LT3478IFE#PBF [Linear]

LT3478 - 4.5A Monolithic LED Drivers with True Color PWM Dimming; Package: TSSOP; Pins: 16; Temperature Range: -40°C to 85°C;
LT3478IFE#PBF
型号: LT3478IFE#PBF
厂家: Linear    Linear
描述:

LT3478 - 4.5A Monolithic LED Drivers with True Color PWM Dimming; Package: TSSOP; Pins: 16; Temperature Range: -40°C to 85°C

驱动 光电二极管 接口集成电路
文件: 总24页 (文件大小:272K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3478/LT3478-1  
4.5A Monolithic LED  
Drivers with True Color  
PWM Dimming  
U
DESCRIPTIO  
FEATURES  
The LT®3478/LT3478-1 are 4.5A step-up DC/DC convert-  
ers designed to drive LEDs with a constant current over  
a wide programmable range. Series connection of the  
LEDs provides identical LED currents for uniform bright-  
ness without the need for ballast resistors and expensive  
factory calibration.  
True Color PWM™ Dimming Delivers Constant LED  
Color with Up to 3000:1 Range  
Wide Input Voltage Range: 2.8V to 36V  
4.5A, 60mΩ, 42V Internal Switch  
Drives LEDs in Boost, Buck-Boost or Buck Modes  
Integrated Resistors for Inductor and LED Current  
Sensing  
Program LED Current:  
TheLT3478-1reducesexternalcomponentcountandcost  
by integrating the LED current sense resistor. The LT3478  
uses an external sense resistor to extend the maximum  
programmableLEDcurrentbeyond1Aandalsotoachieve  
greater accuracy when programming low LED currents.  
Operating frequency can be set with an external resistor  
from 200kHz up to 2.25MHz. Unique circuitry allows a  
PWM dimming range up to 3000:1 while maintaining  
constant LED color. The LT3478/LT3478-1 are ideal for  
highpowerLEDdriverapplicationssuchasautomotiveTFT  
LCD backlights, courtesy lighting and heads-up displays.  
One of two CTRL pins can be used to program maximum  
LED current. The other CTRL pin can be used to program  
a reduction in maximum LED current vs temperature to  
maximize LED usage and improve reliability.  
100mA to 1050mA (LT3478-1)  
(10mV to 105mV)/R  
Program LED Current De-Rating vs Temperature  
Separate Inductor Supply Input  
Inrush Current Protection  
Programmable Soft-Start  
(LT3478)  
SENSE  
Fixed Frequency Operation from 200kHz to 2.25MHz  
Open LED Protection (Programmable OVP)  
Accurate Shutdown/UVLO Threshold with  
Programmable Hysteresis  
16-Pin Thermally Enhanced TSSOP Package  
U
APPLICATIO S  
High Power LED Driver  
Automotive Lighting  
Additional features include inrush current protection,  
programmable open LED protection and programmable  
soft-start. Each part is available in a 16-pin thermally  
enhanced TSSOP Package.  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners. Patents Pending.  
U
TYPICAL APPLICATIO  
Automotive TFT LCD Backlight  
Efficiency vs V  
IN  
100  
95  
90  
85  
80  
10µH  
V
IN  
8V TO 16V  
I
f
= 700mA  
= 500kHz  
PWM DUTY CYCLE = 100%  
LED  
OSC  
10µF  
4.7µF  
V
IN  
V
S
L
SW  
SHDN  
OUT  
V
REF  
0.1Ω  
SENSE  
(LT3478)  
R
45.3k  
CTRL2  
LT3478-1  
LED  
OVPSET  
54.9k  
130k  
CTRL1  
PWM  
700mA  
15W  
SS  
V
R
T
C
6 LEDs LUXEON III (WHITE)  
12 14 16  
(V)  
6 LEDs  
(WHITE)  
8
10  
1µF  
0.1µF  
69.8k  
V
IN  
3478 TA01b  
PWM DIMMING  
CONTROL  
3478 TA01  
34781f  
1
LT3478/LT3478-1  
W W U W  
U
W
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
TOP VIEW  
SW............................................................................42V  
SW  
SW  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
SS  
V
IN  
, LED..................................................................42V  
OUT  
R
T
V , V , V , SHDN (Note 5).......................................36V  
S
L
V
IN  
PWM  
PWM.........................................................................15V  
V
S
CTRL2  
CTRL1  
SHDN  
17  
CTRL1, 2.....................................................................6V  
L
SS, R , V , V , OVPSET............................................2V  
T
C
REF  
V
OUT  
Operating Junction Temperature Range  
LED  
V
REF  
(Notes 2, 3, 4).................................... –40°C to 125°C  
Storage Temperature Range................... –65°C to 150°C  
Lead Temperature (Soldering, 10 Sec).................. 300°C  
OVPSET  
V
C
FE PACKAGE  
16-LEAD PLASTIC TSSOP  
= 125°C, θ = 35°C/W  
EXPOSED PAD (PIN 17) IS PGND, MUST BE SOLDERED TO PCB.  
T
JMAX  
JA  
ORDER PART NUMBER  
FE PART MARKING  
LT3478EFE  
LT3478EFE-1  
LT3478IFE  
3478FE  
3478FE-1  
3478FE  
LT3478IFE-1  
3478FE-1  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS The  
denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at T = 25°C. SW = open, V = V = L = V = SHDN = 2.7V, LED = open, SS = open,  
A
IN  
S
OUT  
PWM = CTRL1, CTRL2 = 1.25V, V  
= open, V = open, R = 31.6k.  
REF  
C
CONDITIONS  
(Rising)  
T
PARAMETER  
MIN  
TYP  
MAX  
UNITS  
Minimum Operating Voltage  
Operational Input Voltage  
2.4  
2.8  
V
V
S
V
2.8  
2.8  
36  
36  
V
V
(Note 5)  
IN  
V
V
Quiescent Current  
Shutdown Current  
V = 0V (No Switching)  
6.1  
3
mA  
µA  
V
IN  
C
SHDN = 0V  
(Micropower)  
(Switching)  
6
IN  
SHDN Pin Threshold (V  
SHDN Pin Threshold (V  
SHDN Pin Current  
)
0.1  
1.3  
8
0.4  
1.4  
0.7  
1.5  
12  
SD_µp  
)
V
SD_UVLO  
SHDN = V  
SHDN = V  
– 50mV  
+ 50mV  
10  
0
µA  
µA  
SD_UVLO  
SD_UVLO  
V
V
V
Voltage  
I(V ) = 0µA, V = 0V  
1.213  
1.240  
0.005  
8
1.263  
0.015  
12  
V
%/V  
mV  
REF  
REF  
REF  
REF  
C
Line Regulation  
Load Regulation  
I(V ) = 0µA, 2.7V < V < 36V  
REF IN  
0 < I(V ) < 100µA (Max)  
REF  
Frequency: f  
Frequency: f  
200kHz  
R = 200k  
0.18  
0.88  
0.2  
0.22  
1.12  
MHz  
MHz  
OSC  
OSC  
T
1MHz  
R = 31.6k  
T
34781f  
2
LT3478/LT3478-1  
ELECTRICAL CHARACTERISTICS The  
denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at T = 25°C. SW = open, V = V = L = V = SHDN = 2.7V, LED = open, SS = open,  
A
IN  
S
OUT  
PWM = CTRL1, CTRL2 = 1.25V, V  
= open, V = open, R = 31.6k.  
REF  
C
T
PARAMETER  
CONDITIONS  
MIN  
TYP  
2.25  
0.05  
0.64  
MAX  
2.6  
UNITS  
MHz  
%/V  
V
Frequency: f  
2.25MHz  
R = 9.09k  
T
2
OSC  
Line Regulation f  
R = 31.6k, 2.7V < V < 36V  
T
0.2  
OSC  
IN  
Nominal R Pin Voltage  
T
Maximum Duty Cycle  
R = 31.6k  
80  
88  
97  
73  
%
%
%
T
R = 200k  
T
R = 9.09k  
T
LED Current to V Current Gain  
(Note 6)  
(Note 6)  
770  
400  
13  
µA/A  
V/A  
A/V  
µA  
µA  
V
C
LED Current to V Voltage Gain  
C
V to Switch Current Gain  
C
V Source Current (Out of Pin)  
C
CTRL1 = 0.4V, V = 1V  
40  
C
V Sink Current  
C
CTRL1 = 0V, V = 1V  
40  
C
V Switching Threshold  
C
0.65  
1.5  
0.2  
6
V High Level (V  
)
OH  
CTRL1 = 0.4V  
CTRL1 = 0V  
V
C
V Low Level (V  
)
OL  
V
C
Inductor Current Limit  
Switch Current Limit  
2.7V < V < 36V  
4.5  
4.5  
6.8  
7.5  
A
S
6.3  
270  
1
A
Switch V SAT  
I
= 4.5A  
SW  
mV  
µA  
CE  
Switch Leakage Current  
SW = 42V, V = 0V  
C
V
Overvoltage Protection (OVP)  
OVPSET = 1V  
OVPSET = 0.3V  
41  
12.3  
V
V
OUT  
(Rising)  
Full Scale LED Current (LT3478-1)  
700mA LED Current (LT3478-1)  
350mA LED Current (LT3478-1)  
100mA LED Current (LT3478-1)  
CTRL1 = V , Current Out of LED Pin  
1010  
655  
325  
70  
1050  
700  
350  
100  
105  
70.5  
35.5  
10  
1090  
730  
375  
130  
109  
74  
mA  
mA  
mA  
mA  
mV  
mV  
mV  
mV  
nA  
REF  
CTRL1 = 700mV, Current Out of LED Pin  
CTRL1 = 350mV, Current Out of LED Pin  
CTRL1 = 100mV, Current Out of LED Pin  
Full Scale LED Current V  
(LT3478) CTRL1 = V , V  
= V  
– V  
LED  
101  
67  
SENSE  
REF SENSE  
VOUT  
CTRL1 = 700mV, V  
CTRL1 = 350mV, V  
CTRL1 = 100mV, V  
(LT3478)  
CTRL1 = 700mV, V  
CTRL1 = 350mV, V  
CTRL1 = 100mV, V  
= V  
– V  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
VOUT  
VOUT  
VOUT  
LED  
LED  
LED  
(LT3478)  
(LT3478)  
= V  
= V  
– V  
– V  
33  
38  
7
13  
CTRL1, 2 Input Currents  
CTRL1 = 100mV, CTRL2 = 1.25V or  
CTRL2 = 100mV, CTRL1 = 1.25V (Current Out of Pin)  
40  
OVPSET Input Current  
OVPSET = 1V, V = 41V (Current Out of Pin)  
200  
1
nA  
V
OUT  
PWM Switching Threshold  
0.8  
1.2  
50  
V Pin Current in PWM Mode  
C
V = 1V, PWM = 0  
C
1
nA  
nA  
V
OUT Pin Current in PWM Mode  
PWM = 0  
1
100  
SS Low Level (V  
)
OL  
I
= 20µA  
0.15  
0.25  
1.5  
12  
(SS)  
SS Reset Threshold  
SS High Level (V  
V = 0V  
C
V
)
OH  
V = 0V  
C
V
Soft-Start (SS) Pin Charge Current  
Soft-Start (SS) Pin Discharge Current  
SS = 1V, Current Out of Pin, V = 0V  
µA  
µA  
C
SS = 0.5V, V = 0V  
350  
C
34781f  
3
LT3478/LT3478-1  
ELECTRICAL CHARACTERISTICS  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
temperature will exceed 125°C when over-temperature protection is active.  
