LT3477IFE#TRPBF [Linear]

暂无描述;
LT3477IFE#TRPBF
型号: LT3477IFE#TRPBF
厂家: Linear    Linear
描述:

暂无描述

转换器
文件: 总20页 (文件大小:265K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3477  
3A, DC/DC Converter  
with Dual Rail-to-Rail  
Current Sense  
U
FEATURES  
DESCRIPTIO  
The LT®3477 is a current mode, 3A DC/DC step-up con-  
verter with dual rail-to-rail current sense amplifiers and an  
internal 3A, 42V switch. It combines a traditional voltage  
feedback loop and two unique current feedback loops to  
operate as a constant-current, constant-voltage source.  
Dual 100mV Rail-to-Rail Current Sense Amplifiers  
Wide Input Voltage Range: 2.5V to 25V  
3A, 42V Internal Switch  
High Efficiency Power Conversion: Up to 93%  
Drives LEDs in Boost, Buck-Boost or Buck Mode  
Frequency Set by External Resistor: 200kHz to 3.5MHz Both current sense voltages are set at 100mV and can be  
Programmable Soft-Start  
adjusted independently using the IADJ1 and IADJ2 pins.  
Efficiency of up to 91% can be achieved in typical applica-  
tions.TheLT3477featuresaprogrammablesoft-startfunc-  
tion to limit inductor current during start-up. Both inputs  
oftheerroramplifierareavailableexternallyallowingposi-  
tiveandnegativeoutputvoltages(Boost,Inverting,SEPIC,  
Flyback). The switching frequency is programmable from  
200kHz to 3.5MHz through an external resistor.  
Low VCESAT Switch: 0.3V at 2.5A  
Capable of Positive and Negative Output Voltages  
(Boost, Inverting, SEPIC, Flyback)  
Available in Thermally Enhanced 20-Lead  
(4mm × 4mm) QUFN and 20-Lead TSSOP Packages  
APPLICATIO S  
Available in thermally enhanced 20-pin (4mm × 4mm)  
QFN and 20-pin TSSOP packages, the LT3477 provides a  
complete solution for both constant-voltage and con-  
stant-current applications.  
High Power LED Driver  
DSL Modems  
Distributed Power  
Input/Output Current Limited Boost, SEPIC,  
Inverting, Flyback Converters  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
Constant-Voltage, Constant-Current Source  
U
TYPICAL APPLICATIO  
330mA LED Driver with Open LED Protection  
Efficiency  
10µH  
V
IN  
90  
85  
80  
75  
70  
65  
60  
55  
5V  
3.3µF  
3.3µF  
200k  
10k  
I
I
SW  
SP1  
SN1  
V
FBN  
IN  
I
I
ADJ1  
ADJ2  
LT3477  
SHDN  
SHDN  
I
SP2  
0.3  
V
V
I
C
SN2  
R
REF  
T
FBP  
GND  
SS  
1k  
330mA  
50  
22k  
0.2  
(A)  
0
0.1  
0.3  
0.4  
33nF  
4.7nF  
I
OUT  
3477 TA01b  
3477 TA01a  
3477fb  
1
LT3477  
W W U W  
ABSOLUTE MAXIMUM RATINGS (Note 1)  
SW Pin Voltage....................................................... 42V  
VIN, SHDN Pin Voltage............................................ 25V  
FBP, FBN Pin Voltage ................................................ 6V  
Junction Temperature.......................................... 125°C  
Operating Temperature Range (Note 2)  
LT3477E ............................................. – 40°C to 85°C  
LT3477I ............................................ – 40°C to 125°C  
Storage Temperature Range ................. 65°C to 125°C  
Lead Temperature (Soldering, 10 sec)  
V
REF Pin Voltage ....................................................... 6V  
RT, VC, SS Pin Voltage.............................................. 6V  
IADJ1, IADJ2 Pin Voltage........................................... 25V  
ISP1, ISP2, ISN1, ISN2 Pin Voltage .............................. 42V  
TSSOP .............................................................. 300°C  
U
W U  
PACKAGE/ORDER INFORMATION  
TOP VIEW  
TOP VIEW  
V
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
NC  
IN  
R
NC  
20 19 18 17 16  
T
SHDN  
SS  
3
NC  
I
I
I
I
I
NC  
NC  
1
2
3
4
5
15  
14  
13  
12  
11  
SP1  
4
SW  
SW  
GND  
SN2  
SP2  
V
C
5
21  
V
21  
8
IN  
FBN  
FBP  
6
R
T
ADJ1  
ADJ2  
7
I
SN1  
SHDN  
V
8
I
REF  
SP1  
I
9
I
6
7
9 10  
ADJ2  
SN2  
I
10  
I
ADJ1  
SP2  
FE PACKAGE  
20-LEAD PLASTIC TSSOP  
UF PACKAGE  
20-LEAD (4mm × 4mm) PLASTIC QFN  
TJMAX = 125°C, θJA = 37°C/W  
TJMAX = 150°C, θJA = 40°C/W  
EXPOSED PAD (PIN 21) IS PGND (MUST BE SOLDERED TO PCB)  
EXPOSED PAD (PIN 21) IS PGND (MUST BE SOLDERED TO PCB)  
ORDER PART NUMBER  
SW PART MARKING  
ORDER PART NUMBER  
UF PART MARKING  
3477  
LT3477EUF  
LT3477IUF  
LT3477EFE  
LT3477IFE  
3477  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The  
indicates specifications which apply over the full operating  
= 2.5V.  
temperature range, otherwise specifications are at T = 25°C. V = 2.5V, V  
SHDN  
A
IN  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Minimum Input Voltage  
Quiescent Current  
2.3  
2.5  
V
V
V
= 0V  
0.1  
5.0  
1.0  
7.5  
µA  
mA  
SHDN  
SHDN  
= 2.5V, V = 0.3V (Not Switching)  
C
Reference Voltage  
E Grade  
I Grade  
1.216  
1.210  
1.235  
1.235  
1.250  
1.260  
V
V
Reference Voltage Line Regulation  
2.5V < V < 25V, V = 0.3V  
0.01  
0.03  
100  
%/V  
IN  
C
Maximum V Pin Current  
Out of Pin  
µA  
REF  
3477fb  
2
LT3477  
ELECTRICAL CHARACTERISTICS  
The  
indicates specifications which apply over the full operating  
= 2.5V.  
temperature range, otherwise specifications are at T = 25°C. V = 2.5V, V  
A
IN  
SHDN  
PARAMETER  
CONDITIONS  
MIN  
TYP  
9
MAX  
UNITS  
µA  
Soft-Start Pin Current  
SS = 0.5V, Out of Pin  
FBP Pin Bias Current  
25  
25  
2
100  
100  
6
nA  
FBN Pin Bias Current  
nA  
Feedback Amplifier Offset Voltage  
Feedback Amplifier Voltage Gain  
