LT3640EUFDPBF [Linear]

Dual Monolithic Buck Regulator with Power-On Reset and Watchdog Timer; 双通道单片式降压型稳压器具有上电复位和看门狗定时器
LT3640EUFDPBF
型号: LT3640EUFDPBF
厂家: Linear    Linear
描述:

Dual Monolithic Buck Regulator with Power-On Reset and Watchdog Timer
双通道单片式降压型稳压器具有上电复位和看门狗定时器

稳压器
文件: 总24页 (文件大小:566K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Electrical Specifications Subject to Change  
LT3640  
Dual Monolithic Buck  
Regulator with Power-On  
Reset and Watchdog Timer  
FEATURES  
DESCRIPTION  
The LT®3640 is a dual channel, current mode monolithic  
buck switching regulator with a power-on reset and a  
watchdog timer. Both regulators are synchronized to a  
single oscillator with an adjustable frequency (350kHz to  
2.5MHz). At light loads, both regulators operate in low  
ripple Burst Mode® to maintain high efficiency and low  
output ripple.  
n
High Voltage Buck Regulator:  
4V to 36V Operating Range  
1.3A Output Current  
n
OVLO Protects Input to 55V  
n
Low Voltage Synchronous Buck Regulator:  
2.5V to 5.5V Input Voltage Range  
1A Output Current  
n
Synchronizable, Adjustable 350kHz to 2.5MHz  
The high voltage channel is a nonsynchronous buck with  
an internal 2.4A top switch that operates from an input  
of 4V to 36V; a 38V OVLO protects the device to 55V. The  
low voltage channel operates from an input of 2.5V to  
5.5V. Internal synchronous power switches provide high  
efficiency without the need of external Schottky diode.  
Bothchannelshavecycle-by-cyclecurrentlimit,providing  
protection against shorted outputs.  
Switching Frequency  
Programmable Power-On Reset Timer  
n
n
Programmable Window Mode Watchdog Timer  
n
Quiescent Current: 275μA  
n
Short-Circuit Robust  
n
Programmable Soft-Start  
n
Low Shutdown Current: I < 1μA  
Q
n
Available in Thermally Enhanced 28-Lead  
The power-on reset and watchdog timeout periods are  
both adjustable using external capacitors. The window  
mode watchdog timer flags when the μP pulses group  
too close together or too far apart.  
(4mm × 5mm) QFN and 28-Lead TSSOP Packages  
APPLICATIONS  
n
Industrial Power Supplies  
Automotive Electronic Control Units  
The LT3640 is available in a 28-pin 4mm × 5mm QFN  
package and 28-pin TSSOP package. Both packages have  
an exposed pad for low thermal resistance.  
n
L, LT, LTC, LTM, Linear Technology, Burst Mode and the Linear logo are registered trademarks  
and ThinSOT is a trademark of Linear Technology Corporation. All other trademarks are the  
property of their respective owners.  
TYPICAL APPLICATION  
2MHz 3.3V/0.8A and 1.8V/0.8A Step Down Regulators  
HV Channel Efficiency,  
2MHz, VOUT1 = 3.3V  
LV Channel Efficiency,  
2MHz, VOUT2 = 1.8V  
0.22μF  
V
IN  
5V TO 34V  
10μF  
3.3μH  
80.6k  
90  
85  
80  
75  
70  
90  
85  
80  
75  
70  
V
OUT1  
EN/UVLO  
V
SW  
BST SW1  
IN  
3.3V/0.8A  
V
IN2  
= 3.3V  
SYNC  
PGOOD  
WDE  
22μF  
DA  
FB1  
V
IN  
= 12V  
49.9k  
10μF  
V
OUT1  
100k  
100k  
μP  
LT3640  
V
IN2  
RST1  
RST2  
WDO  
WDI  
EN2  
1μH  
V
OUT2  
SW2  
1.8V/0.8A  
100k  
47μF  
CWDT  
CPOR  
FB2  
RT GND SS2 SS1  
49.9k  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
0
0.2  
0.4  
0.6  
0.8  
1
1nF  
1.5nF  
1.5nF  
32.4k  
V
CURRENT (A)  
V
OUT2  
CURRENT (A)  
OUT1  
1nF  
3640 TA01b  
3640 TA01c  
3640 TA01a  
3640p  
1
LT3640  
(Note 1)  
ABSOLUTE MAXIMUM RATINGS  
V , EN/UVLO Voltage (Note 7).................................55V  
SW2 Voltage ................................0.3V to (V + 0.3V)  
IN  
IN2  
WDE Voltage.............................................................30V  
BST Above SW, SW1 Voltage....................... –0.3V to 6V  
SW1 Above SW Voltage............................... –0.3V to 6V  
DA Current..................................................................2A  
Operating Junction Temperature Range (Note 2)  
LT3640E................................................. –40°C to 125°C  
LT3640I.................................................. –40°C to 125°C  
Storage Temperature Range................... –65°C to 150°C  
Lead Temperature, FE Only (Soldering, 10 sec) .... 300°C  
V
, SYNC, EN2, PGOOD, WDI,  
IN2  
WDO, RST1, RST2, Voltages ....................... –0.3V to 6V  
SS1, SS2, FB1, FB2, RT, CWDT,  
CPOR Voltages……….............................. –0.3V to 2.5V  
PIN CONFIGURATION  
TOP VIEW  
TOP VIEW  
1
2
SS2  
EN2  
GND  
SW2  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
FB2  
PGOOD  
EN/UVLO  
SYNC  
SS1  
3
28 27 26 25 24 23  
4
SYNC  
SS1  
1
2
3
4
5
6
7
8
22  
21  
20  
19  
18  
17  
16  
15  
SW2  
5
V
IN2  
V
IN2  
6
GND  
FB1  
FB1  
GND  
7
V
RT  
IN  
RT  
V
29  
GND  
IN  
29  
8
BST  
SW  
RST2  
RST1  
WDO  
RST2  
RST1  
WDO  
CWDT  
BST  
SW  
SW1  
DA  
9
10  
11  
12  
13  
14  
SW1  
DA  
CWDT  
CPOR  
WDE  
9
10 11 12 13 14  
UFD PACKAGE  
NC  
GND  
GND  
WDI  
28-LEAD (4mm s 5mm) PLASTIC QFN  
= 34°C/W  
FE PACKAGE  
θ
28-LEAD PLASTIC TSSOP  
JA  
EXPOSED PAD (PIN 29) IS GND, MUST BE SOLDERED TO PCB  
θ
= 30°C/W  
JA  
EXPOSED PAD (PIN 29) IS GND, MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
LT3640EFE#PBF  
LT3640IFE#PBF  
TAPE AND REEL  
PART MARKING*  
LT3640FE  
LT3640FE  
3640  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LT3640EFE#TRPBF  
LT3640IFE#TRPBF  
LT3640EUFD#TRPBF  
LT3640IUFD#TRPBF  
28-Lead Plastic TSSOP  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
28-Lead Plastic TSSOP  
LT3640EUFD#PBF  
LT3640IUFD#PBF  
28-Lead (4mm × 5mm) Plastic QFN  
28-Lead (4mm × 5mm) Plastic QFN  
3640  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
3640p  
2
LT3640  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 12V, VIN2 = 3.3V, EN/UVLO = 12V, EN2 = 3.3V, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
3.6  
MAX  
4
UNITS  
l
l
l
l
V
IN  
V
IN  
V
IN  
V
IN  
Undervoltage Lockout Threshold  
Undervoltage Release Threshold  
Overvoltage Lockout Threshold  
Overvoltage Release Threshold  
V
V
V
V
3.8  
4.2  
38  
35  
34  
36.5  
35.5  
37  
Quiescent Current from V  
EN/UVLO = 0.3V  
Not Switching  
0.1  
275  
1
375  
μA  
μA  
IN  
EN/UVLO Threshold Voltage  
EN/UVLO High Bias Current  
EN/UVLO Low Bias Current  
SYNC Input Frequency  
1.2  
1.26  
2
1.3  
V
μA  
EN/UVLO = Threshold + 60mV  
EN/UVLO = Threshold – 60mV  
0.1  
μA  
0.35  
0.4  
2.5  
1
MHz  
V
SYNC Threshold Voltage  
Switching Frequency  
0.8  
l
l
RT = 32.4k  
RT = 182k  
1.75  
450  
2
500  
2.35  
550  
MHz  
kHz  
l
FB1 Voltage  
1.24  
1.265  
30  
1.29  
100  
V
nA  
FB1 Bias Current  
FB1 Line Regulation  
SW1 Minimum Off-Time  
FB1 = 1.265V  
5V < V < 30V  
0.001  
70  
%/V  
ns  
IN  
SW1 V  
I
= 800mA  
SW1  
400  
0.1  
mV  
μA  
CESAT  
SW1 Leakage Current  
SW1 Current Limit  
1
l
l
FB1 = 1V (Note 3)  
FB1 = 0.1V  
2.2  
1.1  
2.8  
1.8  
3.3  
A
A
DA Current limit  
FB1 = 1V (Note 4)  
FB1 = 0.1V  
1.35  
0.8  
1.7  
A
A
BST Pin Current  
I
= 800mA  
30  
2
50  
2.7  
130  
90  
mA  
V
SW1  
Minimum BST-SW Voltage  
ΔFB1 to Start LV Channel  
ΔFB1 Hysteresis to Stop LV Channel  
80  
30  
100  
50  
mV  
mV  
V
l
l
V
V
Minimum Operating Voltage  
Maximum Operating Voltage  
2.3  
2.5  
5.5  
1.5  
612  
100  
IN2  
IN2  
V
EN2 Threshold Voltage  
FB2 Voltage  
0.3  
1
V
l
588  
600  
0
mV  
nA  
%/V  
ns  
FB2 Bias Current  
FB2 = 0.6V  
FB2 Line Regulation  
SW2 Minimum Off-Time  
SW2 PMOS Current Limit  
SW2 NMOS Current Limit  
2.5V < V < 5.5V  
0.01  
70  
IN2  
l
l
(Note 5)  
(Note 5)  
1.5  
0.9  
1.9  
1.1  
275  
200  
40  
2.2  
1.3  
A
A
SW2 PMOS R  
SW2 NMOS R  
I
I
= 0.5A (Note 6)  
= 0.5A (Note 6)  
mΩ  
mΩ  
mV  
mV  
mV  
DS(ON)  
DS(ON)  
SW2  
SW2  
ΔFB2 to Enable PGOOD  
ΔFB2 Hysteresis to Disable PGOOD  
PGOOD Voltage  
20  
20  
80  
80  
40  
FB2 = 0.6V, I  
= 1mA  
200  
320  
PGOOD  
3640p  
3
LT3640  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 12V, VIN2 = 3.3V, EN/UVLO = 12V, EN2 = 3.3V, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
1.9  
5
MAX  
2.5  
30  
UNITS  
μA  
mV  
mV  
%
SS1, SS2 Charge Current  
SS1 = 0.5V, SS2 = 0.5V  
SS1 = 0.6V  
1.4  
SS1 to FB1 Offset Voltage  
SS2 to FB2 Offset Voltage  
SS2 = 0.3V  
5
30  
l
l
RST1 Threshold as Percentage of V  
RST2 Threshold as Percentage of V  
Undervoltage to RST Assert Time  
RST1, RST2, WDO Pull-Up Current  
RST1, RST2, WDO Output Voltage  
90  
89  
92  