Continuous operation above the specified maximum operating junction  
temperature may impair device reliability.  
Note 4: For maximum operating ambient temperature, see the “Thermal  
Note 2: The LT3478EFE/LT3478EFE-1 are guaranteed to meet performance  
specifications from 0°C to 125°C junction temperature. Specifications over  
the –40°C to 125°C operating junction temperature range are assured by  
design, characterization and correlation with statistical process controls.  
The LT3478IFE/LT3478IFE-1 are guaranteed over the full –40°C to 125°C  
operating junction temperature range.  
Calculations” section in the Applications Information section.  
Note 5: The maximum operational voltage for V is limited by thermal and  
IN  
efficiency considerations. Power switch base current is delivered from V  
IN  
and should therefore be driven from the lowest available power supply in  
the system. See “Thermal Calculations” in the Applications Information  
section.  
Note 3: This IC includes over-temperature protection that is intended  
to protect the device during momentary overload conditions. Junction  
Note 6: For LT3478, parameter scales • (R /0.1Ω).  
SENSE  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LED Current vs PWM Duty Cycle  
Wide PWM Dimming Range  
(3000:1)  
LED Current vs CTRL1  
LED Current vs Temperature  
1000  
100  
10  
1
1400  
1050  
700  
350  
0
1400  
1050  
700  
350  
0
T
= 25°C  
T
= 25°C  
(FOR LT3478 SCALE BY 0.1/R  
)
A
V
A
SENSE  
= V = 12V  
CTRL2 = V  
IN  
S
REF  
6 LEDS AT 500mA  
PWM FREQ = 100Hz  
CTRL1 = 0.5V  
(FOR LT3478 SCALE BY 0.1/R  
)
SENSE  
I
= 1050mA, CTRL1 = CTRL2 = V  
REF  
LED  
CTRL2 = V  
REF  
LT3478-1  
F
= 1.6MHz  
OSC  
LT3478-1  
L = 2.2µH  
I
= 100mA, CTRL1 = 100mV,  
LED  
V
CTRL2 = V  
REF  
REF  
0
0.01  
0.1  
1
10  
100  
–50 –25  
0
25  
50  
75 100 125  
0
0.35  
0.70  
1.05  
1.40  
PWM DUTY CYCLE (%)  
JUNCTION TEMPERATURE (°C)  
CTRL1 (V)  
3478 G03  
3478 G01  
3478 G02  
CTRL1 Pin Current vs  
Temperature  
Switch V (SAT) vs Switch  
Switch and Inductor Peak Current  
Limits vs Temperature  
CE  
Current  
240  
210  
180  
120  
60  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
50  
40  
30  
20  
10  
0
T
= 25°C  
A
CTRL1 = 0.1V  
SWITCH  
INDUCTOR  
CTRL1 = 0.35V  
CTRL1 = 0.7V  
CTRL2 = V  
CTRL1 AND CTRL2 PINS  
INTERCHANGEABLE  
REF  
CTRL1 = 0.9V  
0
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
JUNCTION TEMPERATURE (°C)  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5  
SWITCH CURRENT (A)  
JUNCTION TEMPERATURE (°C)  
3478 G04  
3478 G05  
3478 G06  
34781f  
4
LT3478/LT3478-1  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
SHDN Pin (Hysteresis) Current vs  
Temperature  
V
vs Temperature  
SHDN Threshold vs Temperature  
REF  
1.28  
1.26  
1.24  
1.22  
1.20  
1.18  
1.60  
1.50  
1.40  
1.30  
1.20  
15  
JUST BEFORE PART TURNS ON  
10  
5
AFTER PART TURNS ON  
25 50 75 100 125  
0
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
JUNCTION TEMPERATURE (°C)  
JUNCTION TEMPERATURE (°C)  
JUNCTION TEMPERATURE (°C)  
3478 G07  
3478 G08  
3478 G09  
V
Shutdown Current vs  
V
Quiescent Current vs  
IN  
IN  
Temperature  
V
IN  
Quiescent Current vs V  
Temperature  
IN  
50  
40  
30  
20  
10  
0
14  
12  
10  
8
14  
SHDN = 0V  
12  
10  
8
6
6
V
V
= 36V  
= 20V  
IN  
IN  
4
4
2
2
V
= 2.8V  
IN  
T = 25°C  
C
V
V
= 2.8V  
= 0V  
A
V
IN  
C
= 0V  
0
0
–50 –25  
0
25  
50  
75 100 125  
0
3
6
9
12 15 18 21 24 27 30 33 36  
(V)  
–50 –25  
0
25  
50  
75 100 125  
JUNCTION TEMPERATURE (°C)  
V
JUNCTION TEMPERATURE (°C)  
IN  
3478 G10  
3478 G11  
3478 G12  
V , L, SW Shutdown Currents vs  
Switch Peak Current Limit  
vs Duty Cycle  
S
Temperature  
4
2
0
7
6
5
4
3
2
1
0
SHDN = 0V  
S
V
= L = SW = 36V  
I(V PIN) = I(L PIN)  
S
I(SW PIN)  
T = 25°C  
A
–50 –25  
0
25  
50  
75 100 125  
0
20  
40  
60  
80  
100  
JUNCTION TEMPERATURE (°C)  
DUTY CYCLE (%)  
3478 G19  
3478 G18  
34781f  
5
LT3478/LT3478-1  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Switching Frequency vs  
Temperature  
Open-Circuit Output Clamp  
Voltage vs Temperature  
Switching Frequency vs R  
T
10000  
1000  
100  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
43.0  
42.5  
42.0  
41.5  
41.0  
40.5  
40.0  
39.5  
39.0  
R
= 31.6k  
OVPSET = 1V  
T
= 25°C  
T
A
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
1
10  
100  
1000  
JUNCTION TEMPERATURE (°C)  
JUNCTION TEMPERATURE (°C)  
R
(k)  
T
3478 G13  
3478 G14  
3478 G15  
SS Pin Charge Current vs  
Temperature  
V Pin Active and Clamp Voltages  
C
vs Temperature  
14  
13  
12  
11  
10  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0
V
CLAMP  
C
V
ACTIVE THRESHOLD  
C
0
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
25  
50  
75 100 125  
JUNCTION TEMPERATURE (°C)  
JUNCTION TEMPERATURE (°C)  
3478 G16  
3478 G17  
34781f  
6
LT3478/LT3478-1  
U
U
U
PI FU CTIO S  
SW (Pins 1, 2): Switch Pin. Collector of the internal NPN  
power switch. Both pins are fused together inside the IC.  
Connect the inductor and diode here and minimize the  
metal trace area connected to this pin to minimize EMI.  
hysteresis allows programming of undervoltage lockout  
(UVLO) hysteresis. SHDN above 1.4V turns the part on  
and removes a 10µA sink current from the pin. SHDN = 0V  
reducesV current<3µA.SHDNcanbedirectlyconnected  
IN  
to V . If left open circuit the part will be turned off.  
IN  
V (Pin 3): Input Supply. Must be locally bypassed with  
IN  
a capacitor to ground.  
CTRL1 (Pin 12): CTRL1 pin voltage is used to program  
maximum LED current (CTRL2 = V ). CTRL1 voltage  
REF  
V (Pin 4): Inductor Supply. Must be locally bypassed  
S
can be set by a resistor divider from V  
or an external  
REF  
with a capacitor to ground. Can be shorted to V if only  
IN  
voltage source. Maximum LED current is given by:  
one supply is available (see L (Pin 5) function).  
(LT3478-1) Max LED Current = Min(CTRL1, 1.05) Amps  
L (Pin 5): Inductor Pin. An internal resistor between V  
S
and L pins monitors inductor current to protect against  
inrush current. Exceeding 6A immediately turns off the  
internal NPN power switch and discharges the soft-start  
pin. Input current monitoring can be disabled by connect-  
ing the inductor power supply directly to the L pin and  
(LT3478)Max LED Current =  
0.1  
RSENSE  
Min(CTRL, 1.05)•  
Amps  
(linear for 0.1V < CTRL1< 0.95V ; CTRL2 = V ) For maxi-  
mum LED current, short CTRL1 and CTRL2 pins to V  
REF  
leaving the V pin open (requires local bypass capacitor  
S
.
REF  
to GND on L pin; not V pin).  
S
CTRL2 (Pin 13): The CTRL2 pin is available for program-  
ming a decrease in LED current versus temperature  
(setting temperature breakpoint and slope). This feature  
allows the output LED(s) to be programmed for maximum  
allowablecurrentwithoutdamageathighertemperatures.  
This maximizes LED usage and increases reliability. A  
CTRL2 voltage with negative temperature coefficient is  
V
(Pin 6): Output voltage of the converter. Connect a  
OUT  
capacitor from this pin to ground. Internal circuitry moni-  
tors V for protection against open LED faults.  
OUT  
LED (Pin 7): Connect the LED string from this pin to  
ground.Aninternal(LT3478-1)/external(LT3478)resistor  
between the V  
accurate control.  
and LED pins senses LED current for  
OUT  
created using an external resistor divider from V with  
REF  
temperature dependant resistance. If not used, CTRL2  
OVPSET (Pin 8): Programs V  
overvoltage protection  
OUT  
should be tied to V  
.
REF  
level (OVP) to protect against open LED faults. OVP =  
(OVPSET • 41)V. OVPSET range is 0.3V to 1V for an OVP  
range of typically 12.3V to 41V.  
PWM(Pin14):InputpinforPWMdimmingcontrol.Above  
1V allows converter switching and below 1V disables  
switching with V pin level maintained. With an external  
C
V (Pin 9): Output of the transconductance error amplifier  
C
MOSFET placed in series with the ground side of the LED  
string, a PWM signal driving the PWM pin and MOSFET  
gate provides accurate dimming control. The PWM signal  
can be driven from 0V to 15V. If unused, the pin should  
and compensation pin for the converter regulation loop.  
V
REF  
(Pin 10): Bandgap Voltage Reference. This pin can  
supply up to 100µA. Can be used to program CTRL1,  
CTRL2, OVPSET pin voltages using resistor dividers to  
ground.  
be connected to V  
.
REF  
R (Pin 15): A resistor to ground programs switching  
T
SHDN (Pin 11): The SHDN pin has an accurate 1.4V  
threshold and can be used to program an undervoltage  
