LT3469ETS8#TRPBF [Linear]

暂无描述;
LT3469ETS8#TRPBF
型号: LT3469ETS8#TRPBF
厂家: Linear    Linear
描述:

暂无描述

驱动器 稳压器 光电二极管
文件: 总8页 (文件大小:166K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3469  
Piezo Microactuator Driver  
with Boost Regulator  
U
FEATURES  
DESCRIPTIO  
TheLT®3469isatransconductance(gm)amplifierthatcan  
drive outputs up to 33V from a 5V or 12V supply. An  
internal switching regulator generates a boosted supply  
voltage for the gm amplifier. The amplifier can drive  
capacitive loads in the range of 5nF to 300nF. Slew rate is  
limited only by the maximum output current. The 35V  
output voltage capability of the switching regulator, along  
with the high supply voltage of the amplifier, combine to  
allow the wide output voltage range needed to drive a  
piezoceramic microactuator.  
Amplifier  
Current Limit: ±40mA Typical  
Input Common Mode Range: 0V to 10V  
Output Voltage Range: 1V to (VCC – 1V)  
Differential Gain Stage with High Impedance Output  
(gm Stage)  
Quiescent Current (from VCC): 2mA  
Unloaded Gain: 30,000 Typical  
Switching Regulator  
Generates VCC Up to 35V  
Wide Operating Supply Range: 2.5V to 16V  
The LT3469 switching regulator switches at 1.3MHz,  
allowing the use of tiny external components. The output  
capacitorcanbeassmallas0.22µF, savingspaceandcost  
versus alternative solutions.  
High Switching Frequency: 1.3MHz  
Internal Schottky Diode  
Tiny External Components  
Current Mode Switcher with Internal Compensation  
Low Profile (1mm) SOT-23 Package  
TheLT3469isavailableinalowprofileThinSOTTM package.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
ThinSOT is a trademark of Linear Technology Corporation.  
U
APPLICATIO S  
Piezo Speakers  
Piezo Microactuators  
Varactor Bias  
U
TYPICAL APPLICATIO  
Piezo Microactuator Driver  
47µH  
5V OR 12V  
Response Driving a 33nF Load  
3
5
1µF  
16V  
V
SW  
IN  
IOUT  
6
2
V
100mA/DIV  
CC  
453k  
0.47µF  
FB  
50V  
VOUT  
10V/DIV  
LT3469  
16.5k  
4
1
GND  
OUT  
9.09k  
7
8
+
+IN  
–IN  
V
OUT  
1V TO 33V  
+
INPUT  
5V/DIV  
INPUT  
0V TO 3V  
50µs/DIV  
3469 TA04  
10k  
PIEZO  
ACTUATOR  
5nF < C < 300nF  
100k  
3469 TA03  
3469f  
1
LT3469  
W W  
U W  
U W  
U
ABSOLUTE AXI U RATI GS  
(Note 1)  
PACKAGE/ORDER I FOR ATIO  
ORDER PART  
VIN Voltage ............................................................. 16V  
SW Voltage ............................................................. 40V  
TOP VIEW  
NUMBER  
OUT 1  
FB 2  
8 –IN  
7 +IN  
6 V  
CC  
V
CC Voltage............................................................. 38V  
LT3469ETS8  
V
3
+IN, –IN Voltage ..................................................... 10V  
FB Voltage ................................................................ 3V  
Current Into SW Pin ................................................. 1A  
Operating Temperature Range (Note 2) .. 40°C to 85°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
IN  
GND 4  
5 SW  
TS8 PART MARKING  
LTACA  
TS8 PACKAGE  
8-LEAD PLASTIC TSOT-23  
TJMAX = 125°C, θJA = 250°C/W  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 2) VIN = 5V, VCC = 35V, unless otherwise noted.  
PARAMETER  
Amplifier  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
g
m
Input Offset Voltage  
V
= V /2  
3
10  
mV  
nA  
OUT  
CC  
Input Offset Current  
10  
100  
500  
Input Bias Current  
150  
1
nA  
Input Resistance—Differential Mode  
Input Resistance—Common Mode  
Common Mode Rejection Ratio  
MΩ  
MΩ  
dB  
200  
100  
120  
85  
V
V
V
= 0V to 10V  
70  
80  
65  
CM  
Power Supply Rejection Ratio—V  
Power Supply Rejection Ratio—V  
Gain  
= 2.5V to 16V  
= 15V to 35V  
dB  
IN  
IN  
dB  
CC  
CC  
No Load, V  
R = 200k, V  
= 2V to 33V  
15  
10  
30  
20  
V/mV  
V/mV  
OUT  
= 2V to 33V  
OUT  
L
Transconductance  
I
= ±100µA  
160  
140  
220  