92  
20  
15  
150  
9.5  
16  
32  
2
94  
FB  
94  
%
FB  
μs  
RST1, RST2, WDO = 0V  
5
30  
250  
11  
μA  
mV  
ms  
ms  
ms  
ms  
μA  
V
I
, I  
, I  
= 2mA  
RST1 RST2 WDO  
l
RST1, RST2 Timeout Period (t  
)
CPOR = 220pF  
CWDT = 820pF  
CWDT = 820pF  
CWDT = 820pF  
WDI = 1.2V  
8
14  
RST  
Watchdog Start Delay Time (t  
Watchdog Upper Boundary (t  
Watchdog Lower Boundary (t  
WDI Pull-Up Current  
)
DLY  
18  
l
l
)
27  
35  
WDU  
)
1.68  
2.2  
WDL  
2
WDI Voltage Threshold  
0.55  
300  
300  
0.85  
1.15  
0.9  
WDI Low Minimum Pulse Width  
WDI High Minimum Pulse Width  
WDE Pull-Down Current  
WDE Threshold  
ns  
ns  
WDE = 2V  
1
μA  
V
l
0.5  
0.7  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 3: SW1, SW2 current limit is guaranteed by design and/or correlation  
to static test. Slope compensation reduces current limit at higher duty  
cycle.  
Note 4: The oscillator cycle is extended when DA current exceeds its limit.  
Note 2: The LT3640E is guaranteed to meet performance specifications  
from 0°C to 125°C junction temperature. Specifications over the –40°C  
to 125°C operating junction temperature range are assured by design,  
characterization and correlation with statistical process controls. The  
LT3640I is guaranteed and tested over the full –40°C to 125°C operating  
junction temperature range.  
DA current limit is flat over duty cycle.  
Note 5: If the SW2 NMOS current exceeds its limit at the start of an  
oscillator cycle, the PMOS will not be turned on in the cycle.  
Note 6: The QFN switch R  
is guaranteed by correlation to wafer level  
DS(ON)  
measurement.  
Note 7: Absolute maximum voltage at V and RUN/SS pin is 55V for  
IN  
nonrepetitive one second transients, and 36V for continuous operation.  
3640p  
4
LT3640  
TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
HV Channel Efficiency  
(2MHz, VOUT1 = 5V)  
LV Channel Efficiency  
(2MHz, VOUT2 = 1.2V)  
HV Channel Efficiency  
(2MHz, VOUT1 = 3.3V)  
90  
85  
80  
75  
70  
90  
85  
80  
75  
70  
90  
85  
80  
75  
70  
V
= 12V  
IN  
V
= 12V  
IN  
V
= 24V  
IN  
V
= 16V  
IN  
V
= 3.3V  
V
= 16V  
= 24V  
IN2  
IN  
V
= 5V  
IN2  
V
IN  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
0
0.2  
0.4  
0.6  
0.8  
1.0  
V
CURRENT (A)  
V
CURRENT (A)  
V
OUT2  
CURRENT (A)  
OUT1  
OUT1  
3640 G01  
3640 G02  
3640 G03  
LV Channel Efficiency  
(2MHz, VOUT2 = 1.8V)  
Quiescent Current vs VIN  
Quiescent Current vs Temperature  
0.35  
0.30  
350  
300  
90  
85  
80  
75  
70  
V
= 3.3V  
IN2  
0.25  
250  
V
= 5V  
IN2  
0.20  
0.15  
0.10  
0.05  
200  
150  
100  
50  
0.00  
0
20  
30  
40  
50  
100  
150  
0
10  
–50  
0
0
0.2  
0.4  
0.6  
0.8  
1.0  
V
CURRENT (A)  
V
VOLTAGE (V)  
IN  
TEMPERATURE (°C)  
OUT2  
3640 G05  
3640 G06  
3640 G04  
FB1 Voltage vs SS1  
FB1 Voltage vs Temperature  
FB2 Voltage vs Temperature  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
1.40  
1.35  
1.30  
1.25  
1.20  
1.15  
1.10  
1.05  
1.00  
REGULATION  
REGULATION  
RST1 THRESHOLD  
RST2 THRESHOLD  
0
1.0  
1.5  
2.0  
50  
100  
150  
0.5  
–50  
0
50  
100  
150  
–50  
0
SS1 VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3640 G08  
3640 G09  
3640 G07  
3640p  
5
LT3640  
TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Switching Frequency  
vs Temperature  
HV Channel Current Limit  
vs Duty Cycle  
FB2 Voltage vs SS2  
0.52  
0.51  
0.50  
0.49  
0.48  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
700  
600  
500  
400  
300  
200  
100  
0
0
40  
60  
80  
100  
0
400  
6000  
800  
1000  
–50  
0
50  
100  
150  
20  
200  
TEMPERATURE (°C)  
DUTY CYCLE (%)  
SS2 VOLTAGE (mV)  
3640 G11  
3640 G12  
3640 G10  
LV Channel Peak Current Limit  
vs Duty Cycle  
LV Channel Switch Voltage  
Drop vs Current (VIN2 = 3.3V)  
VOUT1 Minimum Load to Run at  
Full Frequency (VOUT1 = 3.3V)  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
450  
400  
350  
300  
250  
200  
150  
100  
50  
2.0  
1.5  
1.0  
0.5  
0.0  
2.5MHz  
2MHz  
PMOS  
NMOS  
0
0
5
10  
V
15  
20  
25  
30  
0.5  
1
1.5  
0
0
40  
60  
80  
100  
20  
VOLTAGE (V)  
SW2 CURRENT (A)  
DUTY CYCLE (%)  
IN  
3640 G15  
3640 G14  
3640 G13  
HV Channel Switching Frequency  
(VOUT1 = 3.3V)  
LV Channel Switching Frequency  
(VOUT2 = 1.8V)  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 3.3V  
V
= 12V  
IN2  
IN  
V
= 16V  
V
= 5V  
IN  
IN2  
V
= 24V  
IN  
0
0.4  
CURRENT (A)  
OUT2  
0.6  
0.8  
1.0  
0.2  
0
0.4  
0.6  
0.8  
1.0  
1.2  
0.2  
V
V
CURRENT (A)  
OUT1  
3640 G17  
3640 G16  
3640p  
6
LT3640  
T = 25°C, unless otherwise noted.  
A
TYPICAL PERFORMANCE CHARACTERISTICS  
Watchdog Upper Boundary  
Period vs CWDT  
Full Frequency Waveforms  
PFM Operation Waveforms  
180  
160  
140  
120  
100  
80  
SW1  
10V/DIV  
SW1  
10V/DIV  
I
L1  
I
L1  
0.5A/DIV  
0.5A/DIV  
SW2  
5V/DIV  
SW2  
5V/DIV  
60  
40  
I
L2  
I
L2  
20  
0.5A/DIV  
0.5A/DIV  
0
3640 G19  
3640 G18  
0
1000  
2000  
3000  
4000  
5000  
200ns/DIV  
200ns/DIV  
C
CAPACITANCE (pF)  
WDT  
V
V
= 12V  
OUT1  
V = V  
IN2 OUT1  
V
V
= 12V  
OUT1  
V
OUT2  
= V  
IN1  
IN1  
IN2 OUT1  
3640 G20  
= 3.3V/25mA  
V
= 1.8V/30mA  
= 3.3V/0.5A  
V
= 1.8V/0.5A  
OUT2  
Watchdog Upper Boundary  
Period vs Temperature  
RST/WDO Pull-Up Current  
35  
30  
20  
15  
10  
5
25  
20  
15  
10  
5
0
0
50  
100  
150  
–50  
0
1
1.5  
2
0
0.5  
TEMPERATURE (°C)  
RST/WDO VOLTAGE (V)  
3640 G21  
3640 G22  
3640p  
7
LT3640  
PIN FUNCTIONS (FE/QFN)  
FB2(Pin1/Pin26):Thelowvoltageconverterregulatesthe  
FB2 pin to 600mV. Connect the feedback resistor divider  
tap to this pin to set output voltage.  
WDE (Pin 13/Pin 10): Watchdog Enable Pin.  
WDI (Pin 14/Pin 11): The WDI pin receives watchdog  
signals from a microprocessor.  
PGOOD (Pin 2/Pin 27): Open-drain logic output that starts  
to sink current when FB2 is in regulation.  
GND (Pins 15, 16, 23, 26, Exposed Pad 29/Pins 12, 13,  
20, 23, Exposed Pad 29): Ground. These pins must be  
soldered to PCB ground.  
EN/UVLO (Pin 3/Pin 28): Pull this pin below 0.3V to shut  
down the LT3640. The 1.26V threshold can function as an  
accurateundervoltagelockout,preventingtheLT3640from  
NC (Pin 17/Pin 14): Not Connected.  
DA (Pin 18/Pin 15): The DA pin is used to sense the catch  
diodecurrentforcurrentlimitandprotection.Connectthis  
pin to catch diode anode.  
operating until V voltage has reached the programmed  
IN  
level.  
SYNC (Pin 4/Pin 1): Driving the SYNC pin with an external  
clock signal synchronizes both converters to the applied  
frequency. The lowest external clock frequency should be  
20% higher than the internal oscillator frequency.  
SW1 (Pin 19/Pin 16): Output of the High Voltage Internal  
Power Switch. Connect this pin to the inductor and catch  
diode cathode.  
SW (Pin 20/Pin 17): The SW pin is used to charge the  
SS1 (Pin 5/Pin 2): The SS1 pin sets the FB1 voltage ex-  
ternally between 0V and 1.265V, providing soft-start and  
tracking. Tie this pin 1.5V or higher to use the internal  
1.265Vreference. Acapacitortogroundatthispinsetsthe  
ramp time to regulated output voltage for the high voltage  
converter. Use a resistor divider to track another supply.  
boost capacitor. Connect this pin to the boost capacitor.  
BST(Pin21/Pin18):TheBSTpinisusedtoprovideadrive  
voltage, higher than V pin voltage, to the high voltage  
IN  
channel internal power switch. Connect an external boost  
diode to this pin.  
FB1(Pin6/Pin3):Thehighvoltageconverterregulatesthe  
FB1 pin to 1.265V. Connect the feedback resistor divider  
tap to this pin to set output voltage.  
V
(Pin 22/Pin 19): The V pin supplies current to  
IN  
IN  
the LT3640’s internal circuitry and to the high voltage  
channel internal power switch. This pin must be locally  
bypassed.  
RT (Pin 7/Pin 4): Oscillator Resistor Input. Connecting a  
resistor to ground from this pin sets the internal oscillator  
frequency.  
V
(Pin 24/Pin 21): The V pin supplies current to the  
IN2  
IN2  
internal power MOSFET of the low voltage converter and  
to the LT3640’s internal circuitry when V is above 3V.  
RST2 (Pin 8/Pin 5): Open-drain logic output that remains  
asserted for the period set by the CPOR pin capacitor after  
FB2 goes above 550mV.  
IN2  
SW2 (Pin 25/Pin 22): Switch Node of the Low Voltage  
