAR TECHNOLOGY CORPORATION 2003  

相关型号:

LT3467IS6

LT3467 - 1.1A Step-Up DC/DC Converter with Integrated Soft-Start; Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3467IS6#PBF

LT3467 - 1.1A Step-Up DC/DC Converter with Integrated Soft-Start; Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3467IS6#TR

IC 2.5 A SWITCHING REGULATOR, 1600 kHz SWITCHING FREQ-MAX, PDSO6, 1 MM HEIGHT, PLASTIC, MO-193, TSOT-23, 6 PIN, Switching Regulator or Controller
Linear

LT3467IS6#TRM

暂无描述
Linear

LT3467IS6#TRMPBF

LT3467 - 1.1A Step-Up DC/DC Converter with Integrated Soft-Start; Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3467IS6#TRPBF

暂无描述
Linear

LT3467_15

1.1A Step-Up DC/DC Converter with Integrated Soft-Start
Linear

LT3468

Photoflash Capacitor Charger in ThinSOT
Linear

LT3468-1

Photoflash Capacitor Charger in ThinSOT
Linear

LT3468-1_15

Photoflash Capacitor Chargers in ThinSOT
Linear

LT3468-2

Photoflash Capacitor Chargers in ThinSOT
Linear

LT3468-2_15

Photoflash Capacitor Chargers in ThinSOT
Linear