Voltage Feedback Amplifier Transconductance  
Feedback Amplifier Sink Current  
Feedback Amplifier Source Current  
Current Sense Amplifier Sense Voltage  
FBP – FBN, V = 1V  
–2  
mV  
V/V  
µS  
C
500  
500  
10  
10  
V
V
= 1.25V, V  
= 1.25V, V  
= 1.5V, V = 1V  
µA  
FBP  
FBN  
FBN  
C
= 1V, V = 0.5V  
µA  
FBP  
C
Positive Rail, V = 25V, E Grade  
97.5  
97.5  
88  
100  
100  
100  
102.5  
103  
112  
mV  
mV  
mV  
CM  
Positive Rail, V = 25V, I Grade  
CM  
Ground  
Switching Frequency  
R = 17.2k  
0.9  
160  
2.7  
1
200  
3.5  
1.15  
240  
4.3  
MHz  
kHz  
MHz  
T
R = 107.4k  
T
R = 2.44k  
T
Maximum Switch Duty Cycle  
Switch Current Limit  
R = 17.2k  
87  
3
93  
4
%
A
T
(Note 3)  
5
200  
5
Switch V  
I
= 1A (Note 3)  
SW  
150  
0.2  
mV  
µA  
CESAT  
Switch Leakage Current  
SHDN Pin Current  
SW = 40V  
V
SHDN  
V
SHDN  
= 5V  
= 0V  
30  
0.1  
60  
1
µA  
µA  
SHDN Pin Threshold  
0.3  
1.5  
2
V
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
junction temperature range are assured by design, characterization and  
correlation with statistical process controls. The LT3477I is guaranteed  
over the full –40°C to 125°C operating junction temperature range.  
Note 3: Switch current limit and switch V  
for UF package guaranteed  
CESAT  
Note 2: The LT3477E is guaranteed to meet performance specifications  
from 0°C to 70°C. Specifications over the 40°C to 85°C operating  
by design and/or correlation to static test.  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Switch V  
Switch Current Limit  
V
REF  
CE(SAT)  
5
4
3
2
1
0
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
1.27  
1.26  
1.25  
1.24  
1.23  
1.22  
1.21  
125°C  
–50°C  
25°C  
V
V
= 25V  
IN  
= 2.5V  
IN  
50  
75 100 125  
75 100  
–50 –25  
0
25  
–50 –25  
0
25 50  
125 150  
0
0.5  
1.5  
2
2.5  
3
1
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SWITCH CURRENT (A)  
3477 G03  
3477 G01  
3477 G02  
3477fb  
3
LT3477  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
SHDN Pin Turn-On Threshold  
SHDN Pin Current  
Quiescent Current  
50  
40  
30  
20  
10  
0
1.6  
6
5
4
3
V
C
= 0.3V  
–50°C  
1.4  
25°C  
1.2  
1.0  
125°C  
2
0
5
10  
V
15  
(V)  
20  
25  
–50 –25  
0
25 50 75 100 125 150  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
TEMPERATURE (°C)  
SHDN  
3477 G05  
3477 G06  
3477 G04  
Soft-Start Pin Current  
Oscillator Frequency  
Feedback Amplifier Offset Voltage  
4
3
2.0  
20  
15  
10  
5
R
= 10kΩ  
T
1.6  
1.2  
2
V
C
= 1V  
C
1
R
R
= 15kΩ  
= 20kΩ  
T
T
0
V
= 0.5V  
0.8  
0.4  
0
–1  
–2  
–3  
–4  
0
50 75  
TEMPERATURE (°C)  
–50 –25  
0
25  
100 125 150  
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
–50 –25  
0
25 50  
75 100 125 150  
TEMPERATURE (°C)  
3477 G09  
3477 G07  
3477 G08  
FBP Pin Bias Current  
FBN Pin Bias Current  
50  
50  
“+” INDICATES THE CURRENT  
FLOWS OUT OF PIN  
40  
“+” INDICATES THE CURRENT  
FLOWS OUT OF PIN  
40  
30  
20  
30  
20  
10  
0
10  
0
–10  
–10  
50  
TEMPERATURE (°C)  
100 125  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
–50 –25  
0
25  
75  
3477 G10  
3477 G11  
3477fb  
4
LT3477  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Current Sense Voltage  
Current Sense Voltage  
vs Temperature  
vs I  
ADJ  
104  
120  
100  
80  
60  
40  
20  
0
V
CM  
= 10V  
103  
102  
101  
100  
99  
V
V
= 10V  
= 42V  
CM  
CM  
98  
97  
96  
–25  
0
50  
75 100 125  
–50  
25  
500 600  
0
100 200 300 400  
700 800  
TEMPERATURE (°C)  
I
ADJ  
VOLTAGE (mV)  
3477 G14  
2477 G13  
U
U
U
PI FU CTIO S (QFN/TSSOP)  
NC(Pins 1, 2, 20/Pins 18, 19, 20): No Connect Pin. Okay  
FBP (Pin 9/Pin 7): The Noninverting Input to the Error  
Amplifier. Connect resistive divider tap here for negative  
output voltage.  
to connect to ground or VIN, or to float.  
VIN (Pin 3/Pin 1): Input Supply. Must be locally bypassed.  
Powers the internal control circuitry.  
VREF (Pin 10/Pin 8): Bandgap Voltage Reference. Inter-  
nally set to 1.235V. Connect this pin to FBP if generating  
a positive output or to an external resistor divider if  
generating a negative voltage. This pin can provide up to  
100µAofcurrentandcanbelocallybypassedwitha100pF  
capacitor.  
RT (Pin 4/Pin 2): Timing Resistor Pin. Adjusts the switch-  
ing frequency. Connect a 17.2k resistor between RT and  
GNDfora1MHzswitchingfrequency. Donotleavethispin  
open. See Table 4 for additional RT values and switching  
frequencies.  
I
ADJ2 (Pin 11/Pin 9): Second Current Sense Adjustment.  
SHDN (Pin 5/Pin 3): Shutdown. Tie to 2V or greater to  
Setting IADJ2 to be less than 625mV leads to adjustment of  
the sensed voltage of the second current sense amplifier  
linearly. If IADJ2 is tied to higher than 650mV, the default  
current sense voltage is 100mV. If current sense ampli-  
fier 2 is not used, always tie IADJ2 to higher than 650mV.  
enable the device. Tie below 0.3V to turn off the device.  
SS (Pin 6/Pin 4): Soft-Start. Place a soft-start capacitor  
here. Leave floating if not in use.  
VC (Pin 7/Pin 5): Compensation Pin for Error Amplifier.  
Connect a series RC from this pin to GND. Typical values  
are 1kand 4.7nF.  
IADJ1 (Pin 12/Pin 10): First Current Sense Adjustment.  
Setting IADJ1 to be less than 625mV leads to adjustment of  
the sensed voltage of the first current sense amplifier  
linearly. If IADJ1 is tied to higher than 650mV, the default  
