LT3470ETS8#TRM [Linear]

LT3470 - Micropower Buck Regulator with Integrated Boost and Catch Diodes; Package: SOT; Pins: 8; Temperature Range: -40°C to 85°C;
LT3470ETS8#TRM
型号: LT3470ETS8#TRM
厂家: Linear    Linear
描述:

LT3470 - Micropower Buck Regulator with Integrated Boost and Catch Diodes; Package: SOT; Pins: 8; Temperature Range: -40°C to 85°C

开关 光电二极管
文件: 总20页 (文件大小:253K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3470  
Micropower Buck Regulator  
with Integrated Boost and  
Catch Diodes  
U
FEATURES  
DESCRIPTIO  
TheLT®3470isamicropowerstep-downDC/DCconverter  
that integrates a 300mA power switch, catch diode  
and boost diode into low profile 3mm x 2mm DD and  
ThinSOTTM packages. The LT3470 combines Burst Mode  
and continuous operation to allow the use of tiny inductor  
and capacitors while providing a low ripple output to  
loads of up to 200mA.  
Low Quiescent Current: 26µA at 12VIN to 3.3VOUT  
Integrated Boost and Catch Diodes  
Input Range: 4V to 40V  
Low Output Ripple: <10mV  
<1µA in Shutdown Mode  
Output Voltage: 1.25V to 16V  
200mA Output Current  
Hysteretic Mode Control  
With its wide input range of 4V to 40V, the LT3470 can  
regulate a wide variety of power sources, from 2-cell  
Li-Ionbatteriestounregulatedwalltransformersandlead-  
acid batteries. Quiescent current in regulation is just 26µA  
in a typical application while a zero current shutdown  
mode disconnects the load from the input source, simpli-  
fying power management in battery-powered systems.  
Fast current limiting and hysteretic control protects the  
LT3470 and external components against shorted out-  
puts, even at 40V input.  
– Low Ripple Burst Mode® Operation at Light Loads  
– Continuous Operation at Higher Loads  
Solution Size as Small as 50mm2  
Low Profile (0.75mm) 3mm x 2mm Thermally  
Enhanced 8-Lead DD and 1mm ThinSOT Packages  
U
APPLICATIO S  
Automotive Battery Regulation  
Power for Portable Products  
Distributed Supply Regulation  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
Burst Mode is a registered trademark of Linear Technology Corporation. ThinSOT is a  
trademark of Linear Technology Corporation. All other trademarks are the property of their  
respective owners.  
Industrial Supplies  
Wall Transformer Regulation  
U
TYPICAL APPLICATIO  
Efficiency and Power Loss vs Load Current  
90  
80  
70  
60  
50  
40  
30  
20  
10  
1000  
100  
10  
V
V
= 12V  
IN  
IN  
7V TO 40V  
0.22µF  
33µH  
V
BOOST  
IN  
LT3470  
SHDN  
V
OUT  
5V  
OFF ON  
SW  
200mA  
BIAS  
604k  
1%  
22pF  
FB  
22µF  
2.2µF  
GND  
200k  
1%  
1
0.1  
0.1  
1
10  
100  
LOAD CURRENT (mA)  
3470 TA02  
3470fc  
1
LT3470  
ABSOLUTE AXI U RATI GS  
W W  
U W  
(Note 1)  
VIN, SHDN Voltage.................................................. 40V  
BOOST Pin Voltage ................................................. 47V  
BOOST Pin Above SW Pin ...................................... 25V  
FB Voltage ................................................................ 5V  
BIAS Voltage............................................................ 25V  
SW Voltage ................................................................VIN  
Maximum Junction Temperature  
LT3470H .......................................................... 150°C  
Operating Temperature Range (Note 2)  
LT3470E ............................................. 40°C to 85°C  
LT3470I ............................................ 40°C to 125°C  
LT3470H .......................................... 40°C to 150°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
LT3470E, LT3470I ............................................ 125°C  
U
U
U
PI CO FIGURATIO  
TOP VIEW  
FB  
BIAS  
1
2
3
4
8
7
6
5
SHDN  
NC  
TOP VIEW  
SHDN 1  
NC 2  
8 FB  
9
7 BIAS  
6 BOOST  
5 SW  
BOOST  
SW  
V
IN  
V
IN  
3
GND  
GND 4  
TS8 PACKAGE  
8-LEAD PLASTIC TSOT-23  
DDB8 PACKAGE  
8-LEAD (3mm × 2mm) PLASTIC DFN  
θ
JA = 140°C/ W  
θ
JA = 80°C/ W  
EXPOSED PAD (PIN 9) IS GROUND (MUST BE SOLDERED TO PCB)  
U
W
U
ORDER I FOR ATIO  
LEAD FREE FINISH  
LT3470EDDB#PBF  
LT3470IDDB#PBF  
LT3470HDDB#PBF  
LT3470ETS8#PBF  
LT3470ITS8#PBF  
LT3470HTS8#PBF  
LEAD BASED FINISH  
LT3470EDDB  
LT3470IDDB  
LT3470HDDB  
LT3470ETS8  
LT3470ITS8  
TAPE AND REEL  
PART MARKING  
LBPN  
LBPP  
LCNR  
LTBDM  
LTBPW  
LTCNQ  
PART MARKING  
LBPN  
LBPP  
LCNR  
LTBDM  
LTBPW  
LTCNQ  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 150°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 150°C  
TEMPERATURE RANGE  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 150°C  
–40°C to 85°C  
LT3470EDDB#TRPBF  
LT3470IDDB#TRPBF  
LT3470HDDB#TRPBF  
LT3470ETS8#TRPBF  
LT3470ITS8#TRPBF  
LT3470HTS8#TRPBF  
TAPE AND REEL  
LT3470EDDB#TR  
LT3470EDDB#TR  
LT3470EDDB#TR  
LT3470ETS8#TR  
8-Lead (3mm × 2mm) Plastic DFN  
8-Lead (3mm × 2mm) Plastic DFN  
8-Lead (3mm × 2mm) Plastic DFN  
8-Lead Plastic TSOT-23  
8-Lead Plastic TSOT-23  
8-Lead Plastic TSOT-23  
PACKAGE DESCRIPTION  
8-Lead (3mm × 2mm) Plastic DFN  
8-Lead (3mm × 2mm) Plastic DFN  
8-Lead (3mm × 2mm) Plastic DFN  
8-Lead Plastic TSOT-23  
8-Lead Plastic TSOT-23  
8-Lead Plastic TSOT-23  
LT3470ITS8#TR  
LT3470HTS8#TR  
–40°C to 125°C  
–40°C to 150°C  
LT3470HTS8  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
3470fc  
2
LT3470  
ELECTRICAL CHARACTERISTICS  
The  
IN  
denotes specifications which apply over the full operating temperature range, otherwise specifications are T = 25°C.  
A
V
= 10V, V  
= 10V, V  
= 15V, V  
BIAS  
= 3V unless otherwise specified.  
CONDITIONS  
SHDN  
BOOST  
PARAMETER  
MIN  
TYP  
MAX  
UNITS  
Minimum Input Voltage  
Quiescent Current from V  
4
V
V
V
V
= 0.2V  
SHDN  
0.1  
10  
35  
0.5  
18  
50  
µA  
µA  
µA  
