LT3582-5_15 [Linear]

Boost and Single Inductor Inverting DC/DC Converters with Optional I2C Programing and OTP;
LT3582-5_15
型号: LT3582-5_15
厂家: Linear    Linear
描述:

Boost and Single Inductor Inverting DC/DC Converters with Optional I2C Programing and OTP

文件: 总28页 (文件大小:326K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
VOSꢅuS2rV pꢅꢁnie  
VPrwi fV iqSiꢂclꢂn  
              
LT3582/LT3582-5/LT3582-12  
Boost and Single Inductor  
Inverting DC/DC Converters with  
2
Optional I C Programing and OTP  
FEATURES  
DESCRIPTION  
n
OSꢅuSꢅV2rpꢅꢁnie:  
TheLT®3582/LT3582-5/LT3582-12aredualDC/DCconverters  
V 3.12VꢅrV±1.77ꢃ2VꢁꢂdV–±.12VꢅrV–±3.9ꢃ2V(LT3ꢃ81)  
V ꢃ2VꢁꢂdV–ꢃ2V(LT3ꢃ81-ꢃ)  
featuringpositiveandnegativeoutputsandintegratedfeedback  
resistors.TheLT3582,withitsbuilt-inOneTimeProgramming  
2
V ±12VꢁꢂdV–±12V(LT3ꢃ81-±1)  
(OTP), has configurable output settings via the I C interface,  
1
n
DlnlꢅꢁppyVRi-PfrnfꢁooꢁbpiV(LT3ꢃ81)VvlꢁVꢄ CVꢀrf:  
including output voltage settings, power-up sequencing,  
power-downdischarge,andoutputvoltageramprates.LT3582  
settings can be changed adaptively in the final product, or set  
during manufacturing and made permanent using the built in  
non-volatile OTP memory. The positive output voltage can be  
set between 3.2V and 12.775V in 25mV steps. The negative  
output voltage can be set between –1.2V and –13.95V in  
–50mVsteps.TheLT3582-5andLT3582-12arepre-configured  
at the factory for 5V and 12V outputs respectively, and as  
V OSꢅuSꢅV2rpꢅꢁniVRꢁouVRꢁꢅie  
Prwif-UuVDiꢀꢁSpꢅeV iꢅꢅꢁbpiVwlꢅhVNrꢂ-2rpꢁꢅlpiVOTPV  
(LT3ꢃ81)  
n
1
n
n
 CVCrouꢁꢅlbpiVꢄꢂꢅifꢀꢁciV( ꢅꢁꢂdꢁfdVMrdi*)  
AppVPrwifV wlꢅchieVꢄꢂꢅinfꢁꢅid  
V 3ꢃ0oAVCSffiꢂꢅVLlolꢅV(Brreꢅ)  
V 600oAVCSffiꢂꢅVLlolꢅV(ꢄꢂvifꢅlꢂn)  
AppVFiidbꢁckVRieleꢅrfeVꢄꢂꢅinfꢁꢅid  
ꢄꢂuSꢅV2rpꢅꢁniVRꢁꢂni:V1.ꢃꢃ2VꢅrVꢃ.ꢃ2  
Low Quiescent Current  
2
such, don’t require the use of the I C interface.  
n
n
n
The LT3582 series includes two monolithic converters,  
one Boost and one Inverting. The Boost converter has an  
integrated power switch and output disconnect switch.  
The Inverting converter uses a single inductor topology  
and includes an integrated power switch. Both Boost  
and Inverting converters use a novel** control scheme  
resultinginlowoutputvoltageripplewhileallowingforhigh  
conversion efficiency over a wide load current range. The  
LT3582 series is available in a 16-pin 3mm × 3mm QFN.  
325μA in Active Mode  
0.01μA in Shutdown Mode  
Integrated Output Disconnect  
Tiny 16-Pin 3mm × 3mm QFN Package  
n
n
APPLICATIONS  
n
AMOLED Power  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
n
CCD Power  
*
Input thresholds are reduced to allow communication with low voltage digital ICs.  
(See Electrical Characteristics).  
n
General Purpose DC/DC Conversion  
** Patent Pending  
TYPICAL APPLICATION  
±±12V SuuplieVꢀfroVꢁV lꢂnpiVꢃ2VꢄꢂuSꢅ  
EꢀVcliꢂcyVꢁꢂdVPrwifVLree  
350  
300  
250  
200  
150  
100  
95  
85  
75  
65  
55  
45  
35  
SWN  
SWN  
SHDN  
V
V
OUTP  
OUTN  
INPUT  
V
IN  
4.5V TO 5.5V  
6.8ꢀH  
6.8ꢀH  
1ꢀF  
SWP  
GND  
4.7ꢀF  
LT3582  
10ꢀF  
V
CAPP  
CAPP  
NEG  
–12V  
V
OUTN  
V
85mA  
POS  
2
V
OUTP  
12V  
I C  
SDA  
SCL  
CA  
80mA  
INTERFACE  
OPTIONAL ON  
50  
0
V
PP  
4.7ꢀF  
LT3582-5/LT3582-12  
RAMPP RAMPN  
3582512 TA01a  
0.1  
1
10  
100  
LOAD CURRENT (mA)  
10nF  
10nF  
3582512 TA01b  
3582512fb  
1
LT3582/LT3582-5/LT3582-12  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(NrꢅiV±)  
TOP VIEW  
V Voltage..................................................................6V  
IN  
SWP Voltage.............................................................15V  
SWN Voltage........................................................16.5V  
CAPP Voltage............................................................15V  
16 15 14 13  
CA  
1
2
3
4
12 SWP  
11 CAPP  
V
17  
GND  
OUTN  
CAPP-V  
Voltage.................................... –0.8V to 8V  
OUTP  
SWN  
CAPP  
10  
9
I
V
V
....................................................... 300mA  
SWN  
V
OUTP  
CAPP-VOUTP  
Voltage...........................................................15V  
5
6
7
8
OUTP  
Voltage......................................................16.5V  
OUTN  
RAMPP Voltage ..........................................................3V  
RAMPN Voltage ..........................................................3V  
SHDN Voltage ................................................ –0.5 to 6V  
UD PACKAGE  
16-PIN (3mm × 3mm) PLASTIC QFN  
T
= 125°C, θ = 68°C/W  
JA  
JMAX  
EXPOSED PAD (PIN #17) IS GND, MUST BE SOLDERED TO PCB  
V
Voltage...................................................–0.2 to 16V  
PP  
SDA, CA, SCL Voltage.................................... –0.5 to 6V  
Operating Junction Temperature Range (Notes 3, 5)  
LT3582E ............................................ –40°C to 125°C  
Storage Temperature Range .............. –65°C to 150°C  
ORDER INFORMATION  
LEADVFREEVFꢄNꢄ H  
TAPEVANDVREEL  
PARTVMARKꢄNG  
LDDB  
PACKAGEVDE CRꢄPTꢄON  
TEMPERATUREVRANGE  
LT3582EUD#PBF  
LT3582EUD#TRPBF  
LT3582EUD-5#TRPBF  
LT3582EUD-12#TRPBF  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
16-Pin (3mm × 3mm) Plastic QFN  
16-Pin (3mm × 3mm) Plastic QFN  
16-Pin (3mm × 3mm) Plastic QFN  
LT3582EUD-5#PBF  
LT3582EUD-12#PBF  
LDVG  
LDVH  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
VTh  
L
i
E
V
CTRICAL CHARACTERISTICS  
lVdiꢂrꢅieVꢅhiVeuiclVcꢁꢅlrꢂeVwhlchVꢁuupyVrvifVꢅhiVꢀSppVruifꢁꢅlꢂnV  
ꢅiouifꢁꢅSfiVfꢁꢂni,VrꢅhifwleiVeuiclVcꢁꢅlrꢂeVꢁfiVꢁꢅVTAV=V1ꢃ°C.V2ꢄNV=V3.62,V2SHDNV=V2ꢄNVSꢂpieeVrꢅhifwleiVꢂrꢅid.V(NrꢅiV3)  
 wlꢅchlꢂnVRinSpꢁꢅrfVChꢁfꢁcꢅifleꢅlce  
 YMBOL  
PARAMETER  
CONDꢄTꢄON  
MꢄN  
2.4  
TYP  
MAX  
UNꢄT  
l
l
V
V
Minimum Operating Voltage  
Maximum Operating Voltage  
2.475  
2.55  
V
V
IN_MIN  
IN_MAX  
VIN  
5.5  
I
V
Quiescent Current  
Ramp Current Configured to 1μA,  
SWOFF Bit Active  
325  
450  
ꢀA  
IN  
I
I
V
Quiescent Current in Shutdown  
V
V
= 0  
0.01  
0
0.5  
0.5  
ꢀA  
ꢀA  
ns  
ns  
VIN_SHDN  
IN  
SHDN  
SHDN  
CAPP Quiescent Current in Shutdown  
Minimum Switch Off Time  
= 0, V  
= 5.0V, V  
= 0V  
OUTP  
CAPP_SHDN  
CAPP  
T
T
Boost Switch  
100  
125  
OFF_MINP  
Minimum Switch Off Time  
Inverting Switch  
OFF_MINN  
3582512fb  
2
LT3582/LT3582-5/LT3582-12  
E
VTh  
L
i
E
V
CTRICAL CHARACTERISTICS  
lVdiꢂrꢅieVꢅhiVeuiclVcꢁꢅlrꢂeVwhlchVꢁuupyVrvifVꢅhiVꢀSppVruifꢁꢅlꢂnV  
ꢅiouifꢁꢅSfiVfꢁꢂni,VrꢅhifwleiVeuiclVcꢁꢅlrꢂeVꢁfiVꢁꢅVTAV=V1ꢃ°C.V2ꢄNV=V3.62,V2SHDNV=V2ꢄNVSꢂpieeVrꢅhifwleiVꢂrꢅid.V(NrꢅiV3)  
 wlꢅchlꢂnVRinSpꢁꢅrfVChꢁfꢁcꢅifleꢅlce  
 YMBOL  
PARAMETER  
CONDꢄTꢄON  
MꢄN  
TYP  
10  
MAX  
UNꢄT  
ꢀs  
T
Maximum Switch On-Time  
Boost Switch Current Limit  
Inverting Switch Current Limit  
Boost Switch On-Resistance  
Inverting Switch On-Resistance  
Inverting and Boost Switches  
ON_MAX  
LIMIT_P  
LIMIT_N  
l
l
I
I
285  
490  
350  
600  
500  
560  
0.01  
430  
720  
mA  
mA  
R
R
I
I
= 200mA  
= –400mA  
= 5V  
mΩ  
mΩ  
ꢀA  
ON_P  
ON_N  
OFF_P  
SWP  
SWN  
I
I
Boost Switch Leakage Current into  
SWP Pin  
V
V
V
0.5  
1
SWP  
Inverting Switch Leakage Current Out of  
SWN Pin  
= 5.0, V = 0.0  
SWN  
0.01  
1.4  
ꢀA  
Ω
OFF_N  
IN  
R
Output Disconnect Switch  
On-Resistance  
= 10V, RAMPP > 1.4V  
ON_DIS  
CAPP  
l
I
I
I
I
Output Disconnect Current Limit  
124  
2.4  
155  
4.8  
186  
8.8  
mA  
mA  
mA  
mA  
μs  
LIMIT_DIS  
V
Power-Down Discharge Current  
V
= 8V  
VOUTP_PDS  
CAPP_PDS  
VOUTN_PDS  
OUTP  
OUTP  
CAPP Power-Down Discharge Current  
Power-Down Discharge Current  
CAPP = 8V  
1.2  
2.4  
4.4  
V
V
= –8V  
OUTN  
–1.4  
–2.8  
64  
–4.2  
128  
OUTN  
2
l
T
Configuration Start-Up Delay  
V > V  
and SHDN > V  
to I C  
START-UP  
IN  
IN_MIN  
SHDN_VIH  
Enabled and Power-Up Sequencing Start  
PfrnfꢁooꢁbpiVOSꢅuSꢅVChꢁfꢁcꢅifleꢅlceV(NrꢅiV6)  
 YMBOL  
PARAMETER  
CONDꢄTꢄON  
MꢄN  
TYP  
MAX  
UNꢄT  
l
l
V
Positive Output Voltage  
LT3582-5  
LT3582-12  
4.95  
11.88  
5
12  
5.05  
12.1  
V
V
VOUTP  
N_V  
Positive V  
Resolution (Note 2)  
9
Bits  
mV  
V
OUTP  
OUTP  
V
V
V
V
V
LSB (Note 2)  
25  
VOUTP_LSB  
OUTP  
OUTP  
OUTP  
OUTP  
l
l
V
Full-Scale Voltage (Note 2)  
Minimum Voltage (Note 2)  
Line Regulation  
Code = BFh, V  
Code = 00h, V  
= 1  
= 0  
12.56  
3.152  
12.775  
3.20  
12.94  
3.248  
VOUTP_FS  
PLUS  
V
V
VOUTP_MIN  
PLUS  
V
Code = BFh, 2.575 < V < 5.5  
–0.02  
%/V  
VOUTP_LR  
IN  
l
l
V
Negative Output Voltage  
LT3582-5  
LT3582-12  
–5.075  
–12.1  
–5  
–12  
–4.925  
–11.868  
V
V
VOUTN  
N_V  
Negative V Resolution (Note 2)  
8
Bits  
mV  
V
OUTN  
OUTN  
V
V
V
V
V
V
V
V
V
LSB (Note 2)  
–50  
VOUTN_LSB  
OUTN  
OUTN  
OUTN  
OUTN  
OUTP  
OUTP  
OUTN  
OUTN  
l
l
V
Full-Scale Voltage (Note 2)  
Minimum Voltage (Note 2)  
Line Regulation  
Code = FFh  
Code = 00h  
–14.2  
–1.23  
–13.95  
–1.205  
–0.01  
–13.7  
–1.18  
VOUTN_FS  
V
V
VOUTN_MIN  
V
Code = FFh, 2.575 < V < 5.5  
%/V  
LSB  
LSB  
LSB  
LSB  
ꢀA  
VOUTN_LR  
IN  
l
l
l
l
l
INL_V  
Integral Nonlinearity (Notes 2, 4)  
Differential Nonlinearity (Notes 2, 4)  
Integral Nonlinearity (Note 2)  
Differential Nonlinearity (Note 2)  
0.6  
0.6  
OUTP  
DNL_V  
OUTP  
OUTN  
INL_V  
0.85  
0.85  
1.3  
DNL_V  
OUTN  
RAMP00  
I
RAMPP/RAMPN Pull-Up Current  
IRMP Code = 00  
V
V
= 0.0V  
= 0.0V  
0.7  
1.4  
1.0  
2.0  
RAMPP  
RAMPN  
l
I
RAMPP/RAMPN Pull-Up Current (Note 2)  
IRMP Code = 01  
V
V
= 0.0V  
= 0.0V  
2.6  
ꢀA  
RAMP01  
RAMPP  
RAMPN  