current sense voltage is 100mV. If current sense ampli-  
fier 1 is not used, always tie IADJ1 to higher than 650mV.  
FBN (Pin 8/Pin 6): The Inverting Input to the Error Ampli-  
fier. Connect resistive divider tap here for positive output  
voltage.  
3477fb  
5
LT3477  
U
U
U
PI FU CTIO S (QFN/TSSOP)  
ISP2 (Pin 13/ Pin 11): Second Current Sense (+) Pin. The  
noninverting input to the second current sense amplifier.  
Connect to ISN2 if not used.  
GND (Pins 17/Pin 15): Ground. Tie directly to local  
ground plane.  
SW (Pins 18, 19/Pins 16, 17): Switch Pins. Collector of  
the internal NPN power switch. Connect the inductor and  
diode here and minimize the metal trace area connected to  
this pin to minimize electromagnetic interference.  
ISN2 (Pin 14/ Pin 12): Second Current Sense (–) Pin. The  
inverting input to the second current sense amplifier.  
Connect to ISP2 if not used.  
Exposed Pad (Pin 21/Pin 21): Power Ground. Must be  
soldered to PCB ground for electrical contact and rated  
thermal performance.  
ISP1 (Pin 15/Pin 13): First Current Sense (+) Pin. The  
noninverting input to the first current sense amplifier.  
Connect to ISN1 if not used.  
I
SN1 (Pin 16/Pin 14): First Current Sense (–) Pin. The in-  
verting input to the first current sense amplifier. Connect  
to ISP1 if not used.  
W
BLOCK DIAGRA  
SS  
V
SW  
C
I
I
SP1  
+
IA1  
+
+
SN1  
V
V
A1  
A2  
ADJ  
I
ADJ1  
I
I
SP2  
+
IA2  
+
+
SN2  
A3  
ADJ  
+
I
ADJ2  
A4  
R
Q
Q1  
FBP  
FBN  
SLOPE  
S
+
+
VA  
Σ
V
REF  
V
REF  
1.25V  
OSCILLATOR  
V
SHDN  
IN  
R
T
3477 F01  
Figure 1. LT3477 Block Diagram  
3477fb  
6
LT3477  
U
OPERATIO  
The LT3477 uses a fixed frequency, current mode control  
scheme to provide excellent line and load regulation.  
OperationcanbebestunderstoodbyreferringtotheBlock  
Diagram in Figure 1. The start of each oscillator cycle sets  
the SR latch and turns on power switch Q1. The signal at  
thenoninvertinginputofthePWMcomparator(A4SLOPE)  
is proportional to the sum of the switch current and  
oscillator ramp. When SLOPE exceeds VC (the output of  
the feedback amplifier), the PWM comparator resets the  
latch and turns off the power switch. In this manner, the  
feedback amplifier and PWM comparators set the correct  
peak current level to keep the output in regulation. Ampli-  
fier A3 drives A4 inverting input. A3 has three inputs, one  
from the voltage feedback loop and the other two from the  
currentfeedbackloop. Whicheverfeedbackinputishigher  
takes precedence, forcing the converter into either a  
constant-currentoraconstant-voltagemode.TheLT3477  
isdesignedtotransitioncleanlybetweenthetwomodesof  
operation. Current sense amplifier IA1 senses the voltage  
between the ISP1 and ISN1 pins and provides a pre-gain to  
amplifier A1. When the voltage between ISP1 and ISN1  
reaches 100mV, the output of IA1 provides VADJ to the  
inverting input of A1 and the converter is in constant-  
currentmode.Ifthecurrentsensevoltageexceeds100mV,  
the output of IA1 will increase causing the output of A3 to  
decrease,thusreducingtheamountofcurrentdeliveredto  
the output. In this manner the current sense voltage is  
regulated to 100mV. The current sense level is also pin  
adjustable by IADJ1. Forcing IADJ1 to less than 625mV will  
overwrite VADJ voltage that’s set internally, thus providing  
current level control. The second current sense amplifier,  
IA2, works the same as the first current sense amplifier  
IA1. Both current sense amplifiers provide rail-to-rail  
current sense operation. Similarly, for positive output  
voltage operation where FBP is tied to VREF, if the FBN pin  
increases above VREF, the output of A3 will decrease to  
reduce the peak current level and regulate the output  
(constant-voltage mode). For negative output voltage  
operation where FBN is tied to GND, if the FBP pin  
decreases below GND level, the output of A3 will decrease  
to reduce the peak current level and regulate the output  
(constant-voltage mode).  
The LT3477 also features a soft-start function. During  
start-up, 9µA of current charges the external soft-start  
capacitor. The SS pin directly limits the rate of voltage rise  
on the VC pin, which in turn limits the peak switch current.  
The switch current is constantly monitored and not al-  
lowed to exceed the nominal value of 3A. If the switch  
current reaches 3A, the SR latch is reset regardless of the  
output of the PWM comparator. Current limit protects the  
power switch and external components.  
3477fb  
7
LT3477  
W U U  
U
APPLICATIO S I FOR ATIO  
Capacitor Selection  
percentage of its nominal value—typically 65%. An  
inductor can pass a current larger than its rated value  
without damaging it. Aggressive designs where board  
space is precious will exceed the maximum current rating  
of the inductor to save board space. Consult each manu-  
facturer to determine how the maximum inductor current  
ismeasuredandhowmuchmorecurrenttheinductorcan  
reliably conduct.  
Low ESR (equivalent series resistance) ceramic capaci-  
tors should be used at the output to minimize the output  
ripple voltage. Use only X5R or X7R dielectrics, as these  
materials retain their capacitance over wider voltage and  
temperature ranges better than other dielectrics. A 4.7µF  
to 10µF output capacitor is sufficient for most high output  