IN  
= 3V, Not Switching  
= 0V, Not Switching  
BIAS  
BIAS  
Quiescent Current from Bias  
V
V
V
= 0.2V  
= 3V, Not Switching  
= 0V, Not Switching  
0.1  
25  
0.1  
0.5  
60  
1.5  
µA  
µA  
µA  
SHDN  
BIAS  
BIAS  
FB Comparator Trip Voltage  
FB Pin Bias Current (Note 3)  
V
V
Falling  
1.228  
1.250  
1.265  
V
FB  
FB  
= 1V, E and I-Grade  
35  
35  
35  
80  
150  
225  
nA  
nA  
nA  
H-Grade  
4V < V < 40V  
FB Voltage Line Regulation  
0.0006  
500  
0.01  
%/V  
ns  
IN  
Minimum Switch Off-Time (Note 5)  
Switch Leakage Current  
0.7  
1.5  
µA  
Switch V  
I
I
= 100mA (TS8 Package)  
= 100mA (DD8 Package)  
215  
215  
300  
mV  
mV  
CESAT  
SW  
SW  
Switch Top Current Limit  
Switch Bottom Current Limit  
Catch Schottky Drop  
V
V
= 0V  
= 0V  
250  
325  
225  
435  
775  
mA  
mA  
FB  
FB  
I
I
= 100mA (TS8 Package)  
= 100mA (DD8 Package)  
630  
630  
mV  
mV  
SH  
SH  
Catch Schottky Reverse Leakage  
Boost Schottky Drop  
V
= 10V  
0.2  
650  
0.2  
1.7  
7
2
775  
2
µA  
mV  
µA  
V
SW  
I
= 30mA  
SH  
Boost Schottky Reverse Leakage  
Minimum Boost Voltage (Note 4)  
BOOST Pin Current  
V
= 10V, V  
= 0V  
BIAS  
SW  
2.2  
12  
5
I
= 100mA  
mA  
µA  
V
SW  
SHDN Pin Current  
V
= 2.5V  
1
SHDN  
SHDN Input Voltage High  
SHDN Input Voltage Low  
2.5  
0.2  
V
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
with statistical process controls. The LT3470I specifications are  
guaranteed over the –40°C to 125°C temperature range. LT3470H  
specifications are guaranteed over –40°C to 150°C temperature range.  
Note 3: Bias current flows out of the FB pin.  
Note 2: The LT3470E is guaranteed to meet performance specifications  
from 0°C to 85°C. Specifications over the –40°C to 85°C operating  
temperature range are assured by design, characterization and correlation  
Note 4: This is the minimum voltage across the boost capacitor needed to  
guarantee full saturation of the switch.  
Note 5: This parameter is assured by design and correlation with statistical  
process controls.  
3470fc  
3
LT3470  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Efficiency, V  
= 3.3V  
Efficiency, V  
= 5V  
V
FB  
vs Temperature  
OUT  
OUT  
90  
90  
1.260  
1.255  
1.250  
1.245  
L = TOKO D52LC 47µH  
L = TOKO D52LC 47µH  
T
= 25°C  
T
= 25°C  
V
= 7V  
A
A
IN  
V
= 12V  
IN  
80  
70  
80  
70  
V
= 12V  
= 24V  
IN  
V
= 36V  
IN  
V
IN  
V
= 36V  
V
= 24V  
IN  
IN  
60  
50  
60  
50  
40  
30  
40  
30  
1.240  
–50 –25  
0
25  
50  
75 100 125  
0.1  
1
10  
100  
0.1  
1
10  
100  
TEMPERATURE (°C)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
3470 G01  
3470 G02  
3470 G03  
V
Quiescent Current  
Top and Bottom Switch Current  
Limits (V = 0V) vs Temperature  
BIAS Quiescent Current  
(Bias > 3V) vs Temperature  
IN  
vs Temperature  
FB  
30  
25  
20  
15  
50  
400  
350  
300  
40  
30  
20  
10  
0
BIAS < 3V  
250  
200  
150  
100  
50  
10  
5
BIAS > 3V  
0
0
50  
100 125 150  
–50 –25  
0
25  
75  
25  
0
50 75 100 125 150  
25  
TEMPERATURE (°C)  
50  
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3470 G06  
3470 G04  
3470 G05  
SHDN Bias Current  
vs Temperature  
FB Bias Current (V = 1V)  
FB  
vs Temperature  
60  
50  
40  
30  
20  
10  
0
9
8
7
6
5
4
3
2
1
V
= 36V  
SHDN  
V
= 2.5V  
SHDN  
25  
0
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
–50 –25  
0
125 150  
50 75 100  
TEMPERATURE (°C)  
3470 G08  
3470 G07  
3470fc  
4
LT3470  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
FB Bias Current (V = 0V)  
Switch V  
(I = 100mA)  
Boost Diode V (I = 50mA)  
FB  
CESAT SW  
F
F
vs Temperature  
vs Temperature  
vs Temperature  
300  
250  
200  
150  
0.8  
120  
100  
80  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
60  
100  
50  
0
40  
20  
0
0
50  
100 125 150  
–50 –25  
0
25  
75  
25  
0
50 75 100 125 150  
25  
TEMPERATURE (°C)  
50  
100 125 150  
50  
–50 –25  
0
25  
75  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3470 G10  
3470 G11  
3470 G09  
Diode Leakage (V = 36V)  
Catch Diode V (I = 100mA)  
R
F
F
Switch V  
vs Temperature  
vs Temperature  
CESAT  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
700  
600  
500  
0.7  
0.6  
CATCH  
BOOST  
0.5  
0.4  
0.3  
0.2  
0.1  
400  
300  
200  
100  
0
0
0
50  
100 125 150  
–50 –25  
0
25  
75  
100  
200  
400  
0
300  
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SWITCH CURRENT (mA)  
3470 G12  
3470 G14  
3470 G13  
BOOST Pin Current  
Catch Diode Forward Voltage  
1.0  
0.8  
0.6  
0.4  
0.2  
0
14  
12  
10  
8
6
4
2
0
0
100  
200  
300  
400  
100  
200  
400  
0
300  
CATCH DIODE CURRENT (mA)  
SWITCH CURRENT (mA)  
3470 G16  
3470 G15  
3470fc  
5
LT3470  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Boost Diode Forward Voltage  
Minimum Input Voltage, V  
= 3.3V  
Minimum Input Voltage, V  
= 5V  
OUT  
OUT  
6.0  
5.5  
8
7
6
5
4
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
T
A
= 25°C  
T
= 25°C  
A
V
IN  
TO START  
V
TO START  
IN  
5.0  
4.5  
V
TO RUN  
IN  
4.0  
3.5  
3.0  
V
IN  
TO RUN  
100  
0
50  
150  
200  
100  
0
100  
150  
200  
0
50  
150  
200  
50  
LOAD CURRENT (mA)  
BOOST DIODE CURRENT (mA)  
LOAD CURRENT (mA)  
3470 G18  
3470 G17  
3470 G19  
U
U
U
PI FU CTIO S  
(ThinSOT/DD)  
SHDN (Pin 1/Pin 8): The SHDN pin is used to put the  
LT3470inshutdownmode.Tietogroundtoshutdownthe  
LT3470. Apply 2V or more for normal operation. If the  
shutdown feature is not used, tie this pin to the VIN pin.  
BOOST (Pin 6/Pin 3): The BOOST pin is used to provide a  
drive voltage, which is higher than the input voltage, to the  
internal bipolar NPN power switch.  
BIAS (Pin 7/Pin 2): The BIAS pin connects to the internal  