lockout (UVLO) threshold for system input supply using a  
resistor divider from supply to ground. A 10µA pin current  
frequency between 200kHz and 2.25MHz.  
SS (Pin 16): Soft-Start Pin. Placing a capacitor here pro-  
grams soft-start timing to limit inductor inrush current  
duringstart-upduetotheconverter.Wheninductorcurrent  
34781f  
7
LT3478/LT3478-1  
U
U
U
PI FU CTIO S  
exceeds 6A or V  
exceeds OVP, an internal soft-start  
Exposed Pad (Pin 17): The ground for the IC and the con-  
verter.TheFEpackagehasanExposedPadunderneaththe  
ICwhichisthebestpathforheatoutofthepackage. Pin17  
should be soldered to a continuous copper ground plane  
under the device to reduce die temperature and increase  
the power capability of the LT3478/LT3478-1.  
OUT  
latch is set, the power NPN is immediately turned off and  
the SS pin is discharged. The soft-start latch is also set  
if V and/or SHDN do not meet their turn on thresholds.  
IN  
The SS pin only recharges when all faults are removed  
and the pin has been discharged below 0.25V.  
W
BLOCK DIAGRA  
SHDN  
V
S
L
SS  
16  
SW  
1, 2  
11  
4
5
V
10µA  
OUT  
V
C
6
OVERVOLTAGE  
DETECT  
+
9.5mΩ  
+
+
57mV  
OVPSET  
1.4V  
100Ω  
R
R
SENSE  
(EXTERNAL FOR  
LT3478)  
SENSE  
0.1Ω  
INRUSH  
SOFT-START  
(INTERNAL FOR  
LT3478-1)  
CURRENT  
V
IN  
PROTECTION  
UVLO  
REF  
1.24V  
3
LED  
7
PWM  
DETECT  
V
REF  
OSC  
S
Q
R
Q1  
10  
LED  
LED  
LED  
LED  
PWM  
CTRL1  
CTRL2  
1.05V  
+
12  
13  
SLOPE  
COMP  
+
+
GM  
Q2  
+
1V  
Σ
PWM  
14  
+
1000Ω  
R
S
TO OVERVOLTAGE  
DETECT CIRCUIT  
8
15  
17  
9
3478 F01  
OVPSET  
R
T
EXPOSED PAD  
(GND)  
V
C
Figure 1  
34781f  
8
LT3478/LT3478-1  
U
OPERATIO  
The LT3478/LT3478-1 are high powered LED drivers with  
a 42V, 4.5A internal switch and the ability to drive LEDs  
withupto1050mAforLT3478-1andupto105mV/R  
for LT3478.  
the V voltage controls the peak switch current limit and  
C
hence the inductor current available to the output LED(s).  
As with all current mode converters, slope compensation  
is added to the control path to ensure stability.  
SENSE  
The LT3478/LT3478-1 work similarly to a conventional  
currentmodeboostconverterbutuseLEDcurrent(instead  
of output voltage) as feedback for the control loop. The  
Block Diagram in Figure 1 shows the major functions of  
the LT3478/LT3478-1.  
The CTRL1 pin is used to program maximum LED current  
via Q2. The CTRL2 pin can be used to program a decrease  
inLEDcurrentversustemperatureformaximumreliability  
andutilizationoftheLED(s).ACTRL2voltagewithnegative  
temperature coefficient can be created using an external  
resistor divider from V  
with temperature dependant  
REF  
For the part to turn on, the V pin must exceed 2.8V and  
IN  
resistance. Unused CTRL2 is tied to V  
.
REF  
the SHDN pin must exceed 1.4V. The SHDN pin threshold  
allows programming of an undervoltage lockout (UVLO)  
threshold for the system input supply using a simple  
resistor divider. A 10µA current flows into the SHDN pin  
before part turn on and is removed after part turn on. This  
current hysteresis allows programming of hysteresis for  
theUVLOthreshold.SeeShutdownPinandProgramming  
Undervoltage Lockout” in the Applications Information  
Section. For micropower shutdown the SHDN pin at 0V  
For True Color PWM dimming, the LT3478/LT3478-1  
provide up to a 3000:1 wide PWM dimming range by al-  
lowing the duty cycle of the PWM pin (connected to the  
IC and an external N-channel MOSFET in series with the  
LED(s)) to be reduced from 100% to as low as 0.033%  
for a PWM frequency of 100Hz. Dimming by PWM duty  
cycle, allows for constant LED color to be maintained over  
the entire dimming range.  
reduces V supply current to approximately 3µA.  
IN  
Forrobustoperation,theLT3478/LT3478-1monitorsystem  
Each LED driver is a current mode step-up switch-  
ing regulator. A regulation point is achieved when the  
performance for any of the following faults : V or SHDN  
IN  
pin voltages too low and/or inductor current too high  
and/or boosted output voltage too high. On detection of  
any of these faults, the LT3478/LT3478-1 stop switching  
immediately and a soft-start latch is set discharging the  
SS pin (see Timing Diagram for SS pin in Figure 11). All  
faults are detected internally and do not require external  
components. When all faults no longer exist, an internal  
12µAsupplychargestheSSpinwithatimingprogrammed  
using a single external capacitor. A gradual ramp up of SS  
pin voltage limits switch current during startup.  
boosted output voltage V  
across the output LED(s) is  
OUT  
high enough to create current in the LED(s) equal to the  
programmed LED current. A sense resistor connected in  
series with the LED(s) provides feedback of LED current  
to the converter loop.  
Thebasicloopusesapulsefromaninternaloscillatortoset  
the RS flip-flop and turn on the internal power NPN switch  
Q1 connected between the switch pin, SW, and ground.  
Current increases in the external inductor until switch  
current limit is exceeded or until the oscillator reaches  
its maximum duty cycle. The switch is then turned off,  
causing inductor current to lift the SW pin and turn on an  
external Schottky diode connected to the output. Inductor  
current flows via the Schottky diode charging the output  
capacitor. The switch is turned back on at the next reset  
cycle of the internal oscillator. During normal operation  
For optimum component sizing, duty cycle range and ef-  
ficiencytheLT3478/LT3478-1allowforaseparateinductor  
supply V and for switching frequency to be programmed  
S
from 200kHz up to 2.25MHz using a resistor from the R  
T
pintoground.Theadvantagesoftheseoptionsarecovered  
in the Applications Informations section.  
34781f  
9
LT3478/LT3478-1  
U
W U U  
APPLICATIO S I FOR ATIO  
Inductor Selection  
Capacitor Selection  
Low ESR (equivalent series resistance) ceramic capaci-  
tors should be used at the output to minimize the output  
ripple voltage. Use only X5R or X7R dielectrics, as these  
materials retain their capacitance over wider voltage and  
temperature ranges than other dielectrics. A 4.7µF to  
10µF output capacitor is sufficient for most high output  
current designs. Some suggested manufacturers are  
listed in Table 2.  
SeveralinductorsthatworkwellwiththeLT3478/LT3478-1  
are listed in Table 1. However, there are many other manu-  
facturers and inductors that can be used. Consult each  
manufacturerformoredetailedinformationandtheirentire  
range of parts. Ferrite cores should be used to obtain the  
best efficiency. Choose an inductor that can handle the  
necessary peak current without saturating. Also ensure  
that the inductor has a low DCR (copper-wire resistance)  
2
to minimize I R power losses. Values between 4.7µH and  
Diode Selection  
22µH will suffice for most applications.  
Schottky diodes, with their low forward voltage drop and  
fast switching speed, are ideal for LT3478/LT3478-1 ap-  
plications. Table 3 lists several Schottky diodes that work  
well. The diode’s average current rating must exceed the  
application’saverageoutputcurrent.Thediode’smaximum  
reverse voltage must exceed the application’s output volt-  
age. A 4.5A diode is sufficient for most designs. For PWM  
dimming applications, be aware of the reverse leakage  
current of the diode. Lower leakage current will drain the  
output capacitor less, allowing for higher dimming range.  
The companies below offer Schottky diodes with high  
voltage and current ratings.  
Inductor manufacturers specify the maximum current  
rating as the current where inductance falls by a given  
percentage of its nominal value. An inductor can pass a  
current greater than its rated value without damaging it.  
Aggressive designs where board space is precious will  
exceedthemaximumcurrentratingoftheinductortosave  
space. Consult each manufacturer to determine how the  
maximum inductor current is measured and how much  
more current the inductor can reliably conduct.  
Table 1. Suggested Inductors  
MANUFACTURER PART NUMBER  
IDC (A)  
INDUCTANCE (µH)  
MAX DCR (mΩ)  
L × W × H (mm)  
MANUFACTURER  
CDRH104R-100NC  
CDRH103RNP-4R7NC-B  
CDRH124R-100MC  
CDRH104R-5R2NC  
3.8  
10  
4.7  
10  
35  
30  
28  
22  
10.5 × 10.3 × 4.0  
10.5 × 10.3 × 3.1  
12.3 × 12.3 × 4.5  
10.5 × 10.3 × 4.0  
Sumida  
www.sumida.com  
4
4.5  
5.5  
5.2  
FDV0630-4R7M  
4.2  
4.7  
49  
7.0 × 7.7 × 3.0  
Toko  
www.toko.com  
UP4B-220  
7.6  
22  
34  
22 × 15 × 7.9  
Cooper  
www.cooperet.com  