current designs. Converters with lower output currents  
may need only a 1µF or 2.2µF output capacitor.  
Diode Selection  
Table 1. Ceramic Capacitor Manufacturers  
Schottky diodes, with their low forward voltage drop and  
fast switching speed, are ideal for LT3477 applications.  
Table 3 lists several Schottky diodes that work well with  
the LT3477. The diode’s average current rating must ex-  
ceed the average output current. The diode’s maximum  
reverse voltage must exceed the output voltage. The diode  
conducts current only when the power switch is turned off  
(typically less than 50% duty cycle), so a 3A diode is suf-  
ficient for most designs. The companies below also offer  
Schottky diodes with higher voltage and current ratings.  
MANUFACTURER  
Taiyo Yuden  
AVX  
PHONE  
WEB  
(408) 573-4150  
(803) 448-9411  
(714) 852-2001  
(847) 803-6100  
www.t-yuden.com  
www.avxcorp.com  
www.murata.com  
www.component.tdk.com  
Murata  
TDK  
Inductor Selection  
SeveralinductorsthatworkwellwiththeLT3477arelisted  
in Table 2. However, there are many other manufacturers  
and devices that can be used. Consult each manufacturer  
for more detailed information and their entire range of  
parts. Ferrite core inductors should be used to obtain the  
best efficiency. Choose an inductor that can handle the  
necessary peak current without saturating, and ensure  
that the inductor has a low DCR (copper-wire resistance)  
to minimize I2R power losses. A 4.7µH or 10µH inductor  
will suffice for most LT3477 applications.  
Table 3. Suggested Diodes  
MANUFACTURER  
PART NUMBER  
MAX  
MAX REVERSE  
CURRENT (A) VOLTAGE (V) MANUFACTURER  
UPS340  
UPS315  
3
3
40  
15  
Microsemi  
www.microsemi.com  
B220  
B230  
B240  
B320  
B330  
B340  
SBM340  
2
2
2
3
3
3
3
20  
30  
40  
20  
30  
40  
40  
Diodes, Inc  
www.diodes.com  
Inductor manufacturers specify the maximum current  
rating as the current where the inductance falls to some  
Table 2. Suggested Inductors  
MANUFACTURER  
PART NUMBER  
I
INDUCTANCE  
MAX DCR  
(m)  
L × W × H  
(mm)  
DC  
(A)  
(µH)  
MANUFACTURER  
CDRH6D283R0  
CDRH6D28100  
CDRH4D284R7  
3
1.7  
1.32  
3
10  
4.7  
24  
65  
72  
6.7 × 6.7 × 3.0  
6.7 × 6.7 × 3.0  
5.0 × 5.0 × 3.0  
Sumida  
www.sumida.com  
LM N 05D B4R7M  
LM N 05D B100K  
2.2  
1.6  
4.7  
10  
49  
10  
5.9 × 6.1 × 2.8  
5.9 × 6.1 × 2.8  
Taiyo Yuden  
www.t-yuden.com  
LQH55DN4R7M01L  
LQH55DN100M01K  
2.7  
1.7  
4.7  
10  
57  
130  
5.7 × 5.0 × 4.7  
5.7 × 5.0 × 4.7  
Murata  
www.murata.com  
FDV0630-4R7M  
4.2  
4.7  
49  
7.0 × 7.7 × 3.0  
Toko  
www.toko.com  
3477fb  
8
LT3477  
W U U  
APPLICATIO S I FOR ATIO  
U
Setting Positive Output Voltages  
For designs needing an adjustable current level, the IADJ1  
and IADJ2 pins are provided for the first and the second  
current sense amplifiers, respectively. With the IADJ1 and  
IADJ2 pins tied higher than 650mV, the nominal current  
sense voltage is 100mV (appearing between the ISP1 and  
ISN2 or ISP2 and ISN2 pins). Applying a positive DC voltage  
less than 600mV to the IADJ1 and IADJ2 pins will decrease  
the current sense voltage according to the following  
formula:  
Tosetapositiveoutputvoltage,selectthevaluesofR1and  
R2 (see Figure 2) according to the following equation:  
R1  
R2  
VOUT = 1.235V 1+  
FBP  
LT3477  
V
OUT  
V
REF  
100mV  
RSENSE 618mV  
V
IADJ  
R1  
ISENSE  
=
FBN  
R2  
For example, if 309mV is applied to the IADJ1 pin and  
RSENSE is 0.5, the current sense will be reduced from  
200mA to 100mA. The adjustability allows the regulated  
current to be reduced without changing the current sense  
resistor (e.g., to adjust brightness in an LED driver or to  
reduce the charge current in a battery charger).  
3477 F02  
Figure 2. Positive Output Voltage Feedback Connections  
Setting Negative Output Voltages  
To set a negative output voltage, select the values of R3  
and R4 (see Figure 3) according to the following equation:  
Considerations When Sensing Input Current  
R3  
R4  
In addition to regulating the DC output current for current-  
source applications, the constant-current loop of the  
LT3477 can also be used to provide an accurate input  
current limit. Boost converters cannot provide output  
short-circuit protection, but the surge turn-on current can  
be drastically reduced using the LT3477 current sense at  
the input. SEPICs, however, have an output that is DC-  
isolated from the input, so an input current limit not only  
helps soft-start the output but also provides excellent  
short-circuit protection.  
VOUT = –1.235V  
–V  
OUT  
R3  
FBP  
R4  
LT3477  
V
REF  
FBN  
3477 F03  
When sensing input current, the sense resistor should be  
placed in front of the inductor (between the decoupling  
capacitor and the inductor). This will regulate the average  
inductor current and maintain a consistent inductor ripple  
current, which will, in turn, maintain a well regulated input  
current. Do not place the sense resistor between the input  
source and the input decoupling capacitor, as this may  
allow the inductor ripple current to vary widely (even  
though the average input current and the average inductor  
current will still be regulated). Since the inductor current  
Figure 3. Negative Output Voltage Feedback Connections  
Selecting RSENSE/Current Sense Adjustment  