260  
300  
µA/mV  
µA/mV  
OUT  
Maximum Output Current  
V
= V /2  
±30  
±23  
±40  
±55  
±58  
mA  
mA  
OUT  
CC  
Maximum Output Voltage, Sourcing  
Minimum Output Voltage, Sinking  
Output Resistance  
V
V
= 35V, I  
= 35V, I  
= 10mA  
= 0mA  
34.0  
34.5  
34.5  
34.9  
V
V
CC  
CC  
OUT  
OUT  
I
I
= –10mA  
= 0mA  
200  
10  
1000  
500  
mV  
mV  
OUT  
OUT  
V
V
= 35V, V  
= 35V  
= 2V to 33V  
OUT  
100  
2
kΩ  
CC  
CC  
Supply Current—V  
1.5  
2.5  
2.5  
mA  
CC  
Switching Regulator  
Minimum Operating Voltage  
Maximum Operating Voltage  
Feedback Voltage  
V
V
16  
1.19  
1.23  
45  
1.265  
200  
V
FB Pin Bias Current  
nA  
FB Line Regulation  
2.5V < V < 16V  
0.03  
1.9  
1.3  
91  
%/V  
mA  
MHz  
%
IN  
Supply Current—V  
2.6  
1.7  
IN  
Switching Frequency  
0.8  
88  
Maximum Duty Cycle  
Switch Current Limit (Note 3)  
165  
220  
350  
mA  
mV  
Switch V  
I
= 100mA  
SW  
500  
CESAT  
3469f  
2
LT3469  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 2) VIN = 5V, VCC = 35V, unless otherwise noted.  
PARAMETER  
CONDITIONS  
= 5V  
MIN  
TYP  
0.01  
740  
0.1  
MAX  
1
UNITS  
µA  
Switch Leakage Current  
V
SW  
Diode V  
I = 100mA  
D
1100  
1
mV  
F
Diode Reverse Leakage Current  
V = 5V  
R
µA  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
temperature range are assured by design, characterization and correlation  
with statistical process controls.  
Note 3: Current limit is guaranteed by design and/or correlation to static  
test. Slope compensation reduces current limit at higher duty cycles.  
Note 2: The LT3469E is guaranteed to meet performance specifications  
from 0°C to 85°C. Specifications over the –40°C to 85°C operating  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
(Switching Regulator)  
VIN Quiescent Current  
Current Limit vs Duty Cycle  
Schottky Forward Voltage  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
250  
200  
150  
100  
50  
250  
T
= 25°C  
A
–50°C  
200  
150  
100°C  
25°C  
25°C  
100°C  
100  
50  
0
–50°C  
0
6
8
0
2
4
10 12 14 16  
600  
700 800 900 1000  
0
20  
40  
60  
80  
100  
200 300 400 500  
V
IN  
(V)  
DUTY CYCLE (%)  
FORWARD VOLTAGE (mV)  
3469 G05  
3469 G06  
3469 G07  
Switching Frequency  
FB Pin Voltage and Bias Current  
Schottky Reverse Leakage  
1.275  
1.255  
1.235  
1.215  
50  
40  
30  
20  
25  
20  
15  
10  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
= 5V  
R
CURRENT  
VOLTAGE  
1.195  
1.175  
10  
0
5
0
–50  
0
25  
50  
75  
100  
–25  
–50  
0
25  
50  
75  
100  
–50 –25  
0
25  
50  
75  
100  
–25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3469 G11  
3469 G09  
3469 G10  
3469f  
3
LT3469  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
(gm Amplifier)  
Output Current  
vs Differential Input Voltage  
VCC Quiescent Current  
gm vs VCC  
2.5  
2.0  
1.5  
1.0  
0.5  
0
30  
25  
250  
200  
150  
100  
50  
100°C  
–50°C  
100°C  
25°C  
20  
25°C  
15  
–50°C  
10  
5
0
–5  
100°C  
–50°C  
25°C  
–10  
–15  
–20  
–25  
–30  
0
15  
18  
21  
24  
V
27  
(V)  
30  
33  
36  
–50 –40 –30 –20 –10  
0
10 20 30 40 50  
15  
20  
25  
(V)  
30  
35  
DIFFERENTIAL INPUT VOLTAGE (mV)  
V
CC  
CC  
3469 G01  
3469 G02  
3469 G14  
U
U
U
PI FU CTIO S  
OUT (Pin 1): Output of the gm Amplifier. There must be at  
least 5nF of capacitive load at the output in a gain of 10  
configuration. Capacitive loads up to 300nF can be con-  
nectedtothispin. Piezoactuatorsbelow5nFcanbedriven  
if capacitance is placed in parallel to bring the total  
capacitance to 5nF.  
GND (Pin 4): Ground Pin. Connect directly to local ground  
plane.  
SW (Pin 5): Switch Pin. Connect inductor here. Minimize  
trace area at this pin to reduce EMI.  
VCC (Pin 6): Output of Switching Regulator and Supply  
Rail for gm Amp. There must be 0.22µF or more of  