Table 2. Ceramic Capacitor Manufacturers  
MANUFACTURER  
Taiyo Yuden  
AVX  
PHONE NUMBER  
WEB  
(408) 573-4150  
(803) 448-9411  
(714) 852-2001  
www.t-yuden.com  
www.avxcorp.com  
www.murata.com  
Murata  
Table 3. Suggested Diodes  
MANUFACTURER PART NUMBER  
UPS340  
MAX CURRENT (A)  
MAX REVERSE VOLTAGE  
WEB  
3
40  
Microsemi  
www.microsemi.com  
B520C  
B530C  
B340A  
B540C  
PDS560  
5
5
3
5
5
30  
30  
40  
40  
60  
Diodes, Inc.  
www.diodes.com  
34781f  
10  
LT3478/LT3478-1  
U
W U U  
APPLICATIO S I FOR ATIO  
Shutdown and Programming Undervoltage Lockout  
Programming Switching Frequency  
Theswitchingfrequencyisprogrammedusinganexternal  
resistor(R )connectedbetweentheR pinandground.The  
The LT3478/LT3478-1 have an accurate 1.4V shutdown  
threshold at the SHDN pin. This threshold can be used in  
conjunction with a resistor divider from the system input  
supply to define an accurate undervoltage lockout (UVLO)  
threshold for the system (Figure 2). SHDN pin current  
hysteresis allows programming of hysteresis voltage for  
this UVLO threshold. Just before part turn on, 10µA flows  
into the SHDN pin. After part turn on, 0µA flows from the  
SHDNpin.Calculationoftheon/offthresholdsforasystem  
input supply using the LT3478/LT3478-1 SHDN pin can  
be made as follows:  
T
T
internal free-running oscillator is programmable between  
200kHz and 2.25MHz. Table 4 shows the typical R values  
T
required for a range of switching frequencies.  
Selecting the optimum switching frequency depends  
on several factors. Inductor size is reduced with higher  
frequency but efficiency drops due to higher switching  
losses.Inaddition,someapplicationsrequireveryhighduty  
cycles to drive a large number of LEDs from a low supply.  
Lowswitchingfrequencyallowsagreateroperationalduty  
cycle and hence a greater number of LEDs to be driven.  
In each case the switching frequency can be tailored to  
provide the optimum solution. When programming the  
switching frequency the total power losses within the IC  
should be considered. See “Thermal Calculations” in the  
Applications Information section.  
V
V
OFF = 1.4 [1 + R1/R2)]  
SUPPLY  
SUPPLY  
ON = V  
OFF + (10µA • R1)  
SUPPLY  
An open drain transistor can be added to the resistor  
divider network at the SHDN pin to independently control  
the turn off of the LT3478/LT3478-1.  
V
SUPPLY  
10000  
T
= 25°C  
A
R1  
R2  
SHDN  
11  
+
1.4V  
1000  
100  
OFF ON  
10µA  
3478 F02  
1
10  
100  
1000  
Figure 2. Programming Undervoltage Lockout (UVLO)  
with Hysteresis  
R
(k)  
T
3478 F03  
Figure 3. Switching Frequency vs R Resistor Value  
T
With the SHDN pin connected directly to the V pin, an  
IN  
internal undervoltage lockout threshold exists for the V  
IN  
Table 4. Switching Frequencies vs R Values  
T
pin (2.8V max). This prevents the converter from operat-  
ing in an erratic mode when supply voltage is too low.  
The LT3478/LT3478-1 provide a soft-start function when  
SWITCHING FREQUENCY (MHz)  
R (kΩ)  
T
2.25  
1
9.09  
31.6  
200  
recovering from such faults as SHDN <1.4V and/or V  
IN  
0.2  
<2.8V. See details in the Applications Information section  
“Soft-Start”.  
34781f  
11  
LT3478/LT3478-1  
U
W U U  
APPLICATIO S I FOR ATIO  
Programming Maximum LED current  
maximum allowed LED current versus temperature to  
warn against exceeding this current limit and damaging  
the LED (Figure 6).  
MaximumLEDcurrentcanbeprogrammedusingtheCTRL1  
pin with CTRL2 tied to the V pin (see Figures 4 and 5).  
REF  
The maximum allowed LED current is defined as:  
Luxeon V (Maximum) and LT3478-1  
(Programmed) Current Derating  
Curves vs Temperature  
(LT3478-1) Max LED Current = Min(CTRL1, 1.05) Amps  
900  
800  
(LT3478)Max LED Current =  
0.1  
RSENSE  
Min(CTRL1, 1.05)•  
Amps  
700  
600  
500  
400  
300  
200  
100  
0
LUXEON V EMITTER  
CURRENT DERATING  
CURVE  
LED current vs CTRL1 is linear for approximately  
0.1V < CTRL1 < 0.95V  
EXAMPLE  
LT3478-1  
PROGRAMMED LED  
CURRENT DERATING CURVE  
For maximum possible LED current, connect CTRL1 and  
CTRL2 to the V pin.  
REF  
0
25  
50  
75  
100  
1400  
T
= 25°C  
A
T
AMBIENT TEMPERATURE (°C)  
A
CTRL2 = V  
REF  
(FOR LT3478 SCALE  
BY 0.1/R  
LUXEON V EMITTER  
)
(GREEN, CYAN, BLUE, ROYAL BLUE)  
SENSE  
1050  
700  
350  
0
θ
= 20°C/W  
JA  
3478 F06  
LT3478-1  
Figure 6. LED Current Derating Curve vs Ambient Temperature  
Without the ability to back off LED current as temperature  
increases, many LED drivers are limited to driving the  
LED(s)atonly50%orlessoftheirmaximumratedcurrents.  
This limitation requires more LEDs to obtain the intended  
brightness for the application. The LT3478/LT3478-1 al-  
low the output LED(s) to be programmed for maximum  
allowable current while still protecting the LED(s) from  
excessive currents at high temperature. This is achieved  
by programming a voltage at the CTRL2 pin with a nega-  
tive temperature coefficient using a resistor divider with  
temperature dependent resistance (Figures 7 and 8).  
CTRL2voltageisprogrammedhigherthanCTRL1voltage.  
This allows initial LED current to be defined by CTRL1.  
As temperature increases, CTRL2 voltage will fall below  
CTRL1 voltage causing LED currents to be controlled by  
CTRL2 pin voltage. The choice of resistor ratios and use  
of temperature dependent resistance in the divider for the  
CTRL2 pin will define the LED current curve breakpoint  
and slope versus temperature (Figure 8).  
V
REF  
0
0.35  
0.70  
CTRL1 (V)  
1.05  
1.40  
3478 F04  
Figure 4. LED Current vs CTRL1 Voltage  
LT3478/LT3478-1  
(LT3478)  
10  
13  
12  
V
V
OUT  
REF  
R2  
R1  
R
SENSE  
CTRL2  
CTRL1  
LED  
3478 F05  
Figure 5. Programming LED Current  
Programming LED Current Derating vs Temperature  
A useful feature of the LT3478/LT3478-1 is the ability  
to program a derating curve for maximum LED current  
versus temperature. LED data sheets provide curves of  
AvarietyofresistornetworksandNTCresistorswithdiffer-  
enttemperaturecoefficientscanbeusedforprogramming  
34781f  
12  
LT3478/LT3478-1  
U
W U U  
APPLICATIO S I FOR ATIO  
CTRL2toachievethedesiredCTRL2curvevstemperature.  
The current derating curve shown in Figure 6 uses the  
resistor network shown in option C of Figure 7.  
to obtain a resistor’s exact values over temperature from  
the manufacturer. Hand calculations of CTRL2 voltage  
can then be performed at each given temperature and the  
resultingCTRL2curveplottedversustemperature.Several  
iterations of resistor value calculations may be required  
to achieve the desired breakpoint and slope of the LED  
current derating curve.  
10  
V
REF  
R2  
R1  
R4  
LT3478/LT3478-1  
13  
12  
CTRL2  
CTRL1  
Table 5. NTC Resistor Manufacturers/Distributors  
MANUFACTURER  
R3  
OPTION A TO D  
Murata Electronics North America  
TDK Corporation  
www.murata.com  
www.tdk.com  
R
R
Y
Y
Digi-key  
www.digikey.com  
R
R
R
R
R
R
X
NTC  
NTC  
X
NTC  
NTC  
If calculation of CTRL2 voltage at various temperatures  
gives a downward slope that is too strong, alternative  
resistor networks can be chosen (B, C, D in Figure 7)  
which use temperature independent resistance to reduce  
the effects of the NTC resistor over temperature.  
A
B
C
D
3478 F07  
Figure 7. Programming LED Current Derating Curve  
vs Temperature (R  
Located on LEDs PCB)  
NTC  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
Murata Electronics provides a selection of NTC resistors  
with complete data over a wide range of temperatures. In  
addition, a software tool is available which allows the user  
toselectfromdifferentresistornetworksandNTCresistor  
values and then simulate the exact output voltage curve  
(CTRL2 behavior) over temperature. Referred to as the  
‘Murata Chip NTC Thermistor Output Voltage Simulator’,  
userscanlogontowww.murata.com/designlibanddown-  
load the software followed by instructions for creating an  
CTRL1  
CTRL2  
LED CURRENT = MINIMUM  
OF CTRL1, CTRL2  
R3 = OPTION C  
100  
0
output voltage V  
(CTRL2) from a specified V supply  
OUT  
CC  
0
25  
50  
75  
100  
(V ). At any time during selection of circuit parameters  
T
AMBIENT TEMPERATURE (°C)  
REF  
A
3478 F08  
the user can access data on the chosen NTC resistor by  
clicking on a link to the Murata catalog.  
Figure 8. CTRL1, 2 Programmed Voltages vs Temperature  
The following example uses hand calculations to derive  
the resistor values required for CTRL1 and CTRL2 pin  
voltages to achieve a given LED current derating curve.  