NC (Pin 2/Pin 7): This pin can be left floating or connected  
to VIN.  
boost Schottky diode and to the internal regulator. Tie to  
VOUT when VOUT > 2V or to VIN otherwise. When VBIAS >  
3V the BIAS pin will supply current to the internal  
regulator.  
VIN (Pin 3/Pin 6): The VIN pin supplies current to the  
LT3470’s internal regulator and to the internal power  
switch. This pin must be locally bypassed.  
FB (Pin 8/Pin 1): The LT3470 regulates its feedback pin  
to 1.25V. Connect the feedback resistor divider tap to this  
pin. Set the output voltage according to VOUT = 1.25V  
(1 + R1/R2) or R1 = R2 (VOUT/1.25 – 1).  
GND (Pin 4/Pin 5): Tie the GND pin to a local ground plane  
below the LT3470 and the circuit components. Return the  
feedback divider to this pin.  
Exposed Pad (DD, Pin 9): Ground. Must be soldered  
to PCB.  
SW (Pin 5/Pin 4): The SW pin is the output of the internal  
powerswitch.Connectthispintotheinductor,catchdiode  
and boost capacitor.  
3470fc  
6
LT3470  
W
BLOCK DIAGRA  
V
IN  
BIAS  
V
IN  
C1  
+
BOOST  
500ns  
ONE SHOT  
R
S
Q  
C3  
Q
L1  
C2  
+
SW  
V
OUT  
ENABLE  
BURST MODE  
DETECT  
NC  
SHDN  
V
REF  
1.25V  
g
m
GND  
FB  
R2  
R1  
3470 BD  
3470fc  
7
LT3470  
U
OPERATIO  
The LT3470 uses a hysteretic control scheme in conjunc-  
tion with Burst Mode operation to provide low output  
ripple and low quiescent current while using a tiny induc-  
tor and capacitors.  
comparatortripsandresetsthelatchcausingtheswitchto  
turnoff. Whiletheswitchisoff, theinductorcurrentramps  
down through the catch diode. When both the bottom  
current comparator trips and the minimum off-time one-  
shot expires, the latch turns the switch back on thus  
completingafullcycle.Thehystereticactionofthiscontrol  
scheme results in a switching frequency that depends on  
inductor value, input and output voltage. Since the switch  
only turns on when the catch diode current falls below  
threshold,thepartwillautomaticallyswitchslowertokeep  
inductor current under control during start-up or short-  
circuit conditions.  
Operation can best be understood by studying the Block  
Diagram. An error amplifier measures the output voltage  
through an external resistor divider tied to the FB pin. If  
the FB voltage is higher than VREF, the error amplifier will  
shut off all the high power circuitry, leaving the LT3470 in  
its micropower state. As the FB voltage falls, the error  
amplifier will enable the power section, causing the chip  
to begin switching, thus delivering charge to the output  
capacitor. Iftheloadislightthepartwillalternatebetween  
micropower and switching states to keep the output in  
regulation (See Figure 1a). At higher loads the part will  
switch continuously while the error amp servos the top  
and bottom current limits to regulate the FB pin voltage to  
1.25V (See Figure 1b).  
The switch driver operates from either the input or from  
the BOOST pin. An external capacitor and internal diode is  
used to generate a voltage at the BOOST pin that is higher  
than the input supply. This allows the driver to fully  
saturatetheinternalbipolarNPNpowerswitchforefficient  
operation.  
The switching action is controlled by an RS latch and two  
current comparators as follows: The switch turns on, and  
the current through it ramps up until the top current  
If the SHDN pin is grounded, all internal circuits are turned  
off and VIN current reduces to the device leakage current,  
typically a few nA.  
NO LOAD  
200mA LOAD  
V
V
OUT  
20mV/DIV  
OUT  
20mV/DIV  
I
L
100mA/DIV  
I
L
100mA/DIV  
1ms/DIV  
1µs/DIV  
10mA LOAD  
150mA LOAD  
V
V
OUT  
20mV/DIV  
OUT  
20mV/DIV  
I
I
L
L
100mA/DIV  
100mA/DIV  
3470 F01a  
3470 F1b  
5µs/DIV  
1µs/DIV  
(1a) Burst Mode Operation  
(1b) Continuous Operation  
Figure 1. Operating Waveforms of the LT3470 Converting 12V to 5V Using a 33µH Inductor and 10µF Output Capacitor  
3470fc  
8
LT3470  
W U U  
APPLICATIO S I FOR ATIO  
U
Input Voltage Range  
where VIN(MAX) is the maximum input voltage for the  
application, tON-TIME(MIN) is ~150ns and IMAX is the maxi-  
mum allowable increase in switch current during a mini-  
mumswitchon-time(150mA).Whilethisequationprovides  
a safe inductor value, the resulting application circuit may  
switch at too high a frequency to yield good efficiency. It  
is advised that switching frequency be below 1.2MHz  
during normal operation:  
Theminimuminputvoltagerequiredtogenerateaparticu-  
lar output voltage in an LT3470 application is limited by  
either its 4V undervoltage lockout or by its maximum duty  
cycle. Thedutycycleisthefractionoftimethattheinternal  
switch is on and is determined by the input and output  
voltages:  
VOUT + VD  
DC =  
1– DC V + V  
(
)(  
)
D
OUT  
V – VSW + VD  
IN  
f =  
L • IL  
where VD is the forward voltage drop of the catch diode  
(~0.6V) and VSW is the voltage drop of the internal switch  
at maximum load (~0.4V). Given DCMAX = 0.90, this leads  
to a minimum input voltage of:  
wherefistheswitchingfrequency,IL istheripplecurrent  
in the inductor (~150mA), VD is the forward voltage drop  
of the catch diode, and VOUT is the desired output voltage.  
If the application circuit is intended to operate at high duty  
cycles (VIN close to VOUT), it is important to look at the  
calculated value of the switch off-time:  
VOUT + VD  
DCMAX  
V
=
+ VSW – VD  
IN(MIN)  
Thisanalysisassumestheparthasstartedupsuchthatthe  
capacitor tied between the BOOST and SW pins is charged  
to more than 2V. For proper start-up, the minimum input  
voltage is limited by the boost circuit as detailed in the  
section BOOST Pin Considerations.  
1DC  
tOFF-TIME  
=
f
The calculated tOFF-TIME should be more than LT3470’s  