Converter. Connect this pin to an inductor.  
RST1 (Pin 9/Pin 6): Open-drain logic output that remains  
asserted for the period set by the CPOR pin capacitor after  
FB1 goes above 1.165V.  
EN2 (Pin 27/Pin 24): Low Voltage Converter Enable Pin.  
Pull this pin below 0.3V to shut down the low voltage  
converter. Pull this pin above 1.5V to enable the low volt-  
age converter.  
WDO(Pin10/Pin7):Open-drainlogicoutputthatremains  
asserted for the period set by the CPOR pin capacitor if  
WDE is enabled and WDI pin is not driven by an appropri-  
ate signal.  
SS2 (Pin 28/Pin 25): The SS2 pin sets the FB2 voltage  
externally between 0V and 0.6V, providing soft-start and  
tracking. Tie this pin 0.8V or higher to use the internal  
0.6V reference. A capacitor to ground at this pin sets the  
ramp time to regulated output voltage for the low voltage  
converter. Use a resistor divider to track another supply.  
CWDT (Pin 11/Pin 8): Connect a capacitor to ground at  
this pin to set watchdog timer.  
CPOR (Pin 12/Pin 9): Connect a capacitor to ground at this  
pin to set the power-on reset timer and WDO output timer.  
3640p  
8
LT3640  
BLOCK DIAGRAM  
C
IN  
V
IN  
2μA  
D
BST  
BST  
SW  
EN/  
UVLO  
100k  
C
BST  
+
ENABLE  
+
Q1  
R
Q
A4  
A3  
S
5.5V  
DRIVER  
+
V
REF  
A1  
A2  
1.265V  
L1  
V
OUT1  
C
2μA  
SW1  
DA  
g
D1  
m1  
SS1  
VC1  
+
+
+
RAMP  
GENERATOR  
OUT1  
OSCILLATOR  
3
R2  
FB1  
V
OUT1  
+
R1  
RT  
SYNC  
+
A8  
V
IN2  
+
A5  
3
C
IN2  
2μA  
g
m2  
+
S
L2  
SS2  
FB2  
V
OUT2  
C
SW2  
+
LOGIC  
CIRCUIT  
VC2  
A7  
R
Q
+
R4  
OUT2  
V
OUT2  
+
V
REF  
50mV  
R3  
+
600mV  
A6  
+
PGOOD  
A9  
EN2  
2μA  
2μA  
CWDT  
CPOR  
WATCHDOG  
TIMER  
POR TIMER  
RST1  
RST2  
WDE  
WDI  
WDO  
3640 BD  
3640p  
9
LT3640  
TIMING DIAGRAMS  
Power-On Reset Timing  
FB  
t
t
RST  
UV  
RST  
Watchdog Timing  
WDI  
WDO  
t < t  
WDU  
t
t
WDU  
DLY  
t < t  
t
t
< t < t  
t
RST  
WDL RST  
WDL  
WDU  
3640 TD  
OPERATION  
The LT3640 is a dual channel, constant-frequency, current  
mode monolithic buck switching regulator with power-on  
resetandwatchdogtimer.Bothchannelsaresynchronized  
toasingleoscillatorwithfrequencysetbyRT.Operationcan  
be best understood by referring to the Block Diagram.  
An active clamp (not shown) on the VC1 node provides  
peak current limit. A DA pin current comparator extends  
the oscillator cycle until the catch diode current is below  
the valley current limit. Both the peak and valley current  
limits help to control the inductor current in fault condi-  
tions such as shorted output with high V . Both current  
IN  
Buck Regulators  
limits are reduced when the voltage at the FB1 pin is below  
0.2V. This current foldback helps to control the inductor  
current during start-up and overload.  
The high voltage channel is a nonsynchronous buck  
regulator that operates from the V pin. The start of each  
IN  
oscillator cycle sets an SR latch and turns on the internal  
The NPN power switch driver operates from either the V  
IN  
NPN power switch. An amplifier and comparator monitor  
pin or the BST pin. An external capacitor and diode are  
used to generate a voltage between the BST and SW pins.  
Duringthepower-upoftheLT3640,aninternal5mAcurrent  
source charges the external BST capacitor. The regulator  
starts switching when the (BST-SW) voltage reaches the  
2V threshold. The internal NPN power switch can be fully  
saturated for efficient operation when the (BST-SW) volt-  
age is between 2.3V and 5.5V.  
thecurrentowingbetweentheV andSW1pins, turning  
IN  
theswitchoffwhenthiscurrentreachesaleveldetermined  
by the voltage at VC1 node. An error amplifier measures  
the output voltage through an external resistor divider tied  
to the FB1 pin and servos the VC1 node. The reference  
of the error amplifier is determined by the lower of the  
internalreferenceandthevoltageattheSS1pin.Iftheerror  
amplifier’s output increases, more current is delivered to  
the output; if it decreases, less current is delivered.  
The low voltage channel is a synchronous buck regulator  
that operates from the V pin. It starts switching only  
IN2  
3640p  
10  
LT3640  
OPERATION  
when the V pin voltage is above 2.3V, the EN2 pin is  
to ground. Any overvoltage or undervoltage condition on  
IN2  
pulled high and the FB1 pin voltage is above 1.165V. The  
internal top power MOSFET is turned on each cycle at the  
beginning of each oscillator cycle, and turned off when  
the current flowing through the top MOSFET reaches a  
level determined by the voltage at the VC2 node. An error  
amplifier measures the output voltage through an external  
resistor divider tied to the FB2 pin and servos the VC2  
node. The reference of the error amplifier is determined by  
the lower of the internal 600mV reference and the voltage  
at the SS2 pin.  
the V pin triggers an internal latch that discharges the  
IN  
SS1 pin to below 100mV before it is released. If the EN2  
pin goes low, the V voltage falls below 2.2V or the FB1  
IN2  
pin goes below 1.165V, the SS2 pin will be discharged to  
below 100mV before it is released.  
To optimize efficiency, the LT3640 switches to low ripple  
Burst Mode operation in light load situations. Between  
switching pulses, control-circuitry current is minimized.  
A power good comparator with 40mV of hysteresis trips  
when the low voltage channel is enabled and the FB2 pin is  
above550mV. ThePGOODpinisanopen-drainoutputthat  
is pulled low when both the outputs are in regulation.  
WhilethetopMOSFETisoff,thebottomMOSFETisturned  
on in an oscillator cycle until the inductor current starts  
to reverse. If the inductor current is higher than the valley  
current limit at the beginning of an oscillator cycle, the top  
MOSFET will not turn on in this cycle, limiting inductor  
current in shorted output fault.  
Power-On Reset and Watchdog Timer  
The LT3640 includes one power-on reset timer for each  
buck regulator and one common watchdog timer. Power-  
on reset and watchdog timers are both adjustable using  
external capacitors. Operation can be best understood by  
referring to the Timing Diagram.  
Aninternalregulatorprovidespowertothecontrolcircuitry.  
The regulator draws most power from the V pin and a  
IN2  
small portion of power from the V pin when the V pin  
IN  
IN2  
voltage is higher than 3V. If the voltage at V pin is lower  
IN2  
The RST1, RST2 and WDO pins are all open-drain outputs  
withweakinternalpull-upstoabout2V.TheRST1andRST2  
than 3V, the regulator draws all power from the V pin.  
IN  
The EN/UVLO pin is used to put the LT3640 in shutdown,  
reducing the input current to less than 1μA. The accurate  
1.26V threshold of the EN/UVLO pin provides a program-  
pins are pulled low when the LT3640 is enabled and V is  
IN  
above 3.6V. Once the FB1 pin rises above 1.165V, the high  
voltagechannelresettimerisstartedandRST1isreleased  
aftertheresettimeoutperiod.Thelowvoltagechannelreset  
timer is started once the FB2 pin rises above 550mV, and  
releases RST2 after the reset timeout period.  
mableV undervoltagelockoutthroughanexternalresistor  
IN  
divider tied to the EN/UVLO pin. A 2μA hysteresis current  
on the EN/UVLO pin prevents switching noise from shut-  
ting down the LT3640.  
The watchdog circuit monitors a μP’s activity. As soon  
as both RST1 and RST2 are released, a delay timer is  
started. Thewatchdogtimerisstartedafterthedelaytimer  
times out. The LT3640 implements windowed watchdog  
function for higher system reliability. The watchdog timer  
detects falling edges on the WDI pin. If the falling edges  
are grouped too close together or too far apart, the WDO  
pin is pulled down and the reset timer is started. When the  
reset timer times out, WDO is released and the watchdog  
timer is again started after the delay period.  
The LT3640 has an overvoltage protection feature which  
disables switching action in both channels when the V  
IN  
pin voltage goes above 36V. When switching is disabled,  
the LT3640 can sustain V voltages up to 55V for one  
IN  
second.  
Internal 2μA current sources charge the SS1 pin and  
the SS2 pin up to about 2V. Soft-start or output voltage  
tracking of the two channels can be independently imple-  