capacitance here.  
FB (Pin 2): Feedback Pin. Reference voltage is 1.23V.  
Connect feedback resistor divider here.  
+IN (Pin 7): Noninverting Terminal of the gm Amplifier.  
–IN (Pin 8): Inverting Terminal of the gm Amplifier.  
VIN (Pin 3): Input Supply Pin. Must be locally bypassed.  
W
BLOCK DIAGRA  
SW  
V
V
V
CC  
IN  
IN  
5
V
CC  
+IN  
7
3
FB  
2
6
+
+
OUT  
1
SWITCH  
CONTROLLER  
g
A1  
Q1  
m
–IN  
8
1.23V  
4
3469 F01  
GND  
Figure 1. LT3469 Block Diagram  
3469f  
4
LT3469  
U
OPERATIO  
gm Amplifier  
cal bandwidth of a gain of 10 configuration per output  
capacitance.  
The LT3469 is a wide output voltage range gm amplifier  
designed to drive capacitive loads. Input common mode  
range extends from 10V to ground. The output current is  
proportional to the voltage difference across the input  
terminals. When the output voltage has settled, the input  
terminals will be at the same voltage; supply current of the  
amplifier will be low and power dissipation will be low. If  
presented with an input differential, however, the output  
current can increase significantly, up to the maximum  
output current (typically 40mA). The output voltage slew  
rateisdeterminedbythemaximumoutputcurrentandthe  
output capacitance, and can be quite high. With a 10nF  
load, the output slew rate will typically be 4V/µs. The  
capacitiveloadcompensatesthegm amplifierandmustbe  
presentforstableoperation. Thegaincapacitanceproduct  
of the amplifier must be at least 50nF. For example, if the  
amplifier is operated in a gain of 10 configuration, a  
minimum capacitance of 5nF is necessary. In a gain of 20  
configuration, a minimum of 2.5nF is necessary. Closed  
loop –3dB bandwidth is set by the output capacitance.  
Typical closed loop bandwidth is approximately:  
In applications where negative phase contributions below  
crossover frequency must be minimized, a phase boost  
capacitor can be added, as shown in Figure 4. Larger val-  
ues of CBOOST will further reduce the closed-loop negative  
phase contribution, however, the amplifier phase margin  
will be reduced. For an amplifier phase margin of approxi-  
mately 55°, select CBOOST as follows:  
COUT R1/ R2 + 1  
(
)
CBOOST  
=
g R1||R2  
(
)
m
where gm = 200µA/mV.  
In a gain of 10 configuration, choosing CBOOST as de-  
scribed will lead to nearly zero closed-loop negative phase  
contribution at 3kHz for values of COUT from 10nF to  
200nF. The phase boost capacitor should not be used if  
C
OUT is less than twice the minimum for stable operation.  
The gain capacitance product should therefore be higher  
than 100nF if a phase boost capacitor is used.  
Switching Regulator  
gm  
2π • AV COUT  
The LT3469 uses a constant frequency, current mode  
control scheme to provide excellent line and load regula-  
tion. Operation can be best understood by referring to the  
Block Diagram in Figure 1. The switch controller sets the  
peakcurrentinQ1proportionaltoitsinput.Theinputtothe  
switch controller is set by the error amplifier, A1, and is  
where gm = 200µA/mV  
Forexample, anamplifierinagainof10configurationwith  
10nF of output capacitance will have a closed loop –3dB  
bandwidth of approximately 300kHz. Figure 3 shows typi-  
1000  
100  
10  
1
WITH PHASE  
BOOST CAPACITOR  
WITHOUT PHASE  
100  
BOOST CAPACITOR  
10  
2
20  
200  
0.1  
CAPACITANCE (nF)  
2
20  
200  
3469 F03  
CAPACITANCE (nF)  
3469 F02  
Figure 3. Closed Loop –3dB Bandwidth  
vs Capacitance in a Gain of 10 Configuration  
Figure 2. Slew Rate vs Capacitance  
3469f  
5
LT3469  
U
OPERATIO  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
V
V
= 12V  
IN  
OUT  
= 35V  
+
INPUT  
g
V
OUT  
m
R1  
R2  
C
BOOST  
3469 F04  
MURATA LQH32CN470  
SUMIDA CMD4011-470  
TAIYO YUDEN LBC2518T470M  
Figure 4. Boosting the Bandwidth of the gm Amplifier  