minimum tOFF-TIME (See Electrical Characteristics), so the  
application circuit is capable of delivering full rated output  
current. If the full output current of 200mA is not required,  
the calculated tOFF-TIME can be made less than minimum  
tOFF-TIME possibly allowing the use of a smaller inductor.  
See Table 1 for an inductor value selection guide.  
The maximum input voltage is limited by the absolute  
maximum VIN rating of 40V, provided an inductor of  
sufficient value is used.  
Inductor Selection  
Table 1. Recommended Inductors for Loads up to 200mA  
The switching action of the LT3470 during continuous  
operation produces a square wave at the SW pin that  
results in a triangle wave of current in the inductor. The  
hysteretic mode control regulates the top and bottom  
current limits (see Electrical Characteristics) such that the  
average inductor current equals the load current. For safe  
operation,itmustbenotedthattheLT3470cannotturnthe  
switch on for less than ~150ns. If the inductor is small and  
the input voltage is high, the current through the switch  
may exceed safe operating limit before the LT3470 is able  
to turn off. To prevent this from happening, the following  
equation provides a minimum inductor value:  
V
V
Up to 16V  
10µH  
V
IN  
Up to 40V  
33µH  
OUT  
IN  
2.5V  
3.3V  
5V  
10µH  
33µH  
15µH  
33µH  
12V  
33µH  
47µH  
Choose an inductor that is intended for power applica-  
tions. Table 2 lists several manufacturers and inductor  
series.  
For robust output short-circuit protection at high VIN (up  
to 40V) use at least a 33µH inductor with a minimum  
450mA saturation current. If short-circuit performance is  
not required, inductors with ISAT of 300mA or more may  
VIN(MAX) • tON-TIME(MIN)  
LMIN  
=
IMAX  
3470fc  
9
LT3470  
W U U  
U
APPLICATIO S I FOR ATIO  
Table 2. Inductor Vendors  
VENDOR  
URL  
PART SERIES  
INDUCTANCE RANGE (µH) SIZE (mm)  
Coilcraft  
www.coilcraft.com  
DO1605  
ME3220  
DO3314  
10 to 47  
10 to 47  
10 to 47  
1.8 × 5.4 × 4.2  
2.0 × 3.2 × 2.5  
1.4 × 3.3 × 3.3  
Sumida  
www.sumida.com  
CR32  
10 to 47  
10 to 33  
10 to 47  
10 to 15  
3.0 × 3.8 × 4.1  
1.8 × 4.0 × 4.0  
3.0 × 4.0 × 4.0  
2.0 × 3.2 × 3.2  
CDRH3D16/HP  
CDRH3D28  
CDRH2D18/HP  
Toko  
www.tokoam.com  
DB320C  
D52LC  
10 to 27  
10 to 47  
2.0 × 3.8 × 3.8  
2.0 × 5.0 × 5.0  
Würth Elektronik  
www.we-online.com  
WE-PD2 Typ S  
WE-TPC Typ S  
10 to 47  
10 to 22  
3.2 × 4.0 × 4.5  
1.6 × 3.8 × 3.8  
Coiltronics  
Murata  
www.cooperet.com  
www.murata.com  
SD10  
10 to 47  
1.0 × 5.0 × 5.0  
LQH43C  
LQH32C  
10 to 47  
10 to 15  
2.6 × 3.2 × 4.5  
1.6 × 2.5 × 3.2  
be used. It is important to note that inductor saturation  
current is reduced at high temperatures—see inductor  
vendors for more information.  
LT3470’s switching frequency. The capacitor’s equivalent  
seriesresistance(ESR)determinesthisimpedance.Choose  
onewithlowESRintendedforuseinswitchingregulators.  
The contribution to ripple voltage due to the ESR is  
approximatelyILIMESR.ESRshouldbelessthan~150m.  
The value of the output capacitor must be large enough to  
accept the energy stored in the inductor without a large  
changeinoutputvoltage. Settingthisvoltagestepequalto  
1% of the output voltage, the output capacitor must be:  
Input Capacitor  
Step-down regulators draw current from the input supply  
in pulses with very fast rise and fall times. The input  
capacitor is required to reduce the resulting voltage ripple  
at the VIN pin of the LT3470 and to force this switching  
current into a tight local loop, minimizing EMI. The input  
capacitor must have low impedance at the switching  
frequency to do this effectively. A 1µF to 2.2µF ceramic  
capacitor satisfies these requirements.  
2
ILIM  
VOUT  
COUT > 50 L •  
Where ILIM is the top current limit with VFB = 0V (see  
Electrical Characteristics). For example, an LT3470 pro-  
ducing 3.3V with L = 33µH requires 22µF. The calculated  
value can be relaxed if small circuit size is more important  
than low output ripple.  
If the input source impedance is high, a larger value  
capacitor may be required to keep input ripple low. In this  
case, an electrolytic of 10µF or more in parallel with a 1µF  
ceramic is a good combination. Be aware that the input  
capacitor is subject to large surge currents if the LT3470  
circuit is connected to a low impedance supply, and that  
some electrolytic capacitors (in particular tantalum) must  
be specified for such use.  
Sanyo’s POSCAP series in B-case and provides very good  
performance in a small package for the LT3470. Similar  
performance in traditional tantalum capacitors requires a  
larger package (C-case). With a high quality capacitor  
filtering the ripple current from the inductor, the output  
voltage ripple is determined by the delay in the LT3470’s  
feedback comparator. This ripple can be reduced further  
by adding a small (typically 22pF) phase lead capacitor  
between the output and the feedback pin.  
Output Capacitor and Output Ripple  
The output capacitor filters the inductor’s ripple current  
and stores energy to satisfy the load current when the  
LT3470isquiescent. Inordertokeepoutputvoltageripple  
low, the impedance of the capacitor must be low at the  
3470fc  
10  
LT3470  
W U U  
APPLICATIO S I FOR ATIO  
U
BOOST and BIAS Pin Considerations  
Ceramic Capacitors  
Capacitor C3 and the internal boost Schottky diode (see  
Block Diagram) are used to generate a boost voltage that  
is higher than the input voltage. In most cases a 0.22µF  
capacitor will work well. Figure 2 shows two ways to  
arrange the boost circuit. The BOOST pin must be more  
than2.5VabovetheSWpinforbestefficiency. Foroutputs  