mented with capacitors from the SS1 pin and the SS2 pin  
3640p  
11  
LT3640  
APPLICATIONS INFORMATION  
Setting the Output Voltages  
off for a minimum of ~70ns. The minimum and maximum  
duty cycles are:  
The internal reference voltage is 1.265V for the high volt-  
age channel, and 600mV for the low voltage channel. The  
output voltages are set by resistor dividers according to  
the following formulas:  
DC  
DC  
= f • t  
S ON(MIN)  
MIN  
= 1 – f • t  
OFF(MIN)  
MAX  
S
where f is the switching frequency, t  
is the mini-  
S
ON(MIN)  
istheminimumswitch  
VOUT1  
1.265V  
mumswitchon-time, andt  
OFF(MIN)  
R2 = R1•  
1  
off-time. These equations illustrate how duty cycle range  
increases when switching frequency decreases.  
VOUT2  
0.6V  
R4 = R3 •  
1  
The internal oscillator of the LT3640 can be synchronized  
to an external 350kHz to 2.5MHz positive clock signal on  
Use 1% resistors in the resistor dividers. To avoid noise  
problems, R1 should be 100k or less, and R3 should  
be 50k or less. Reference designators refer to the Block  
Diagram.  
the SYNC pin. The R value should be chosen such that  
T
the internal oscillator’s frequency is 20% lower than the  
lowest SYNC clock frequency (refer to Table 1). To avoid  
erratic operation, the LT3640 ignores the SYNC signal  
until the FB1 pin voltage is above 1.165V. When applying  
a SYNC signal, the rising edges reset the LT3640’s internal  
clock and initiate a switch cycle. The amplitude of the  
SYNC signal must be at least 2V. The SYNC pulse width  
must be at least 40ns.  
Switching Frequency  
The LT3640 uses a constant-frequency PWM architecture  
thatcanbeprogrammedtoswitchfrom350kHzto2.2MHz  
by using a resistor tied from the RT pin to ground. Table  
1 shows the necessary R value for a desired switching  
T
V Voltage Range  
IN  
frequency.  
The LT3640’s minimum operating voltage is 3.6V. A higher  
minimumoperatingvoltagecanbeaccuratelyprogrammed  
Table 1. Switching Frequency vs RT Value  
SWITCHING FREQUENCY (MHz)  
R (k)  
T
witharesistordividerbetweentheV pinandtheEN/UVLO  
IN  
0.35  
0.5  
1
267  
182  
pin. The EN/UVLO threshold is 1.26V. When the LT3640  
is enabled, a 2μA current flows out of the EN/UVLO pin  
generatinghysteresistopreventtheswitchingactionfrom  
falselydisablingtheLT3640.Choosethedividerresistances  
for appropriate hysteresis voltage.  
82.5  
32.4  
27.4  
2
2.2  
The high voltage nonsynchronous channel operates from  
Selection of the operating frequency is mainly a trade-off  
between efficiency and component size. The advantage  
of high frequency operation is that smaller inductor and  
capacitor values may be used. The disadvantage is lower  
efficiency.  
the V pin. The minimum V voltage to regulate output  
IN  
IN  
voltage is:  
VOUT1 + VD  
DCMAX  
V
=
VD + VCE  
IN(MIN)  
The high switching frequency also decreases the duty  
cycle range. The reason is that the LT3640 switches have  
finite minimum on- and off-times independent of the  
switching frequency. The top switch in the high voltage  
channel can turn on for a minimum of ~60ns and turn off  
for a minimum of ~70ns. The top switch in the low voltage  
channel can turn on for a minimum of ~110ns and turn  
WhereV istheforwardvoltagedropofthecatchdiode,V  
D
CE  
is the voltage drop of the internal NPN power switch, and  
DC  
is the maximum duty cycle (refer to the Switching  
MAX  
Frequencysection).IfV isbelowthecalculatedminimum  
IN  
voltage, output will lose regulation.  
3640p  
12  
LT3640  
APPLICATIONS INFORMATION  
The maximum V should not exceed the absolute maxi-  
calculated minimum voltage, the output will fall out of  
regulation.  
IN  
mum rating. For fixed frequency operation, the maximum  
V is:  
IN  
The maximum V for fixed frequency operation is:  
IN2  
VOUT1 + VD  
DCMIN  
VOUT2  
DCMIN  
V
=
VD + VCE  
IN(MAX)  
V
IN2(MAX)  
Notethatthehighvoltagebuckwillstillregulateataninput  
voltage that exceeds V (up to 36V). However, the  
Where DC  
is the minimum duty cycle (refer to the  
MIN  
IN(MAX)  
Switching Frequency section). For voltage that exceeds  
(up to 5.5V), the low voltage channel exhi-  
switching frequency will be lowered to satisfy the equa-  
V
IN2(MAX)  
tion (Figure 1).  
bits pulse-skipping behavior, and the output ripple will  
increase.  
Oncetheinputvoltagereaches36V,aninternalovervoltage  
lockout(OVLO)circuitistriggeredtodisableswitchingac-  
tion (Figure 2). Without switching, the LT3640 can sustain  
Inductor Selection  
V voltage transients up to 55V for one second.  
IN  
Inductorselectioninvolvesinductance,saturationcurrent,  
series resistance (DCR) and magnetic loss. The inductor  
currentrippledeterminestheinductance.Areasonablecur-  
rent ripple is around 30% of the maximum load current:  
V
Voltage Range  
IN2  
The low voltage synchronous channel operates from  
the V pin. The V pin can be connected to either an  
IN2  
IN2  
ΔI = 0.3 • I  
L
OUT(MAX)  
independent voltage supply or the high voltage channel  
output for a two-stage power regulator.  
where I  
is the maximum load current. To guaran-  
OUT(MAX)  
tee sufficient output current, peak inductor current must  
In either configuration, if the high voltage channel is over-  
loadedandpulledoutofregulation,thelowvoltagechannel  
will be disabled. The SS2 pin will be discharged as well.  
be lower than the switch current limit (I ). The peak  
LIM  
inductor current is:  
ΔIL  
2
IL(PEAK) = IOUT(MAX)  
where I  
+
The minimum V voltage to regulate output voltage is:  
IN2  
VOUT2  
DCMAX  
V
is the peak inductor current. For the high  
L(PEAK)  
IN2(MIN)  
voltage channel, the top switch current limit is at least  
2.4A at low duty cycles and decreases linearly to 1.8A at  
DC = 0.8. Be sure to pick an inductor ripple current that  
Where DC  
is the maximum duty cycle (refer to  
MAX  
the Switching Frequency section). If V is below the  
IN2  
providessufficientmaximumloadcurrentI  
.Once  
OUT(MAX)  
I
L1  
2A/DIV  
SW1  
10V/DIV  
I
L1  
0.5A/DIV  
V
IN  
20V/DIV  
55V , 40V, 15V  
PK  
3640 F01  
200ns/DIV  
SET = 2MHz  
3640 F02  
10μs/DIV  
V
V
= 30V  
R
T
IN  
OUT1  
= 3.3V/0.2A  
Figure 2. VIN Overvoltage Lockout  
Figure 1. Lower Switching Frequency Occurs in High  
Voltage Channel When Required On-Time Is Below 50ns  
3640p  
13  
LT3640  
APPLICATIONS INFORMATION  
the ripple current is determined, the inductance for the  
high voltage channel is:  
Of course, such a simple design guide will not always  
result in the optimum inductors for the applications. A  
larger value inductor provides a slightly higher maximum  
load current and will reduce the output voltage ripple. A  
largervalueinductoralsoresultsinhigherefficiencyinthe  
condition of same DCR and same magnetic loss. However,  
for a same series of inductors, a larger value inductor has  
higher DCR. The trade-off between inductance and DCR  
is not always obvious. Use experiments to find optimum  
inductors.  
VOUT1 + VD  
1−  
V
IN  
L1(VOUT1 + VD) •  
ΔIL1 • fS  
The largest inductor current ripple occurs at the highest  
V . To guarantee current capacity, use V  
in the  
IN  
IN(MAX)  
above formula.  
Low inductance may result in discontinuous mode opera-  
tion, which is okay, but reduces maximum load current.  
For details of maximum output current and discontinuous  
modeoperation,seetheLinearTechnologyApplicationNote  
44. For duty cycles greater than 50%, there is a minimum  
inductance required to avoid subharmonic oscillations.  
See the Linear Technology Application Note 19.  
For the low voltage channel, the top MOSFET current limit  
is at least 1.5A at low duty cycle and decreases linearly  
to 1.2A at DC = 0.8. Pick an inductor ripple current (ΔI )  
L2  
following the same principle as the high voltage channel.  
The inductance for the low voltage channel is:  
VOUT2  
1−  
V
IN2  
L2 (VOUT2) •  
Input Capacitors  
ΔIL2 • fS  
Bypass the V and V pins of the LT3640 with a ce-  
IN  
IN2  
For robust operation in fault conditions, the inductor  
saturation current should be higher than the upper limit  
of the corresponding top switch current limit. For the high  
voltage channel, the inductor saturation current should be  
at least 3.5A. For the low voltage channel, the inductor  
saturation current should be at least 2.5A.  