3582512fb  
3
LT3582/LT3582-5/LT3582-12  
E
VTh  
L
i
E
V
CTRICAL CHARACTERISTICS  
lVdiꢂrꢅieVꢅhiVeuiclVcꢁꢅlrꢂeVwhlchVꢁuupyVrvifVꢅhiVꢀSppVruifꢁꢅlꢂnV  
ꢅiouifꢁꢅSfiVfꢁꢂni,VrꢅhifwleiVeuiclVcꢁꢅlrꢂeVꢁfiVꢁꢅVTAV=V1ꢃ°C.V2ꢄNV=V3.62,V2SHDNV=V2ꢄNVSꢂpieeVrꢅhifwleiVꢂrꢅid.V(NrꢅiV3)  
PfrnfꢁooꢁbpiVOSꢅuSꢅVChꢁfꢁcꢅifleꢅlce  
 YMBOL  
PARAMETER  
CONDꢄTꢄON  
MꢄN  
TYP  
MAX  
UNꢄT  
l
l
I
RAMPP/RAMPN Pull-Up Current (Note 2)  
IRMP Code = 10  
V
V
= 0.0V  
= 0.0V  
2.8  
4.0  
5.2  
ꢀA  
RAMP10  
RAMPP  
RAMPN  
I
RAMPP/RAMPN Pull-Up Current (Note 2)  
IRMP Code = 11  
V
V
= 0.0V  
= 0.0V  
5.6  
8.0  
25  
10.4  
ꢀA  
RAMP11  
RAMPP  
RAMPN  
V
V
Voltage Increase When V Bit is  
PLUS  
mV  
VPLUS  
OUTP  
Set from 0 to 1 (Note 2)  
ꢄꢂuSꢅ/OSꢅuSꢅVPlꢂVChꢁfꢁcꢅifleꢅlce  
 YMBOL  
PARAMETER  
CONDꢄTꢄON  
MꢄN  
TYP  
MAX  
0.3  
UNꢄT  
V
l
l
V
V
V
SHDN Input Voltage High  
SHDN Input Voltage Low  
SHDN Input Hysteresis  
SHDN Pin Bias Current  
CA Input Voltage High  
CA Input Voltage Low  
SDA Input Voltage High  
SDA Input Voltage Low  
SCL Input Voltage High  
SCL Input Voltage Low  
Input Hysteresis  
1.1  
SHDN_VIH  
SHDN_VIL  
V
50  
mV  
ꢀA  
V
HYST_SHDN  
SHDN_BIAS  
I
V
SHDN  
= 1V  
2.5  
4.5  
6.5  
l
l
l
l
l
l
V
V
V
V
V
V
V
0.7 × V  
CA_VIH  
CA_VIL  
IN  
V
0.3 × V  
0.85  
IN  
1.25  
1.25  
V
SDA_VIH  
SDA_VIL  
SCL_VIH  
SCL_VIL  
HYST  
V
V
0.85  
V
SDA, SCL Pins  
80  
3
mV  
ꢀA  
ꢀA  
ꢀA  
pF  
V
l
l
l
I
I
I
CA Input Leakage Current  
SCL Input Leakage Current  
SDA Input Leakage Current  
Input Capacitance  
CA = 0V and 5.5V  
SCL = 0V and 5.5V  
SDA = 0V and 5.5V  
SDA, SCL Pins  
1
1
1
LEAK_CA  
LEAK_SCL  
LEAK_SDA  
C
V
V
V
IN  
l
l
SDA Output Low Voltage  
3mA into SDA Pin  
0.4  
15  
SDA_OL  
PP_RANGE  
PPUVLO  
V
Voltage Range for OTP Write (Note 2)  
13  
V
PP  
Undervoltage Lockout for V Pin (Note 2)  
12.05  
12.45  
12.85  
V
PP  
1CVTlolꢂnVChꢁfꢁcꢅifleꢅlce  
 YMBOL  
PARAMETER  
CONDꢄTꢄON  
MꢄN  
TYP  
MAX  
UNꢄT  
kHz  
ꢀs  
l
l
l
l
l
l
l
l
l
l
l
f
t
t
t
t
t
t
t
t
t
t
Serial Clock Frequency  
Serial Clock Low Period  
Serial Clock High Period  
Bus Free Time Between Stop and Start  
Start Condition Hold Time  
Start Condition Setup Time  
Stop Condition Setup Time  
Data Hold Time Transmitting  
Data Hold Time Receiving  
Data Setup Time  
100  
SCL  
4.7  
4.0  
4.7  
4.0  
4.7  
4.0  
300  
0
LOW  
ꢀs  
HIGH  
ꢀs  
BUF  
ꢀs  
HD,STA  
SU,STA  
SU,STO  
HD,DATXMIT  
HD,DATRCV  
SU,DAT  
F
ꢀs  
ꢀs  
LT3582 Sending Data to Host  
ns  
LT3582 Receiving Data from Host  
ns  
250  
ns  
SDA Fall Time  
400pF Load, V ≥ 2.5V  
250  
ns  
IN  
3582512fb  
4
LT3582/LT3582-5/LT3582-12  
ELECTRICAL CHARACTERISTICS  
NrꢅiV±: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
NrꢅiVꢃ: This IC includes overtemperature protection that is intended  
to protect the device during momentary overload conditions. Junction  
temperature will exceed the maximum operating junction temperature  
when overtemperature protection is active. Continuous operation above  
the specified maximum operating junction temperature may impair device  
reliability.  
NrꢅiV1: LT3582 only.  
NrꢅiV3: The LT3582E is guaranteed to meet performance specifications  
from 0°C to 125°C junction temperature. Specifications over the –40°C  
to 125°C operating junction temperature range are assured by design,  
characterization and correlations with statistical process controls.  
NrꢅiV6: Output voltage is measured under non-switching test conditions  
approximating a moderate load current from the output.  
NrꢅiV4: These specifications apply to the V trim bits in REG0 using a  
P
50mV LSB and do not include the additional V  
trim bit. See Registers  
PLUS  
and OTP in the Applications Information section.  
3582512fb  
5
LT3582/LT3582-5/LT3582-12  
V
TAV=V1ꢃ°CVSꢂpieeVrꢅhifwleiVꢂrꢅid.V  
TYPICAL PERFORMANCE CHARACTERISTICS  
 wlꢅchlꢂnVFfiqSiꢂclieV(FlnSfiV±3)  
LrꢁdVRinSpꢁꢅlrꢂV(FlnSfiV±3)V  
OSꢅuSꢅV2rpꢅꢁniV(FlnSfiV±3)  
1.00  
0.75  
0.50  
0.25  
0
10000  
1000  
100  
0.45  
0.30  
0.15  
V
OUTP  
V
OUTN  
V
V
OUTP  
0
–0.15  
–0.30  
–0.45  
V
OUTN  
OUTP  
–0.25  
–0.50  
–0.75  
–1.00  
V
OUTN  
10  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
–50 –25  
0
25  
50  
75  
100 125  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
TEMPERATURE (°C)  
3582512 G02  
3582512 G01  
3582512 G03  
QSlieciꢂꢅVCSffiꢂꢅV–VNrꢅV wlꢅchlꢂn  
 wlꢅchVRieleꢅꢁꢂci  
 wlꢅchVCSffiꢂꢅVLlolꢅV  
390  
370  
350  
330  
310  
290  
270  
250  
700  
600  
500  
400  
300  
200  
O.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
SWN  
V
OUTN  
OUTP  
V
SWP  
2.5  
3
3.5  
4
4.5  
5
5.5  
–50 –25  
0
25  
50  
75 100 125  
2.5  
3
3.5  
4
4.5  
5
5.5  
V
(V)  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
IN  
3582512 G04  
3582512 G06  
3582512 G05  
2
OUTPVꢁꢂdV2OUTNVPlꢂVCSffiꢂꢅV  
OSꢅuSꢅVDlecrꢂꢂicꢅVPMO VCSffiꢂꢅV  
LlolꢅVDSflꢂnVNrfoꢁpVOuifꢁꢅlrꢂV  
OSꢅuSꢅVDlecrꢂꢂicꢅVPMO V  
Oꢂ-RieleꢅꢁꢂciV  
DSflꢂnVNrfoꢁpVOuifꢁꢅlrꢂ  
200  
180  
160  
140  
120  
100  
80  
60  
2.5  
2
CURRENT INTO  
OUTP  
V
PIN  
V
CODE  
P
40  
SET TO 12V  
20  
V
CODE  
P
SET TO 5V  
1.5  
1
0
V
N
CODE  
–20  
–40  
–60  
–80  
–100  
SET TO –5V  
V
N
CODE  
SET TO –12V  
0.5  
0
CURRENT OUT  
OF V  
PIN  
OUTN  
–50 –25  
0
25  
50  
75 100 125  
0
2.5  
5
7.5  
10  
12.5  
15  
2
4
6
8
10  
12  
TEMPERATURE (°C)  
|V | (V)  
OUT  
V
(V)  
CAPP  
3582512 G08  
3582512 G07  
3582512 G09  
3582512fb  
6
LT3582/LT3582-5/LT3582-12  
TYPICAL PERFORMANCE CHARACTERISTICS  
Nrꢅi:VAppVwꢁviꢀrfoeVrꢂVꢅhleVuꢁniVꢁuupyVꢅrVFlnSfiV±3.  
 wlꢅchlꢂnVWꢁviꢀrfoVꢁꢅV±oAVLrꢁdV  
(Brreꢅ)  
 wlꢅchlꢂnVWꢁviꢀrfoVꢁꢅV±0oAV  
LrꢁdV(Brreꢅ)  
 wlꢅchlꢂnVWꢁviꢀrfoVꢁꢅV±00oAV  
LrꢁdV(Brreꢅ)V  
V
V
SWP  
5V/DIV  
V
SWP  
SWP  
5V/DIV  
5V/DIV  
V
V
VOUTP  
V
VOUTP  
VOUTP  
10mV/DIV  
10mV/DIV  
10mV/DIV  
AC COUPLED  
AC COUPLED  
AC COUPLED  
I
I
I
L2  
L2  
L2  
0.2A/DIV  
0.2A/DIV  
0.2A/DIV  
3582512 G10  
3582512 G11  
3582512 G12  
2μs/DIV  
200ns/DIV  
5μs/DIV  
 wlꢅchlꢂnVWꢁviꢀrfoVꢁꢅV±oAVLrꢁdV  
(ꢄꢂvifꢅlꢂn)  
 wlꢅchlꢂnVWꢁviꢀrfoVꢁꢅV±0oAV  
LrꢁdV(ꢄꢂvifꢅlꢂn)  
LrꢁdVTfꢁꢂeliꢂꢅ,V2OUTN,V30oAVꢅrV  
60oAVꢅrV30oAV ꢅiueV  
V
SWN  
V
SWN  
10V/DIV  
10V/DIV  
V
VOUTN  
0.1V/DIV  
AC COUPLED  
V
VOUTN  
V
VOUTN  
20mV/DIV  
50mV/DIV  
AC COUPLED  
AC COUPLED  
LOAD  
CURRENT  
–20mA/DIV  
I
I
L1  
L1  
I
L1  
0.2A/DIV  
0.2A/DIV  
0.2A/DIV  
3582512 G13  
3582512 G15  
3582512 G14  
5μs/DIV  
50μs/DIV  
5μs/DIV  
Prwif-DrwꢂVDlechꢁfniV  
WꢁviꢀrfoeV  
(PU EQV=V±±,VPDDꢄ V=V±)  
LrꢁdVTfꢁꢂeliꢂꢅ,V2OUTP,V30oAVꢅrV  
60oAVꢅrV30oAV ꢅiue  
Prwif-UuV iqSiꢂclꢂnVWꢁviꢀrfoeV  
(PU EQV=V±±)  
V
RAMPN  
1V/DIV  
V
OUTP  
0.2V/DIV  
V
RAMPP  
1V/DIV  
AC COUPLED  
V
RAMPN  
1V/DIV  
LOAD  
CURRENT  
20mA/DIV  
V
RAMPP  
1V/DIV  
V
VOUTP  
V
VOUTP  
5V/DIV  
5V/DIV  
I
L2  
V
V
VOUTN  
VOUTN  
0.2A/DIV  
5V/DIV  
5V/DIV  
3582512 G16  
3582512 G18  
3582512 G17  
50μs/DIV  
5ms/DIV  
5ms/DIV  
3582512fb  
7
LT3582/LT3582-5/LT3582-12  
PIN FUNCTIONS  
CAV(PlꢂV±):I C Address Select Pin. Tie this pin to V to set  
the 7-bit address to 0110 001. Tie to GND for 1000 101.  
2
CAPPV(PlꢂeV±0,V±±): Connect the Boost output capacitor  
from these pins to GND. During shutdown, the voltage on  
these pins will remain close to the input voltage due to  
the path through the Boost inductor and Schottky. During  
normal operation, CAPP will be boosted slightly higher  
than the programmed output voltage.  
IN  
2
V(PlꢂV1):NegativeOutputVoltagePin.Whenthecon-  
OUTN  
verterisoperating,thispinisregulatedtotheprogrammed  
negative output voltage. Place a ceramic capacitor from  
this pin to GND.  
  WPV(PlꢂV±1): Positive Switching Node for the Boost  
Converter. This is the drain of the internal NMOS power  
switch. Connect one end of the Boost inductor to this pin.  
Keep the trace area on this pin as small as possible.  
 WNV(PlꢂeV3,V4): Negative Switching Node for the In-  
verting Converter. This is the drain of the internal PMOS  
power switch. Connect one end of the Inverting inductor  
to these pins. Keep the trace area on these pins as small  
as possible.  
GNDV(PlꢂV±3): Ground Pin. Tie to a local ground plane.  
Proper PCB layout is required to achieve advertised per-  
formance; see the Applications Information section for  
more information.  
2 V(PlꢂVꢃ): Input Supply Pin and Source of the PMOS  
ꢄN  
Power Switch. This pin must be bypassed locally with a  
ceramic capacitor. The operating voltage range of this pin  
is 2.55V to 5.5V.  
2 V(PlꢂV±4): Programming Voltage Pin. Drive this pin  
PP  
to 13-15V when programming the OTP memory. Float  
RAMPNV(PlꢂV6): Soft-Start Ramp Pin for the Inverting  
Converter. Place a capacitor from this pin to GND. A  
programmable current of 1μA to 8μA (LT3582) or 1ꢀA  
(LT3582-5/LT3582-12) charges this pin during start-up,  
otherwise. A bypass capacitor should be placed from this  
node to GND if V is used for programming. If V falls  
PP  
PP  
below 13V during OTP programming, an internal FAULT  
2
bit, which can be read through the I C interface, can be  
limiting the ramp rate of V  
GND during shutdown.  
. This pin is discharged to  
OUTN  
set high.  
2
 DAV(PlꢂV±ꢃ): I C Bidirectional Data Pin. Tie to GND or  
RAMPPV(PlꢂV7):Soft-StartRampPinfortheBoostConvert-  
er.PlaceacapacitorfromthispintoGND.Aprogrammable  
currentof1μAto8μA(LT3582)or1ꢀA(LT3582-5/LT3582-12)  
charges this pin during start-up, limiting the ramp rate of  
V if unused.  