of 3.3V and above, the standard circuit (Figure 2a) is best.  
For outputs between 2.5V and 3V, use a 0.47µF. For lower  
output voltages the boost diode can be tied to the input  
Ceramic capacitors are small, robust and have very low  
ESR. However, ceramic capacitors can cause problems  
whenusedwiththeLT3470. Notallceramiccapacitorsare  
suitable. X5R and X7R types are stable over temperature  
and applied voltage and give dependable service. Other  
types, including Y5V and Z5U have very large temperature  
and voltage coefficients of capacitance. In an application  
circuit they may have only a small fraction of their nominal  
capacitanceresultinginmuchhigheroutputvoltageripple  
than expected.  
V
IN  
Ceramiccapacitorsarepiezoelectric.TheLT3470’sswitch-  
ing frequency depends on the load current, and at light  
loadstheLT3470canexcitetheceramiccapacitorataudio  
frequencies, generating audible noise. Since the LT3470  
operates at a lower current limit during Burst Mode  
operation, the noise is typically very quiet to a casual ear.  
If this audible noise is unacceptable, use a high perfor-  
mance electrolytic capacitor at the output. The input  
capacitor can be a parallel combination of a 2.2µF ceramic  
capacitor and a low cost electrolytic capacitor.  
C3  
0.22µF  
V
BOOST  
LT3470  
IN  
V
SW  
OUT  
BIAS  
GND  
V
– V  
V  
BOOST  
SW OUT  
MAX V  
V + V  
IN OUT  
BOOST  
(2a)  
V
IN  
C3  
0.22µF  
V
IN  
BOOST  
SW  
LT3470  
A final precaution regarding ceramic capacitors concerns  
the maximum input voltage rating of the LT3470. A ce-  
ramic input capacitor combined with trace or cable induc-  
tance forms a high quality (under damped) tank circuit. If  
the LT3470 circuit is plugged into a live supply, the input  
voltage can ring to twice its nominal value, possibly  
exceeding the LT3470’s rating. This situation is easily  
avoided; see the Hot-Plugging Safely section.  
V
BIAS  
OUT  
GND  
3470 F02  
V
– V  
V  
BOOST  
SW IN  
MAX V  
2V  
IN  
BOOST  
(2b)  
Figure 2. Two Circuits for Generating the Boost Voltage  
Table 3. Capacitor Vendors  
Vendor  
Phone  
URL  
Part Series  
Comments  
Panasonic  
(714) 373-7366  
www.panasonic.com  
Ceramic,  
Polymer,  
Tantalum  
EEF Series  
Kemet  
Sanyo  
(864) 963-6300  
(408) 749-9714  
www.kemet.com  
Ceramic,  
Tantalum  
T494, T495  
POSCAP  
www.sanyovideo.com Ceramic,  
Polymer,  
Tantalum  
Murata  
AVX  
(404) 436-1300  
www.murata.com  
www.avxcorp.com  
Ceramic  
Ceramic,  
Tantalum  
TPS Series  
Taiyo Yuden (864) 963-6300  
www.taiyo-yuden.com Ceramic  
3470fc  
11  
LT3470  
W U U  
U
APPLICATIO S I FOR ATIO  
(Figure 2b). The circuit in Figure 2a is more efficient  
because the BOOST pin current and BIAS pin quiescent  
currentcomesfromalowervoltagesource. Youmustalso  
be sure that the maximum voltage ratings of the BOOST  
and BIAS pins are not exceeded.  
minimum VIN to start and to run. At light loads, the  
inductor current becomes discontinuous and the effective  
duty cycle can be very high. This reduces the minimum  
input voltage to approximately 300mV above VOUT. At  
higher load currents, the inductor current is continuous  
and the duty cycle is limited by the maximum duty cycle of  
the LT3470, requiring a higher input voltage to maintain  
regulation.  
The minimum operating voltage of an LT3470 application  
is limited by the undervoltage lockout (4V) and by the  
maximum duty cycle as outlined in a previous section. For  
proper start-up, the minimum input voltage is also limited  
by the boost circuit. If the input voltage is ramped slowly,  
or the LT3470 is turned on with its SHDN pin when the  
output is already in regulation, then the boost capacitor  
may not be fully charged. The plots in Figure 3 show  
Shorted Input Protection  
If the inductor is chosen so that it won’t saturate exces-  
sively at the top switch current limit maximum of 450mA,  
an LT3470 buck regulator will tolerate a shorted output  
even if VIN = 40V. There is another situation to consider in  
systems where the output will be held high when the input  
to the LT3470 is absent. This may occur in battery charg-  
ing applications or in battery backup systems where a  
battery or some other supply is diode OR-ed with the  
LT3470’s output. If the VIN pin is allowed to float and the  
SHDN pin is held high (either by a logic signal or because  
it is tied to VIN), then the LT3470’s internal circuitry will  
pull its quiescent current through its SW pin. This is fine  
if your system can tolerate a few mA in this state. If you  
ground the SHDN pin, the SW pin current will drop to  
essentially zero. However, if the VIN pin is grounded while  
the output is held high, then parasitic diodes inside the  
LT3470 can pull large currents from the output through  
the SW pin and the VIN pin. Figure 4 shows a circuit that  
will run only when the input voltage is present and that  
protects against a shorted or reversed input.  
Minimum Input Voltage, V  
= 3.3V  
OUT  
6.0  
T
= 25°C  
A
V
TO START  
IN  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
V
TO RUN  
100  
IN  
0
50  
150  
200  
LOAD CURRENT (mA)  
3470 G18  
Minimum Input Voltage, V  
= 5V  
OUT  
8
T
= 25°C  
A
V
TO START  
IN  
D1  
7
6
5
4
V
IN  
V
BOOST  
IN  
LT3470 SOT-23  
100k  
1M  
V
SHDN  
SW  
OUT  
V
TO RUN  
IN  
BIAS  
FB  
GND  
BACKUP  
3470 F04  
100  
150  
0
200  
50  
LOAD CURRENT (mA)  
3470 G19  
Figure 4. Diode D1 Prevents a Shorted Input from Discharging a  
Backup Battery Tied to the Output; It Also Protects the Circuit  
from a Reversed Input. The LT3470 Runs Only When the Input is  
Present Hot-Plugging Safely  
Figure 3. The Minimum Input Voltage Depends on Output  