ramic capacitor of X7R or X5R type. Y5V types have poor  
performance over temperature and applied voltage, and  
should not be used.  
Buck converters draw pulse current from the input sup-  
ply. The input capacitor is required to reduce the resulting  
voltage ripple:  
To keep the efficiency high, the inductor series resistance  
(DCR) should be as small as possible (must be < 0.1Ω),  
and the core material should be intended for the chosen  
operation frequency. High efficiency converters generally  
cannot afford the core loss found in low cost powdered  
iron cores; instead use ferrite, molypermalloy or Kool Mμ  
cores. Table 2 lists several vendors and suitable inductor  
series.  
VOUT  
IL  
ΔV VOUT • 1−  
IN  
V
(V • CIN • fS)  
IN  
IN  
+ESRCIN IL  
where C is the input capacitance, ESR is the series  
IN  
CIN  
resistance (ESR) of the input capacitor, and I is the induc-  
L
tor current. The input voltage ripple ΔV usually should  
IN  
not exceed 100mV. The above equation can be used to  
estimate the input capacitance for both channels. The  
input capacitors need to be placed close to the LT3640  
(see the PCB Layout section).  
Table 2. Inductor Vendors  
PART SERIES  
VENDOR  
LQH55D  
Murata  
www.murata.com  
SLF7045  
SLF10145  
TDK  
Asecondprecautionregardingtheceramicinputcapacitor  
concernsthemaximuminputvoltageratingoftheLT3640.  
A ceramic input capacitor combined with trace or cable  
inductanceformsaunderdampedtankcircuit.IftheLT3640  
circuit is plugged into a live supply, the input voltage can  
3640p  
www.componenttdk.com  
D62CB, D63CB  
D75C, D75F  
TOKO  
www.toko.com  
CR54, CDRH74  
CDRH6D38, CR75  
Sumida  
www.sumida.com  
14  
LT3640  
APPLICATIONS INFORMATION  
ring to twice its nominal value, possibly exceeding the  
LT3640’svoltagerating.Thissituationcanbeeasilyavoided  
(see the Linear Technology Application Note 80).  
Table 3. Capacitor Vendors  
PART SERIES  
VENDOR  
Ceramic, Polymer, Tantalum Panasonic  
www.panasonic.com  
Kemet  
www.kemet.com  
Ceramic, Polymer, Tantalum Sanyo  
www.sanyovideo.com  
Output Capacitors and Output Ripple  
Ceramic, Tantalum  
Theoutputcapacitorhastwoessentialfunctions.Insteady  
state, it determines the output voltage ripple. In transient,  
it stores energy in order to satisfy transient loads and  
stabilize the control loop. Ceramic capacitors have low  
equivalent series resistance (ESR) and provide the best  
ripple performance. A good starting value is:  
Ceramic  
Murata  
www.murata.com  
Ceramic, Tantalum  
Ceramic  
AVX  
www.avxcorp.com  
Taiyo Yuden  
www.taiyo-yuden.com  
100  
VOUT • fS  
COUT  
=
Catch Diode  
where f is in MHz, and C  
is the recommended output  
OUT  
S
The high voltage channel requires an external catch diode  
toconductcurrentduringswitchoff-time.Averageforward  
current in normal operation can be calculated from:  
capacitance in μF. Use X5R or X7R types. This choice will  
provide low output ripple and good transient response.  
The control loop is usually easier to be stabilized by a  
bigger value of output capacitor. This equation applies  
for both channels.  
IOUT (V VOUT  
)
IN  
ID(AVG)  
where I  
=
V
IN  
In the case where V is connected to the high voltage  
IN2  
is the output load current. The only reason to  
OUT  
channel output, the high voltage channel output capaci-  
consider a diode with a larger current rating than neces-  
sary for nominal operation is for the worst-case condition  
of overloaded output. The diode current will then increase  
to the typical peak switch current. Peak reverse voltage  
is equal to the regulator input voltage. Use a diode with a  
reverse voltage rating greater than the input voltage. Table  
4 lists several Schottky diodes and their manufacturers.  
tor can be combined with the low voltage channel input  
capacitor.TherequiredV inputcapacitorvalueisusually  
IN2  
smallerthanthehighvoltageoutputcapacitor.Ifthebigger  
output capacitor can be placed close to the V pin, an  
IN2  
input capacitor is not necessary for the V pin.  
IN2  
When choosing a capacitor, look carefully through the  
data sheet to find out what the actual capacitance is under  
operating conditions (applied voltage and temperature).  
A physically larger capacitor or one with a higher voltage  
rating may be required. High performance tantalum or  
electrolyticcapacitorscanbeusedfortheoutputcapacitor.  
Low ESR is important, so choose one that is intended for  
use in switching regulators. Table 3 lists several capacitor  
vendors.  
Table 4. Diode Vendors  
V
(V)  
I
V AT 1A V AT 2A  
F F  
(MV)  
R
AVE  
PART NUMBER  
(A)  
(MV)  
On Semiconductor  
MBRM120E  
MBRM140  
20  
40  
1
1
530  
595  
Diodes Inc.  
B120  
20  
30  
20  
30  
40  
1
1
2
2
2
500  
500  
B130  
B220  
500  
500  
500  
B230  
DFLS240L  
International Rectifier  
10BQ030  
20BQ030  
30  
30  
1
2
420  
470  
470  
3640p  
15  
LT3640  
APPLICATIONS INFORMATION  
BST and SW Pin Considerations  
very close to the minimum input voltage to regulate the  
output voltage for most of the load range.  
The high voltage channel requires an external capacitor  
between the BST and SW pins and an external boost diode  
from a voltage source to the BST pin. In most cases, a  
0.22μF capacitor will work well. The (BST-SW) voltage  
cannot exceed 5.5V, and must be more than 2.3V for best  
efficiency.Connecttheboostdiodetoanyvoltagebetween  
Soft-Start  
The LT3640 has a soft-start pin for each channel. The  
feedback pin voltage is regulated to the lower of the cor-  
responding SS pin and the internal references, which is  
1.265Vforthehighvoltagechannel,and600mVforthelow  
voltage channel. A capacitor from the SS pin to ground is  
charged by an internal 2μA current source resulting in an  
output ramping linearly from 0V to the regulated voltage.  
The duration of the ramp is:  
2.5V and 5.5V. The V pin is the best choice if the low  
IN2  
voltage channel is used.  
The high voltage channel will not start until the (BST-SW)  
voltage is 2V or above. When the LT3640 is enabled, an  
internal~5mAcurrentsourcefromV owsoutoftheBST  
IN  
pin. The SW pin is disconnected from the SW1 pin, and is  
pulled down by an internal current source to ground. The  
external boost capacitor can be charged up regardless of  
theoutput.Whenthe(BST-SW)voltagereaches2V,theSW  
pinisconnectedtotheSW1pin,andthehighvoltagechan-  
nel starts switching. However, the internal bipolar power  
switchcannotbefullysaturateduntilthe(BST-SW)voltage  
is further charged to above 2.3V. To start up a traditional  
nonsynchronous buck regulator with very light load, the  
input voltage needs to be a couple of volts higher than  
the minimum running input voltage if the input voltage is  
ramping up slowly. The LT3640’s unique boost capacitor  
chargingschemesolvesthisstart-upissue.Figure3shows  
that the minimum input voltage to start the high voltage  
channel nonsynchronous buck regulator of the LT3640 is  
1.265V  
2µA  
tSS1 = CSS1  
tSS2 = CSS2  
where t  
600mV  
2µA  
is the ramping time for the SS1 pin, t  
the ramping time for the SS2 pin, C  
from the SS1 pin to ground, and C  
from the SS2 pin to ground.  
is  
SS1  
SS2  
is the capacitance  
is the capacitance  
SS1  
SS2  
At power-up, a latch is set to discharge the SS1 pin.  
After the SS1 pin is discharged to below 100mV, the  
latch is reset. The internal 2μA current source starts to  
charge the SS1 pin when the (BST-SW) voltage is charge  
to above 2V.  
5
5
START  
START  
4
4
RUN  
RUN  
3
2
1
0
3
2
1
0
0.001  
0.01  
0.1  
1
0.001  
0.01  
0.1  
1
V
CURRENT (A)  
V
CURRENT (A)  
OUT  
OUT  
3640 F03a  
3640 F03b  
(3b) FS = 500kHz  
Figure 3. High Voltage Channel Minimum Input Voltage for VOUT1 = 3.3V  
(3a) FS = 2MHz  
3640p  
16  
LT3640  
APPLICATIONS INFORMATION  
In the event of V undervoltage lockout, V overvoltage  
IN  
IN  
EN  
lockout or the EN/UVLO pin being driven below 1.26V, the  
2V/DIV  
soft-start latch is set, triggering a start-up sequence.  
V
OUT1  
2V/DIV  
A latch is set to discharge the SS2 pin at power-up. After  
V
OUT2  
1V/DIV  
the FB1 pin reaches 1.165V, the V voltage is above 2.3V,  
IN2  
the EN2 pin is enabled, and the SS2 pin is below 100mV,  
the latch is reset. The internal 2μA current source starts  