with Capacitance On the Inverting Input  
0
5
15  
20  
25  
30  
10  
LOAD CURRENT (mA)  
simply an amplified version of the difference between the  
feedback voltage and the reference voltage of 1.23V. In  
this manner, the error amplifier sets the correct peak  
current level to keep the output in regulation. If the error  
amplifier’s output increases, more current is delivered to  
the output; if it decreases, less current is delivered. The  
switching regulator provides the boosted supply voltage  
for the gm amplifier.  
3469 F05  
Figure 5. Efficiency Comparison of Different Inductors  
transientresponse,however,moreoutputcapacitancecan  
help limit the voltage droop on VCC during transients.  
Table 2. Recommended Ceramic Capacitor Manufacturers  
MANUFACTURER  
Taiyo Yuden  
AVX  
PHONE  
URL  
408-573-4150  
843-448-9411  
814-237-1431  
408-986-0424  
www.t-yuden.com  
www.avxcorp.com  
www.murata.com  
www.kemet.com  
Inductor Selection  
Murata  
A 47µH inductor is recommended for most LT3469 appli-  
cations. Some suitable inductors with small size are listed  
in Table 1. The efficiency comparison of different induc-  
tors is shown in Figure 5.  
Kemet  
Inrush Current Considerations When Hot Plugging  
Table 1. Recommended Inductors  
CURRENT  
When the supply voltage is applied to VIN, the voltage  
difference between VIN and VCC generates inrush current  
flowing from the input through the inductor, the SW pin,  
and the integrated Schottky diode to charge the output  
capacitor. Care should be taken not to exceed the LT3469  
maximumSWpincurrentratingof1A. Worst-caseinrush  
current occurs when the application circuit is hot plugged  
into a live supply with a large output capacitance. The  
typical application circuit will maintain a peak SW pin  
current below 1A when it is hot plugged into a 5V supply.  
To keep SW pin current below 1A during a hot plug into  
a 12V supply, 4.7must be added between the supply  
andtheLT3469inputcapacitor.Duringnormaloperation,  
the SW pin current remains significantly less than 1A.  
DCR  
RATING  
(mA)  
PART NUMBER  
()  
MANUFACTURER  
LQH32CN470  
1.3  
2.8  
1.9  
170  
180  
150  
Murata  
814-237-1431  
www.murata.com  
CMD4D11-470  
LBC2518T470M  
Sumida  
847-545-6700  
www.Sumida.com  
Taiyo Yuden  
408-573-4150  
www.t-yuden.com  
Capacitor Selection  
The small size of ceramic capacitors makes them ideal for  
LT3469applications.X5RandX7Rtypesarerecommended  
becausetheyretaintheircapacitanceoverwidervoltageand  
temperature ranges than other types such as Y5V or Z5U.  
A 1µF input capacitor is sufficient for most LT3469 appli-  
cations. A 0.22µF output capacitor is sufficient for stable  
Layout Hints  
As with all switching regulators, careful attention must be  
paid to the PCB board layout and component placement.  
Tomaximizeefficiency, switchriseandfalltimesaremade  
3469f  
6
LT3469  
U
OPERATIO  
as short as possible. To prevent electromagnetic interfer-  
ence (EMI) problems, proper layout of the high frequency  
switching path is essential. The voltage signal of the SW  
pin has sharp rise and fall edges. The SW pin should be  
surrounded on three sides by metal connected to VCC to  
shield +IN and –IN. Minimize the area of all traces con-  
nected to the SW pin and always use a ground plane under  
theswitchingregulatortominimizeinterplanecoupling.In  
addition, the ground connection for the feedback resistor  
R1 should be tied directly to the GND pin and not shared  
with any other component, ensuring a clean, noise-free  
connection. The ground return of the piezoceramic  
microactuator should also have a direct and unshared  
connection to the GND pin. The GND connection to R5  
should be tied directly to the ground of the source gener-  
ating the INPUT signal to avoid error induced by voltage  