The resistor values obtained using the Murata simulation  
tool are also provided and were used to create the derating  
curve shown in Figure 6. The simulation tool illustrates  
the non-linear nature of the NTC resistor temperature  
coefficient at temperatures exceeding 50°C ambient. In  
addition, the resistor divider technique using an NTC  
resistor to derive CTRL2 voltage inherently has a flatten-  
ing characteristic (reduced downward slope) at higher  
Table 5 shows a list of manufacturers/distributors of NTC  
resistors. There are several other manufacturers available  
and the chosen supplier should be contacted for more  
detailed information. To use an NTC resistor to indicate  
LED temperature it is only effective if the resistor is con-  
nected as close as possible to the LED(s). LED derating  
curves shown by manufacturers are listed for ambient  
temperature. The NTC resistor should be submitted to  
the same ambient temperature as the LED(s). Since the  
temperature dependency of an NTC resistor can be non-  
linear over a wide range of temperatures it is important  
temperatures.ToavoidLEDcurrentexceedingamaximum  
34781f  
13  
LT3478/LT3478-1  
U
W U U  
APPLICATIO S I FOR ATIO  
–1.026  
allowed level at higher temperatures, the CTRL2 voltage  
curve may require a greater downward slope between  
25°C and 50°C to compensate for that loss of slope at  
higher temperatures.  
R
R
R
(50°C) = R  
(25°C).e  
NTC  
NTC  
NTC  
NTC  
(50°C) = 22k • 0.358  
(50°C) = 7.9k  
CTRL2(50°C) = 1.24/(1 + 16.9/7.9) = 395mV  
Example:Calculatetheresistorvaluesrequiredforgenerat-  
ing CTRL1 and CTRL2 from V based on the following  
REF  
CTRL2 slope (25°C to 50°C) = [CTRL2(50°C)  
– CTRL2(25°C)]/25°C  
requirements:  
(a) I  
(b) I  
(c) I  
= 700mA at 25°C  
LED  
LED  
LED  
= (395 – 701)/25  
= –306mV/25°C  
derating curve breakpoint occurs at 25°C  
derating curve has a slope of –200mA/25°C be-  
tween 25°C and 50°C ambient temperature  
I
slope = –306mA/25°C  
LED  
The required I  
slope is –200mA/25°C. To reduce the  
LED  
Step1: Choose CTRL1 = 700mV for I = 700mA  
LED  
slope of CTRL2 versus temperature it is easier to keep  
the exact same NTC resistor value and B-constant (there  
are limited choices) and simply adjust R4 and the type  
of resistor network used for the CTRL2 pin. By changing  
the resistor network to option C it is possible to place a  
CTRL1 = V /(1 + R2/R1)  
REF  
R2 = R1 • [(V /CTRL1) – 1]  
REF  
For V = 1.24V and choosing R1 = 22.1k,  
REF  
temperature independent resistor in series with R  
reduce the effects of R  
temperature.  
to  
NTC  
R2 = 22.1k [(1.24/0.7) – 1]  
R2 = 17k (choose 16.9k)  
on the CTRL2 pin voltage over  
NTC  
CTRL1 = 1.24/(1 + (16.9/22.1))  
Step 4: Calculate the resistor value required for R in  
Y
resistor network option (c) (Figure 7) to provide an I  
LED  
CTRL1 = 703mV (I  
= 703mA)  
LED  
slope of –200mA/25°C between 25°C and 50°C ambient  
temperature.  
Step 2: Choose resistor network option A (Figure 7) and  
CTRL2 = CTRL1 for 25°C breakpoint  
CTRL2 (25°C) = 0.7V = 1.24/(1 + (R4/(R (25°C)+  
NTC  
start with R4 = R2 = 16.9k, R  
available)  
= 22k (closest value  
NTC  
R ))  
Y
R4 = 0.77 (R (25°C) + R )  
(a)  
NTC  
Y
CTRL2 = 701mV (I  
701mA)  
= Min(CTRL1, CTRL2) • 1A =  
LED  
for –200mA/25°C slope ≥ CTRL2(50°C) = 0.7 – 0.2 =  
0.5  
Step 3: Calculate CTRL2 slope between 25°C and 50°C  
CTRL2 (T) = 1.24/(1 + R4/R (T))  
CTRL2(50°C) = 0.5V = 1.24/(1 + (R4/(R  
+ R ))  
Y
NTC  
NTC  
R4 = 1.48 (R (50°C) + R )  
(b)  
NTC  
Y
at T = T = 25°C, CTRL2 = 701mV  
O
Equating (a) = (b) and knowing R (25°C) = 22k and  
NTC  
x
at T = 50°C, R  
– 1/298)]  
(T) = R  
(T ).e , x = B [(1/(T + 273)  
NTC  
NTC O  
R
(50°C) = 7.9k gives,  
NTC  
0.77 (22k + R ) = 1.48 (7.9k + R )  
Y
Y
(B=B-constant;linearoverthe2Cto5Ctemperature  
range)  
17k + 0.77 R = 11.7 k + 1.48 R  
Y
Y
R = (17k – 11.7k)/(1.48 – 0.77)  
Y
For R  
B-constant = 3950 and T = 50°C  
NTC  
R = 7.5k  
Y
x = 3950 [(1/323) – 1/298] = –1.026  
34781f  
14  
LT3478/LT3478-1  
U
W U U  
APPLICATIO S I FOR ATIO  
The value for R4 can now be solved using equation (a)  
where,  
for the output LED(s) is programmed for a given bright-  
ness/color and “chopped” over a PWM duty cycle range  
(Figure 10) from 100% to as low as 0.033%.  
R4 = 0.77 (R (25°C) + R ) = 0.77 (22k + 7.5k)  
NTC  
Y
D2  
R4 = 22.7k (choose 22.6k)  
C
OUT  
I
I
slope can now be calculated from,  
V
L
SW  
LED  
LED  
S
V
IN  
V
OUT  
slope = [CTRL2(50°C) – CTRL2(25°C)]/25°C  
SHDN  
where CTRL2 (50°C) = 1.24/(1 + 22.6/(7.9 + 7.5)) =  
503mV  
(LT3478)  
V
REF  
LT3478/  
R
SENSE  
LT3478-1  
CTRL2  
CTRL1  
and CTRL2 (25°C) = 1.24/(1 + 39.2/(22 + 28.7)) =  
699mV  
OVPSET  
LED  
D1  
R
V
PWM  
T
C
giving I  
slope (from 25°C to 50°C)  
LED  
= 503mV – 699mV/25°C  
= –196mV/25°C => I slope = –196mA/25°C  
PWM DIMMING  
CONTROL  
3478 F09  
LED  
Figure 9. PWM Dimming Control Using the LT3478/LT3478-1  
Using the Murata simulation tool for the resistor network  
and values in the above example shows a CTRL2 volt-  
age curve that flattens out as temperatures approach  
100°C ambient. The final resistor network chosen for the  
derating curve in Figure 6 used option C network with  
T
PWM  
PWM  
(= 1/f  
)
PWM  
TON  
PWM  
R4 = 19.3k, R  
= 22k (NCP15XW223J0SRC) and R  
NTC  
Y
= 3.01k. Although the CTRL2 downward slope is greater  
than –200mA/25°C initially, the slope is required to avoid  
exceedingmaximumallowedLEDcurrentsathighambient  
temperatures (see Figure 6).  
INDUCTOR  
CURRENT  
MAX I  
LED  
CURRENT  
LED  
3478 F10  
PWM Dimming  
Figure 10. PWM Dimming Waveforms Using the  
LT3478/LT3478-1  
Many LED applications require an accurate control of the  
brightness of the LED(s). In addition, being able to main-  
tain a constant color over the entire dimming range can  
be just as critical. For constant color LED dimming, the  
LT3478/LT3478-1 provide a PWM pin and special internal  
circuitry to allow up to a 3000:1 wide PWM dimming  
range. With an N-channel MOSFET connected between  
the LED(s) and ground and a PWM signal connected to  
the gate of the MOSFET and the PWM pin (Figure 9), it  
is possible to control the brightness of the LED(s) based  
on PWM signal duty cycle only. This form of dimming is  
superior to dimming control using an analog input voltage  
(reducingCTRL1voltage)becauseitallowsconstantcolor  
to be maintained during dimming. The maximum current  
Some general guidelines for LED Current Dimming using  
the PWM pin (see Figure 10):  
(1) PWM Dimming Ratio (PDR) = 1/(PWM duty cycle) =  
1/(TON  
• f  
)
PWM PWM  
(2) Lower f  
allows higher PWM Dimming Ratios  
= 100Hz to avoid visible flicker and  
PWM  
(use minimum f  
PWM  
to maximize PDR)  
(3)Higherf valueimprovesPDR(allowslowerTON  
)
PWM  
OSC  
but will reduce efficiency and increase internal heating. In  
general, minimum operational TON = 3 • (1/f ).  
PWM  
OSC  
(4) Lower inductor value improves PDR  
34781f  
15  
LT3478/LT3478-1  
U
W U U  
APPLICATIO S I FOR ATIO  
To limit inductor current overshoot to <0.5A when SS  
charges past the V level required for loop control, the C  
(5) Higher output capacitor value improves PDR  
C
SS  
(6) Choose the schottky diode (D2, Figure 9) for minimum  
reverse leakage  
capacitor should be chosen using the following formula:  
C
= C (7.35 – 0.6(I • V /V ))  
SS(MIN)  
C
LED  
OUT  
S
See Typical Performance Characteristics graph “LED Cur-  
rent vs PWM Duty Cycle”.  
Example: V = 8V, V  
= 16V, I  
= 1.05A, C = 0.1µF,  
S
OUT  
LED C  
C
= 0.1µF (7.35 – 0.6(1.05 • 16/8))  
SS(MIN)  
Soft-Start  
= 0.612µF (choose 0.68µF).  
To limit inrush current and output voltage overshoot dur-  
ing startup/recovery from a fault condition, the LT3478/  
LT3478-1 provide a soft-start pin SS. The SS pin is used  
to program switch current ramp up timing using a ca-  
pacitor to ground. The LT3478/LT3478-1 monitor system  
High Inductor Current “Inrush” Protection  
The LT3478/LT3478-1 provide an integrated resistor  
between the V and L pins to monitor inductor current  
S
(Figure 1). During startup or “hotplugging” of the induc-  
tor supply, it is possible for inductor currents to exceed  
the maximum switch current limit. When inductor current  
exceeds 6A, the LT3478/LT3478-1 protect the internal  
power switch by turning it off and triggering a soft-start  
latch. Thisprotectionpreventstheswitchfromrepetitively  
turning on during excessive inductor currents by delay-  
ing switching until the fault has been removed. To defeat  