IN  
2
 CLV(PlꢂV±6): I C Clock Pin. Tie to GND or V if un-  
IN  
used.  
V . This pin is discharged to GND in shutdown.  
OUTP  
ExureidVPꢁdV(PlꢂV±7): Ground Pin. Tie to a local ground  
plane. Proper PCB layout is required to achieve advertised  
performance;seetheApplicationsInformationsectionfor  
more information.  
SHDNV(PlꢂV8): Shutdown Pin. Drive this pin to 1.1V or  
higher to enable the part. Drive to 0.3V or lower to shut  
down. Includes an integrated 222k pull-down resistor.  
2
V(PlꢂV9): Output of the Boost Converter Output  
OUTP  
Disconnect Circuit. A ceramic capacitor should be placed  
from this node to GND. During shutdown, this pin is  
disconnected from the Boost network which allows this  
pin to discharge to GND, assuming a load is present to  
discharge the capacitance.  
3582512fb  
8
LT3582/LT3582-5/LT3582-12  
BLOCK DIAGRAM  
V
SWP  
CAPP CAPP  
V
OUTP  
IN  
Q
S
R
S
R
Q
VARIABLE DELAY  
VARIABLE DELAY  
Q
Q
DISCONNECT  
CONTROL  
SWN  
SWN  
OTP  
+
GND  
+
I
T
I
T
PEAK OFF  
PEAK OFF  
CONTROL  
CONTROL  
FBP  
+
+
+
V
OUTN  
VCN  
VCP  
0.80V  
CHIP ENABLE  
SHDN  
FBN  
222k  
OTP  
V
V
IN  
PP  
+
0.80V  
SCL  
SDA  
CA  
+
2V  
SERIAL INTERFACE,  
LOGIC AND OTP  
V
V
OUTP  
CAPP  
OTP ADJUST  
IN  
RAMPN  
0.75V  
+
FBP  
OUTPUT SEQUENCING  
BY OTP  
3582512 BD  
V
OUTN  
+
FBN  
2V  
50mV  
OUTPUT SEQUENCING  
OTP ADJUST  
RAMPP  
3582512fb  
9
LT3582/LT3582-5/LT3582-12  
OPERATION  
TheLT3582seriesaredualDC/DCconverters,eachcontain-  
ing both a Boost and an Inverting converter. Operation can  
be best understood by referring to the Block Diagram. The  
Boost and Inverting converters each use a novel control  
technique,whichsimultaneouslyvariesbothpeakinductor  
current and switch off time. This results in high efficiency  
over a large load range and low output voltage ripple. In  
addition, this technique further minimizes output ripple  
when the switching frequency is in the audio band.  
can be configured such that (1) they both rise simultane-  
ously, (2) V rises to regulation before V rises, (3)  
OUTP  
OUTN  
rises, or(4)neither  
V
risestoregulationbeforeV  
OUTN  
OUTP  
output rises. The outputs of the LT3582-5 and LT3582-12  
are pre-configured to rise simultaneously.  
The ramp rates of the outputs are proportional to the ramp  
rates of their respective RAMP pins. A capacitor is placed  
between each RAMP pin and ground. The RAMP pins are  
discharged during shutdown. Once enabled, configurable  
(LT3582) or pre-configured (LT3582-5/LT3582-12) cur-  
rents charge each RAMP pin in the desired sequence  
causing the outputs to rise.  
BrreꢅVCrꢂvifꢅif: The Boost converter uses a grounded  
source NMOS power transistor as the main switching ele-  
ment.ThecurrentintheNMOSisconstantlymonitoredand  
controlled, along with the off-time of the switch to achieve  
OSꢅuSꢅVPrwif-DrwꢂVDlechꢁfni: The power-down dis-  
charge feature is permanently enabled on the LT3582-5  
and LT3582-12 and can be enabled or disabled through  
regulation of V . The V  
OUTP  
voltage is divided by the  
OUTP  
internal programmable (LT3582 only) resistor divider to  
create FBP. The voltage on FBP is compared to an internal  
reference and amplified, creating an error signal on the  
VCPnodewhichcommandstheappropriatepeakinductor  
current and off time for the subsequent switching cycle.  
2
I C on the LT3582. Upon SHDN falling, and when power-  
down discharge is enabled, internal transistors will acti-  
vate to assist in discharging the outputs toward ground.  
When power-down discharge is disabled, the chip powers  
down immediately after SHDN falls and the outputs will  
discharge on their own depending on their external load  
capacitances and currents.  
ꢄꢂvifꢅlꢂnVCrꢂvifꢅif:TheInvertingconverterusesapower  
PMOS transistor with the source connected to V . This  
topology requires only one external inductor, instead of  
the normally required two inductors plus flying capacitor.  
Regulation is achieved in a similar manner as the Boost.  
IN  
OTPVMiorfyV(LT3ꢃ81VOꢂpy):The LT3582 includes 22 bits  
ofuserprogrammableoutputsettingsand1programming  
lockoutbit.Parameterssuchaspositiveandnegativeoutput  
voltages and power sequencing settings can be changed  
OSꢅuSꢅVPrwif-UuV  iqSiꢂclꢂn: After an initial start-up  
delay (T  
OUTN  
= 64μs typical), the outputs V  
and  
START-UP  
OUTP  
2
V
rise(inmagnitude)simultaneouslywiththeLT3582-5/  
in real time with the integrated I C interface. Settings can  
LT3582-12 or in one of four selectable sequences with  
the LT3582. Using the I C interface, the LT3582 outputs  
then be made permanent by programming to the on-chip  
non-volatile OTP (One Time Programmable) memory.  
2
3582512fb  
10  
LT3582/LT3582-5/LT3582-12  
APPLICATIONS INFORMATION  
 CVꢄꢂꢅifꢀꢁci  
1
ACKꢂrwpidni  
2
The LT3582 series contains an I C compatible interface  
The acknowledge signal (ACK) is used in handshaking  
between transmitter and receiver to indicate that the most  
recent byte of data was received. The transmitter always  
releases the SDA line during the acknowledge clock pulse.  
When the slave is the receiver, it pulls down the SDA line  
so that it remains LOW during this pulse to acknowledge  
receipt of the data. If the slave fails to acknowledge  
by leaving SDA high, then the master may abort the  
transmission by generating a STOP condition. When the  
master is receiving data from the slave, the master pulls  
downtheSDAlineduringtheclockpulsetoindicatereceipt  
ofthedata. Afterthelastbytehasbeenreceivedthemaster  
leaves the SDA line HIGH (not acknowledge) and issues a  
stop condition to terminate the transmission.  
allowingittobedigitallyconfigured.Theuseofthisinterface  
is optional for the LT3582-5 and LT3582-12 as these parts  
are pre-configured at the factory. The CA, SDA and SCL  
2
pins can be grounded if the I C interface is unused.  
2
The I C interface has reduced input threshold voltages to  
allow for direct communication with low voltage digital  
2
ICs (see Electrical Characteristics). I C communication  
2
is disabled when SHDN is low. After SHDN rises, I C  
communicationisre-enabledafteradelayof6s(typical).  
The chip is a read-write slave device which allows the user  
to read the current settings and, for the LT3582, write  
new ones. Most settings can be made permanent via the  
One-Time-Programmable memory. The chip will always  
enable using the data stored in OTP and the LT3582 can  
be reconfigured after power-up.  
DivlciVAddfieelꢂn  
The LT3582 series supports two 7-bit chip addresses  
depending on the logic state of the CA pin. The addresses  
are 0110 001 (CA = 1) and 1000 101 (CA = 0). Also, there  
are seven internal data byte locations as shown in Table 1.  
OTP0-OTP2 are the OTP memory bytes. REG0-REG2  
are the corresponding volatile registers used for storing  
alternatesettings. Finally, theCommandRegister(CMDR)  
is used for additional control of the chip.  
 TARTVꢁꢂdV TOPVCrꢂdlꢅlrꢂe  
When the bus is idle, both SCL and SDA are high. A bus  
mastersignalsthebeginningofatransmissionwithaSTART  
condition by transitioning SDA from high to low while SCL  
ishigh,asshowninFigure1.Whenthemasterhasnished  
communicating with the slave, it issues a STOP condition  
by transitioning SDA from low to high while SCL is high.  
The bus is then free for another transmission.  
SDA  
SCL  
A6 - A0  
1-7  
B7 - B0  
B7 - B0  
8
9
1-7  
8
9
1-7  
8
9
S
P
START  
CONDITION  
CHIP  
ADDRESS  
R/W  
ACK  
DATA  
ACK  
DATA  
ACK  
STOP  
CONDITION  
3582512 F01  
FlnSfiV±.VDꢁꢅꢁVTfꢁꢂeꢀifVOvifVꢄ1CVBSe  
3582512fb  
11  
LT3582/LT3582-5/LT3582-12  
APPLICATIONS INFORMATION  
LT3ꢃ81VChluVCrꢂVnSfꢁꢅlrꢂV  
All data bytes can be read from their assigned register  
addresses. Since they share the same register addresses,  
reads of the OTP and REG data bytes are differentiated  
by their corresponding RSEL (Register Select) bits in the  
CMDRregister. Alldatawrittentoregisteraddresses0-2is  
stored in REGO-REG2. Regardless of the RSEL bits, OTP  
bytescannotbewrittendirectly.SeetheOTPProgramming  
section for more information.  
Settings such as output voltages and sequencing are  
digitallyprogrammable.Thechipusessettingsfromeither  
the REG or OTP bytes, depending on the states of the  
corresponding RSEL bits (0 for OTP and 1 for REG).  
During shutdown the RSEL bits are reset low. As a result,  
the initial configuration comes from the OTP data bytes.  
Afterpower-up,theconfigurationcanbechangedbywriting  
new settings to the appropriate REG data byte(s) then  
setting the corresponding RSEL bit(s).  
DꢁꢅꢁVTfꢁꢂeꢀifVPfrꢅrcrp  
The LT3582 series supports 8-bit data transfers in the  
transaction formats shown in Figures 2 and 3. Multiple  
data bytes can only be transferred by issuing multiple  
transactions.  
Finally, data in the REG bytes can be permanently  
programmed to OTP by applying voltage to the V pin  
PP  
and setting the WOTP bit in the Command Register. See  
the OTP Programming section for more information.  
Figure 2 shows the required format for writing a byte of  
datatotheLT3582series.Again,thechipaddressdepends  
on the CA pin logic state.  
LT3ꢃ81-ꢃ/LT3ꢃ81-±1VChluVCrꢂVnSfꢁꢅlrꢂ  
TheLT3582-5/LT3582-12areshippedfromthefactorywith  
the OTP memory pre-programmed and LOCKed which  
prohibits subsequent changes to the configuration. The  
 