Using the following formula to choose the correct current  
sense resistor value (for constant current or fail-safe  
operation).  
100mV  
ISENSE  
RSENSE  
=
3477fb  
9
LT3477  
W U U  
U
APPLICATIO S I FOR ATIO  
is a triangular waveform (not a DC waveform like the  
output current) some tweaking of the compensation val-  
ues (RC and CC on the VC pin) may be required to ensure  
a clean inductor ripple current while the constant-current  
loop is in effect. For these applications, the constant-  
current loop response can usually be improved by reduc-  
ing the RC value or by adding a capacitor (with a value of  
approximately CC/10) in parallel with the RC and CC com-  
pensation network.  
Soft-Start  
For many applications, it is necessary to minimize the  
inrush current at start-up. The built-in soft-start circuit  
significantly reduces the start-up current spike and output  
voltageovershoot. Atypicalvalueforthesoft-startcapaci-  
tor is 10nF.  
Switching Frequency  
The switching frequency of the LT3477 is set by an  
external resistor attached to the RT pin. Do not leave this  
pin open. A resistor must always be connected for proper  
operation. See Table 4 and Figure 4 for resistor values and  
corresponding frequencies.  
Frequency Compensation  
TheLT3477hasanexternalcompensationpin(VC), which  
allows the loop response to be optimized for each applica-  
tion. An external resistor and capacitor (or sometimes just  
a capacitor) are placed at the VC pin to provide a pole and  
azero(orjustapole)toensureproperloopcompensation.  
Several other poles and zeroes are present in the closed-  
loop transfer function of a switching regulator, so the VC  
pin pole and zero are positioned to provide the best loop  
response. A thorough analysis of the switching regulator  
control loop is not within the scope of this data sheet, and  
will not be presented here, but values of 1k and 4.7nF will  
be a good choice for many designs. For those wishing to  
optimize the compensation, use the 1k and 4.7nF as a  
starting point.  
Increasing switching frequency reduces output voltage  
ripple but also reduces efficiency. The user should set the  
frequencyforthemaximumtolerableoutputvoltageripple.  
Table 4. Switching Frequency  
SWITCHING FREQUENCY (MHz)  
R (k)  
T
3.5  
3
2.43  
3.65  
4.87  
6.81  
10.2  
17.4  
43.2  
107  
2.5  
2
1.5  
1
0.5  
0.2  
Board Layout  
As with all switching regulators, careful attention must be  
paid to the PCB board layout and component placement.  
Tomaximizeefficiency, switchriseandfalltimesaremade  
as short as possible. To prevent radiation and high fre-  
quency resonance problems, proper layout of the high  
frequency switching path is essential. Minimize the length  
and area of all traces connected to the SW pin and always  
use a ground plane under the switching regulator to  
minimize interplane coupling. The signal path including  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
the switch, output diode D1 and output capacitor COUT  
,
contains nanosecond rise and fall times and should be  
kept as short as possible.  
0
0.1  
100  
10  
R
(k)  
T
3477 F04  
Figure 4. Switch Frequency  
3477fb  
10  
LT3477  
W U U  
APPLICATIO S I FOR ATIO  
U
PWM Dimming  
through the LEDs. When the PWM input is taken low, the  
LEDs are disconnected and turn off. This unique external  
circuitry produces a fast rise time for the LED current,  
resulting in a wide dimming range of 500:1 at a PWM  
frequency of 100Hz.  
For LED applications where a wide dimming range is  
required, two competing methods are available: analog  
dimming and PWM dimming. The easiest method is to  
simply vary the DC current through the LED—analog  
dimming—but changing LED current also changes its  
chromaticity, undesirableinmanyapplications. Thebetter  
method is PWM dimming, which switches the LED on and  
off, using the duty cycle to control the average current.  
PWM dimming offers several advantages over analog  
dimming and is the method preferred by LED manufactur-  
ers. By modulating the duty cycle of the PWM signal, the  
average LED current changes proportionally as illustrated  
in Figure 5. The chromaticity of the LEDs remains un-  
changedinthisschemesincetheLEDcurrentiseitherzero  
or at programmed current. Another advantage of PWM  
dimming over analog dimming is that a wider dimming  
range is possible.  
The LED current can be controlled by feeding a PWM  
signal with a broad range of frequencies. Dimming below  
80Hz is possible, but not desirable, due to perceptible  
flashing of LEDs at lower PWM frequencies. The LED  
current can be controlled at higher frequencies, but the  
dimmingrangedecreaseswithincreasingPWMfrequency,  
as seen in Figure 6.  
PWM dimming can be used in Boost (shown in Figure 7),  
Buck mode (shown in Figure 8) and Buck-Boost mode  
(shown in Figure 9). For the typical boost topology,  
efficiency exceeds 80%. Buck mode can be used to in-  
crease the power handling capability for higher current  
LED applications. A Buck-Boost LED driver works best in  
applicationswheretheinputvoltagefluctuatestohigheror  
lower than the total LED voltage drop.  
The LT3477 is a DC/DC converter that is ideally suited for  
LED applications. For the LT3477, analog dimming offers  
a dimming ratio of about 10:1; whereas, PWM dimming  