Voltage, Load Current and Boost Circuit  
3470fc  
12  
LT3470  
W U U  
APPLICATIO S I FOR ATIO  
U
PCB Layout  
location, ideally at the ground terminal of the output  
capacitor C2. Additionally, the SW and BOOST nodes  
should be kept as small as possible. Unshielded inductors  
can induce noise in the feedback path resulting in instabil-  
ity and increased output ripple. To avoid this problem, use  
vias to route the VOUT trace under the ground plane to the  
feedback divider (as shown in Figure 5). Finally, keep the  
FB node as small as possible so that the ground pin and  
groundtraceswillshielditfromtheSWandBOOSTnodes.  
Figure 5 shows component placement with trace, ground  
plane and via locations. Include vias near the GND pin, or  
pad, of the LT3470 to help remove heat from the LT3470  
to the ground plane.  
For proper operation and minimum EMI, care must be  
taken during printed circuit board layout. Note that large,  
switched currents flow in the power switch, the internal  
catch diode and the input capacitor. The loop formed by  
these components should be as small as possible. Fur-  
thermore, the system ground should be tied to the regu-  
lator ground in only one place; this prevents the switched  
current from injecting noise into the system ground.  
These components, along with the inductor and output  
capacitor, should be placed on the same side of the circuit  
board,andtheirconnectionsshouldbemadeonthatlayer.  
Place a local, unbroken ground plane below these compo-  
nents, and tie this ground plane to system ground at one  
SHDN  
SHDN  
V
IN  
V
IN  
C1  
GND  
GND  
C2  
V
OUT  
V
OUT  
3470 F05  
VIAS TO FEEDBACK DIVIDER  
VIAS TO LOCAL GROUND PLANE  
OUTLINE OF LOCAL GROUND PLANE  
(A)  
(B)  
Figure 5. A Good PCB Layout Ensures Proper, Low EMI Operation  
3470fc  
13  
LT3470  
W U U  
U
APPLICATIO S I FOR ATIO  
Hot-Plugging Safely  
the voltage overshoot (it also reduces the peak input  
current).A0.1µFcapacitorimproveshighfrequencyfilter-  
ing. This solution is smaller and less expensive than the  
electrolyticcapacitor.Forhighinputvoltagesitsimpacton  
efficiency is minor, reducing efficiency less than one half  
percent for a 5V output at full load operating from 24V.  
The small size, robustness and low impedance of ceramic  
capacitors make them an attractive option for the input  
bypass capacitor of LT3470. However, these capacitors  
can cause problems if the LT3470 is plugged into a live  
supply (see Linear Technology Application Note 88 for a  
complete discussion). The low loss ceramic capacitor  
combined with stray inductance in series with the power  
source forms an under damped tank circuit, and the  
voltage at the VIN pin of the LT3470 can ring to twice the  
nominal input voltage, possibly exceeding the LT3470’s  
rating and damaging the part. If the input supply is poorly  
controlled or the user will be plugging the LT3470 into an  
energizedsupply, theinputnetworkshouldbedesignedto  
prevent this overshoot. Figure 6 shows the waveforms  
that result when an LT3470 circuit is connected to a 24V  
supply through six feet of 24-gauge twisted pair. The first  
plot is the response with a 2.2µF ceramic capacitor at the  
input. The input voltage rings as high as 35V and the input  
current peaks at 20A. One method of damping the tank  
circuit is to add another capacitor with a series resistor to  
the circuit. In Figure 6b an aluminum electrolytic capacitor  
has been added. This capacitor’s high equivalent series  
resistance damps the circuit and eliminates the voltage  
overshoot. The extra capacitor improves low frequency  
ripple filtering and can slightly improve the efficiency of  
the circuit, though it is likely to be the largest component  
in the circuit. An alternative solution is shown in Figure 6c.  
A 1resistor is added in series with the input to eliminate  
High Temperature Considerations  
ThediejunctiontemperatureoftheLT3470mustbelower  
thanthemaximumratingof125°C(150°CfortheHgrade).  
This is generally not a concern unless the ambient tem-  
perature is above 85°C. For higher temperatures, care  
should be taken in the layout of the circuit to ensure good  
heat sinking of the LT3470. The maximum load current  
shouldbederatedastheambienttemperatureapproaches  
the maximum junction rating. The die temperature is  
calculated by multiplying the LT3470 power dissipation  
by the thermal resistance from junction to ambient.  
Power dissipation within the LT3470 can be estimated by  
calculating the total power loss from an efficiency mea-  
surement. Thermal resistance depends on the layout of  
the circuit board and choice of package. The DD package  
with the exposed pad has a thermal resistance of approxi-  
mately 80°C/W while the ThinSOT is approximately  
150°C/W. Finally, be aware that at high ambient tempera-  
tures the internal Schottky diode will have significant  
leakage current (see Typical Performance Characteris-  
tics) increasing the quiescent current of the LT3470  
converter.  
3470fc  
14  
LT3470  
W U U  
APPLICATIO S I FOR ATIO  
U
CLOSING SWITCH  
SIMULATES HOT PLUG  
I
IN  
V
IN  
LT3470  
2.2µF  
V
IN  
10V/DIV  
+
I
IN  
10A/DIV  
LOW  
STRAY  
IMPEDANCE  
ENERGIZED  
24V SUPPLY  
INDUCTANCE  
DUE TO 6 FEET  
(2 METERS) OF  
TWISTED PAIR  
10µs/DIV  
(6a)  
LT3470  
2.2µF  
+
10µF  
35V  
AI.EI.  
(6b)  
1  
LT3470  
2.2µF  
0.1µF  
3470 F06  
(6c)  
Figure 6: A Well Chosen Input Network Prevents Input Voltage Overshoot and  
Ensures Reliable Operation When the LT3470 is Connected to a Live Supply  
3470fc  
15  
LT3470  
TYPICAL APPLICATIO S  
U
3.3V Step-Down Converter  
V
IN  
5.5V TO 40V  
C3  
0.22µF, 6.3V  