CHꢄPVADDR  
W
A
REGVADDR  
A
DATA  
A
P
0110 001 OR  
1000 101  
0
0
00000b2:b0  
0
b7:b0  
0
2
configuration can still be read through the I C bus and  
FROM MASTER TO SLAVE  
FROM SLAVE TO MASTER  
A: ACKNOWLEDGE (LOW)  
the RST and SWOFF bits of the CMDR register (described  
later) are functional. The following sections describe the  
various configurable features of the LT3582. The LT3582-5  
A: NOT ACKNOWLEDGE (HIGH)  
R: READ BIT (HIGH)  
W WRITE BIT (LOW)  
S: START CONDITION  
P: STOP CONDITION  
and LT3582-12 are pre-configured as follows: V and V  
P
N
are programmed for 5V or 12V respectively, LOCK = 1,  
FlnSfiV1.Vꢄ1CVByꢅiVWflꢅiVTfꢁꢂeꢁcꢅlrꢂ  
IRMP = 00, PDDIS = 1, PUSEQ = 11 and V may be 1  
PLUS  
or 0. Since LOCK = 1, subsequent configuration changes  
are prohibited. See Configuration Lockout (LOCK Bit) for  
more information.  
A byte of data is read from the LT3582 series using the  
2
formatshowninFigure3.ThistransactionrequiresfourI C  
bytes to read one byte of chip data and must be repeated  
for each subsequent byte of data that is read.  
RinleꢅifeVꢁꢂdVOTP  
The registers and OTP bytes for the LT3582 series are  
organized as shown in Table 1. The CMDR is reset to 00h  
uponpower-up,duringshutdownandduringundervoltage  
andthermallockouts.REG0-REG2areneverresetandmust  
always be loaded with valid data before use. The LT3582’s  
OTP memory is shipped with all 0’s, and as a result, the  
PUSEQ bits are configured to disable the outputs. The  
PUSEQ bits must be reconfigured to enable the outputs.  
 