inductor current sensing the inductor supply should be  
parametersforthefollowingfaults:V <2.8V, SHDN<1.4,  
IN  
inductor current >6A and boosted output voltage >OVP.  
On detection of any of these faults, the LT3478/LT3478-1  
stop switching immediately and a soft-start latch is set  
causing the SS pin to be discharged (see Timing Diagram  
for the SS pin in Figure 11). When all faults no longer ex-  
ist and the SS pin has been discharged to at least 0.25V,  
the soft-start latch is reset and an internal 12µA supply  
charges the SS pin. A gradual ramp up of SS pin voltage  
is equivalent to a ramp up of switch current limit until SS  
connected to the L pin and the V pin left open. See details  
S
in the Applications Information section “Soft-Start”.  
exceeds V .  
C
LED Open Circuit Protection and Maximum PWM  
Dimming Ratios  
The ramp rate of the SS pin is given by:  
ΔV /Δt = 12µA/C  
SS  
SS  
The LT3478/LT3478-1 LED drivers provide optimum pro-  
tection from open LED faults by clamping the converter  
output to a programmable overvoltage protection level  
(OVP). In addition, the programmable OVP feature draws  
zero current from the output during PWM = 0 to allow  
higher PWM dimming ratios. This provides an advantage  
overotherLEDdriverapplicationswhichconnectaresistor  
SW  
SS  
FAULTS TRIGGERING  
SOFT-START LATCH  
WITH SW TURNED OFF  
IMMEDIATELY:  
0.65V (ACTIVE THRESHOLD)  
0.25V (RESET THRESHOLD)  
0.15V  
divider directly from V  
.
OUT  
V
< 2.8V OR  
SHDN < 1.4V OR  
IN  
An open LED fault occurs when the connection to the  
LED(s) becomes broken or the LED(s) fails open. For an  
LED driver using a step-up switching regulator, an open  
circuit LED fault can cause the converter output to exceed  
the voltage capabilities of the regulator’s power switch,  
SOFT-START LATCH RESET:  
SS < 0.25V AND  
> 2.8V AND  
V
I
> OVP OR  
OUT  
> 6A  
SOFT-START  
LATCH SET:  
(INDUCTOR)  
V
IN  
SHDN > 1.4V AND  
V
I
< OVP AND  
< 6A  
OUT  
3478 F11  
(INDUCTOR)  
Figure 11. LT3478 Fault Detection and SS Pin Timing Diagram  
causingpermanentdamage. WhenV  
exceedsOVP, the  
OUT  
34781f  
16  
LT3478/LT3478-1  
U
W U U  
APPLICATIO S I FOR ATIO  
LT3478/LT3478-1immediatelystopswitching,asoft-start  
V = inductor supply input  
S
latch is set and the SS pin is discharged. The SS latch can  
D = switch duty cycle = (V + V – V )/(V + V – V )  
SAT  
OUT  
F
S
OUT  
F
only be reset when V  
falls below OVP and the SS pin  
OUT  
V = forward voltage drop of external Schottky diode  
F
hasbeendischargedbelow0.25V(Figure11).IftheLED(s)  
simply go open circuit and are reconnected, however, the  
OVP used to protect the switch might be too high for the  
reconnectedLED(s).TheLT3478/LT3478-1thereforeallow  
OVP to be programmable to protect both the LED driver  
switch and the LED(s). (The minimum allowable OVP for  
normal operation for a given LED string depends on the  
number of LEDs and their maximum forward voltage rat-  
ings.) OVP is programmed using the OVPSET pin (front  
page), given by,  
V
= I  
• R  
L(AVE) SW  
SAT  
(2) Switch AC loss = P  
SW(AC)  
= t (1/2)I  
(V  
+ V )(F  
)
EFF  
L(AVE) OUT  
F
OSC  
t
= effective switch current and switch V voltage  
CE  
EFF  
overlap time during turn on and turn off = 2 • (t  
+
ISW  
t
t
t
f
)
VSW  
ISW  
VSW  
OSC  
= I  
rise/fall time = I  
• 2ns  
SWITCH  
L(AVE)  
OVP = (OVPSET • 41)V  
= SW fall/rise time = (V  
+ V ) • 0.7ns  
OUT F  
wheretheprogrammablerangefortheOVPSETpinis0.3V  
to 1V resulting in an OVP range of 12.3V to 41V.  
= switching frequency  
(3) Current sensing loss = P  
=
SENSE  
TheOVPSETpincanbeprogrammedwithasingleresistor  
P
+ P  
SENSE(IL)  
SENSE(ILED)  
2
by tapping off of the resistor divider from V  
used to  
REF  
P
P
= I  
• 9.5mΩ  
SENSE(IL)  
L(AVE)  
program CTRL1. If both CTRL1 and CTRL2 are connected  
2
= I  
• 0.1Ω  
directlytoV (maximumLEDcurrentsetting)thenOVP-  
SENSE(ILED)  
LED  
REF  
SET requires a simple 2 resistor divider from V  
.
REF  
(4) Input quiescent loss = P = V • I where  
Q
IN  
Q
I = (6.2mA + (100mA • D))  
Q
Thermal Calculations  
Example (Using LT3478-1):  
To maximize output power capability in an application  
withoutexceedingtheLT3478/LT3478-1125°Cmaximum  
operational junction temperature, it is useful to be able  
to calculate power dissipation within the IC. The power  
dissipation within the IC comes from four main sources:  
switch DC loss, switch AC loss, Inductor and LED cur-  
rent sensing and input quiescent current. These formulas  
assume a boost converter architecture, continuous mode  
operation and no PWM dimming.  
For V = V = 8V, I  
= 700mA, V  
= 24.5V (7 LEDs),  
IN  
S
LED  
= 0.2Mhz,  
OUT  
V = 0.5V and f  
F
OSC  
η = 0.89 (initial assumption)  
= (24.5 • 0.7)/(0.89 • 8) = 2.41A  
I
L(AVE)  
D = (24.5 + 0.5 – 8)/(24.5 + 0.5 – 0.17) = 0.684  
= 2 • ((2.41 • 2)ns + (24.5 + 0.5) • 0.7)ns = 45ns  
T
EFF  
(1) Switch DC loss = P  
Total Power Dissipation:  
SW(DC)  
2
= (R • I  
• D)  
P = P  
+ P  
+ P  
+ P  
SW L(AVE)  
IC  
SW(DC)  
SW(AC)  
2
SENSE Q  
R
= switch resistance = 0.07Ω (at T = 125°C)  
P
P
P
= 0.07 • (2.41) • 0.684 = 0.278W  
SW  
J
SW(DC)  
SW(AC)  
I
= P /(η • V )  
= 45ns • 0.5 • 2.41 • 25 • 0.2MHz = 0.271W  
L(AVE)  
OUT  
S
2
2
P
= V  
• I  
= ((2.41) • 0.0095) + ((0.7) • 0.1) = 0.104W  
SENSE  
OUT  
OUT LED  
η = converter efficiency = P /(P  
+ P  
)
P = 8 • (6.2mA + (100mA • 0.684)) = 0.597W  
Q
OUT OUT  
LOSS  
P = 0.278 + 0.271 + 0.104 + 0.597 = 1.25W  
IC  
34781f  
17  
LT3478/LT3478-1  
U
W U U  
APPLICATIO S I FOR ATIO  
LocalheatingfromthenearbyinductorandSchottkydiode  
will also add to the final junction temperature of the IC.  
Based on empirical measurements, the effect of diode and  
inductor heating on the LT3478-1 junction temperature  
can be approximated as:  
If an application is built, the inductor current can be mea-  
suredandanewvalueforjunctiontemperatureestimated.  
Ideally a thermal measurement should be made to achieve  
the greatest accuracy for T .  
J
Note: The junction temperature of the IC can be reduced  
ΔT (LT3478-1) = 5°C/W • (P  
+ P  
)
if a lower V supply is available – separate from the  
J
DIODE  
= (1 – D) • V • I  
F L(AVE)  
INDUCTOR  
IN  
inductor supply V . In the above example, driving V  
S
IN  
P
DIODE  
from an available 3V source (instead of V = 8V) reduces  
S
1 – D = 0.316  
V = 0.5V  
input quiescent losses in item(4) from 0.597W to 0.224W,  
resulting in a reduction of T from 118°C to 105°C.  
J
F
I
= 2.41  
Layout Considerations  
L(AVE)  
P
P
= 0.316 • 0.5 • 2.41 = 0.381W  
As with all switching regulators, careful attention must be  
given to PCB layout and component placement to achieve  
optimal thermal,electrical and noise performance (Figure  
12). The exposed pad of the LT3478/LT3478-1 (Pin 17)  
is the only GND connection for the IC. The exposed pad  
should be soldered to a continuous copper ground plane  
underneath the device to reduce die temperature and  
maximize the power capability of the IC. The ground path  
DIODE  
2
= I  
• DCR  
INDUCTOR  
L(AVE)  
DCR = inductor DC resistance (assume 0.05Ω)  
2
P
= (2.41) • 0.05 = 0.29W  
INDUCTOR  
The LT3478/LT3478-1 use a thermally enhanced FE pack-  
age. With proper soldering to the Exposed Pad on the  
undersideofthepackagecombinedwithafullcopperplane  
for the R resistor and V capacitor should be taken from  
T
C
underneath the device, thermal resistance (θ ) will be  
JA  
A
nearby the analog ground connection to the exposed pad  
(near Pin 9) separate from the power ground connection  
to the exposed pad (near Pin 16). The bypass capacitor  
about 35°C/W. For an ambient temperature of T = 70°C,  
the junction temperature of the LT3478-1 for the example  
application described above, can be calculated as:  
for V should be placed as close as possible to the V  
IN  
IN  
T (LT3478-1)  
pinandtheanaloggroundconnection. SWpinvoltagerise  
and fall times are designed to be as short as possible for  
maximumefficiency.Toreducetheeffectsof bothradiated  
and conducted noise, the area of the SW trace should be  
kept as small as possible. Use a ground plane under the  
switching regulator to minimize interplane coupling. The  
schottky diode and output capacitor should be placed as  
close as possible to the SW node to minimize this high  
frequencyswitchingpath.TominimizeLEDcurrentsensing  
errors for the LT3478, the terminals of the external sense  
J
= T + θ (P ) + 5(P  
+ P  
)
A
JA TOT  
DIODE  
INDUCTOR  
= 70 + 35(1.25) + 5(0.671)  
= 70 + 44 + 4  
= 118°C  