L1  
33µH  
V
BOOST  
IN  
LT3470  
SHDN  
V
OUT  
3.3V  
OFF ON  
SW  
200mA  
BIAS  
R1  
22pF  
324k  
C1  
1µF  
C2  
22µF  
FB  
GND  
R2  
200k  
3470 TA03  
C1: TDK C3216JB1H105M  
C2: CE JMK316 BJ226ML-T  
L1: TOKO A993AS-270M=P3  
5V Step-Down Converter  
V
IN  
7V TO 40V  
C3  
0.22µF, 6.3V  
L1  
33µH  
V
BOOST  
IN  
LT3470  
SHDN  
V
OUT  
5V  
200mA  
OFF ON  
SW  
BIAS  
R1  
22pF  
604k  
C1  
1µF  
C2  
22µF  
FB  
GND  
R2  
200k  
3470 TA04  
C1: TDK C3216JB1H105M  
C2: CE JMK316 BJ226ML-T  
L1: TOKO A914BYW-330M=P3  
2.5V Step-Down Converter  
V
IN  
4.7V TO 40V  
C3  
0.47µF, 6.3V  
L1  
33µH  
V
BOOST  
IN  
LT3470  
SHDN  
V
OUT  
2.5V  
OFF ON  
SW  
200mA  
BIAS  
R1  
22pF  
200k  
C1  
1µF  
C2  
22µF  
FB  
GND  
R2  
200k  
3470 TA07  
C1: TDK C3216JB1H105M  
C2: TDK C2012JB0J226M  
L1: SUMIDA CDRH3D28  
3470fc  
16  
LT3470  
U
TYPICAL APPLICATIO S  
1.8V Step-Down Converter  
V
IN  
C3  
4V TO 23V  
0.22µF, 25V  
L1  
22µH  
V
BOOST  
SW  
IN  
LT3470  
V
OUT  
1.8V  
OFF ON  
SHDN  
200mA  
R1  
BIAS  
22pF  
147k  
C1  
1µF  
C2  
22µF  
FB  
GND  
R2  
332k  
3470 TA05  
C1: TDK C3216JB1H105M  
C2: TDK C2012JB0J226M  
L1: MURATA LQH32CN150K53  
12V Step-Down Converter  
V
IN  
C3  
15V TO 34V  
0.22µF, 16V  
L1  
33µH  
V
BOOST  
IN  
LT3470  
SHDN  
V
OUT  
12V  
OFF ON  
SW  
200mA  
BIAS  
R1  
22pF  
866k  
C1  
1µF  
C2  
10µF  
FB  
GND  
R2  
100k  
3470 TA06  
C1: TDK C3216JB1H105M  
C2: TDK C3216JB1C106M  
L1: MURATA LQH32CN150K53  
3470fc  
17  
LT3470  
U
PACKAGE DESCRIPTIO  
TS8 Package  
8-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1637)  
2.90 BSC  
(NOTE 4)  
0.52  
MAX  
0.65  
REF  
1.22 REF  
1.50 – 1.75  
(NOTE 4)  
2.80 BSC  
1.4 MIN  
3.85 MAX 2.62 REF  
PIN ONE ID  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.22 – 0.36  
8 PLCS (NOTE 3)  
0.65 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.95 BSC  
0.09 – 0.20  
(NOTE 3)  
TS8 TSOT-23 0802  
NOTE:  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
3470fc  
18  
LT3470  
U
PACKAGE DESCRIPTIO  
DDB Package  
8-Lead Plastic DFN (3mm × 2mm)  
(Reference LTC DWG # 05-08-1702 Rev B)  
0.61 ±0.05  
(2 SIDES)  
R = 0.115  
0.40 ± 0.10  
3.00 ±0.10  
(2 SIDES)  
TYP  
5
R = 0.05  
TYP  
8
0.70 ±0.05  
2.55 ±0.05  
1.15 ±0.05  
2.00 ±0.10  
PIN 1 BAR  
TOP MARK  
PIN 1  
(2 SIDES)  
R = 0.20 OR  
0.25 × 45°  
(SEE NOTE 6)  
PACKAGE  
OUTLINE  
0.56 ± 0.05  
(2 SIDES)  
CHAMFER  
4
1
(DDB8) DFN 0905 REV B  
0.25 ± 0.05  
0.25 ± 0.05  
0.75 ±0.05  
0.200 REF  
0.50 BSC  
2.20 ±0.05  
(2 SIDES)  
0.50 BSC  
2.15 ±0.05  
(2 SIDES)  
0 – 0.05  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING CONFORMS TO VERSION (WECD-1) IN JEDEC PACKAGE OUTLINE M0-229  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE  
3470fc  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
19  
LT3470  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
= 3.6V to 25V, V  
LT1616  
25V, 500mA (I ), 1.4MHz, High Efficiency  
V
= 1.25V, I = 1.9mA, I = <1µA,  
Q SD  
OUT  
IN  
OUT  
Step-Down DC/DC Converter  
ThinSOT Package  
LT1676  
60V, 440mA (I ), 100kHz, High Efficiency  
Step-Down DC/DC Converter  
V
= 7.4V to 60V, V  
= 1.24V, I = 3.2mA, I = 2.5µA,  
Q SD  
OUT  
IN  
OUT  
S8 Package  
LT1765  
25V, 2.75A (I ), 1.25MHz, High Efficiency  
Step-Down DC/DC Converter  
V
= 3V to 25V, V  
= 1.2V, I = 1mA, I = 15µA,  
OUT Q SD  
OUT  
IN  
S8, TSSOP16E Packages  
LT1766  
60V, 1.2A (I ), 200kHz, High Efficiency  
Step-Down DC/DC Converter  
V
IN  
= 5.5V to 60V, V = 1.2V, I = 2.5mA, I = 25µA,  
OUT  
OUT  
Q
SD  
TSSOP16/E Package  
= 3V to 25V; V = 1.2V, I = 1mA, I = 6µA,  
OUT Q SD  
LT1767  
25V, 1.2A (I ), 1.25MHz, High Efficiency  
V
IN  
OUT  
Step-Down DC/DC Converter  
MS8/E Packages  
LT1776  
40V, 550mA (I ), 200kHz, High Efficiency  
Step-Down DC/DC Converter  
V
= 7.4V to 40V; V  
= 1.24V, I = 3.2mA, I = 30µA,  
OUT Q SD  
OUT  
IN  
N8, S8 Packages  
LTC®1877  
LTC1879  
LT1933  
600mA (I ), 550kHz, Synchronous  
Step-Down DC/DC Converter  
V
= 2.7V to 10V; V  
= 0.8V, I = 10µA, I = <1µA,  
Q SD  
OUT  
IN  
OUT  
OUT  
OUT  
OUT  
OUT  
MS8 Package  
1.2A (I ), 550kHz, Synchronous  
V
IN  
= 2.7V to 10V; V  
= 0.8V, I = 15µA, I = <1µA,  
Q SD  
OUT  
Step-Down DC/DC Converter  
TSSOP16 Package  
36V, 600mA, 500kHz, High Efficiency  
Step-Down DC/DC Converter  
V
IN  
= 3.6V to 36V; V  
= 1.25V, I = 2.5µA, I = <1µA,  
Q SD  
??? Package  
LT1934  
34V, 250mA (I ), Micropower, Step-Down  
V
IN  
= 3.2V to 34V; V  
= 1.25V, I = 12µA, I = <1µA,  
Q SD  
OUT  
DC/DC Converter  
??? Package  
LT1956  
60V, 1.2A (I ), 500kHz, High Efficiency  
V
IN  
= 5.5V to 60V, V  
= 1.2V, I = 2.5mA, I = 25µA,  
Q SD  
OUT  
Step-Down DC/DC Converter  
TSSOP16/E Package  
LTC3405/LTC3405A  
LTC3406/LTC3406B  
LTC3411  
LTC3412  
LTC3430  
300mA (I ), 1.5MHz, Synchronous  
Step-Down DC/DC Converter  
V
= 2.7V to 6V, V  
= 0.8V, I = 20µA, I = <1µA,  
OUT Q SD  
OUT  
IN  
ThinSOT Package  
600mA (I ), 1.5MHz, Synchronous  
V
IN  
= 2.5V to 5.5V, V  
= 0.6V, I = 20µA, I = <1µA,  
OUT Q SD  
OUT  
Step-Down DC/DC Converter  
ThinSOT Package  
1.25A (I ), 4MHz, Synchronous  
V
IN  
= 2.5V to 5.5V, V  
= 0.8V, I = 60µA, I = <1µA,  
Q SD  
OUT  
OUT  
OUT  
OUT  
Step-Down DC/DC Converter  
MS Package  
2.5A (I ), 4MHz, Synchronous  
V
IN  
= 2.5V to 5.5V, V  
= 0.8V, I = 60µA, I = <1µA,  
Q SD  
OUT  
Step-Down DC/DC Converter  
TSSOP16E Package  
60V, 2.75A (I ), 200kHz, High Efficiency  
V
IN  
= 5.5V to 60V, V  
= 1.2V, I = 2.5mA, I = 30µA,  
Q SD  
OUT  
Step-Down DC/DC Converter  
TSSOP16E Package  
3470fc  
LT 0907 REV C • PRINTED IN THE USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
© LINEAR TECHNOLOGY CORPORATION 2004  