to charge the SS2 pin.  
PGOOD  
2V/DIV  
3640 F04  
500μs/DIV  
V
= 12V  
IN  
T
In the event of V out of regulation, the V pin falling  
FB1  
IN2  
R SET = 2MHz  
below 2.2V, or the EN pin going low, the SS2 discharging  
Figure 4. Soft-Start of LT3640  
latch is set, triggering a start-up sequence.  
The SS pins can also be pulled up by external current  
sources or resistors for output tracking. The external pull-  
up current should not exceed 100μA for either SS pin.  
Figure 4 shows the soft-start for a 3.3V and 1.8V  
application.  
SW1  
10V/DIV  
I
L1  
Shorted-Output Protection  
0.5A/DIV  
If an inductor is chosen that will not saturate excessively,  
the LT3640 will tolerate a shorted output. For the high  
voltage channel, the DA current comparator extends the  
internal oscillator period until the catch diode current is  
below its limit. Both the top switch and the DA comparator  
have current foldback to help limit load current when the  
output is shorted to ground. The DA current limit is 1.35A  
when the FB1 voltage is above 0.2V, and is 0.8A when the  
FB1 voltage is below 0.2V. Figure 5 shows the high voltage  
channel operation under shorted output.  
3640 F05  
1μs/DIV  
V
V
= 30V  
IN  
OUT1  
= SHORT  
Figure 5. The High Voltage Channel Reduces Frequency  
to Protect Against Shorted Output With 30V Input  
Because of the low V voltage, the low voltage channel  
SW2  
2V/DIV  
IN2  
does not have current foldback. The low voltage channel  
does not extend the internal oscillator in shorted output  
condition allowing the high voltage channel to operate in  
constantfrequency.IfthebottomMOSFETcurrentexceeds  
1.1A at the start of a clock cycle, the top MOSFET is kept  
off in this cycle (similar to pulse-skipping operation).  
The inductor valley current is kept below 1.1A to ensure  
robustness in shorted output condition (Figure 6).  
I
L2  
1A/DIV  
3640 F06  
1μs/DIV  
V
V
= 5V  
OUT2  
IN2  
= SHORT  
Figure 6. The Low Voltage Channel Operates in  
Pulse-Skipping Mode to Protect Against Shorted Output  
3640p  
17  
LT3640  
APPLICATIONS INFORMATION  
Reverse Protection  
SW1  
10V/DIV  
In battery charging applications or in battery back-up  
systems, the output will be held high when the input to the  
LT3640 is absent. If the V pin is floated and the LT3640 is  
I
L1  
0.5A/DIV  
IN  
SW2  
5V/DIV  
enabled,theLT3640’sinternalcircuitrywillpullitsquiescent  
current through the SW1 pin or the SW2 pin. This is fine if  
the system can tolerate a few mA in this state. If the LT3640  
is disabled, the SW1 pin and the SW2 pin current will drop  
I
L2  
0.5A/DIV  
3640 F08a  
2μs/DIV  
toessentiallyzero.However,iftheV pinisgroundedwhile  
IN  
V
V
= 12V  
V
V
= V  
OUT2  
IN  
OUT1  
IN2 OUT1  
= 3.3V/25mA  
= 1.8V/30mA  
the high voltage channel output is held high, an external  
diode is required at the V pin to prevent current being  
IN  
(8a)  
pulled out of the V pin. If the V pin is grounded while  
IN  
IN2  
the low voltage channel output is held high, an external  
SW1  
10V/DIV  
diode is required at the V pin to prevent current being  
IN2  
pulled out of the V pin (Figure 7).  
IN2  
I
L1  
0.5A/DIV  
0.1μF  
SW2  
5V/DIV  
IN  
V
SW BST SW1  
OUT1  
OUT2  
IN  
I
L2  
0.5A/DIV  
+
DA  
FB1  
3640 F08b  
2μs/DIV  
EN/UVLO  
LT3640  
V
V
= 12V  
OUT1  
V
V
= V  
OUT2  
IN  
IN2 OUT1  
= 3.3V/25mA  
= 1.8V/30mA  
SW2  
FB2  
(8b)  
IN2  
V
IN2  
+
SW1  
10V/DIV  
GND  
I
L1  
3640 F07  
0.5A/DIV  
Figure 7. Diodes Prevent Shorted Inputs from  
Discharging a Battery Tied to the Outputs  
SW2  
5V/DIV  
I
L2  
PFM Operation  
0.5A/DIV  
3640 F08c  
2μs/DIV  
To improve efficiency at light loads, the LT3640 auto-  
matically switches to pulse frequency modulation (PFM)  
operation which minimizes the switching loss and keeps  
the output voltage ripples small.  
V
V
= 12V  
OUT1  
V
V
= V  
OUT2  
IN  
IN2 OUT1  
= 3.3V/0mA  
= 1.8V/30mA  
(8c)  
Figure 8. PFM Operation  
Because the two channels of the LT3640 may have differ-  
ent loads, the two channels can have different switching  
frequency (Figure 8).  
The threshold of power-on comparator is 1.15V for the high  
voltage channel, and 550mV for the low voltage channel.  
Power-On Reset Timer  
Both RST1 and RST2 are open-drain outputs with weak  
internal pull-ups (100k to ~2V). The DC characteristics of  
the RST1 and RST2 pull-down strength are shown in the  
Typical Performance Characteristics section. The weak  
3640p  
EachchanneloftheLT3640hasapower-oncomparator.Both  
comparators are enabled when the LT3640 is powered up  
andstartsmonitoringtheircorrespondingfeedbackvoltages.  
18  
LT3640  
APPLICATIONS INFORMATION  
pull-ups eliminate the need for external pull-ups when  
the rise time of these pins is not critical. The open-drain  
configuration allows wired-OR connections.  
The accuracy of the watchdog timer will be limited by  
the accuracy and temperature coefficient of the capacitor  
WDT  
C
. Extra parasitic capacitance on the CWDT pin, such  
as probe capacitance, can affect the watchdog timer.  
The two power-on reset timers share one oscillator. The  
power-on reset timeout period, t  
(64 cycles on the  
RST  
CPOR pin), which is the same for the two channels, can  
CWDT  
be programmed by connecting a capacitor, C , between  
the CPOR pin and ground:  
WD STARTS  
POR  
CPOR  
64 CYCLES 64 CYCLES  
⎛ ⎞  
F⎠  
s
⎜ ⎟  
tRST = CPOR • 37 • 106  
FB2  
FB1  
RST1  
RST2  
For example, using a capacitor value of 8.2nF gives a  
303ms reset timeout period. The accuracy of t will be  
3640 F09a  
20ms/DIV  
RST  
limited by the accuracy and temperature coefficient of the  
capacitor CPOR. Extra parasitic capacitance on the CPOR  
(9a)  
pin, such as probe capacitance, can affect t  
.
RST  
Watchdog  
CWDT  
CPOR  
The WDE pin is the enable pin for the watchdog. As soon  
as both RST1 and RST2 are released, the watchdog starts  
a delay period, t , during which the input signal at the  
DLY  
WDI pin is ignored for higher reliability. After the delay  
period, the watchdog starts detecting falling edges on the  
WDI pin. If the time between any two WDI falling edges is  
WDI  
WDO  
3640 F09b  
1ms/DIV  
shorterthanthewatchdoglowerboundary,t  
,orlonger  
WDL  
, the WDO pin  
than the watchdog upper boundary, t  
(9b)  
WDU  
is pulled down for a period of t , which is the same as  
RST  
the power-on reset timeout period. When the WDO pin is  
released, the watchdog again starts the delay period.  
CWDT  
CPOR  
The WDO is open-drain output with weak internal pull-up,  
similar to the RST pins.  
The delay period corresponding to 33 cycles on CWDT, the  
watchdog lower boundary (4 cycles on CWDT), and the  
watchdog upper boundary (64 cycles on CWDT) are all  
WDI  
WDO  
related and set by a capacitor, C  
pin and ground:  
, between the CWDT  
WDT  
3640 F09c  
50ms/DIV  
(9c)  
33  
64⎠  
tDLY = tWDU  
Figure 9. Power-On Reset and Watchdog Timing  
tWDU  
16  
tWDL  
=
⎛ ⎞  
F⎠  
s
tWDU = CWDT • 37 • 106  
⎜ ⎟  
3640p  
19  
LT3640  
APPLICATIONS INFORMATION  
on the same side of the circuit board as the LT3640, and  
their connections should be made on that layer. Place a  
local, unbroken ground plane below these components.  
The BST and SW nodes should be as small as possible.  
Figure 9a shows the power-on reset timing. Having FB1  
or FB2 high starts the CPOR oscillator. After t , the cor-  
RST  
responding RST is released. When both RST1 and RST2  
are released, the CWDT oscillator starts. Figure 9b shows  
The boost capacitor (C ) should be as close to the BST  
thewatchdogwaveformwiththeWDIperiodbetweent  
BST  
WDL  
and SW pins as possible.  
andt  
.TheWDIfallingedgeresetstheCWDToscillator.  
WDU  
The CPOR oscillator is disabled and WDO remains high.  
The input loop of the low voltage channel is formed by  
Figure 9c shows the watchdog waveform with the WDI  
the V pin, the input capacitor (C ) and the ground.  
IN2  
IN2  
period longer than t  
. WDO is asserted for a period of  
WDU  
Place C close to the V and the GND pin to minimize  
IN2  
IN2  
t
when the watchdog upper boundary, t  
, expires.  
RST  
WDU  
this loop. Place a local, unbroken ground plane below  
this input loop.  
PCB Layout  
Keep the FB1 and FB2 nodes small so that the ground  