CHꢄPVADDR  
W
A
REGVADDR  
A
0110 001 OR  
1000 101  
0
0
00000b2:b0  
0
 
CHꢄPVADDR  
R
A
DATA  
A
P
0110 001 OR  
1000 101  
1
0
b7:b0  
1
FlnSfiV3.Vꢄ1CVByꢅiVRiꢁdVTfꢁꢂeꢁcꢅlrꢂ  
3582512fb  
12  
LT3582/LT3582-5/LT3582-12  
APPLICATIONS INFORMATION  
CMDR: The Command Register is used to control various  
functions of the chip. During shutdown and power-up the  
CMDR is initialized to 00h.  
TꢁbpiV±:VLT3ꢃ81V iflieVRinleꢅifVMꢁu  
REGꢄ TERV REGꢄ - BꢄT  
BꢄTV DE CRꢄPTꢄON  
NAME  
ADDRE    
TER  
NAME  
The RSEL (Register Select) bits are functional only for  
the LT3582. The LT3582-5 and LT3582-12 function as if  
the RSEL bits are always “0”. These bits perform three  
functions:  
00h  
REG0/ 7:0  
OTP0  
V
V
V
Output Voltage (00h=3.2V,  
OUTP  
P
BFh = 12.75V)  
01h  
REG1/ 7:0  
OTP1  
V
Output Voltage (00h=1.2V,  
OUTN  
N
FFh = 13.95V)  
7
6
-
Reserved, Write to 0  
• Each RSEL bit instructs the chip whether to use the  
configuration data from the corresponding OTP byte  
(RSELx = 0) or the REG byte (RSELx = 1). Changing an  
RSELx bit immediately updates the chip configuration.  
LOCK Lockout Bit: See the OTP  
Programming Lockout Section.  
REG2/  
OTP2  
5
V
V
V
Output Voltage Bit: Increase  
by ~25mV  
PLUS  
OUTP  
OUTP  
02h  
4:3 IRMP RAMPP and RAMPN Pull-Up  
2
IRMP  
Current: I  
= (2)  
ꢀA  
• Each RSEL bit determines if I C reads return data from  
RAMP  
2
PDDIS Power-Down Discharge Enable.  
PUSEQ Must be 11 if Set.  
the corresponding OTP byte (RSELx = 0) or the REG  
byte (RSELx = 1).  
1:0 PUSEQ Power-Up Sequencing: 00 =  
Outputs Disabled, 01 = V  
• OTPprogrammingonlyprogramsdatatothebyteswith  
corresponding RSEL bits set high.  
OUTN  
Ramp 1st, 10 = V  
11 = Both Ramp Together  
Ramp 1st,  
OUTP  
Setting the SWOFF bit immediately disables the Boost  
and Inverting power switches and opens the output dis-  
connect PMOS switch. It is recommended to set this bit  
before writing new configuration data. This can prevent  
unexpected chip behavior while modifying the configura-  
tion and also forces a soft-start after SWOFF is cleared  
(see Soft-Start and Power-Up Sequencing). Writing “1”  
7
6
WOTP Write OTP Memory  
CF/  
Clear Fault/OTP Programming  
FAULT Fault  
5
4
3
2
RST Reset  
SWOFF Switches-Off  
04h  
CMDR  
-
Reserved, Write to 0  
RSEL2 Register Select 2 (0 = OTP2,  
1 = REG2)  
2
to the RST bit resets the internal I C logic and the CMDR  
1
0
RSEL1 Register Select 1 (0 = OTP1,  
1 = REG1)  
register. Reading bit 6 of the CMDR returns the FAULT bit  
indicatingifanOTPprogrammingattemptmayhavefailed.  
FAULTisclearedduringreset,power-up,orbywritinga1”  
to the CF (Clear Fault) bit. Conditions that set the FAULT  
RSEL0 Register Select 0 (0 = OTP0,  
1 = REG0)  
OTP0/REG0VꢁꢂdVOTP±/REG±: Data in addresses 00h and  
01h is used to set the output voltages of the Boost and  
Inverting converters respectively. See Setting the Output  
Voltages for more information.  
bit are (1) OTP programming in which the V voltage  
PP  
is too low or (2) attempted OTP programming when the  
LOCK bit is set. OTP write attempts that set the FAULT bit  
due to low V voltage should be considered failures and  
PP  
the device should be discarded. Attempts to re-program  
the OTP memory after the FAULT bit has been set are not  
recommended. Finally, setting the WOTP bit starts the  
OTP programming.  
3582512fb  
13  
LT3582/LT3582-5/LT3582-12  
APPLICATIONS INFORMATION  
OTP1/REG1: Data in address 02h configures the output  
voltage sequencing, sets a fine voltage adjust for V  
anddeterminesiffurtherOTPprogrammingispermittedor  
not. Proper uses of the bits in address 02h are discussed  
in the following sections.  
 rꢀꢅ- ꢅꢁfꢅ/OSꢅuSꢅV2rpꢅꢁniVRꢁoulꢂnV(ꢄRMPVBlꢅe)  
,
OUTP  
TheLT3582seriescontainssoft-startcircuitrytocontrolthe  
output voltage ramp rates, therefore limiting peak switch  
currentsduringstart-up.Highswitchcurrentsareinherent  
in switching regulators during start-up since the feedback  
loop is saturated due to V  
being far from its final value.  
OUT  
 iꢅꢅlꢂnVꢅhiVOSꢅuSꢅV2rpꢅꢁnieV(2 ,V2  
VꢁꢂdV2 VBlꢅe)  
N
PV PLU  
Theregulatortriestochargetheoutputcapacitorasquickly  
TheLT3582seriescontainstworesistordividerswhichare  
programmable in the LT3582, to set the output voltages.  
as possible which results in large currents.  
Capacitors must be connected from RAMPP and RAMPN  
to ground for soft-start. During shutdown or when the  
SWOFF bit is set, the RAMP capacitors are discharged  
to ground. After SHDN rises or SWOFF is cleared, the  
capacitors are charged by programmable (LT3582 only)  
The positive output voltage V  
is adjustable in 25mV  
OUTP  
steps by setting the V bits in REG0/OTP0 in addition to  
P
the V  
bit in REG2/OTP2.  
PLUS  
V
= 3.2V + (V • 50mV) + (V • 25mV)  
PLUS  
OUTP  
P
currents, thus creating linear voltage ramps. The V  
OUT  
where:  
V = an integer value from 0 to 191  
voltages ramp in proportion to their respective RAMP  
P
PLUS  
voltages according to:  
V
= 0 or 1  
V
0.8V  
IRAMP  
OUT  
The V  
voltage is adjustable in –50mV steps by setting  
VOUT _RAMP_RATE =  
Volts / Sec  
OUTN  
C
RAMP  
the V bits in REG1/OTP1.  
N
V
= –1.2V – (V • 50mV)  
N
OUTN  
Proportionality Constant  
where:  
RAMP pin ramp rate (V/Sec)  
where:  
V = an integer value from 0 to 255  
N
DyꢂꢁolcꢁppyVChꢁꢂnlꢂnVꢅhiVOSꢅuSꢅV2rpꢅꢁniV(LT3ꢃ81VOꢂpy):  
After output regulation has been reached, it’s possible to  
change the output voltages by writing new values to the  
I
= RAMP pin charging current set by IRMP  
bits (1μA, 2μA, 4μA or 8μA for LT3582,  
1ꢀA for LT3582-5/LT3582-12)  
= External RAMP pin capacitor (Farads)  
= Output voltage during regulation  
RAMP  
V or V bits. When reducing the magnitude of an out-  
N
P
C
V
RAMP  
OUT  
put voltage, it will decay at a rate dependent on the load  
current and capacitance. Configuring a large increase in  
magnitude of an output voltage can cause a large increase  
in switch current to charge the output capacitor. Before  
reconfiguring the outputs, consider forcing a soft-start  
For example, selecting I  
OUTP  
(see Figure 6).  
= 1μA, C  
= 10nF and  
RAMP  
RAMP  
V
= 12V results in a power-up ramp rate of 1.5Volt/ms  
by asserting the SWOFF bit before writing the new V or  
Ramp rates less than 1-10V/ms generally result in good  
start-upcharacteristics.Theoutputsshouldlinearlyfollow  
the RAMPx voltages with no distortions. Figure 7 shows  
an excessive start-up ramp rate of ~120V/ms in which  
P
V codes. Subsequently clearing SWOFF initiates the new  
N
soft-start sequence.  
3582512fb  
14  
LT3582/LT3582-5/LT3582-12  
APPLICATIONS INFORMATION  
several start-up issues have occurred: A) the expected  
The LT3582 series incorporates an output disconnect  
V
ramp up path is not followed B) inductor current  
PMOS allowing V  
to be grounded during shutdown.  
OUTP  
OUTP  
ringing occurs C) the V  
ramp rate is limited due to  
Once enabled, the Disconnect Control circuit actively  
OUTP  
the output disconnect current limit being reached D) ad-  
ditional ringing occurs when the CAPP pin starts charging  
E) output voltage overshoot occurs because the inductor  
currents are maximized during the output ramp-up.  
drives the PMOS gate allowing V  
to ramp up linearly  
reaches regulation,  
OUTP  
as shown in Figure 6. Once V  
OUTP  
the PMOS is fully turned “on” to reduce resistance and  
improve efficiency.  
In some cases it may be desirable to use only one RAMP  
pin capacitor. In cases where PUSEQ = 11 (see the Power-  
Up Sequencing section) the RAMPP and RAMPN pins  
can be connected together and to a single capacitor. In  
this case the capacitor will charge with twice the current  
configured by the IRMP bits.  
Prwif-UuV iqSiꢂclꢂnV(PU EQVblꢅe)  
Once enabled, the part requires a delay of T  
(64μs  
START-UP  
typ)toproperlyconfigureitself.Onceconfigured,theorder  
in which V and V ramp to regulation is controlled  
OUTP  
OUTN  
by the PUSEQ bits. The combinations available for the  
LT3582 are shown in Table 2. The LT3582-5/LT3582-12  
are pre-configured with the 11 combination.  
RꢁoulꢂnV2  
VꢀfroVGfrSꢂd: The LT3582 series has  
OUTP  
the unique ability to generate a smooth V  
voltage  
OUTP  
TꢁbpiV1.VPrwif-UuV iqSiꢂcie  
PU EQ[±:0] Prwif-UuV iqSiꢂci  
ramp starting from ground and continuing all the way up  
to regulation (see Figure 6). This ability is not possible  
with typical Boost converters in which the output is taken  
from the cathode of the Schottky diode (CAPP node in  
Figure 5).  
00  
01  
10  
11  
Outputs are disabled, neither output ramps up  
V
V
ramps up 1st, followed by V  
ramps up 1st, followed by V  
OUTN  
OUTP  
OUTP  
OUTN  
Both V  
and V  
ramp-up starting at the same time.  
OUTN  
OUTP  
L1  
Selecting the 01 or 10 combinations cause one of the out-  
SWP  
LT3582  
D1  
puts to start ramping shortly after SHDN rises. The ramp  
CAPP  
SERIES  
V
OUTP  
rate of V  
is controlled by the RAMP pin as discussed  
OUT  
C1  
intheSoft-Startsection. AfterV  
nearsitstargetregula-  
OUT  
C3  
LOAD  
C2  
DISCONNECT  
CONTROL  
V
IN  
A
E
V
RAMPP  
0.5V/DIV  
3582512 F05  
FlnSfiVꢃ.VBrreꢅVCrꢂvifꢅifVTrurprny  
B
D
CAPP  
3V/DIV  
V
OUTP  
3V/DIV  
C
I
L2  
0.2A/DIV  
CAPP  
2V/DIV  
3582512 F07  
50μs/DIV  
V
OUTP  
FlnSfiV7.V2OUTPV rꢀꢅ- ꢅꢁfꢅVwlꢅhVExcieelviVRꢁouVRꢁꢅi  
2V/DIV  
V
RAMPP  
0.2V/DIV  
I
L2  
0.2A/DIV  
3582512 F06  
1ms/DIV  
FlnSfiV6.V2OUTPV rꢀꢅ- ꢅꢁfꢅVRꢁoulꢂnVꢀfroVGfrSꢂd  
3582512fb  
15  
LT3582/LT3582-5/LT3582-12  
APPLICATIONS INFORMATION  
tion voltage, the remaining output is activated and ramps  
under control of its respective RAMP pin (see Figure 8).  
The power-up sequencing concludes when both outputs  
have reached regulation.  
The PDDIS bit must only be set in conjunction with  
PUSEQ being set to 11. Driving SHDN low, with power-  
down discharge enabled (PDDIS = 1) causes the chip to  
power-down after first discharging the output voltages.  
Specifically, driving SHDN low causes the following se-  
quence of events to happen:  
EvꢁpSꢁꢅlꢂnVPU EQV iꢅꢅlꢂneV(LT3ꢃ81VOꢂpy): After SHDN  
rises, the LT3582 uses the PUSEQ configuration found  
in OTP. The effects of differing PUSEQ settings can be  
observed without writing to OTP by taking the following  
actions:  
1. Both converters are turned off.  
2. Discharge currents are enabled to discharge the output  
capacitors  
1. Write the SWOFF bit high, stopping both converters  
and discharging the RAMP pins.  
• See Electrical Characteristics for I  
and  
VOUTP-PDS  
I
which help discharge V  
and CAPP  
CAPP-PDS  
OUTP  
2. Write the desired settings to the PUSEQ bits in REG2.  
• See Electrical Characteristics for I  
which  
VOUTN-PDS  
3. Set the RSEL2 bit high which selects the REG2 con-  
figuration settings.  
helps discharge V  
OUTN  
3. Thechipwaitsuntiltheoutputvoltageshave discharged  
to within ~0.5V to ~1.5V of ground.  
4. Write SWOFF low which restarts both converters.  
This will initiate the desired power-up sequence that can  
be observed with an oscilloscope.  
4. DischargecurrentsaredisabledandtheLT3582powers  
down.  
Since the LT3582 series won’t power-down until both  
outputs are discharged (when power-down sequencing is  
Prwif-DrwꢂVDlechꢁfniV(PDDꢄ Vblꢅ)  
The PDDIS bit is used to enable power-down discharge.  
This bit is pre-configured to a “1” for the LT3582-5 and  
LT3582-12, thus enabling power-down discharge.Setting  
PDDIS = 0 disables the power-down discharge causing  
the chip to shut down immediately after SHDN falls.  
enabled), make sure V  
and V  
can be grounded.  
OUTP  
OUTN  
This is not a problem in most topologies. However, read  
the section Output Disconnect Operating Limits for ad-  
ditional information.  
RAMPP  
V
RAMPP  
RAMPN  
0.5V/DIV  
V
RAMPN  
0.5V/DIV  
V
VOUTP  
5V/DIV  
V
VOUTN  
5V/DIV  
3582512 F08  
5ms/DIV  
FlnSfiV8.VPrwif-UuV iqSiꢂclꢂnV(PU EQV=V±0)  