drops along the GND line. Recommended component  
placement is shown in Figure 6.  
input, power dissipation is calculated from the amplifier  
quiescent current (IQ), input frequency (f), output swing  
(VOUT(P-P)), capacitive load (CL), amplifier supply voltage  
(VCC) and switching regulator efficiency (η) as follows:  
I + fVOUT(P-P)CL  
V
CC  
(
)
)
(
Q
PD =  
η
Example: LT3469 at TA = 70°C, VCC = 35V, CL = 200nF,  
f = 3kHz, VOUT(P-P) = 4V, η = 80%:  
2.5mA + 3kHz • 4V • 200nF 35V  
(
)(  
)
PD =  
= 214mW  
0.80  
T = 70°C + 214mW • 250°C/W = 124°C  
(
)
J
Do not exceed the maximum junction temperature of  
125°C.  
GND INPUT  
R5  
R4  
R3  
Thermal Considerations and Power Dissipation  
The LT3469 combines large output drive with a small  
package. Because of the high supply voltage capability, it  
is possible to operate the part under conditions that  
exceed the maximum junction temperature. Maximum  
junction temperature (TJ) is calculated from the ambient  
temperature (TA) and power dissipation (PD) as follows:  
R1  
C1  
R2  
PIEZ0  
ACTUATOR  
C2  
L
V
IN  
TJ = TA + (PD • 250°C/W)  
3469 F06  
VIAS TO GROUND PLANE  
Worst-case power dissipation occurs at maximum output  
swing, frequency, capacitance and VCC. For a square wave  
Figure 6. Recommended Component Placement  
U
TYPICAL APPLICATIO  
Piezo Speaker Driver  
C1, C2: X5R OR X7R DIELECTRIC  
L1: MURATA LQH32CN470  
L1  
47µH  
V
SOUND PRESSURE LEVEL: 87dB AT 750Hz/10V /10cm  
IN  
3V TO 6V  
P-P  
WITH A 55nF PIEZO SPEAKER. I WITH V = 3.3V:  
3
5
VIN  
IN  
C1  
1µF  
24mA AT 750Hz/10V WITH A 55nF PIEZO SPEAKER  
P-P  
V
SW  
IN  
6
2
V
CC  
294k  
C2  
0.47µF  
35V  
FB  
LT3469  
17.4k  
4
1
GND  
OUT  
16.9k  
V
OUT  
1V TO 20V  
7
8
PIEZO  
SPEAKER  
8nF < C < 300nF  
+IN  
–IN  
+
+
INPUT  
0V TO 3V  
20k  
3469 TA01  
113k  
3469f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
7
LT3469  
U
PACKAGE DESCRIPTIO  
TS8 Package  
8-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1637)  
0.52  
MAX  
0.65  
REF  
2.90 BSC  
(NOTE 4)  
1.22 REF  
1.50 – 1.75  
(NOTE 4)  
2.80 BSC  
1.4 MIN  
3.85 MAX 2.62 REF  
PIN ONE ID  
0.22 – 0.36  
8 PLCS (NOTE 3)  
0.65 BSC  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.80 – 0.90  
0.09 – 0.20  
(NOTE 3)  
0.20 BSC  
NOTE:  
0.01 – 0.10  
1.00 MAX  
DATUM ‘A’  
0.30 – 0.50 REF  
1.95 BSC  
TS8 TSOT-23 0802  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
RELATED PARTS  
PART NUMBER  
LT1611  
DESCRIPTION  
550mA I , 1.4MHz, High Efficiency Inverting DC/DC Converter  
COMMENTS  
V : 0.9V to 10V, V  
IN  
: 34V, I : 3mA, I : <1µA, ThinSOT  
OUT(MAX) Q SD  
SW  
LT1616  
600mA I , 1.4MHz, High Efficiency Step-Down  
V : 3.6V to 25V, V  
IN  
: 1.25V, I : 1.9mA, I : <1µA, ThinSOT  
OUT(MIN) Q SD  
OUT  
DC/DC Converter  
LTC1772B  
550kHz, Current Mode Step-Down DC/DC Controller  
V : 2.5V to 9.8V, V  
: 0.8V, I : 270µA, I : <8µA, ThinSOT  
OUT(MIN) Q SD  
: –34V, I : 4.2mA, I : <1µA, ThinSOT  
OUT(MAX) Q SD  
IN  
LT1931/LT1931A 1A I , 1.2MHz/2.2MHz, High Efficiency Inverting DC/DC  
V : 2.6V to 16V, V  
IN  
SW  
Converter  
LT1940 (Dual)  
Dual Output 1.4A I , Constant 1.1MHz, High Efficiency  
V : 3V to 25V, V  
: 1.2V, I : 2.5mA, I : <1µA, TSSOP-16E  
OUT(MIN) Q SD  
OUT  
IN  
Step-Down DC/DC Converter  
LTC3411  
LT3464  
1.25A I , 4MHz Synchronous Step-Down DC/DC Converter  
V : 2.5V to 5.5V, V  
: 0.8V, I : 60µA, I : <1µA, MS10, DFN  
OUT(MIN) Q SD  
: 34V, I : 25µA, I : <0.5µA, ThinSOT  
OUT(MAX) Q SD  
OUT  
IN  
85mA I , Constant Off-Time, High Efficiency Step-Up DC/DC  
V : 2.3V to 10V, V  
IN  
SW  
Converter with Integrated Schottky and Output Disconnect  
3469f  
LT/TP 0304 1K • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
8
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
LINEAR TECHNOLOGY CORPORATION 2003  