In the above example, efficiency was initially assumed to  
be η = 0.89. A lower efficiency (η) for the converter will  
increase I  
for T . η can be calculated as:  
and hence increase the calculated value  
L(AVE)  
J
resistor R  
should be tracked to the V  
and LED  
SENSE  
OUT  
pins separate from any high current paths.  
η = P /(P  
+ P  
)
OUT OUT  
LOSS  
P
P
= V  
• I  
= 17.15W  
OUT  
OUT LED  
(estimated) = P + P  
+ P  
= 1.92W  
LOSS  
IC  
DIODE  
INDUCTOR  
η = 17.15/(17.15 + 1.92) = 0.9  
34781f  
18  
LT3478/LT3478-1  
U
W U U  
APPLICATIO S I FOR ATIO  
(CONNECT MULTIPLE GROUND PLANES  
THROUGH VIAS UNDERNEATH THE IC)  
V
S
C
VS  
V
OUT  
GND  
OUTPUT CAPACITOR  
V
IN  
C
SCHOTTKY  
DIODE  
VIN  
SOLDER THE EXPOSED PAD (PIN 17)  
TO THE ENTIRE COPPER GROUND PLANE  
UNDERNEATH THE DEVICE  
LT3478/LT3478-1  
POWER GND  
C
SW  
SW  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
SS  
SS  
SW  
INDUCTOR  
R
R
T
T
V
PWM  
R
IN  
V
S
CTRL2  
CTRL1  
SHDN  
R
R
R
L
L
V
OUT  
R
EXPOSED PAD  
PIN 17  
SENSE  
LED  
V
REF  
(LT3478 ONLY)  
C
R
OVPSET  
V
C
F
ANALOG GND  
C
C
C
C
V
BYPASS CAP  
IN  
R
R
3252 F08  
Figure 12. Recommended Layout for LT3478/LT3478-1 (Boost Configuration)  
U
TYPICAL APPLICATIO S  
15W, 6 LEDs at 700mA, Boost LED Driver  
L1  
10µH  
D1  
V
IN  
LT3478-1 PWM Dimming  
Waveforms  
8V TO 16V  
C1  
4.7µF  
25V  
C2  
10µF  
V
V
L
SW  
IN  
S
25V  
SHDN  
OUT  
PWM  
5V/DIV  
V
REF  
R1  
45.3k  
f
= 100Hz  
PWM  
700mA  
CTRL2  
LT3478-1  
LED  
INDUCTOR  
CURRENT  
1A/DIV  
OVPSET  
R4  
54.9k  
I
LED  
CTRL1  
PWM  
0.5A/DIV  
3478 TA02b  
R2  
130k  
SS  
V
R
T
C
2µs/DIV  
PWM DIMMING RATIO = 1000:1  
(SEE EFFICIENCY ON PAGE 1)  
R
C
C
C
0.1µF  
T
SS  
L1: CDRH104R-100NC  
D1: PDS560  
69.8k  
1µF  
Q1: Si2318DS  
f
= 500kHz  
OSC  
LEDs: LUXEON III (WHITE)  
3.3V  
0V  
Q1  
PWM  
DIMMING RATIO = 1000:1  
100Hz  
R3  
10k  
3478 TA02a  
34781f  
19  
LT3478/LT3478-1  
U
TYPICAL APPLICATIO S  
17W, 15 LEDs at 350mA, Boost LED Driver plus LT3003  
V
S
8V TO 14V  
C1  
4.7µF  
16V  
L1  
5.2µH  
D1  
V
OUT  
Efficiency vs Input V  
V
S
IN  
3.3V  
C3  
3.3µF  
10V  
C2  
3.3µF  
25V  
90  
85  
80  
75  
70  
V
V
L
SW  
IN  
S
V
= 3.3V  
= 350mA  
= 1MHz  
IN  
I
f
LED  
OSC  
SHDN  
OUT  
PWM DUTY CYCLE = 100%  
V
REF  
1.05A  
CTRL2  
CTRL1  
R1  
24k  
LT3478-1  
LED  
OVPSET  
PWM  
R2  
100k  
SS  
V
R
T
C
C
V
SS  
1µF  
C
R
T
15 LEDs  
(5 SERIES x 3 CHANNELS)  
LUXEON I (WHITE)  
C
C
31.6k  
L1: CDRH104R-5R2  
D1: PDS560  
LEDs: LUXEON I (WHITE)  
0.1µF  
f
= 1MHz  
OSC  
8
10  
12  
14  
V
(V)  
S
3478 TA03b  
3.3V  
LED1  
MAX  
LED2  
LED3  
OT1  
OT2  
V
V
V
OUT  
0V  
LT3003  
100Hz  
PWM  
DIMMING RATIO = 3000:1  
V
IN  
IN  
V
C
PWM  
GND  
V
EE  
3478 TA03a  
16W, 12 LEDs at 350mA, Buck-Boost Mode LED Driver plus LT3003  
V
S
12V TO 16V  
C1  
4.7µF  
25V  
L1  
8.2µH  
D1  
V
OUT  
Efficiency vs Input V  
V
S
IN  
5V  
C3  
3.3µF  
10V  
C2  
10µF  
50V  
90  
85  
80  
75  
70  
65  
60  
55  
50  
V
V
L
SW  
IN  
S
V
= 5V  
= 350mA  
= 500kHz  
IN  
I
f
LED  
OSC  
SHDN  
OUT  
PWM DUTY CYCLE = 100%  
V
REF  
1.05A  
CTRL2  
CTRL1  
R1  
24k  
LT3478-1  
LED  
OVPSET  
PWM  
R2  
100k  
SS  
V
R
T
C
C
V
SS  
1µF  
C
R
T
12 LEDs  
(4 SERIES x 3 CHANNELS)  
LUXEON I (WHITE)  
C
C
69.8k  
L1: CDRH105R-8R2  
D1: PDS560  
0.1µF  
D2: 7.5V ZENER  
f
= 500kHz  
OSC  
D2  
12  
13  
14  
(V)  
15  
16  
LEDs: LUXEON I (WHITE)  
C4  
1µF  
V
V
S
OUT  
3478 TA04b  
3.3V  
0V  
LED1  
MAX  
LED2  
LED3  
OT1  
OT2  
V
V
LT3003  
100Hz  
PWM  
DIMMING RATIO = 200:1  
IN  
V
C
PWM  
GND  
V
EE  
3478 TA04a  
34781f  
20  
LT3478/LT3478-1  
U
TYPICAL APPLICATIO S  
4W, 1 LED at 1A, Buck-Boost Mode LED Driver  
V
IN  
3.8V TO 6.5V  
C1  
L1  
6.8µH  
D1  
NiMH 4× 10µF  
Efficiency vs V  
IN  
10V  
80  
75  
70  
65  
60  
55  
50  
C2  
I
f
= 1A  
LED  
OSC  
V
V
L
SW  
IN  
S
4.7µF  
= 500kHz  
16V  
ON OFF  
PWM DUTY CYCLE = 100%  
SHDN  
OUT  
V
REF  
Q2  
1A  
CTRL2  
CTRL1  
R1  
LT3478-1  
LED  
100k  
R4  
510Ω  
OVPSET  
PWM  
R2  
34k  
L1: CDRH105R-6R8  
D1: B320  
Q1: Si2302ADS  
Q2: Si2315BDS  
LED: LUXEON III (WHITE)  
SS  
V
R
T
C
C
SS  
1µF  
R
T
R5  
510Ω  
SINGLE LED  
C
C
69.8k  
LUXEON III (WHITE)  
0.1µF  
3
4
5
6
7
3.3V  
0V  
f
= 500kHz  
OSC  
V
(V)  
IN  
3478 TA06b  
Q1  
PWM  
DIMMING RATIO = 200:1  
1kHz  
R3  
10k  
3478 TA06a  
34781f  
21  
LT3478/LT3478-1  
U
TYPICAL APPLICATIO S  
24W, 4 LEDs at 1.5A, Buck Mode LED Driver  
PV  
IN  
32V  
C1  
R
3.3µF  
SENSE  
0.068Ω  
50V  
1.5A  
4 LEDs  
R4  
365Ω  
TYPICAL EFFICIENCY = 90%  
FOR CONDITIONS/COMPONENTS SHOWN  
(PWM DUTY CYCLE = 100%, T =25°C)  
C3  
A
10µF  
25V  
Q2  
L1  
10µH  
R5  
510Ω  
V
IN  
3.3V  
C2  
4.7µF  
10V  
D1  
V
V
L
OUT LED SW  
PWM  
IN  
S
Q1  
SHDN  
R3  
10k  
V
REF  
LT3478  
CTRL2  
CTRL1  
R1  
24k  
PWM  
DIMMING RATIO = 3000:1  
OVPSET  
L1: CDRH105R-100  
D1: PDS560  
3.3V  
R2  
100k  
Q1: 2N7002  
SS  
V
C
R
T
0V  
100Hz  
Q2: Si2319DS  
LEDs: LXK2 (WHITE)  
C
SS  
R
T
1µF  
C
C
69.8k  
0.1µF  
f
= 500kHz  
OSC  
3478 TA07a  
34781f  
22  
LT3478/LT3478-1  
U
PACKAGE DESCRIPTIO  
FE Package  
16-Lead Plastic TSSOP (4.4mm)  
(Reference LTC DWG # 05-08-1663)  
Exposed Pad Variation BC  
4.90 – 5.10*  
(.193 – .201)  
3.58  
(.141)  
3.58  
(.141)  
16 1514 13 12 1110  
9
6.60 0.10  
4.50 0.10  
2.94  
(.116)  
6.40  
2.94  
SEE NOTE 4  
(.252)  
(.116)  
BSC  
0.45 0.05  
1.05 0.10  
0.65 BSC  
5
7
8
1
2
3
4
6
RECOMMENDED SOLDER PAD LAYOUT  
1.10  
(.0433)  
MAX  
4.30 – 4.50*  
(.169 – .177)  
0.25  
REF  
0° – 8°  
0.65  
(.0256)  
BSC  
0.09 – 0.20  
(.0035 – .0079)  
0.50 – 0.75  
(.020 – .030)  
0.05 – 0.15  
(.002 – .006)  
FE16 (BC) TSSOP 0204  
0.195 – 0.30  
(.0077 – .0118)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: MILLIMETERS 4. RECOMMENDED MINIMUM PCB METAL SIZE  
FOR EXPOSED PAD ATTACHMENT  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.150mm (.006") PER SIDE  
MILLIMETERS  
(INCHES)  
2. DIMENSIONS ARE IN  
3. DRAWING NOT TO SCALE  
34781f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
23  
LT3478/LT3478-1  
U
TYPICAL APPLICATIO  
6W, 6 LEDs at 250mA, Boost LED Driver  
V
S
8V TO 16V  
C1  
4.7µF  
25V  
L1  
10µH  
D1  
Efficiency vs Input V  
V
S
IN  
3.3V  
C3  
3.3µF  
10V  
C2  
3.3µF  
25V  
100  
95  
90  
85  
80  
75  
70  
65  
60  
V
V
L
SW  
IN  
S
V
= 3.3V  
= 250mA  
= 2MHz  
IN  
I
f
LED  
OSC  
SHDN  
OUT  
R
SENSE  
PWM DUTY CYCLE = 100%  
V
REF  
0.42Ω  
CTRL2  
CTRL1  
R1  
8.25k  
LT3478  
250mA  
LED  
OVPSET  
PWM  
R2  
10k  
SS  
V
R
T
C
C
SS  
R
T
1µF  
C
C
10k  
L1: CDRH6D28  
D1: ZLLS1000  
Q1: Si2318DS  
0.1µF  
6 LEDs = LUXEON I (WHITE)  
12 14 16  
(V)  
f
= 2MHz  
OSC  
8
10  
LEDs: LUXEON I (WHITE)  
V
S
3478 TA05b  
3.3V  
0V  
Q1  
PWM  
DIMMING RATIO = 1000:1  
100Hz  
R3  
10k  
3478 TA05a  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
LT1618  
Constant Current, 1.4MHz, 1.5A Boost Converter with Analog/PWM V : 5V to 18V, V  
= 36V, I <1µA, MS10 Package  
OUT(MAX) SD  
IN  
Dimming  
LT3003  
LT3474  
Three Channel LED Ballaster with 3,000:1 True Color PWM Dimming V : 3V to 48V, I <5µA, MSOP10 Package  
IN SD  
36V, 1A (I ), 2MHz,Step-Down LED Driver with 400:1 True Color  
V : 4V to 36V, V  
IN  
= 13.5V, I <1µA, TSSOP16E Package  
SD  
LED  
OUT(MAX)  
PWM Dimming  
LT3475  
LT3476  
LT3477  
LT3479  
LT3486  
LTC3783  
Dual 1.5A(I ), 36V, 2MHz,Step-Down LED Driver 3,000:1 True  
V : 4V to 36V, V  
= 13.5V, I <1µA, TSSOP20E Package  
SD  
LED  
IN  
OUT(MAX)  
Color PWM Dimming  
Quad Output 1.5A, 2MHz High Current LED Driver with 1,000:1 True V : 2.8V to 16V, V  
Color PWM Dimming  
= 36V, I <10µA, 5mm × 7mm QFN  
SD  
IN  
OUT(MAX)  
OUT(MAX)  
OUT(MAX)  
Package  
42V, 3A, 3.5MHz Boost, Buck-Boost, Buck LED Driver with Analog/  
PWM Dimming  
V : 2.5V to 25V, V  
= 40V, I <1µA, QFN, TSSOP20E  
SD  
IN  
Packages  
3A, 3.5MHz Full Featured DC/DC Converter with Soft-Start and  
Inrush Current Protection and Analog/PWM Dimming  
V : 2.5V to 24V, V  
= 40V, I <1µA, 4mm × 3mm DFN,  
SD  
IN  
TSSOP16E Packages  
Dual 1.3A , 2MHz High Current LED Driver with 1,000:1 True Color  
PWM Dimming  
V : 2.5V to 24V, V  
= 36V, I <1µA, 5mm × 3mm DFN,  
SD  
IN  
OUT(MAX)  
TSSOP16E Packages  
High Current LED Controller with 3,000:1 True Color PWM Dimming V : 3V to 36V, V  
= Ext FET, I <20µA, 5mm × 4mm  
SD  
IN  
OUT(MAX)  
DFN, TSSOP16E Packages  
34781f  
LT 0107 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
24  
© LINEAR TECHNOLOGY CORPORATION 2007  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT3478IFE#TR