3582512fb  
16  
LT3582/LT3582-5/LT3582-12  
APPLICATIONS INFORMATION  
is programmed at a time to reduce noise on V caused  
CrꢂVnSfꢁꢅlrꢂVLrckrSꢅV(LOCKVblꢅ)  
PP  
by the sudden change in current. A 1-10μF V bypass  
PP  
After a desired configuration is programmed into OTP, the  
LOCK bit can be set to prohibit subsequent changes to the  
configuration. The LT3582-5 and LT3582-12 are precon-  
figured with the LOCK bit set to a logic “1” which:  
capacitor is also recommended to prevent voltage droop  
after programming begins. Also, avoid hot-plugging V  
PP  
which results in very fast voltage ramp rates and can lead  
to excessive voltage on the V pin.  
PP  
• Forces the chip to use the OTP configuration only.  
ExꢁoupiVOTPVPfrnfꢁoolꢂnVApnrflꢅho:  
2
• Forces all I C reads from addresses 0-2 to return OTP  
1. Apply 15V to the V pin. This can be done at any  
data.  
P-P  
time before step 5.  
• ProhibitsanyfurtherprogrammingoftheOTPmemory.  
Any further attempts to program OTP leaves the OTP  
memory unchanged and sets the FAULT bit in the  
CMDR.  
2. Write 50h to the CMDR. This disables the power  
switches during programming by setting the SWOFF  
bit in the CMDR. This also clears the FAULT bit.  
3. Write desired data to REG0-REG2.  
The LOCK OTP bit is set by programming a logic “1” into  
2
bit 6 of OTP2. Regardless of the RSEL2 setting, I C reads  
4. Write 11h to the CMDR. This selects REG0 for pro-  
gramming while keeping the switches off.  
of the LOCK bit always indicate the LOCKed or unlocked  
state of the OTP memory.  
5. Write 91h to the CMDR. This programs the REG0 data  
to OTP0.  
OTPVPfrnfꢁoolꢂnV(LT3ꢃ81Vrꢂpy)  
6. Write11htotheCMDR.Thiscommandcanbesentim-  
mediately after step 5. This stops the programming.  
The LT3582 contains One Time Programmable non-vola-  
tile memory to permanently store the chip configuration.  
Before programming, it’s recommended to set the SWOFF  
bit to disable switching activity and prevent unexpected  
chip behavior while the configuration is being changed.  
Programming involves the transfer of information from  
the REG bytes to the OTP bytes. Therefore, valid data must  
first be written to the desired REG bytes. After the REG  
bytes are written, they are selected by setting the cor-  
responding RSEL bits in the CMDR. This forces the chip  
into the desired configuration and selects those bytes for  
7. Read the CMDR and verify that the FAULT bit is not  
set.  
8. Repeat steps 4-7 for the remaining bytes that need  
programming.  
9. Write 10h to the CMDR. This selects the OTP data for  
read verification.  
10. Read the OTP data and verify the contents.  
programming to OTP. After 15V has been applied to V ,  
11. Write 00h to CMDR. This enables the power switches  
and the chip will operate from the OTP configura-  
tion.  
PP  
theWOTPbitissetintheCMDRtostarttheprogramming.  
Finally, the WOTP bit is cleared to finish the programming.  
An example programming algorithm is given below.  
12. Float the V pin. This can be done at any time after  
PP  
OTP programming draws about 3mA to 6mA per bit from  
step 8.  
the V pin. It is possible to program all 23 bits simultane-  
PP  
ously(upto~138mA),butitisrecommendedthatonebyte  
3582512fb  
17  
LT3582/LT3582-5/LT3582-12  
APPLICATIONS INFORMATION  
ChrrelꢂnVꢄꢂdScꢅrfe  
PiꢁkVCSffiꢂꢅVRꢁꢅlꢂn:Realinductorscanexperienceadrop  
in inductance as current and temperature increase. The  
inductors should have saturation current ratings higher  
than the peak inductor currents. The peak inductor cur-  
rents can be calculated as:  
Several series of inductors that work well with the LT3582  
series are listed in Table 3. This table is not complete, and  
there are many other manufacturers and parts that can  
be used. Consult each manufacturer for more detailed  
information and for their entire selection of related parts,  
as many different sizes and shapes are available.  
VLSWON T  
IPK ILIMIT  
where:  
+
OS mA  
L
TꢁbpiV3.VꢄꢂdScꢅrfVMꢁꢂSꢀꢁcꢅSfife  
Coilcraft  
LPS3008-LPS4018 Series, www.coilcraft.com  
XPL2010 Series  
I
I
= Peak inductor current  
= Typically 350mA for Boost and 600mA  
for Inverting  
= Inductance in ꢀH  
= Maximum inductor voltage when the  
power switch is “on.” Typically max V  
for the Boost and Inverting converters.  
= 100 for Boost and 125 for Inverting  
PK  
LIMIT  
Murata  
Sumida  
LQH32C, LQH43C Series  
www.murata.com  
CDRH26D09, CDRH26D11, www.sumida.com  
CDRH3D14 Series  
L
V
TDK  
VLF and VLCF Series  
www.tdk.com  
LSWON  
OS  
Würth  
Elektronik  
WE-TPC Series Type T, TH, www.we-online.com  
XS and S  
IN  
T
Inductances of 2.2μH to 10ꢀH typically result in a good  
tradeoff between inductor size and system performance.  
More inductance typically yields an increase in efficiency  
at the expense of increased output ripple. Less inductance  
may be used in a given application depending on required  
efficiencyandoutputcurrent.Forhigherefficiency,choose  
inductorswithhighfrequencycorematerial,suchasferrite,  
to reduce core losses. Also to improve efficiency, choose  
inductors with more volume for a given inductance. The  
inductor should have low DCR (copper-wire resistance)  
2
to reduce I R losses, and must be able to handle the peak  
inductor current without saturating. To minimize radiated  
noise, use a toroidal or shielded inductor (note that the  
inductance of shielded types will drop more as current  
increases, and will saturate more easily).  
3582512fb  
18  
LT3582/LT3582-5/LT3582-12  
APPLICATIONS INFORMATION  
MꢁxloSoVLrꢁdVCSffiꢂꢅe:VUse one of the following equa-  
tions to estimate the maximum output load current for the  
positive and negative output voltages:  
CꢁuꢁclꢅrfV ipicꢅlrꢂ  
The small size and low ESR of ceramic capacitors makes  
them suitable for most LT3582 series applications. X5R  
andX7Rtypesarerecommendedbecausetheyretaintheir  
capacitance over wider voltage and temperature ranges  
thanothertypessuchasY5VorZ5U. A4.7μFinputcapaci-  
tor and a 2.2μF to 10μF output capacitor are sufficient for  
most LT3582 series applications. Always use a capacitor  
with a sufficient voltage rating. Many capacitors rated at  
2.2μF to 10μF, particularly 0805 or 0603 case sizes, have  
greatly reduced capacitance at the desired output voltage.  
Generally a 1206 capacitor will be adequate. A 0.22μF to  
1μF capacitor placed on the CAPP node is recommended  
to filter the inductor current while the larger 2.2μF to 10μF  
IOUTP  
=
IN(MIN) ⎞ ⎛  
V
TOFF _MIN (VOUTP + 0.5 – V  
)
IN(MIN)  
I  
0.8η  
PK  
V
2 L  
⎠ ⎝  
OUTP  
or IOUTN  
=
V
TOFF _MIN (|VOUTN |+0.5)  
IN(MIN)  
I  
0.8η  
PK  
VIN(MIN)+|VOUTN  
|
2 L  
where:  
placed on the V  
and V  
nodes will give excellent  
OUTP  
OUTN  
V
V
PK  
= Regulation voltage  
= Minimum input voltage.  
OUT  
IN(MIN)  
transient response and stability. Avoid placing large value  
capacitors (generally > 6.8μF) on brꢅh CAPP and V  
.
OUTP  
I
= Peak inductor current. See the Peak  
This configuration can be less stable since it creates two  
poles, one at the CAPP pin and the other at the V  
Current Rating section. Use minimum  
rating for these calculations.  
OUTP  
I
LIMIT  
pin, which can be near each other in frequency. Table 4  
shows a list of several capacitor manufacturers. Consult  
the manufacturers for more detailed information and for  
their entire selection of related parts.  
η
= Power conversion efficiency (about 88%  
for Boost or 78% for Inverting)  
= Minimum switch off time. Typically 100ns  
for Boost and 125ns for Inverting.  
= Output load current  
T
OFF_MIN  
I
TꢁbpiV4.VCifꢁolcVCꢁuꢁclꢅrfVMꢁꢂSꢀꢁcꢅSfife  
OUT  
MANUFACTURER  
Kemet  
PHONE  
URL  
For example, if V  
= 10V, V  
= –10V, V = 5V, and  
OUTN IN  
OUTP  
OUTP  
408-986-0424  
814-237-1431  
408-573-4150  
847-803-6100  
www.kemet.com  
www.murata.com  
www.t-yuden.com  
www.tdk.com  
L = 4.7μH then I  
= 117mA and I  
= 105mA.  
OUTN  
Murata  
Note: The 155mA (Typ) current limit of the output dis-  
connect PMOS (see Electrical Characteristics) may limit  
Taiyo Yuden  
TDK  
maximum I  
unless CAPP is shorted to V  
. See the  
OUTP  
OUTP  
Improving Boost Converter Efficiency section.  
DlrdiV ipicꢅlrꢂ  
MꢁxloSoV piwVRꢁꢅi: Lower inductance causes higher  
Schottky diodes, with their low forward voltage drops and  
fast switching speeds, are recommended for use with the  
LT3582 series. The Diodes Inc. B0540WS is a very good  
choice in a small SOD-323 package. This diode is rated to  
handleanaverageforwardcurrentof500mAandperforms  
well across a wide temperature range. Schottky diodes  
with very low forward voltage drops are also available.  
Thesediodesmayimproveefficiencyatmoderateandcold  
temperatures, but will likely reduce efficiency at higher  
temperatures due to excessive reverse leakage currents.  
current slew rates which can lead to current limit over-  
shoot. Choose an inductance higher than L  
the overshoot:  
to limit  
MIN  
L
= V  
• 0.2ꢀH  
MIN  
IN(MAX)  
where V  
is the maximum input voltage. Using the  
IN(MAX)  
previous example V = 3V, L  
= 0.6μH.  
IN  
MIN  
3582512fb  
19  
LT3582/LT3582-5/LT3582-12  
APPLICATIONS INFORMATION  
OSꢅuSꢅVDlecrꢂꢂicꢅVOuifꢁꢅlꢂnVLlolꢅe  
ꢄoufrvlꢂnVBrreꢅVCrꢂvifꢅifVEꢀVcliꢂcy  
The LT3582 series has a PMOS output disconnect switch  
The efficiency of the Boost converter can be improved by  
connected between CAPP and V  
. During normal  
shortingtheCAPPpintotheV  
pin(seeFigure11).The  
OUTP  
OUTP  
operation, the switch is closed and current is internally  
limited to about 155mA (see Figure 9). Make sure that the  
outputloadcurrentdoesn’texceedthePMOScurrentlimit.  
ExceedingthecurrentlimitcausesasignificantriseinPMOS  
power consumption which may damage the device.  
power loss in the PMOS disconnect circuit is then made  
negligible. In most applications, the associated CAPP pin  
capacitor can be removed and the larger V  
can adequately filter the output voltage.  
capacitor  
OUTP  
During shutdown, the PMOS switch is open and CAPP is  
isolated from V  
up to a voltage difference of 5-5.5V.  
OUTP  
In most cases this allows V  
to discharge to ground.  
I
CAPP-VOUTP  
20ꢀA/DIV  
OUTP  
However, when the Boost inductor input exceeds 5.5V, the  
CAPP-V voltagemayexceed5Vallowingsomecurrent  
OUTP  
flowthroughthePMOSswitch.Inaddition,applyingCAPP-  
voltages in excess of 5.7V(typical) may activate  
V
OUTP  
internal protection circuitry which turns the PMOS “on”  
(see Figure 10). If the current is not limited, this can lead  
to a sharp increase in the PMOS power consumption and  
maydamagethedevice.Ifthissituationcannotbeavoided,  
limitPMOSpowerconsumptiontolessthan1/3Watt(about  
50mA at 7V) to avoid damaging the device. Refer to the  
Absolute Maximum Ratings table for maximum limits on  
3582512 F11  
V
1V/DIV  
CAPP-VOUTP  
FlnSfiV±0.VPMO VCSffiꢂꢅVveV2rpꢅꢁniVDSflꢂnV hSꢅdrwꢂ  
4
3
12  
5
SWN  
SWN  
SWP  
CAPP-V  
voltages and currents.  
V
IN  
OUTP  
11  
10  
180  
160  
140  
120  
100  
80  
CAPP  
CAPP  
13  
2
GND  
C1  
I
LOAD  
LT3582  
9
V
OUTP  
V
OUTN  
14  
15  
16  
1
V
PP  
SDA  
SCL  
CA  
60  
8
SHDN  
RAMPP RAMPN  
40  
7
6
3582512 F12  
20  
0
FlnSfiV±±.VꢄoufrvidVEꢀVcliꢂcy  
0
100  
200  
CAPP-V  
300  
(mV)  
400  
500  
OUTP  
3582512 F10  
FlnSfiV9.VPMO VCSffiꢂꢅVveV2rpꢅꢁniVDSflꢂnVNrfoꢁpVOuifꢁꢅlrꢂ  
3582512fb  
20  
LT3582/LT3582-5/LT3582-12  
APPLICATIONS INFORMATION  
the switching regulator to minimize interplane coupling.  
Suggested component placement is shown in Figure 12.  
Make sure to include the ground plane cuts as shown in  
Figure12.Theswitchingactionoftheregulatorscancause  
large current steps in the ground plane. The cuts reduce  
noise by recombining the current steps into a continuous  
flow under the chip, thus reducing di/dt related ground  
noise in the ground plane.  
NotethattheripplevoltageonV  