相关型号:

LT3470ETS8#TRMPBF

LT3470 - Micropower Buck Regulator with Integrated Boost and Catch Diodes; Package: SOT; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3470ETS8#TRPBF

LT3470 - Micropower Buck Regulator with Integrated Boost and Catch Diodes; Package: SOT; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3470HDDB

Micropower Buck Regulator with Integrated Boost and Catch Diodes
Linear

LT3470HDDB#PBF

LT3470 - Micropower Buck Regulator with Integrated Boost and Catch Diodes; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 125&deg;C
Linear

LT3470HDDB#TRM

IC 0.2 A SWITCHING REGULATOR, PDSO8, 3 X 2 MM, 0.75MM INCH HEIGHT, MO-229WECD-1, PLASTIC, DFN-8, Switching Regulator or Controller
Linear

LT3470HDDB#TRMPBF

LT3470 - Micropower Buck Regulator with Integrated Boost and Catch Diodes; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 125&deg;C
Linear

LT3470HDDB#TRPBF

LT3470 - Micropower Buck Regulator with Integrated Boost and Catch Diodes; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 125&deg;C
Linear

LT3470HTS8

Micropower Buck Regulator with Integrated Boost and Catch Diodes
Linear

LT3470HTS8#PBF

LT3470 - Micropower Buck Regulator with Integrated Boost and Catch Diodes; Package: SOT; Pins: 8; Temperature Range: -40&deg;C to 125&deg;C
Linear

LT3470HTS8#TR

IC SWITCHING REGULATOR, PDSO8, 1 MM HEIGHT, PLASTIC, MO-193, SOT-23, 8 PIN, Switching Regulator or Controller
Linear

LT3470HTS8#TRMPBF

LT3470 - Micropower Buck Regulator with Integrated Boost and Catch Diodes; Package: SOT; Pins: 8; Temperature Range: -40&deg;C to 125&deg;C
Linear

LT3470HTS8#TRPBF

LT3470 - Micropower Buck Regulator with Integrated Boost and Catch Diodes; Package: SOT; Pins: 8; Temperature Range: -40&deg;C to 125&deg;C
Linear