相关型号:

LT3470

Micropower Buck Regulator with Integrated Boost and Catch Diodes
Linear System

LT3470

Micropower Buck Regulator with Integrated Boost and Catch Diodes
Linear

LT3470A

Micropower Buck Regulator with Integrated Boost and Catch Diodes
Linear

LT3470AEDDB#PBF

LT3470A - Micropower Buck Regulator with Integrated Boost and Catch Diodes; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3470AEDDB#TRMPBF

LT3470A - Micropower Buck Regulator with Integrated Boost and Catch Diodes; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3470AEDDB#TRPBF

LT3470A - Micropower Buck Regulator with Integrated Boost and Catch Diodes; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3470AEDDB-PBF

Micropower Buck Regulator with Integrated Boost and Catch Diodes
Linear

LT3470AEDDB-TRPBF

Micropower Buck Regulator with Integrated Boost and Catch Diodes
Linear

LT3470AIDDB#PBF

LT3470A - Micropower Buck Regulator with Integrated Boost and Catch Diodes; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3470AIDDB#TRMPBF

LT3470A - Micropower Buck Regulator with Integrated Boost and Catch Diodes; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3470AIDDB#TRPBF

LT3470A - Micropower Buck Regulator with Integrated Boost and Catch Diodes; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3470AIDDB-PBF

Micropower Buck Regulator with Integrated Boost and Catch Diodes
Linear