traces will shield them from the switching nodes. The  
Exposed Pad on the bottom of the package must be sol-  
dered to the ground so that the pad acts as a heat sink. To  
keep thermal resistance low, extend the ground plane as  
much as possible, and add thermal vias under and near  
the LT3640 to additional ground planes within the circuit  
board and on the bottom side.  
For proper operation and minimum EMI, care must be  
taken during the printed circuit board (PCB) layout. Figure  
10 shows the recommended component placement with  
trace, ground plane and via locations. The input loop of  
the high voltage channel, which is formed by the V  
IN  
and SW1 pins, the external catch diode (D1), the input  
capacitor (C ) and the ground, should be as small as  
IN  
possible. These external components should be placed  
C
OUT2  
L2  
C
C
IN2  
IN  
C
BST  
L1  
C
OUT1  
3640 F10  
Figure 10. Recommended PCB Layout, FE28 Package  
3640p  
20  
LT3640  
TYPICAL APPLICATIONS  
2MHz 3.3V/1.3A and 1.2V/1A Buck Regulators  
V
0.22μF  
IN  
D2  
5V TO 34V  
4.7μF  
100k  
301k  
L1  
3.3μH  
V
OUT1  
3.3V/1.3A  
EN/UVLO  
V
SW  
BST  
SW1  
IN  
10μF  
80.6k  
49.9k  
D1  
DA  
FB1  
SYN  
WDE  
EN2  
V
IN2  
2.5V TO 5.5V  
PGOOD  
LT3640  
V
IN2  
4.7μF  
L2  
1μH  
RST1  
RST2  
WDO  
V
OUT2  
1.8V/1A  
SW2  
47μF  
100k  
WDI  
FB2  
SS1  
CWDT CPOR  
RT  
GND SS2  
49.9k  
L1: VISHAY IHLP-2020  
L2: VISHAY IHLP-1616  
D1: DIODES B240A  
1nF  
1.5nF  
32.4k  
1.5nF  
1nF  
D2: CENTRAL SEMI CMDSH-4E  
3640 TA02  
2MHz 5V/0.8A and 1.2V/1A Buck Regulators  
V
0.22μF  
D2  
IN  
7V TO 34V  
4.7μF  
100k  
453k  
L1  
V
OUT1  
4.7μH  
5V/0.8A  
EN/UVLO  
V
SW  
BST  
SW1  
IN  
10μF  
301k  
100k  
D1  
DA  
SYN  
WDE  
WDI  
FB1  
EN2  
LT3640  
WDI  
V
IN2  
OUT1  
10μF  
100k  
L2  
1μH  
PGOOD  
WDO  
100k  
100k  
V
OUT2  
1.2V/1A  
SW2  
100k  
47μF  
49.9k  
49.9k  
RST1  
RST2  
CWDT CPOR  
FB2  
SS1  
RT  
GND SS2  
L1: VISHAY IHLP-2020  
L2: VISHAY IHLP-1616  
D1: DIODES B240A  
D2: CENTRAL SEMI CMDSH-4E  
1nF  
1.5nF  
32.4k  
1.5nF  
1nF  
3640 TA03  
2MHz 2.5V/0.8A and 0.6V/1A Buck Regulators  
0.22μF  
D2  
V
IN  
L1  
3.6V TO 25V  
3.3μH  
V
OUT1  
2.5V/0.8A  
4.7μF  
EN/UVLO  
V
SW  
BST  
SW1  
IN  
22μF  
100k  
100k  
D1  
DA  
FB1  
SYN  
EN2  
WDE  
PGOOD  
LT3640  
V
IN2  
L2  
1μH  
RST1  
RST2  
WDO  
V
OUT2  
0.6V/1A  
SW2  
FB2  
100μF  
WDI  
CWDT CPOR  
RT  
GND SS2  
32.4k  
SS1  
L1: VISHAY IHLP-2020  
L2: VISHAY IHLP-1616  
D1: ON SEMI MBRS230  
1nF  
1.5nF  
1.5nF  
1nF  
D2: CENTRAL SEMI CMDSH2-3  
3640 TA04  
3640p  
21  
LT3640  
PACKAGE DESCRIPTION  
FE Package  
28-Lead Plastic TSSOP (4.4mm)  
(Reference LTC DWG # 05-08-1663)  
Exposed Pad Variation EB  
9.60 – 9.80*  
(.378 – .386)  
4.75  
(.187)  
4.75  
(.187)  
28 2726 25 24 23 22 21 20 19 18 1716 15  
6.60 0.10  
2.74  
(.108)  
EXPOSED  
PAD HEAT SINK  
ON BOTTOM OF  
PACKAGE  
4.50 0.10  
SEE NOTE 4  
6.40  
(.252)  
BSC  
2.74  
(.108)  
0.45 0.05  
1.05 0.10  
0.65 BSC  
RECOMMENDED SOLDER PAD LAYOUT  
5
7
1
2
3
4
6
8
9 10 12 13 14  
11  
1.20  
(.047)  
MAX  
4.30 – 4.50*  
(.169 – .177)  
0.25  
REF  
0° – 8°  
0.65  
(.0256)  
BSC  
0.09 – 0.20  
(.0035 – .0079)  
0.50 – 0.75  
(.020 – .030)  
0.05 – 0.15  
(.002 – .006)  
FE28 (EB) TSSOP 0204  
0.195 – 0.30  
(.0077 – .0118)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: MILLIMETERS 4. RECOMMENDED MINIMUM PCB METAL SIZE  
2. DIMENSIONS ARE IN  
FOR EXPOSED PAD ATTACHMENT  
MILLIMETERS  
(INCHES)  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.150mm (.006") PER SIDE  
3. DRAWING NOT TO SCALE  
3640p  
22  
LT3640  
PACKAGE DESCRIPTION  
UFD Package  
28-Lead Plastic QFN (4mm × 5mm)  
(Reference LTC DWG # 05-08-1712 Rev B)  
0.70 0.05  
4.50 0.05  
3.10 0.05  
2.50 REF  
2.65 0.05  
3.65 0.05  
PACKAGE OUTLINE  
0.25 0.05  
0.50 BSC  
3.50 REF  
4.10 0.05  
5.50 0.05  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
PIN 1 NOTCH  
R = 0.20 OR 0.35  
× 45° CHAMFER  
2.50 REF  
R = 0.115  
TYP  
R = 0.05  
TYP  
0.75 0.05  
4.00 0.10  
(2 SIDES)  
27  
28  
0.40 0.10  
PIN 1  
TOP MARK  
(NOTE 6)  
1
2
5.00 0.10  
(2 SIDES)  
3.50 REF  
3.65 0.10  
2.65 0.10  
(UFD28) QFN 0506 REV B  
0.25 0.05  
0.50 BSC  
0.200 REF  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING PROPOSED TO BE MADE A JEDEC PACKAGE OUTLINE MO-220 VARIATION (WXXX-X).  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
3640p  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
23  
LT3640  
TYPICAL APPLICATION  
2MHz 3.3V/0.8A and 0.8V/1.2A Buck Regulators  
0.1μF  
V
IN  
4V TO 34V  
4.7μH  
V
OUT1  
3.3V/0.8A  
4.7μF  
EN/UVLO  
V
SW  
BST  
SW1  
IN  
22μF  
80.6k  
49.9k  
DA  
SYN  
FB1  
WDE  
EN2  
PGOOD  
LT3640  
V
IN2  
RST1  
RST2  
WDO  
1μH  
V
OUT2  
0.8V/1.2A  
SW2  
68μF  
16.5k  
49.9k  
WDI  
FB2  
SS1  
CWDT CPOR  
RT  
GND SS2  
1nF  
1.5nF  
32.4k  
1.5nF  
1nF  
3640 TA05  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
V : 3.6V to 36V, V  
LT1933  
LT1936  
LT1940  
500mA (I ), 500kHz Step-Down Switching Regulator in SOT-23  
= 1.2V, I = 1.6mA, I < 1μA,  
OUT(MIN) Q SD  
OUT  
IN  
ThinSOTTM Package  
36V, 1.4A (I ), 500kHz, High Efficiency Step-Down DC/DC  
V : 3.6V to 36V, V  
= 1.2V, I = 1.9mA, I < 1μA,  
Q SD  
OUT  
IN  
OUT(MIN)  
OUT(MIN)  
Converter  
MS8E Package  
Dual 25V, 1.4A (I ), 1.1MHz, High Efficiency Step-Down DC/DC  
Converter  
V : 3.6V to 25V, V  
= 1.2V, I = 3.8mA, I < 30μA,  
Q SD  
OUT  
IN  
TSSOP16E Package  
LT1976/LT1967 60V, 1.2A (I ), 200kHz/500kHz, High Efficiency Step-Down  
V : 3.3V to 60V, V  
= 1.2V, I = 100μA, I < 1μA,  
Q SD  
OUT  
IN  
OUT(MIN)  
DC/DC Converters with Burst Mode Operation  
TSSOP16E Package  
LT3434/LT3435 60V, 2.4A (I ), 200kHz/500kHz, High Efficiency Step-Down  
V : 3.3V to 60V, V  
= 1.2V, I = 100μA, I < 1μA,  
Q SD  
OUT  
IN  
OUT(MIN)  
DC/DC Converters with Burst Mode Operation  
TSSOP16 Package  
LT3437  
LT3480  
LT3481  
LT3493  
LT3505  
LT3508  
LT3680  
LT3684  
LT3685  
LT3693  
60V, 400mA (I ), Micropower Step-Down DC/DC Converter with V : 3.3V to 60V, V  
= 1.25V, I = 100μA, I < 1μA,  
Q SD  
OUT  
IN  
OUT(MIN)  
Burst Mode Operation  
3mm  
×
3mm DFN10 and TSSOP16E Packages  
V : 3.6V to 38V, V = 0.78V, I = 70μA, I < 1μA,  
IN OUT(MIN)  
36V with Transient Protection to 60V, 2A (I ), 2.4MHz, High  
OUT  
Q
SD  
Efficiency Step-Down DC/DC Converter with Burst Mode Operation  
3mm  
×
3mm DFN10 and MSOP10E Packages  
34V with Transient Protection to 36V, 2A (I ), 2.8MHz, High  
V : 3.6V to 34V, V  
= 1.26V, I = 50μA, I < 1μA,  
OUT  
IN  
OUT(MIN)  
Q
SD  
Efficiency Step-Down DC/DC Converter with Burst Mode Operation  
3mm  
×
3mm DFN10 and MSOP10E Packages  
36V, 1.4A (I ), 750kHz High Efficiency Step-Down  
V : 3.6V to 36V, V  
= 0.8V, I = 1.9mA, I < 1μA,  
OUT  
IN  
OUT(MIN)  
Q
SD  
DC/DC Converter  
2mm  
×
3mm DFN6 Package  
36V with Transient Protection to 40V, 1.4A (I ), 3MHz,  
V : 3.6V to 34V, V  
= 0.78V, I = 2mA, I = 2μA,  
OUT  
IN  
OUT(MIN)  
Q
SD  
High Efficiency Step-Down DC/DC Converter  
3mm  
×
3mm DFN8 and MSOP8E Packages  
36V with Transient Protection to 40V, Dual 1.4A (I ), 3MHz,  
V : 3.7V to 37V, V  
= 0.8V, I = 4.6mA, I = 1μA,  
OUT  
IN  
OUT(MIN)  
Q
SD  
High Efficiency Step-Down DC/DC Converter  
4mm  
×
4mm QFN24 and TSSOP16E Packages  
36V, 3.5A, 2.4MHz, Low Quiescent Current (<75μA) Step-Down  
DC/DC Converter  
V : 3.6V to 36V, V  
= 0.8V, I = 75μA, I < 1μA,  
IN  
OUT(MIN)  
Q
SD  
3mm × 3mm DFN10, MS10E Package  
34V with Transient Protection to 36V, 2A (I ), 2.8MHz,  
V : 3.6V to 34V, V = 1.26V, I = 850μA, I < 1μA,  
OUT  
IN  
OUT(MIN)  
Q
SD  
High Efficiency Step-Down DC/DC Converter  
3mm  
×
3mm DFN10 and MSOP10E Packages  
36V with Transient Protection to 60V, Dual 2A (I ), 2.4MHz,  
V : 3.6V to 38V, V  
= 0.78V, I = 70μA, I < 1μA,  
OUT  
IN  
OUT(MIN)  
Q
SD  
High Efficiency Step-Down DC/DC Converter  
3mm  
×
3mm DFN10 and MSOP10E Packages  
36V, 3.5A, 2.4MHz, Step-Down DC/DC Converter  
V : 3.6V to 36V, V  
= 0.8V, I = 1.3mA, I < 1μA,  
IN  
OUT(MIN)  
Q
SD  
3mm × 3mm DFN10, MS10E Package  
3640p  
LT 0110 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
24  
© LINEAR TECHNOLOGY CORPORATION 2010  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT3640EUFDTRPBF