with the addition of a few external components results in  
a wider dimming range of 500:1. The technique requires a  
PWM logic signal applied to the gate of both NMOS (refer  
to Figure 7). When the PWM signal is taken high the part  
runs in normal operation and ILED = 100mV/RSENSE runs  
Inhightemperatureapplications,theleakageoftheSchot-  
tky diode D1 increases, which in turn, discharges the  
output capacitor during the PWM “off” time. This results  
in a smaller effective LED dimming ratio. Consequently,  
the dimming range decreases to about 200:1 at 85°C.  
1000  
100  
R
T
= 6.81k  
R
T
= 6.81k  
10  
1
100  
10  
1
0.1  
V
= 5V  
IN  
BOOST  
4 LEDs  
PWM FREQUENCY = 100Hz  
0.01  
0.1  
1
10  
100  
0.1  
1
10  
100  
PWM DUTY CYCLE (%)  
PWM FREQUENCY (kHz)  
3477 F05  
3477 F06  
Figure 5. LED Current vs PWM Duty Cycle  
Wide Dimming Range (500:1)  
Figure 6. Dimming Range vs PWM Frequency  
3477fb  
11  
LT3477  
APPLICATIO S I FOR ATIO  
W U U  
U
L1  
2.0µH  
D1  
OUT  
V
IN  
5V  
C2  
10µF  
C1  
3.3µF  
1M  
I
I
SW  
SP1  
SN1  
V
FBN  
FBP  
IN  
I
I
ADJ1  
ADJ2  
75k  
SHDN  
LT3477  
V
REF  
I
SP2  
SS  
R
SENSE  
0.33  
C
33nF  
SS  
I
SN2  
LED1  
V
C
R
T
GND  
LED2  
LED3  
LED4  
6.81k  
300mA  
D2  
PWM  
5V  
0
NMOS1  
R
C
100Hz  
NMOS2  
2.4k  
100k  
C
C
10nF  
3477 F07a  
C1: TAIYO YUDEN EMK316BJ335ML  
C2: TAIYO YUDEN UDK325BJ106MM  
L1: TOKO D53LC (PN# A915AY-2ROM)  
D1: ZETEX ZLLS1000  
D2: DIODES INC 1N4148  
NMOS1: ZETEX 2N7002  
NMOS2: FAIRCHILD FDG327N  
LED1 TO LED4: LUMILEDS LXHL-BW02  
Figure 7a. 5V to 4 White LEDs: Boost with PWM Dimming  
85  
350  
300  
EFFICIENCY  
80  
PWM  
5V/DIV  
75  
70  
65  
60  
55  
50  
250  
200  
150  
100  
50  
LED CURRENT  
I
L
1A/DIV  
I
LED  
V
= 5V  
IN  
200mA/DIV  
BOOST  
4 LEDs, 300mA  
PWM FREQUENCY = 100Hz  
3477 F07b  
0
100  
10µs/DIV  
= 5V PWM FREQ = 100Hz  
4 LEDs  
300mA  
20  
40  
60  
0
80  
V
IN  
PWM DUTY CYCLE (%)  
BOOST  
3477 F07c  
Figure 7b. PWM Dimming Waveforms  
Figure 7c. Efficiency and LED Current  
vs PWM Duty Cycle  
3477fb  
12  
LT3477  
W U U  
APPLICATIO S I FOR ATIO  
U
PV  
IN  
32V  
C1  
2.2µF  
R
SENSE  
0.33  
LED1  
300mA  
C1: NIPPON NTS40X5R1H225M  
LED6  
C2: TAIYO YUDEN GMK316BJ105ML  
C3: TAIYO YUDEN LMK316BJ335KL  
L1: TOKO D53LC (PN# A915AY-100M)  
D1: ZETEX ZLLS400  
1k  
1k  
PWM  
PMOS  
NMOS2  
D2: DIODES INC 1N4148  
C2  
1µF  
NMOS1, NM0S2: ZETEX 2N7002  
PMOS: SILICONIX Si2303BDS  
LED1 TO LED6: LUMILEDS LXHL-BW02  
L1  
10µH  
D1  
280k  
10k  
I
I
SW  
SP1  
SN1  
V
IN  
V
FBN  
FBP  
IN  
3.3V  
C3  
3.3µF  
I
I
ADJ1  
ADJ2  
SHDN  
LT3477  
V
REF  
I
SP2  
SS  
C
33nF  
SS  
I
SN2  
V
C
R
T
GND  
6.81k  
3477 F08a  
D2  
PWM  
5V  
0
NMOS1  
100Hz  
C
C
0.1µF  
100k  
Figure 8a. 32V to 6 White LEDs: Buck Mode with PWM Dimming  
PWM  
5V/DIV  
I
L
500mA/DIV  
I
LED  
500mA/DIV  
3477 F08b  
2ms/DIV  
PV = 32V PWM FREQUENCY = 100Hz  
6 LEDs  
300mA  
IN  
BUCK MODE  
Figure 8b. PWM Dimming Waveforms  
3477fb  
13  
LT3477  
W U U  
U
APPLICATIO S I FOR ATIO  
1k  
1k  
NMOS2  
PWM  
LED2  
C1: TAIYO YUDEN LMK316BJ335ML  
C2: TAIYO YUDEN UDK325BJ106MM  
L1: TOKO D53LC (PN# A915AY-4R7M)  
D1: ZETEX ZLLS1000  
300mA  
LED1  
D2: DIODES INC 1N4148  
NMOS1, NMOS2: ZETEX 2N7002  
PMOS: SILICONIX Si2303BDS  
LED1, LED2: LUMILEDS LXHL-BW02  
PMOS  
L1  
4.7µH  
R
SENSE  
D1  
0.33Ω  
V
IN  
10V  
C1  
3.3µF  
1M  
I
I
SW  
SP1  
SN1  
V
FBN  
FBP  
IN  
I
I
ADJ1  
ADJ2  
49.9k  
SHDN  
V
REF  
LT3477  
GND  
I
SP2  
SS  
C
33nF  
SS  
I
SN2  
V
R
T
C
C2  
10µF  
6.81k  
3477 F09a  
D2  
PWM  
5V  
0
NMOS1  
100Hz  
R
1.5k  
C
100k  
C
C
10nF  
Figure 9a. 10V to 2 White LEDs: Buck-Boost Mode with PWM Dimming  
PWM  
10V/DIV  
I
L
1A/DIV  
I
LED  
500mA/DIV  
3477 F09b  
2ms/DIV  
V
= 10V  
PWM FREQUENCY = 100Hz  
BUCK-BOOST MODE  
IN  
2 LEDs  
300mA  
Figure 9b. PWM Dimming Waveforms  
3477fb  
14  
LT3477  
U
TYPICAL APPLICATIO S  
Efficiency  
5.5V SEPIC Converter with Short-Circuit Protection  
90  
C2  
10µF  
L1  
4.7µH  
V
IN  
= 3V  
R1  
0.04Ω  
R3  
0.15Ω  
D1  
85  
80  
V
5.5V  
670mA  
IN  
3V TO  
16V  
C1  
3.3µF  
R4  
34.8k  
L2  
4.7µH  
I
I
SW  
SP1  
SN1  
75  
70  
65  
60  
55  
V
I
I
IN  
ADJ1  
ADJ2  
FBN  
LT3477  
GND  
SHDN  
SHDN  
I
SP2  
V
V
I
C
SN2  
50  
R
REF  
T
0.1  
0.2  
0.4 0.5 0.6 0.7  
(A)  
0
0.3  
I
R
C
FBP  
SS  
1k  
OUT  
3477 TA02b  
C4  
33nF  
C3  
10µF  
R5  
10k  
C
R2  
18.2k  
C
4.7nF  
3477 TA02a  
C1: TAIYO YUDEN LMK316BJ335ML  
C2: TAIYO YUDEN LMK325BJ106MN  
C3: TAIYO YUDEN LMK316BJ106ZL  
D1: DIODES INC. DFLS130L  
L1, L2: TOKO FDV0630-4R7M  
800mA, 5V to 12V Boost Converter with Accurate Input Current Limit  
Efficiency  
R1  
L1  
90  
85  
80  
75  
70  
65  
60  
55  
50  
D1  
0.033  
4.7µH  
V
12V  
0.8A  
IN  
5V  
C1  
2.2µF  
R3  
I
I
SW  
SP1  
SN1  
200k  
C2  
V
I
I
FBN  
IN  
ADJ1  
ADJ2  
10µF  
R4  
23.2k  
I
SP2  
LT3477  
SHDN  
SHDN  
I
SN2  
V
C
V
R
T
REF  
R
C
FBP  
GND  
SS  
1k  
0.2  
0
0.1  
0.3 0.4 0.5 0.6 0.7 0.8  
(A)  
C3  
10nF  
R2  
17.8k  
C
C
4.7nF  
I
OUT  
3477 TA04a  
3477 TA04b  
C1: TAIYO YUDEN LMK316BJ225MD  
C2: AVX 1206YD106MAT  
D1: DIODES INC. B320A  
L1: TOKO FDV0630-4R7M  
3477fb  
15  
LT3477  
U
TYPICAL APPLICATIO S  
87% Efficient, 4W LED Driver  
Efficiency  
90  
85  
80  
75  
70  
65  
60  
55  
50  
R4  
L2  
D1  
0.05  
10µH  
V
IN  
5V  
C2  
C1  
R2  