willtypicallyincrease  
OUTP  
in this configuration since the output disconnect PMOS,  
when not shorted, helps to create an RC filter at the  
output. Also, if the V  
pin is shorted to CAPP, the  
OUTP  
power-down discharge should not be enabled. V  
OUTP  
cannot be discharged to ground during shutdown due to  
the path from V to V through the external inductor  
IN  
OUTP  
and diode. Finally, due to the path from V to V  
,
IN  
OUTP  
current will flow through the integrated feedback resistor  
CA SCL SDA VPP  
whenever voltage is present on V .  
IN  
C
VPP  
(OPT)  
ꢄꢂfSehVCSffiꢂꢅ  
16  
15  
14  
13  
When the Boost inductor input voltage (usually V ) is  
IN  
L1  
V
OUTN  
1
2
12  
stepped from ground to the operating voltage, a high  
level of inrush current may flow through the inductor  
and Schottky diode into the CAPP capacitor. Conditions  
that increase inrush current include a larger more abrupt  
voltage step at the inductor input, larger CAPP capacitors  
and inductors with low inductances and/or low saturation  
currents.Forcircuitsthatuseoutputcapacitorvalueswithin  
the recommended range and have input voltages of less  
than 5V, inrush current remains low, posing no hazard to  
the devices. In cases where there are large input voltage  
steps (more than 5V) and/or a large CAPP capacitor is  
used, inrush current should be measured to ensure safe  
operation.  
C
OUTN  
C
C
17  
CAPP  
11  
3
4
10  
9
L2  
GND  
OUTP  
C
5
6
7
8
IN  
V
OUTP  
SHDN  
V
IN  
VIAS TO GROUND PLANE UNDER  
PIN 17 REQUIRED TO IMPROVE  
THERMAL PERFORMANCE  
ThifoꢁpVLrckrSꢅ  
If the die temperature reaches approximately 147°C, the  
part will go into thermal lockout. In this event, the chip  
is reset which turns off the power switches and starts to  
dischargetheRAMPcapacitors.Thepartwillbere-enabled  
when the die temperature drops by about 3.5°C.  
GROUND PLANE  
BrꢁfdVLꢁyrSꢅVCrꢂeldifꢁꢅlrꢂe  
3582512 F13  
As with all switching regulators, careful attention must be  
paidtothePCBboardlayoutandcomponentplacement.To  
maximize efficiency, switch rise and fall times are made as  
shortaspossible.Topreventelectromagneticinterference  
(EMI) problems, proper layout of the high frequency  
switching path is essential. The voltage signals of the  
SWP and SWN pins have sharp rising and falling edges.  
Minimize the length and area of all traces connected to  
the SWP/SWN pins and always use a ground plane under  
FlnSfiV±1.V SnnieꢅidVCrourꢂiꢂꢅVPpꢁcioiꢂꢅV(NrꢅVꢅrV cꢁpi)  
3582512fb  
21  
LT3582/LT3582-5/LT3582-12  
APPLICATIONS INFORMATION  
SWN  
SWN  
SHDN  
INPUT  
V
IN  
4.5V TO 5.5V  
D1  
L1  
SWP  
6.8ꢀH  
L2  
6.8ꢀH  
GND  
C1  
4.7ꢀF  
D2  
LT3582  
C4  
1ꢀF  
C2  
4.7ꢀF  
V
CAPP  
CAPP  
NEG  
–12V  
V
OUTN  
85mA  
V
POS  
2
SDA  
SCL  
CA  
I C  
12V  
V
OUTP  
INTERFACE  
OPTIONAL ON  
LT3582-12  
80mA  
V
PP  
C3  
RAMPP RAMPN  
3582512 TA05a  
C5  
10nF  
C6  
10nF  
REG0/OTP0 = B0h D1-D2: DIODES INC. B0540WS-7  
REG1/OTP1 = D8h L1-L2: COILCRAFT XPL2010-682  
REG2/OTP2 = 03h C1: 4.7ꢀF, 6.3V, X5R, 0805  
C2: 4.7ꢀF, 16V, X5R, 0805  
C3: 1s 4.7ꢀF OR 2s 4.7ꢀF OR 10ꢀF  
16V, X5R, 0805  
C4: 1ꢀF, 16V, X5R, 0603  
C5-C6: 10nF, 0603  
FlnSfiV±3.V±±12VOSꢅuSꢅeVꢀfroVꢁV lꢂnpiVꢃ2VꢄꢂuSꢅ  
2OUTPVRluupi  
2OUTNVRluupiVꢁꢂdVC1V ipicꢅlrꢂ  
80  
60  
40  
20  
0
25  
20  
15  
10  
5
4.7ꢀF 16V 0805 X5R  
10ꢀF 16V 0805 X5R  
2× 4.7ꢀF 16V 0805 X5R  
0
0
20  
40  
60  
80  
0
20  
40  
60  
80  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
3582512 TA05c  
3582512 TA05b  
AperV iiVTyulcꢁpVChꢁfꢁcꢅifleꢅlceVꢁꢂdVFfrꢂꢅVPꢁniVꢀrfVAddlꢅlrꢂꢁpVDꢁꢅꢁ  
3582512fb  
22  
LT3582/LT3582-5/LT3582-12  
TYPICAL APPLICATION  
±ꢃ2VOSꢅuSꢅeVꢀfroVꢁV lꢂnpiV1.72VꢅrV3.82VꢄꢂuSꢅ  
SWN  
SWN  
SHDN  
INPUT  
V
IN  
D1  
L1  
2.7V TO 3.8V  
6.8ꢀH  
SWP  
L2  
6.8ꢀH  
GND  
C1  
4.7ꢀF  
D2  
C4  
1ꢀF  
LT3582  
C2  
10ꢀF  
V
NEG  
CAPP  
CAPP  
–5V  
V
OUTN  
100mA (V ≥ 2.7V)  
IN  
V
POS  
5V  
100mA (V ≥ 2.7V)  
124mA (V ≥ 3.3V)  
IN  
125mA (V ≥ 3.3V)  
IN  
2
SDA  
SCL  
CA  
I C  
V
OUTP  
IN  
INTERFACE  
OPTIONAL ON  
LT3582-5  
V
PP  
C3  
10ꢀF  
RAMPP RAMPN  
3582512 TA02a  
C5  
22nF  
C6  
22nF  
REG0/OTP0 = 24h D1-D2: DIODES INC. B0540WS-7  
REG1/OTP1 = 4Ch L1-L2: COILCRAFT LPS4018-682ML  
REG2/OTP2 = 03h C1: 4.7ꢀF, 6.3V, X5R, 0805  
C2-C3: 10ꢀF, 6.3V, X5R 0805  
C4: 1ꢀF, 6.3V, X5R, 0603  
C5-C6: 22nF, 0603  
EꢀVcliꢂcyVꢁꢂdVPrwifVLree,VLrꢁdVꢀfroV2OUTPVꢅrVGND  
EꢀVcliꢂcyVꢁꢂdVPrwifVLree,VLrꢁdVꢀfroV2OUTNVꢅrVGND  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
95  
85  
75  
65  
55  
45  
35  
180  
160  
140  
120  
100  
80  
95  
85  
75  
65  
55  
45  
35  
V
= 3.3V  
V
= 3.3V  
IN  
IN  
60  
40  
20  
0
100  
0.1  
1
10  
100  
0.1  
1
10  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
3582512 TA02b  
3582512 TA02c  
EꢀVcliꢂcyVꢁꢂdVPrwifVLree,VLrꢁdVꢀfroV2OUTPVꢅrV2OUTN  
300  
250  
200  
150  
100  
50  
95  
85  
75  
65  
55  
45  
35  
V
= 3.3V  
IN  
0
100  
0.1  
1
10  
LOAD CURRENT (mA)  
3582512 TA02d  
3582512fb  
23  
LT3582/LT3582-5/LT3582-12  
TYPICAL APPLICATION  
±ꢃ2VOSꢅuSꢅeVꢀfroVꢁV lꢂnpiV1.72VꢅrV3.82VꢄꢂuSꢅV(ꢄoufrvidVEꢀVcliꢂcy)  
SWN  
SWN  
SHDN  
INPUT  
V
IN  
D1  
L1  
2.7V TO 3.8V  
6.8ꢀH  
SWP  
L2  
6.8ꢀH  
GND  
C1  
4.7ꢀF  
D2  
C3  
10ꢀF  
LT3582  
C2  
10ꢀF  
V
NEG  
CAPP  
CAPP  
–5V  
V
OUTN  
100mA (V ≥ 2.7V)  
IN  
V
POS  
125mA (V ≥ 3.3V)  
IN  
2
5V  
SDA  
SCL  
CA  
I C  
V
OUTP  
110mA (V ≥ 2.7V)  
150mA (V ≥ 3.3V)  
IN  
IN  
INTERFACE  
OPTIONAL ON  
LT3582-5  
V
PP  
RAMPP RAMPN  
3582512 TA03  
C5  
22nF  
C6  
22nF  
REG0/OTP0 = 24h D1-D2: DIODES INC. B0540WS-7  
REG1/OTP1 = 4Ch L1-L2: COILCRAFT LPS4018-682ML  
REG2/OTP2 = 03h C1: 4.7ꢀF, 6.3V, X5R, 0805  
C2-C3: 10ꢀF, 6.3V, X5R, 0805  
C4: 1ꢀF, 6.3V, X5R, 0603  
C5-C6: 22nF, 0603  
EꢀVcliꢂcyVꢁꢂdVPrwifVLree,VLrꢁdVꢀfroV2OUTPVꢅrVGND  
95  
85  
75  
65  
55  
45  
35  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 3.3V  
IN  
0.1  
1
10  
100  
LOAD CURRENT (mA)  
3582512 TA03a  
3582512fb  
24  
LT3582/LT3582-5/LT3582-12  
TYPICAL APPLICATION  
±12VꢁꢂdV–ꢃ2VOSꢅuSꢅeVꢀfroVꢁV lꢂnpiV1.72VꢅrVꢃ.ꢃ2VꢄꢂuSꢅ  
SWN  
SWN  
SHDN  
INPUT  
V
IN  
D1  
L1  
2.7V TO 5.5V  
6.8ꢀH  
SWP  
L2  
6.8ꢀH  
GND  
C1  
D2  
C4  
1ꢀF  
LT3582  
4.7ꢀF  
C2  
10ꢀF  
V
NEG  
CAPP  
CAPP  
–5V  
V
OUTN  
100mA  
V
POS  
12V  
SDA  
SCL  
CA  
V
OUTP  
2
I C  
38mA (V = 2.7)  
IN  
C3  
4.7ꢀF  
V
INTERFACE  
PP  
58mA (V = 3.6)  
IN  
95mA (V = 5.5)  
IN  
RAMPP RAMPN  
3582512 TA04a  
C5  
22nF  
C6  
22nF  
REG0/OTP0 = B0h D1-D2: DIODES INC. B0540WS-7  
REG1/OTP1 = 4Ch L1-L2: COILCRAFT LPS4018-682ML  
REG2/OTP2 = 0Bh C1: 4.7ꢀF, 6.3V, X5R, 0805  
C2: 10ꢀF, 6.3V, X5R, 0805  
C3: 4.7ꢀF, 16V, X5R, 0805  
C4: 1ꢀF, 16V, X5R, 0603  
C5-C6: 22nF, 0603  
EꢀVcliꢂcyVꢁꢂdVPrwifVLree,VLrꢁdVꢀfroV2OUTNVꢅrVGND  
EꢀVcliꢂcyVꢁꢂdVPrwifVLree,VLrꢁdVꢀfroV2OUTPVꢅrVGND  
180  
160  
140  
120  
100  
80  
95  
85  
75  
65  
55  
45  
35  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
95  
85  
75  
65  
55  
45  
35  
V
= 3.6V  
V
= 3.6V  
IN  
IN  
60  
40  
20  
0
100  
0.1  
1
10  
0.1  
1
10  
100  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
3582512 TA04c  
3582512 TA04b  
EꢀVcliꢂcyVꢁꢂdVPrwifVLree,VLrꢁdVꢀfroV2OUTPVꢅrV2OUTN  
95  
85  
75  
65  
55  
45  
35  
200  
180  
160  
140  
120  
100  
80  
V
= 3.6V  
IN  
60  
40  
20  
0
100  
0.1  
1
10  
LOAD CURRENT (mA)  
3582512 TA04d  
3582512fb  
25  
LT3582/LT3582-5/LT3582-12  
PACKAGE DESCRIPTION  
UDVPꢁckꢁni  
±6-LiꢁdVPpꢁeꢅlcVQFNV(3ooV×V3oo)  
(Reference LTC DWG # 05-08-1691)  
0.70 p0.05  
3.50 p 0.05  
2.10 p 0.05  
1.45 p 0.05  
(4 SIDES)  
PACKAGE OUTLINE  
0.25 p0.05  
0.50 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
BOTTOM VIEW—EXPOSED PAD  
PIN 1 NOTCH R = 0.20 TYP  
OR 0.25 s 45o CHAMFER  
R = 0.115  
TYP  
0.75 p 0.05  
3.00 p 0.10  
(4 SIDES)  
15 16  
PIN 1  
TOP MARK  
(NOTE 6)  
0.40 p 0.10  
1
2
1.45 p 0.10  
(4-SIDES)  
(UD16) QFN 0904  
0.200 REF  
0.25 p 0.05  
0.00 – 0.05  
0.50 BSC  
NOTE:  
1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WEED-2)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
3582512fb  
26  
LT3582/LT3582-5/LT3582-12  
REVISION HISTORY (RivlelrꢂVhleꢅrfyVbinlꢂeVꢁꢅVRivVB)  
RE2  
DATE  
DE CRꢄPTꢄON  
PAGEVNUMBER  
B
11/09 Revised Title and Add text to Description  
Revised Pin Configuration  
1
2
11  
2
Added Text to I C Interface Section  
Revised Typical Application Drawings  
22, 23, 24  
3582512fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
27  
LT3582/LT3582-5/LT3582-12  
TYPICAL APPLICATION  
TlꢂyVAMOLEDVPrwifV SuupyVleV0.8ooV(Mꢁx)VThlꢂ  
EꢀVcliꢂcyVꢁꢂdVPrwifVLree,VLrꢁdVꢀfroV2OUTPVꢅrV2OUTN  
90  
80  
70  
60  
50  
40  
30  
350  
300  
250  
200  
150  
100  
50  
V
= 3.3V  
SWN  
SWN  
SHDN  
IN  
INPUT  
V
IN  
2.7V TO 4.2V  
L1  
D1  
SWP  
1.5ꢀH  
L2  
1.5ꢀH  
GND  
C1  
10ꢀF  
D2  
LT3582  
C4  
10ꢀF  
C2  
10ꢀF  
V
CAPP  
CAPP  
NEG  
–5V  
V
OUTN  
90mA  
V
POS  
SDA  
SCL  
CA  
4.6V  
V
OUTP  
2
I C  
INTERFACE  
100mA  
V
PP  
C3  
10ꢀF  
0
100  
RAMPP RAMPN  
3582512 TA06a  
0.1  
1
10  
C5  
10nF  
C6  
10nF  
LOAD CURRENT (mA)  
3582512 TA06b  
REG0/OTP0 = 1Ch D1-D2: PANASONIC M21D3800L LOW V SCHOTTKY  
F
REG1/OTP1 = 4Ch L1-L2: TDK MLP3216S1R5L  
REG2/OTP2 = 07h C1-C4: TAIYO YUDEN JMK212BJ106MK, 6.3V, X5R 0805  
C5-C6: 0402 X5R  
RELATED PARTS  
PART  
DE CRꢄPTꢄON  
COMMENT  
V : 1.2V to 15V, V  
LT1944/LT1944-1(Dual) Dual Output 350mA I , Constant Off-Time,  
= 34V, I = 20ꢀA, I <1ꢀA, MS10  
Q SD  
SW  
IN  
OUT(MAX)  
OUT(MAX)  
OUT(MAX)  
High Efficiency Step-Up DC/DC Converter  
LT1945(Dual)  
Dual Output, Pos/Neg, 350mA I , Constant Off-Time, V : 1.2V to 15V, V  
=
=
34V, I = 20ꢀA, I <1ꢀA, MS10  
Q SD  
SW  
IN  
High Efficiency Step-Up DC/DC Converter  
LT3463/LT3463A  
Dual Output, Boost/Inverter, 250mA I , Constant  
V : 2.4V to 15V, V  
IN  
40V, I = 40ꢀA, I <1ꢀA, DFN  
Q SD  
SW  
Off-Time, High Efficiency Step-Up DC/DC Converter  
with Integrated Schottkys  
LT3471  
Dual Output, Boost/Inverter, 1.3A I , 1.2MHz,  
V : 2.4V to 16V, V  
=
=
40V, I = 2.5mA, I <1ꢀA, DFN  
Q SD  
SW  
IN  
OUT(MAX)  
OUT(MAX)  
OUT(MAX)  
OUT(MAX)  
OUT(MAX)  
OUT(MAX)  
OUT(MAX)  
OUT(MAX)  
OUT(MAX)  
OUT(MAX)  
High Efficiency Boost-Inverting DC/DC Converter  
LT3472  
Dual Output, Boost/Inverter, 0.35A I , 1.2MHz, High  
V : 2.2V to 16V, V  
34V, I = 2.8mA, I <1ꢀA, DFN  
Q SD  
SW  
IN  
Efficiency Boost-Inverting DC/DC Converter  
LT3477  
42V, 3A, 3.5MHz Boost, Buck-Boost, Buck LED Driver  
V : 2.5V to 25V, V  
= 40V, I = Analog/PWM, I <1ꢀA,  
Q SD  
IN  
QFN, TSSOP-20E  
LT3494/LT3494A  
180/350mA (I ), Low Noise High Efficiency Step-Up V : 2.3V to 16V, V  
= 40V, I = 65ꢀA, I <1ꢀA,  
Q SD  
SW  
IN  
DC/DC Converter  
2mm × 3mm DFN  
LT3495/LT3495B/  
LT3495-1/LT3495B-1  
650/350mA (I ), Low Noise High Efficiency Step-Up V : 2.5V to 16V, V  
= 40V, I = 60ꢀA, I <1ꢀA,  
Q SD  
SW  
IN  
DC/DC Converter  
2mm × 3mm DFN  
LT1930/LT1930A  
LT1931/LT1931A  
LT3467/LT3467A  
LT1618  
1A (I ), 1.2/2.2MHz, High Efficiency Step-Up  
V : 2.6V to 16V, V  
= 34V, I = 4.2/5.5mA, I <1ꢀA,  
Q SD  
SW  
IN  
DC/DC Converter  
ThinSOT™  
1A (I ), 1.2/2.2MHz, High Efficiency Inverting DC/DC V : 2.6V to 16V, V  
= 34V, I = 4.2/5.5mA, I <1ꢀA, ThinSOT  
Q SD  
SW  
IN  
Converter  
1.1A (I ), 1.3/2.1MHz, High Efficiency Step-Up DC/DC V : 2.4V to 16V, V  
= 40V, I = 1.2mA, I <1ꢀA, ThinSOT  
Q SD  
SW  
IN  
Converter with Soft-Start  
1.5A (I ), 1.4MHz, High Efficiency Step-Up  
V : 1.6V to 18V, V  
IN  
= 35V, I = 1.8mA, I <1ꢀA, MS10, DFN  
Q SD  
SW  
DC/DC Converter  
LT1946/LT1946A  
1.5A (I ), 1.2/2.7MHz, High Efficiency Step-Up DC/DC V : 2.6V to 16V, V  
= 34V, I = 3.2mA, I <1ꢀA, MS8E  
Q SD  
SW  
IN  
Converter  
ThinSOT is a trademark of Linear Technology Corporation.  
3582512fb  
LT 0110 REV B • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
28  
© LINEAR TECHNOLOGY CORPORATION 2009  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT3582EUD#PBF

LT3582 - Boost and Single Inductor Inverting DC/DC Converters with Optional I<sup>2</sup>C Programing and OTP; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3582EUD#TRPBF

LT3582 - Boost and Single Inductor Inverting DC/DC Converters with Optional I<sup>2</sup>C Programing and OTP; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3582EUD-12#PBF

LT3582 - Boost and Single Inductor Inverting DC/DC Converters with Optional I<sup>2</sup>C Programing and OTP; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3582EUD-12#TRPBF

LT3582 - Boost and Single Inductor Inverting DC/DC Converters with Optional I<sup>2</sup>C Programing and OTP; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3582EUD-12PBF

I2C Programmable Boost and Single Inductor Inverting DC/DC Converters with OTP
Linear

LT3582EUD-12TRPBF

I2C Programmable Boost and Single Inductor Inverting DC/DC Converters with OTP
Linear

LT3582EUD-5#PBF

LT3582 - Boost and Single Inductor Inverting DC/DC Converters with Optional I<sup>2</sup>C Programing and OTP; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3582EUD-5#TRPBF

LT3582 - Boost and Single Inductor Inverting DC/DC Converters with Optional I<sup>2</sup>C Programing and OTP; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3582EUD-5PBF

I2C Programmable Boost and Single Inductor Inverting DC/DC Converters with OTP
Linear

LT3582EUD-5TRPBF

I2C Programmable Boost and Single Inductor Inverting DC/DC Converters with OTP
Linear

LT3582EUDPBF

I2C Programmable Boost and Single Inductor Inverting DC/DC Converters with OTP
Linear

LT3582EUDTRPBF

I2C Programmable Boost and Single Inductor Inverting DC/DC Converters with OTP
Linear