IC LED DISPLAY DRIVER, PDSO16, 4.40 MM, PLASTIC, TSSOP-16, Display Driver
Linear

LT3478IFE#TRPBF

暂无描述
Linear

LT3478IFE-1

4.5A Monolithic LED Drivers with True Color PWM Dimming
Linear

LT3478IFE-1#PBF

LT3478 - 4.5A Monolithic LED Drivers with True Color PWM Dimming; Package: TSSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3478IFE-1#TR

IC LED DISPLAY DRIVER, PDSO16, 4.40 MM, PLASTIC, TSSOP-16, Display Driver
Linear

LT3478IFE-1#TRPBF

暂无描述
Linear

LT3478_15

4.5A Monolithic LED Drivers with True Color PWM Dimming
Linear

LT3479

Single Cell 350mA LED Driver
Linear

LT3479EDE

3A, Full Featured DC/DC Converter with Soft-Start and Inrush Current Protection
Linear

LT3479EDE#PBF

LT3479 - 3A, Full Featured DC/DC Converter with Soft-Start and Inrush Current Protection; Package: DFN; Pins: 14; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3479EDE#TR

LT3479 - 3A, Full Featured DC/DC Converter with Soft-Start and Inrush Current Protection; Package: DFN; Pins: 14; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3479EDE#TRPBF

LT3479 - 3A, Full Featured DC/DC Converter with Soft-Start and Inrush Current Protection; Package: DFN; Pins: 14; Temperature Range: -40&deg;C to 85&deg;C
Linear