3.3µF  
3.3µF  
I
I
SW  
SP1  
SN1  
200k  
V
I
I
FBN  
IN  
R1  
10k  
ADJ1  
ADJ2  
330mA  
LT3477  
GND  
SHDN  
SHDN  
I
SP2  
R6  
0.3Ω  
V
V
I
C
SN2  
LED1  
R
REF  
T
R
C
FBP  
SS  
LED2  
LED3  
LED4  
0.2  
0
0.1  
0.3  
0.4  
1k  
I
(A)  
OUT  
R3  
22k  
C3  
3477 TA01b  
C
33nF  
C
4.7nF  
C1: TAIYO YUDEN LMK316BJ335ML  
3477 TA03a  
C2: TAIYO YUDEN TMK325BJ335MN  
D1: DIODES INC. DFLS120L  
L1: TOKO A915AY-100M  
1A Buck Mode High Current LED Driver  
PV  
IN  
32V  
C1  
2.2µF  
R1  
0.1Ω  
LED1  
LED4  
Efficiency  
LED  
STRING  
1A  
C2  
1µF  
100  
90  
80  
L1  
33µH  
D1  
70  
60  
50  
R3  
I
I
SW  
FBN  
280k  
SP1  
SN1  
V
IN  
V
I
I
IN  
ADJ1  
ADJ2  
3.3V  
C3  
40  
30  
20  
R4  
10k  
3.3µF  
LT3477  
GND  
SHDN  
SHDN  
I
SP2  
0.2  
0.4  
0.6  
0.8  
0
1
V
V
I
LED CURRENT (A)  
C
SN2  
3477 TA05b  
R
REF  
T
R
C
FBP  
SS  
1k  
C4  
33nF  
C
R2  
22k  
C
4.7nF  
3477 TA05a  
C1: NIPPON UNITED CHEMICON NTS40X5R1H225M  
C2: TAIYO YUDEN GMK316BJ105ML  
C3: TAIYO YUDEN LMK316BJ475  
L1: TOKO A814AY-330M  
D1: DIODES INC DFLS140  
3477fb  
16  
LT3477  
U
TYPICAL APPLICATIO S  
Buck-Boost Mode LED Driver  
LED2 LED1  
L1  
4.7µH  
R1  
0.1  
D1  
V
IN  
2.7V TO 10V  
C1  
R3  
200k  
3.3µF  
I
I
SW1  
FBN  
SP1  
SN1  
V
I
IN  
ADJ1  
ADJ2  
LED BRIGHTNESS  
CONTROL  
0mV TO 650mV  
I
LT3477  
GND  
SHDN  
SHDN  
I
SP2  
V
V
I
C
SN2  
R
T
REF  
FBP  
SS  
C3  
33nF  
C2  
4.7µF  
R4  
10k  
C
C
10nF  
R2  
18k  
C1: TAIYO YUDEN LMK316BJ335ML  
C2: MURATA GRM31CR71E475KA88L  
D1: DIODES, INC. B320A  
3477 TA06a  
L1: TOKO FDV0630-4R7M  
Efficiency  
90  
85  
80  
75  
V
= 8V  
IN  
V
(V)  
I
(A)  
IN  
2.7  
OUT  
0.57  
3.6  
4.2  
5
0.74  
0.83  
0.93  
1.0  
V
= 4.2V  
IN  
70  
65  
8
60  
55  
50  
0.2  
0.4  
0.8  
0
1.0  
0.6  
(A)  
I
OUT  
3477 TA06b  
3477fb  
17  
LT3477  
U
PACKAGE DESCRIPTIO  
UF Package  
20-Lead Plastic QFN (4mm × 4mm)  
(Reference LTC DWG # 05-08-1710)  
0.70 ±0.05  
4.50 ± 0.05  
3.10 ± 0.05  
2.45 ± 0.05  
(4 SIDES)  
PACKAGE  
OUTLINE  
0.25 ±0.05  
0.50 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
BOTTOM VIEW—EXPOSED PAD  
R = 0.115  
PIN 1 NOTCH  
R = 0.30 TYP  
0.75 ± 0.05  
4.00 ± 0.10  
(4 SIDES)  
TYP  
19 20  
0.38 ± 0.10  
PIN 1  
TOP MARK  
(NOTE 6)  
1
2
2.45 ± 0.10  
(4-SIDES)  
(UF20) QFN 10-04  
0.200 REF  
0.25 ± 0.05  
0.50 BSC  
0.00 – 0.05  
NOTE:  
1. DRAWING IS PROPOSED TO BE MADE A JEDEC PACKAGE OUTLINE MO-220  
VARIATION (WGGD-1)—TO BE APPROVED  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
3477fb  
18  
LT3477  
U
PACKAGE DESCRIPTIO  
FE Package  
20-Lead Plastic TSSOP (4.4mm)  
(Reference LTC DWG # 05-08-1663)  
Exposed Pad Variation CB  
6.40 – 6.60*  
(.252 – .260)  
3.86  
(.152)  
3.86  
(.152)  
20 1918 17 16 15 14 1312 11  
6.60 ±0.10  
2.74  
(.108)  
4.50 ±0.10  
6.40  
(.252)  
BSC  
2.74  
(.108)  
SEE NOTE 4  
0.45 ±0.05  
1.05 ±0.10  
0.65 BSC  
5
7
8
1
2
3
4
6
9 10  
RECOMMENDED SOLDER PAD LAYOUT  
1.20  
(.047)  
MAX  
4.30 – 4.50*  
(.169 – .177)  
0.25  
REF  
0° – 8°  
0.65  
(.0256)  
BSC  
0.09 – 0.20  
(.0035 – .0079)  
0.50 – 0.75  
(.020 – .030)  
0.05 – 0.15  
(.002 – .006)  
FE20 (CB) TSSOP 0204  
0.195 – 0.30  
(.0077 – .0118)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: MILLIMETERS 4. RECOMMENDED MINIMUM PCB METAL SIZE  
FOR EXPOSED PAD ATTACHMENT  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.150mm (.006") PER SIDE  
MILLIMETERS  
(INCHES)  
2. DIMENSIONS ARE IN  
3. DRAWING NOT TO SCALE  
3477fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
19  
LT3477  
U
TYPICAL APPLICATIO  
Buck Mode High Current LED Driver  
PV  
IN  
32V  
C1  
2.2µF  
R1  
0.1  
Efficiency  
LED1  
LED4  
100  
90  
LED  
STRING  
1A  
C2  
1µF  
80  
70  
L1  
33µH  
D1  
60  
50  
R3  
I
I
SW  
FBN  
280k  
SP1  
SN1  
V
IN  
3.3V  
40  
30  
20  
V
IN  
C3  
3.3µF  
I
I
ADJ1  
ADJ2  
R4  
10k  
0.2  
0.4  
0.6  
LED CURRENT (A)  
0.8  
0
1
LT3477  
GND  
SHDN  
SHDN  
I
SP2  
3477 TA05b  
V
V
I
C
SN2  
R
REF  
T
R
C
FBP  
SS  
1k  
C4  
33nF  
C
R2  
22k  
C
4.7nF  
3477 TA07  
C1: NIPPON UNITED CHEMICON NTS40X5R1H225M  
C2: TAIYO YUDEN GMK316BJ105ML  
C3: TAIYO YUDEN LMK316BJ475  
L1: TOKO A814AY-330M  
D1: DIODES INC DFLS140  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
V : 1.6V to 18V, V  
LT1618  
Constant Current, Constant Voltage 1.4MHz,  
High Efficiency Boost Regulator  
= 5.5V, I = 2.5mA, I < 1µA, QFN16 Package  
OUT(MAX) Q SD  
IN  
LT3436  
LTC®3453  
3A (I ), 800kHz, 34V Step-Up DC/DC Converter  
V : 3V to 25V, V  
= 34V, I = 0.9mA, I < 6µA, TSSOP16E Package  
SW  
IN  
OUT(MAX) Q SD  
Synchronous Buck-Boost High Power White  
LED Driver  
V : 2.7V to 5.5V, V  
IN  
= 5.5V, I = 2.5mA, I < 1µA, QFN16 Package  
Q SD  
OUT(MAX)  
LT3466  
Dual Constant Current, 2MHz, High Efficiency  
White LED Boost Regulator with Integrated  
Schottky Diode  
V : 2.7V to 24V, V  
= 40V, I = 5mA, I < 16µA, DFN Package  
Q SD  
IN  
OUT(MAX)  
LT3479  
3A, 42V Full Featured Boost/Inverter Converter  
with Soft-Start  
V : 2.5V to 24V, V  
= 40V, I = 5mA, I < 1µA, DFN/TSSOP Packages  
OUT(MAX) Q SD  
IN  
LTC3490  
Single Cell 350mA, 1.3MHz LED Driver  
V : 1V to 3.2V, V  
= 4.7V, I < 1µA, DFN/SO8 Packages  
OUT(MAX) SD  
IN  
3477fb  
LT 0207 REV B • PRINTED IN THE USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
© LINEAR TECHNOLOGY CORPORATION 2005  