Dual Monolithic Buck Regulator with Power-On Reset and Watchdog Timer
Linear

LT3640IFE

Dual Monolithic Buck Regulator with Power-On Reset and Watchdog Timer
Linear

LT3640IFE#PBF

LT3640 - Dual Monolithic Buck Regulator with Power-On Reset and Watchdog Timer; Package: TSSOP; Pins: 28; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3640IFE#TRPBF

LT3640 - Dual Monolithic Buck Regulator with Power-On Reset and Watchdog Timer; Package: TSSOP; Pins: 28; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3640IFEPBF

Dual Monolithic Buck Regulator with Power-On Reset and Watchdog Timer
Linear

LT3640IFETRPBF

Dual Monolithic Buck Regulator with Power-On Reset and Watchdog Timer
Linear

LT3640IUFD

Dual Monolithic Buck Regulator with Power-On Reset and Watchdog Timer
Linear

LT3640IUFD#PBF

LT3640 - Dual Monolithic Buck Regulator with Power-On Reset and Watchdog Timer; Package: QFN; Pins: 28; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3640IUFD#TRPBF

LT3640 - Dual Monolithic Buck Regulator with Power-On Reset and Watchdog Timer; Package: QFN; Pins: 28; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3640IUFDPBF

Dual Monolithic Buck Regulator with Power-On Reset and Watchdog Timer
Linear

LT3640IUFDTRPBF

Dual Monolithic Buck Regulator with Power-On Reset and Watchdog Timer
Linear

LT3641EFE#PBF

LT3641 - Dual Monolithic Buck Regulator with Power-On Reset and Watchdog Timer; Package: TSSOP; Pins: 28; Temperature Range: -40&deg;C to 85&deg;C
Linear