相关型号:

LT3477IUF

3A, DC/DC Converter with Dual Rail-to-Rail Current Sense
Linear

LT3477IUF#PBF

LT3477 - 3A, DC/DC Converter with Dual Rail-to-Rail Current Sense; Package: QFN; Pins: 20; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3477IUF#TR

LT3477 - 3A, DC/DC Converter with Dual Rail-to-Rail Current Sense; Package: QFN; Pins: 20; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3478

4.5A Monolithic LED Drivers with True Color PWM Dimming
Linear

LT3478-1

4.5A Monolithic LED Drivers with True Color PWM Dimming
Linear

LT3478-1_15

4.5A Monolithic LED Drivers with True Color PWM Dimming
Linear

LT3478EFE

4.5A Monolithic LED Drivers with True Color PWM Dimming
Linear

LT3478EFE#PBF

LT3478 - 4.5A Monolithic LED Drivers with True Color PWM Dimming; Package: TSSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3478EFE#TR

IC LED DISPLAY DRIVER, PDSO16, 4.40 MM, PLASTIC, TSSOP-16, Display Driver
Linear

LT3478EFE#TRPBF

暂无描述
Linear

LT3478EFE-1

4.5A Monolithic LED Drivers with True Color PWM Dimming
Linear

LT3478EFE-1#PBF

LT3478 - 4.5A Monolithic LED Drivers with True Color PWM Dimming; Package: TSSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear