LT3752-1_15 [Linear]

Active Clamp Synchronous Forward Controllers with Internal Housekeeping Controller;
LT3752-1_15
型号: LT3752-1_15
厂家: Linear    Linear
描述:

Active Clamp Synchronous Forward Controllers with Internal Housekeeping Controller

文件: 总52页 (文件大小:609K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3752/LT3752-1  
Active Clamp Synchronous  
Forward Controllers with Internal  
Housekeeping Controller  
FEATURES  
DESCRIPTION  
TheLT®3752/LT3752-1arecurrentmodePWMcontrollers  
n
Input Voltage Range: LT3752: 6.5V to 100V,  
LT3752-1:Limited Only by External Components  
Internal Housekeeping DC/DC Controller  
Programmable Volt-Second Clamp  
High Efficiency Control: Active Clamp,  
Synchronous Rectification, Programmable Delays  
Short-Circuit (Hiccup Mode) Overcurrent Protection  
Programmable Soft-Start/Stop  
Programmable OVLO and UVLO with Hysteresis  
Programmable Frequency (100kHz to 500kHz)  
Synchronizable to an External Clock  
optimized for an active clamp forward converter topology.  
ADC/DChousekeepingcontrollerisincludedforimproved  
efficiency and performance. The LT3752 allows operation  
up to 100V input and the LT3752-1 is optimized for ap-  
plications with input voltages greater than 100V.  
n
n
n
n
n
n
n
n
Aprogrammablevolt-secondclampallowsprimaryswitch  
duty cycles above 50% for high switch, transformer and  
rectifier utilization. Active clamp control reduces switch  
voltage stress and increases efficiency. A synchronous  
output is available for controlling secondary side syn-  
chronous rectification.  
APPLICATIONS  
The LT3752/LT3752-1 are available in a 38-lead plastic  
TSSOP package with missing pins for high voltage  
spacings.  
n
Offline and HV Car Battery Isolated Power Supplies  
n
48V Telecommunication Isolated Power Supplies  
n
Industrial, Automotive and Military Systems  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
TYPICAL APPLICATION  
18V to 72V, 12V/12.5A, 150W Active Clamp Isolated Forward Converter  
V
OUT  
V
IN  
18V TO 72V  
12V  
6.8µH  
12.5A  
4:4  
INTV  
V
4.7µF  
100V  
CC  
2.2µF  
AUX  
+
470µF  
16V  
×3  
2.2µF  
15nF  
ZVN4525E6  
0.15Ω  
22µF  
16V  
×2  
BSC077N12NS3  
Si2325DS  
FDMS86101  
100nF  
499Ω  
10k  
100Ω  
100Ω  
BSC077N12NS3  
HOUT HI  
AOUT  
V
SENSE  
OUT  
IN  
V
AUX  
V
IN  
OC  
SENSEP  
2.2µF  
68pF  
SYNC  
I
100k  
5.9k  
GND  
100k  
100k  
2k  
UVLO_V  
0.006Ω  
SEC  
LT8311  
FB  
PGOOD  
SYNC  
11.3k  
I
SENSEN  
SOUT  
LT3752  
220pF  
OVLO  
GND  
560Ω  
1.82k  
INTV  
CC  
V
INTV  
CC  
AUX  
220nF  
499k  
3.16k  
13.7k  
4.7nF  
10k  
100Ω  
68pF  
4.7µF  
4.7µF  
1µF  
HFB  
1.1k  
3752 TA01  
22nF  
0.33µF  
22.6k  
49.9k  
34k  
31.6k  
71.5k  
2.8k  
22nF  
100k  
100k  
7.32k  
1.2k  
2.2nF  
EFFICIENCY: 94% AT 48V /10A  
IN OUT  
3752fb  
1
For more information www.linear.com/LT3752  
LT3752/LT3752-1  
TABLE OF CONTENTS  
Features..................................................... 1  
Applications ................................................ 1  
Typical Application ........................................ 1  
Description.................................................. 1  
Table of Contents .......................................... 2  
Absolute Maximum Ratings.............................. 3  
Order Information.......................................... 3  
Pin Configuration .......................................... 3  
Electrical Characteristics................................. 4  
Pin Functions..............................................13  
Block Diagram.............................................15  
Timing Diagrams .........................................16  
Operation...................................................19  
Introduction ....................................................... 19  
LT3752 Part Start-Up ......................................... 19  
LT3752-1 Part Start-Up ...................................... 19  
Applications Information ................................21  
Programming System Input Undervoltage Lockout  
(UVLO) Threshold and Hysteresis ......................21  
Soft-Stop Shutdown...........................................21  
Micropower Shutdown .......................................21  
Programming System Input Overvoltage Lockout  
(OVLO) Threshold...............................................21  
LT3752-1 Micropower Start-Up from High System  
Input Voltages ....................................................22  
Programming Switching Frequency....................23  
Synchronizing to an External Clock ....................23  
FORWARD CONTROLLER.......................................27  
Adaptive Leading Edge Blanking Plus  
Programmable Extended Blanking......................27  
Current Sensing and Programmable Slope  
Compensation ....................................................28  
Overcurrent: Hiccup Mode..................................28  
Programming Maximum Duty Cycle Clamp: D  
VSEC  
(Volt-Second Clamp) ..........................................29  
D
VSEC  
Open Loop Control: No Opto-Coupler, Error  
Amplifier or Reference........................................30  
: Open Pin Detection Provides Safety.......30  
R
IVSEC  
Transformer Reset: Active Clamp Technique .....30  
LO Side Active Clamp Topology (LT3752)...........32  
HI Side Active Clamp Topology (LT3752-1).........33  
Active Clamp Capacitor Value and  
Voltage Ripple ....................................................33  
Active Clamp MOSFET Selection ........................34  
Programming Active Clamp Switch Timing: AOUT  
to OUT (t ) and OUT to AOUT (t ) Delays.......35  
AO  
OA  
Programming Synchronous Rectifier Timing:  
SOUT to OUT (t ) and OUT to SOUT (t )  
SO  
OS  
Delays.................................................................35  
Soft-Start (SS1, SS2) .........................................36  
Soft-Stop (SS1) ..................................................36  
Hard-Stop (SS1, SS2).........................................37  
OUT, AOUT, SOUT Pulse-Skipping Mode............37  
AOUT Timeout....................................................38  
Main Transformer Selection ...............................38  
Primary-Side Power MOSFET Selection .............40  
Synchronous Control (SOUT).............................40  
Output Inductor Value......................................... 41  
Output Capacitor Selection................................. 41  
Input Capacitor Selection ................................... 41  
PCB Layout / Thermal Guidelines ......................42  
Typical Applications......................................44  
Package Description .....................................50  
Revision History ..........................................51  
Typical Application .......................................52  
Related Parts..............................................52  
INTV Regulator Bypassing and Operation ......24  
CC  
HOUSEKEEPING CONTROLLER..............................24  
Housekeeping: Operation....................................25  
Housekeeping: Soft-Start/Shutdown..................25  
Housekeeping: Programming Output Voltage.....25  
Housekeeping: Programming Cycle-by-Cycle Peak  
Inductor Current and Slope Compensation.........25  
Housekeeping: Adaptive Leading Edge Blanking.26  
Housekeeping: Overcurrent Hiccup Mode...........26  
Housekeeping: Output Overvoltage and Power  
Good ..................................................................26  
Housekeeping: Transformer Turns Ratio and  
Leakage Inductance............................................26  
Housekeeping: Operating Without This Supply...27  
3752fb  
2
For more information www.linear.com/LT3752  
LT3752/LT3752-1  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
V (LT3752) ...........................................................100V  
IN  
1
2
PGND  
NC  
38  
37  
36  
HFB  
HCOMP  
RT  
UVLO_V , OVLO....................................................20V  
SEC  
V (LT3752-1) .................................................16V, 8mA  
IN  
3
HI  
SENSE  
INTV , SS2..............................................................16V  
CC  
4
FB  
FB, SYNC ....................................................................6V  
5
HOUT  
AOUT  
SOUT  
34  
32  
30  
28  
26  
24  
COMP  
SYNC  
SS1  
SS1, COMP, HCOMP, HFB, RT.....................................3V  
6
I
, I  
, OC, HI  
................................0.35V  
SENSEP SENSEN  
SENSE  
7
IVSEC..................................................................–250µA  
Operating Junction Temperature Range (Notes 2, 3)  
LT3752EFE, LT3752EFE-1 .................. –40°C to 125°C  
LT3752IFE, LT3752IFE-1 .................... –40°C to 125°C  
LT3752HFE, LT3752HFE-1 ................. –40°C to 150°C  
LT3752MPFE, LT3752MPFE-1............ –55°C to 150°C  
Storage Temperature Range .................. –65°C to 150°C  
Lead Temperature (Soldering, 10 Sec)..................300°C  
8
IVSEC  
9
UNLO_V  
SEC  
39  
PGND  
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
OVLO  
V
T
AO  
IN  
T
AS  
INTV  
T
CC  
OS  
T
BLNK  
NC  
OUT  
OC  
NC  
SS2  
22  
21  
20  
I
GND  
SENSEP  
I
PGND  
SENSEN  
FE PACKAGE  
VARIATION: FE38(31)  
38-LEAD PLASTIC TSSOP  
θ
JA  
= 25°C/W  
EXPOSED PAD (PIN 39) IS PGND AND GND, MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING*  
LT3752FE  
PACKAGE DESCRIPTION  
38-Lead Plastic TSSOP  
38-Lead Plastic TSSOP  
38-Lead Plastic TSSOP  
38-Lead Plastic TSSOP  
38-Lead Plastic TSSOP  
38-Lead Plastic TSSOP  
38-Lead Plastic TSSOP  
38-Lead Plastic TSSOP  
TEMPERATURE RANGE  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 150°C  
–55°C to 150°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 150°C  
–55°C to 150°C  
LT3752EFE#PBF  
LT3752EFE#TRPBF  
LT3752IFE#TRPBF  
LT3752HFE#TRPBF  
LT3752MPFE#TRPBF  
LT3752EFE-1#TRPBF  
LT3752IFE-1#TRPBF  
LT3752HFE-1#TRPBF  
LT3752MPFE-1#TRPBF  
LT3752IFE#PBF  
LT3752FE  
LT3752HFE#PBF  
LT3752MPFE#PBF  
LT3752EFE-1#PBF  
LT3752IFE-1#PBF  
LT3752HFE-1#PBF  
LT3752MPFE-1#PBF  
LT3752FE  
LT3752FE  
LT3752FE-1  
LT3752FE-1  
LT3752FE-1  
LT3752FE-1  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on nonstandard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
3752fb  
3
For more information www.linear.com/LT3752  
LT3752/LT3752-1  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 12V, UVLO_VSEC = 2.5V.  
PARAMETER  
CONDITIONS  
MIN  
6.5  
TYP  
MAX  
100  
16  
UNITS  
l
l
l
Operational Input Voltage (LT3752)  
Operational Input Voltage (LT3752-1)  
V
V
10.5  
V
V
V
V
V
V
V
V
(LT3752)  
(LT3752)  
5.8  
5.5  
0.3  
9.5  
7.6  
1.9  
170  
4
6.4  
V
IN(ON)  
IN(OFF)  
5.9  
V
l
l
Hysteresis (LT3752)  
0.1  
0.5  
V
IN(ON/OFF)  
(LT3752-1)  
10.4  
V
IN(ON)  
(LT3752-1)  
V
IN(OFF)  
l
l
l
Hysteresis (LT3752-1)  
1.61  
2.19  
265  
6.2  
V
IN(ON/OFF)  
Start-Up Current (LT3752-1)  
(Notes 6, 7)  
µA  
mA  
IN  
IN  
Quiescent Current (Housekeeping Controller  
Only) (LT3752)  
HCOMP = 1V (Housekeeping Not Switching),  
HFB = 0.85V  
l
V
Quiescent Current (Housekeeping Controller  
HCOMP = 1V (Housekeeping Not Switching),  
HFB = 0.85V  
3
4.6  
9.5  
mA  
mA  
IN  
Only) (LT3752-1)  
V
IN  
Quiescent Current (Housekeeping Controller +  
HCOMP = 1V (Housekeeping Not Switching),  
HFB = 1.35V, FB = 1.5V (Main Loop Not Switching)  
7.5  
Forward Controller)  
l
l
UVLO_V Micropower Threshold (V  
)
I < 20µA  
VIN  
0.2  
0.4  
20  
0.6  
40  
V
µA  
V
SEC  
SD  
V
IN  
Shutdown Current (Micropower)  
UVLO_V  
= 0.2V  
= 1V  
SEC  
UVLO_V  
Threshold (V  
)
1.180  
1.250  
165  
0
1.320  
220  
SEC  
SYS_UV  
V
IN  
Shutdown Current (After Soft-Stop)  
UVLO_V  
UVLO_V  
UVLO_V  
µA  
µA  
SEC  
SEC  
SEC  
UVLO_V  
UVLO_V  
(ON) Current  
(OFF) Current  
= V  
= V  
+ 50mV  
– 50mV  
SEC  
SYS_UV  
SYS_UV  
SEC  
l
l
Hysteresis Current  
4.0  
5
25  
6.0  
µA  
µA  
With One-Shot Communication Current  
OVLO (Rising) (No Switching, Reset SS1)  
OVLO (Falling) (Restart SS1)  
OVLO Hysteresis  
(Note 15)  
1.220  
1.250  
1.215  
35  
1.280  
V
V
l
23  
47  
mV  
OVLO Pin Current (Note 10)  
OVLO = 0V  
OVLO = 1.5V (SS1 = 2.7V)  
OVLO = 1.5V (SS1 = 1.0V)  
5
0.9  
5
100  
nA  
mA  
nA  
100  
Oscillator (Forward Controller: OUT, SOUT, AOUT)  
Frequency: f  
Frequency: f  
Frequency: f  
= 100kHz  
= 300kHz  
= 500kHz  
R = 82.5k  
94  
100  
300  
500  
106  
321  
530  
kHz  
kHz  
kHz  
OSC  
OSC  
OSC  
T
l
R = 24.9k  
T
279  
470  
R = 14k  
T
f
Line Regulation  
R = 24.9k  
T
OSC  
6.5V < V < 100V (LT3752)  
0.05  
0.05  
0.1  
0.1  
%/V  
%/V  
IN  
10.5V < V < 16V (LT3752-1)  
IN  
Frequency and D  
Foldback Ratio (LT3752) (Fold) SS1 = V  
Foldback Ratio (LT3752-1) (Fold) SS1 = V  
+ 25mV, SS2 = 2.7V  
4
2
VSEC  
SSACT  
Frequency and D  
+ 25mV, SS2 = 2.7V  
VSEC  
SS1ACT  
l
l
SYNC Input High Threshold  
SYNC Input Low Threshold  
SYNC Pin Current  
(Note 4)  
(Note 4)  
1.2  
1.025  
75  
1.8  
V
V
0.6  
1.0  
6.6  
SYNC = 6V  
µA  
SYNC Frequency/Programmed f  
1.25  
7.2  
5
kHz/kHz  
OSC  
Linear Regulator (INTV ) (LT3752)  
CC  
INTV Regulation Voltage  
7
V
V
CC  
Dropout (V -INTV  
)
CC  
V
IN  
= 6.5V, I = 10mA  
INTVCC  
0.8  
4.75  
IN  
INTV UVLO(+)  
(Start Switching)  
V
CC  
3752fb  
4
For more information www.linear.com/LT3752  
LT3752/LT3752-1  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 12V, UVLO_VSEC = 2.5V.  
PARAMETER  
INTV UVLO(–)  
CONDITIONS  
MIN  
0.075  
9.4  
TYP  
4.6  
MAX  
4.85  
0.24  
UNITS  
(Stop Switching)  
V
V
CC  
INTV UVLO Hysteresis  
0.15  
CC  
Linear Regulator (INTV ) (LT3752-1)  
CC  
INTV Regulation Voltage  
10  
0.6  
7
10.4  
V
V
V
V
V
CC  
Dropout (V -INTV  
)
CC  
V
IN  
= 8.75V, I  
= 10mA  
INTVCC  
IN  
INTV UVLO(+)  
(Start Switching)  
(Stop Switching)  
7.4  
7.2  
0.3  
CC  
INTV UVLO(–)  
6.8  
0.2  
CC  
INTV UVLO Hysteresis  
0.1  
CC  
Linear Regulator (INTV ) (LT3752/LT3752-1)  
CC  
INTV OVLO(+)  
(Stop Switching)  
(Start Switching)  
15.9  
15.4  
0.38  
16.5  
16  
17.2  
16.7  
0.67  
V
V
V
CC  
INTV OVLO(–)  
CC  
INTV OVLO Hysteresis  
0.5  
CC  
INTV Current Limit  
INTV = 0V  
17  
35  
35  
23  
50  
50  
29  
60  
60  
mA  
mA  
mA  
CC  
CC  
l
l
INTV = 5.75V (LT3752)  
CC  
INTV = 8.75V (LT3752-1)  
CC  
Error Amplifier  
FB Reference Voltage  
FB Line Reg  
l
1.220  
1.250  
1.275  
V
6.5V < V < 100V (LT3752)  
0.1  
0.1  
0.3  
0.3  
mV/V  
mV/V  
IN  
10.5V < V < 16V (LT3752-1)  
IN  
FB Load Reg  
COMP_SW – 0.1V < COMP < COMP_V – 0.1V  
0.1  
50  
0.3  
mV/V  
nA  
OH  
FB Input Bias Current  
Open-Loop Voltage Gain  
Unity-Gain Bandwidth  
COMP Source Current  
COMP Sink Current  
(Note 10)  
200  
85  
dB  
(Note 8)  
2.5  
11  
MHz  
mA  
mA  
V
FB = 1V, COMP = 1.75V (Note 10)  
FB = 1.5V, COMP = 1.75V  
FB = 1V  
6
6.5  
11.5  
2.6  
1.25  
COMP Output High Clamp  
COMP Switching Threshold  
Current Sense (Main Loop)  
V
I
Maximum Threshold  
FB = 1V, OC = 0V  
180  
220  
6.1  
2
260  
mV  
V/V  
µA  
SENSEP  
COMP Current Mode Gain  
V /V  
COMP ISENSEP  
I
I
I
Input Current (D = 0%)  
Input Current (D = 80%)  
Input Current  
(Note 10)  
(Note 10)  
SENSEP  
SENSEP  
SENSEN  
33  
µA  
FB = 1.5V (COMP Open) (Note 10)  
FB = 1V (COMP Open) (Note 10)  
20  
90  
30  
135  
µA  
µA  
l
OC Overcurrent Threshold  
OC Input Current  
82.5  
96  
107.5  
500  
mV  
nA  
200  
AOUT Driver (Active Clamp Switch Control) (LT3752 External PMOS; LT3752-1 External NMOS)  
AOUT Rise Time  
C = 1nF (Note 5), INTV = 12V  
23  
19  
ns  
ns  
V
L
CC  
AOUT Fall Time  
C = 1nF (Note 5), INTV = 12V  
L CC  
AOUT Low Level  
0.1  
AOUT High Level  
INTV = 12V  
11.9  
7.8  
V
CC  
AOUT High Level in Shutdown (LT3752)  
UVLO_V  
= 0V, INTV = 8V, I = 1mA Out  
AOUT  
V
SEC  
CC  
of the Pin  
AOUT Low Level in Shutdown (LT3752-1)  
UVLO_V  
the Pin  
= 0V, INTV = 12V, I = 1mA Into  
AOUT  
0.25  
V
SEC  
CC  
3752fb  
5
For more information www.linear.com/LT3752  
LT3752/LT3752-1  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 12V, UVLO_VSEC = 2.5V.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
AOUT Edge to OUT (Rise): (t  
)
C
C
= 1nF, C  
= 3.3nF, INTV = 12V  
AO  
SOUT  
R
R
OUT CC  
= 44.2k  
168  
253  
218  
328  
268  
403  
ns  
ns  
TAO  
TAO  
= 73.2k (Note 11)  
OUT (Fall) to AOUT Edge: (t  
)
= 1nF, C = 3.3nF, INTV = 12V  
OA  
SOUT  
R
R
OUT  
CC  
= 44.2k  
= 73.2k (Note 12)  
150  
214  
196  
295  
250  
376  
ns  
ns  
TAO  
TAO  
SOUT Driver (Synchronous Rectification Control)  
SOUT Rise Time  
C
C
= 1nF, INTV = 12V (Note 5)  
21  
19  
ns  
ns  
V
OUT  
CC  
SOUT Fall Time  
= 1nF, INTV = 12V (Note 5)  
CC  
OUT  
SOUT Low Level  
0.1  
SOUT High Level  
INTV = 12V  
11.9  
7.8  
V
CC  
SOUT High Level in Shutdown  
UVLO_V  
= 0V, INTV = 8V, I = 1mA Out  
SOUT  
V
SEC  
CC  
of the Pin  
AOUT Edge to SOUT (Fall): (t  
)
C
C
C
= C  
= 1nF, INTV = 12V  
AS  
AOUT  
SOUT CC  
= 44.2k (Note 13)  
= 73.2k  
R
TAS  
R
TAS  
168  
253  
218  
328  
268  
403  
ns  
ns  
SOUT (Fall) to OUT (Rise): (t = t – t  
)
AS  
= 1nF, C  
= 3.3nF, INTV = 12V  
SO  
OS  
AO  
SOUT  
R
R
OUT CC  
= 73.2k, R = 44.2k (Notes 11, 13)  
= 44.2k, R = 73.2k  
70  
–70  
110  
–110  
132  
–132  
ns  
ns  
TAO  
TAO  
TAS  
TAS  
OUT (Fall) to SOUT (Rise): (t  
)
= 1nF, C  
= 3.3nF, INTV = 12V  
OUT CC  
SOUT  
R
R
= 14.7k  
= 44.2k (Note 14)  
52  
102  
68  
133  
84  
164  
ns  
ns  
TOS  
TOS  
OUT Driver (Main Power Switch Control)  
OUT Rise Time  
C
C
= 3.3nF, INTV = 12V (Note 5)  
19  
20  
ns  
ns  
V
OUT  
CC  
OUT Fall Time  
= 3.3nF, INTV = 12V (Note 5)  
CC  
OUT  
OUT Low Level  
0.1  
OUT High Level  
INTV = 12V  
11.9  
V
CC  
OUT Low Level in Shutdown  
UVLO_V  
the Pin  
= 0V, INTV = 8V, I = 1mA Into  
OUT  
0.25  
V
SEC  
CC  
OUT (Volt-Sec) Max Duty Cycle Clamp  
R = 24.9k, R  
= 51.1k, FB = 1V, SS1 = 2.7V  
T
IVSEC  
D
VSEC  
D
VSEC  
D
VSEC  
(1 • System Input (Min)) × 100  
(2 • System Input (Min)) × 100  
(4 • System Input (Min)) × 100  
UVLO_V  
UVLO_V  
UVLO_V  
= 1.25V  
= 2.50V  
= 5.00V  
68.5  
34.3  
17.5  
72.5  
36.5  
18.6  
76.2  
38.7  
19.7  
%
%
%
SEC  
SEC  
SEC  
OUT Minimum ON Time  
C
= 3.3nF, INTV = 12V (Note 9)  
OUT  
R
R
CC  
= 14.7k  
325  
454  
ns  
ns  
TBLNK  
TBLNK  
= 73.2k (Note 16)  
SS1 Pin (Soft-Start: Frequency and D  
) (Soft-Stop: COMP Pin, Frequency and D  
)
VSEC  
VSEC  
SS1 Reset Threshold (V  
)
150  
1.25  
11.5  
10.5  
mV  
V
SS1(RTH)  
SS1 Active Threshold (V  
)
(Allow Switching)  
SS1(ACT)  
SS1 Charge Current (Soft-Start)  
SS1 = 1.5V (Note 10)  
7
16  
µA  
µA  
SS1 Discharge Current (Soft-Stop)  
SS1 = 1V, UVLO_V  
SS1 = 1V  
= V  
– 50mV  
SYS_UV  
6.4  
14.6  
SEC  
SS1 Discharge Current (Hard Stop)  
OC > OC Threshold  
0.9  
0.9  
0.9  
mA  
mA  
mA  
INTV < INTV UVLO(–)  
CC  
CC  
OVLO > OVLO(+)  
SS2 Pin (Soft-Start: Comp Pin)  
SS2 Discharge Current  
SS2 Charge Current  
SS1 < V  
SS1 > V  
, SS2 = 2.5V  
, SS2 = 1.5V  
2.8  
21  
mA  
µA  
SS(ACT)  
11  
28  
SS(ACT)  
3752fb  
6
For more information www.linear.com/LT3752  
LT3752/LT3752-1  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 12V, UVLO_VSEC = 2.5V.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Error Amplifier (Housekeeping Controller)  
HFB Reference Voltage  
HFB Line Reg  
0.90  
1.000  
1.10  
V
6.5V < V < 100V (LT3752)  
0.1  
0.1  
mV/V  
mV/V  
IN  
10.5V < V < 16V (LT3752-1)  
IN  
HFB Load Reg  
HCOMP V – 0.1V < HCOMP < HCOMP V  
–6  
mV/V  
SW  
OH  
0.1V  
HFB Input Bias Current  
Transconductance  
HFB = 1.1V (Note 10)  
85  
250  
175  
0.96  
0.92  
1.206  
1.150  
15  
170  
nA  
µS  
V/V  
V
I  
HCOMP  
5µA  
Voltage Gain  
Power Good(+) (HFB Level)  
Power Good(–) (HFB Level)  
HFB OVLO(+)  
V
(Disable HOUT Switching)  
(Enable Housekeeping Operation)  
HCOMP = 1.75V (Note 10)  
HCOMP = 1.75V  
V
HFB OVLO(–)  
V
HCOMP Source Current  
HCOMP Sink Current  
11  
13  
19  
23  
µA  
µA  
V
18  
HCOMP Output High Clamp  
HCOMP Switching Threshold  
Current Sense (Housekeeping Controller)  
2.9  
1.28  
V
HI  
Peak Current Threshold  
HFB = 0.8V  
69  
79  
86.5  
mV  
V/V  
SENSE  
HCOMP Current Mode Gain  
9.1  
V /V  
HCOMP HISENSE  
HI  
SENSE  
HI  
SENSE  
Input Current (D = 0%)  
Input Current (D = 80%)  
(Note 10)  
2
52  
µA  
µA  
HI  
Overcurrent Threshold  
84.6  
98  
105.4  
mV  
SENSE  
HOUT Driver (Housekeeping Controller)  
HOUT Rise Time  
C = 1nF (Note 5), INTV = 12V  
13  
12  
ns  
ns  
V
L
CC  
HOUT Fall Time  
C = 1nF (Note 5), INTV = 12V  
L CC  
HOUT Low Level  
0.1  
HOUT High Level  
LT3752  
LT3752-1  
INTV = 12V  
11.9  
11.9  
V
V
CC  
HOUT Low Level in Shutdown  
UVLO_V  
= 0V, INTV = 12V, I = 1mA  
HOUT  
0.25  
V
SEC  
CC  
Into the Pin  
HOUT Maximum Duty Cycle  
HCOMP = 2.7V, R = 24.9k  
90  
95  
%
T
HOUT Minimum ON Time  
C = 1nF (Note 9), INTV = 12V  
350  
ns  
L
CC  
Soft-Start (HSS) (Housekeeping Controller)  
HSS (Internal) Ramp Time (t  
)
HCOMP SW ≥ HCOMP V – 0.1V  
2.2  
4
ms  
HSS  
OH  
Oscillator (Housekeeping Controller)  
Frequency (f  
Frequency (f  
Frequency (f  
) (f  
Folded Back) (LT3752)  
Folded Back) (LT3752-1)  
HFB = 0.8V, R = 24.9k, SS1 = 0V  
55  
65  
75  
kHz  
kHz  
kHz  
HOUT OSC  
T
) (f  
HOUT OSC  
HFB = 0.8V, R = 24.9k, SS1 = 0V  
119  
279  
141  
300  
163  
321  
T
l
) (Full-Scale f  
HOUT  
)
HFB = 1.15V, HCOMP = 2.7V  
OSC  
3752fb  
7
For more information www.linear.com/LT3752  
LT3752/LT3752-1  
ELECTRICAL CHARACTERISTICS  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 6: Guaranteed by correlation to static test.  
Note 7: V start-up current is measured at V = V  
– 0.25V and then  
IN(ON)  
IN  
IN  
scaled by 1.18× to correlate to worst-case V current required for part  
IN  
start-up at V = V  
.
IN  
IN(ON)  
Note 2: The LT3752EFE/LT3752EFE-1 are guaranteed to meet performance  
specifications from 0°C to 125°C junction temperature. Specifications  
over the –40°C to 125°C operating junction temperature range are  
assured by design, characterization and correlation with statistical process  
controls. The LT3752IFE/LT3752IFE-1 are guaranteed to meet performance  
specifications from –40°C to 125°C junction temperature. The LT3752HFE/  
LT3752HFE-1 are guaranteed to meet performance specifications from  
–40°C to 150°C junction temperature. The LT3752MPFE/LT3752MPFE-1  
are tested and guaranteed to meet performance specifications from –55°C  
to 150°C junction temperature.  
Note 3: For maximum operating ambient temperature, see the Thermal  
Calculations section in the Applications Information section.  
Note 4: SYNC minimum and maximum thresholds are guaranteed by  
SYNC frequency range test using a clock input with guard banded SYNC  
levels of 0.7V low level and 1.7V high level.  
Note 8: Guaranteed by design.  
Note 9: ON times are measured between rising and falling edges at 50% of  
gate driver supply voltage.  
Note 10: Current flows out of pin.  
Note 11: Guaranteed by correlation to R = 73.2k test.  
TAS  
Note 12: t timing guaranteed by design based on correlation to  
OA  
measured t timing.  
AO  
Note 13: Guaranteed by correlation to R  
Note 14: Guaranteed by correlation to R  
Note 15: A 2µs one-shot of 20µA from the UVLO_V  
communication between ICs to begin shutdown (useful when stacking  
supplies for more power ( = inputs in parallel/outputs in series)). The  
current is tested in a static test mode. The 2µs one-shot is guaranteed by  
design.  
= 44.2k test.  
= 14.7k test.  
TAO  
TOS  
pin allows  
SEC  
Note 5: Rise and fall times are measured between 10% and 90% of gate  
driver supply voltage.  
Note 16: Guaranteed by correlation to R  
= 14.7k test.  
TBLNK  
3752fb  
8
For more information www.linear.com/LT3752  
LT3752/LT3752-1  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, unless otherwise noted.  
VIN Start-Up and Shutdown Current  
VIN(ON), VIN(OFF) Thresholds  
VIN Quiescent Current vs Junction  
Temperature  
vs Junction Temperature  
vs Junction Temperature  
220  
200  
180  
160  
140  
120  
100  
80  
10.0  
9.5  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
8
7
LT3752-1 VIN_ON  
LT3752/-1: HOUSEKEEPING + FORWARD  
(NO SWITCHING)  
6
5
4
3
2
1
0
LT3752-1 V START-UP CURRENT  
IN  
)
IN_ON  
(V = V  
IN  
LT3752-1 VIN_OFF  
LT3752: HOUSEKEEPING ONLY  
(NO SWITCHING)  
LT3752 VIN_ON  
LT3752 VIN_OFF  
60  
LT3752-1: HOUSEKEEPING ONLY  
(NO SWITCHING)  
LT3752/LT3752-1 V SHUTDOWN CURRENT  
IN  
(V = 12V) UVLO_VSEC = 0.2V  
IN  
40  
20  
0
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
JUNCTION TEMPERATURE (°C)  
JUNCTION TEMPERATURE (°C)  
JUNCTION TEMPERATURE (°C)  
3752 G01  
3752 G02  
3752 G03  
UVLO_VSEC Turn-On Threshold  
vs Junction Temperature  
UVLO_VSEC Hysteresis Current  
vs Junction Temperature  
HFB PGOOD Thresholds  
vs Junction Temperature  
1.275  
1.270  
1.265  
1.260  
1.255  
1.250  
1.245  
1.240  
1.235  
1.230  
1.225  
6.0  
5.5  
5.0  
4.5  
4.0  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
HFB PGOOD (+) = ENABLE FORWARD  
CONTROLLER CIRCUITRY  
HFB PGOOD (–) = DISABLE FORWARD  
CONTROLLER CIRCUITRY  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
JUNCTION TEMPERATURE (°C)  
JUNCTION TEMPERATURE (°C)  
JUNCTION TEMPERATURE (°C)  
3752 G04  
3752 G05  
3752 G06  
HFB Reference Voltage  
vs Junction Temperature  
HFB OVLO Thresholds  
vs Junction Temperature  
1.30  
1.25  
1.20  
1.15  
1.10  
1.05  
1.00  
1.100  
1.075  
HFB > OVLO (+) = DISABLE HOUT  
SWITCHING  
1.050  
1.025  
1.000  
0.975  
0.950  
0.925  
0.900  
HFB < OVLO (–) = ENABLE HOUSEKEEPING  
OPERATION  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
JUNCTION TEMPERATURE (°C)  
JUNCTION TEMPERATURE (°C)  
3752 G08  
3752 G07  
3752fb  
9
For more information www.linear.com/LT3752  
LT3752/LT3752-1  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, unless otherwise noted.  
HISENSE Overcurrent  
(Hiccup Mode) Threshold  
HISENSE Peak Current Threshold  
vs Junction Temperature  
HISENSE Pin Current vs Duty Cycle  
vs Junction Temperature  
60  
50  
40  
30  
20  
10  
0
110  
105  
100  
95  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
90  
T = 150°C  
J
85  
T = 25°C  
J
T = –55°C  
J
80  
0
10 20 30 40 50 60 70 80 90 100  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
DUTY CYCLE (%)  
JUNCTION TEMPERATURE (°C)  
JUNCTION TEMPERATURE (°C)  
3752 G10  
3752 G11  
3752 G09  
Housekeeping Internal Soft-Start  
Time (HSS) vs Junction  
Temperature  
LT3752: INTVCC in Dropout at  
VIN = 6.5V vs Current, Junction  
Temperature  
LT3752: INTVCC UVLO Thresholds  
vs Junction Temperature  
3.00  
2.75  
2.50  
2.25  
2.00  
1.75  
1.50  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
4.85  
4.80  
4.75  
4.70  
4.65  
4.60  
4.55  
4.50  
INTV > UVLO (+): ENABLE SWITCHING  
CC  
INTV < UVLO (–): DISABLE SWITCHING  
CC  
I
I
I
I
= 0mA  
LOAD  
LOAD  
LOAD  
LOAD  
= 10mA  
= 15mA  
= 20mA  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
JUNCTION TEMPERATURE (°C)  
JUNCTION TEMPERATURE (°C)  
JUNCTION TEMPERATURE (°C)  
3752 G12  
3752 G13  
3752 G14  
LT3752: INTVCC Regulation  
Voltage vs Current, Junction  
Temperature  
LT3752-1: INTVCC in Dropout at  
VIN = 8.75V vs Current, Junction  
Temperature  
7.00  
6.95  
6.90  
6.85  
6.80  
6.75  
6.70  
6.65  
6.60  
10.0  
9.5  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
V
= 12V  
V
= 12V  
IN  
IN  
I
I
I
I
= 0mA  
I
I
I
I
= 0mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
= 10mA  
= 20mA  
= 30mA  
= 10mA  
= 15mA  
= 20mA  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
JUNCTION TEMPERATURE (°C)  
JUNCTION TEMPERATURE (°C)  
3752 G15  
3752 G16  
3752fb  
10  
For more information www.linear.com/LT3752  
LT3752/LT3752-1  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, unless otherwise noted.  
LT3752-1: INTVCC Regulation  
LT3752-1: INTVCC UVLO Thresholds  
vs Junction Temperature  
Voltage vs Current, Junction  
Temperature  
SS1 Soft-Start/Soft-Stop Pin  
Currents vs Junction Temperature  
10.00  
9.95  
9.90  
9.85  
9.80  
9.75  
9.70  
9.65  
9.60  
9.55  
9.50  
9.45  
9.40  
7.20  
7.15  
7.10  
7.05  
7.00  
6.95  
6.90  
6.85  
6.80  
6.75  
6.70  
6.65  
6.60  
14.0  
13.5  
13.0  
12.5  
12.0  
11.5  
11.0  
10.5  
10.0  
9.5  
V
= 12V  
IN  
INTV > UVLO (+): ENABLE FORWARD  
CC  
CONVERTER SWITCHING  
SS1 SOFT-START: CHARGE CURRENT* (–1)  
SS1 SOFT-STOP: DISCHARGE CURRENT  
INTV < UVLO (–): DISABLE FORWARD  
CC  
CONVERTER SWITCHING  
I
I
I
I
= 0mA  
LOAD  
LOAD  
LOAD  
LOAD  
= 10mA  
= 20mA  
= 30mA  
9.0  
8.5  
8.0  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
JUNCTION TEMPERATURE (°C)  
JUNCTION TEMPERATURE (°C)  
JUNCTION TEMPERATURE (°C)  
3752 G18  
3752 G17  
3752 G19  
Switching Frequency  
vs SS1 Pin Voltage  
SS1 High, Active and Reset  
SS2 Soft-Start Charge Current  
vs Junction Temperature  
Levels vs Junction Temperature  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
350  
3.00  
2.75  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
R = 24.9k  
T
325  
300  
275  
250  
225  
200  
175  
150  
125  
100  
75  
SS1 HIGH LEVEL  
LT3752-1  
f
(HOUT)  
f
(OUT)  
SS2 PIN CURRENT* (–1)  
SS1 ACTIVE LEVEL  
(ALLOW FORWARD CONVERTER SWITCHING)  
f
LT3752  
(HOUT)LT3752-1  
f
(HOUT)  
f
(OUT)  
f
(HOUT)LT3752  
50  
25  
0
SS1 RESET LEVEL (RESET SS1 LATCH)  
f
(OUT)  
–75 –50 –25  
0
25 50 75 100 125 150 175  
0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75  
–75 –50 –25  
0
25 50 75 100 125 150 175  
JUNCTION TEMPERATURE (°C)  
SS1 (V)  
JUNCTION TEMPERATURE (°C)  
3752 G21  
3752 G22  
3752 G20  
Switching Frequency  
vs Junction Temperature  
FB Reference Voltage  
vs Junction Temperature  
325  
320  
315  
310  
305  
300  
295  
290  
285  
280  
275  
1.30  
1.29  
1.28  
1.27  
1.26  
1.25  
1.24  
1.23  
1.22  
1.21  
1.20  
R = 24.9k  
T
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
JUNCTION TEMPERATURE (°C)  
JUNCTION TEMPERATURE (°C)  
3752 G23  
3752 G24  
3752fb  
11  
For more information www.linear.com/LT3752  
LT3752/LT3752-1  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, unless otherwise noted.  
ISENSEP Maximum Threshold – VSLP  
vs Duty Cycle (Programming Slope  
Compensation)  
OC Overcurrent  
ISENSEP Maximum Threshold  
vs COMP  
(Hiccup Mode) Threshold  
vs Junction Temperature  
240  
220  
240  
220  
200  
180  
160  
140  
110  
105  
100  
95  
VSLP = I(I  
) • R  
SENSEP  
ISLP  
200  
180  
R
ISLP  
= 0Ω  
160  
140  
120  
100  
80  
R
ISLP  
= 1.5kΩ  
OC THRESHOLD  
90  
R
ISLP  
= 2kΩ  
60  
85  
40  
20  
0
80  
1.2 1.4 1.6  
1.8  
2
2.2 2.4 2.6  
0
10 20 30 40 50 60 70 80 90 100  
–75 –50 –25  
0
25 50 75 100 125 150 175  
COMP (V)  
DUTY CYCLE (%)  
JUNCTION TEMPERATURE (°C)  
3752 G25  
3752 G26  
3752 G27  
AOUT to OUT Delay (tAO) and OUT  
to AOUT Delay (tOA) vs Junction  
Temperature  
AOUT to SOUT Delay (tAS  
vs Junction Temperature  
)
Extended Blanking Duration  
vs Junction Temperature  
340  
320  
300  
280  
260  
240  
220  
200  
180  
160  
140  
340  
320  
300  
280  
260  
240  
220  
200  
180  
160  
140  
220  
200  
180  
160  
140  
120  
100  
80  
t
AO  
R
TBLNK  
= 73.2k  
R
TAS  
= 73.2k  
t
OA  
R
= 73.2k  
= 44.2k  
TAO  
t
t
R
TAS  
= 44.2k  
AO  
R
TAO  
OA  
R
= 14.7k  
TBLNK  
60  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
JUNCTION TEMPERATURE (°C)  
JUNCTION TEMPERATURE (°C)  
JUNCTION TEMPERATURE (°C)  
3752 G30  
3752 G29  
3752 G28  
SOUT (Fall) to OUT (Rise) Delay  
(tSO = tAO – tAS) vs Junction  
Temperature  
OUT (Fall) to SOUT (Rise) Delay  
(tOS) vs Junction Temperature  
120  
100  
80  
160  
140  
120  
R
TAO  
= 73.2k, R  
= 44.2k  
TAS  
R
TOS  
= 44.2k  
60  
40  
20  
100  
80  
60  
40  
20  
0
R
TOS  
= 14.7k  
–20  
–40  
–60  
–80  
–100  
–120  
R
TOS  
= 7.32k  
R
= 44.2k, R  
= 73.2k  
TAO  
0
TAS  
–75 –50 –25  
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
JUNCTION TEMPERATURE (°C)  
JUNCTION TEMPERATURE (°C)  
3752 G31  
3752 G32  
3752fb  
12  
For more information www.linear.com/LT3752  
LT3752/LT3752-1  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, unless otherwise noted.  
Required RIVSEC vs Switching  
Frequency (for DVSEC × 100 = 72.5%,  
UVLO_VSEC = 1.25V)  
OUT Pin Rise/Fall Times  
vs OUT Pin Load Capacitance  
OUT Maximum Duty Cycle Clamp  
(DVSEC) vs UVLO_VSEC  
80  
70  
60  
50  
40  
30  
20  
10  
0
160  
140  
120  
100  
80  
60  
50  
40  
30  
20  
10  
0
INTV = 12V  
CC  
V
R
R
= 12V  
IN  
T
(OVERDRIVEN FROM  
= 24.9k (300kHz)  
HOUSEKEEPING SUPPLY)  
= 51.1k  
IVSEC  
60  
40  
20  
0
0
1.25 2.5 3.75  
5
6.25 7.5 8.75 10  
100 150 200 250 300 350 400 450 500  
0
1
2
3
4
5
6
7
8
9
10  
UVLO_VSEC (V)  
SWITCHING FREQUENCY (kHz)  
OUT PIN LOAD CAPACITANCE (nF)  
3752 G33  
3752 G34  
3752 G35  
PIN FUNCTIONS  
HFB (Pin 1): Housekeeping Supply Error Amplifier  
50%.Resistordividerratioprogramsundervoltagelockout  
(UVLO) threshold. A 5µA pin current hysteresis allows  
programmingofUVLOhysteresis.Pinbelow0.4Vreduces  
Inverting Input.  
HCOMP (Pin 2): Housekeeping Supply Error Amplifier  
Output and Compensation Pin.  
V currents to microamps.  
IN  
OVLO (Pin 10): A resistor divider from system input  
programs overvoltage lockout (OVLO) threshold. Fixed  
hysteresis included.  
RT (Pin 3): A resistor to ground programs switching  
frequency.  
FB (Pin 4): Error Amplifier Inverting Input.  
T
(Pin 11): A resistor programs nonoverlap timing  
AO  
COMP (Pin 5): Error Amplifier Output. Allows various  
compensation networks for nonisolated applications.  
between AOUT rise and OUT rise control signals.  
T
(Pin12):ResistorsatT andT definedelaybetween  
AS  
AO  
AS  
SYNC(Pin6):Allowssynchronizationofinternaloscillator  
SOUT fall and OUT rise (= t – t ).  
AO  
AS  
to an external clock. f  
equal to f  
allowed.  
SYNC  
OSC  
T
(Pin 13): Resistor programs delay between OUT fall  
OS  
SS1 (Pin 7): Capacitor controls soft-start/stop of switch-  
ing frequency and volt-second clamp. During soft-stop it  
also controls the COMP pin.  
and SOUT rise.  
T
(Pin 14): Resistor programs extended blanking of  
BLNK  
I
and OC signals during MOSFET turn-on.  
SENSEP  
IVSEC (Pin 8): Resistor Programs OUT Pin Maximum  
NC (Pins 15, 16, 37): No Connect Pins. These pins are not  
connected inside the IC. These pins should be left open.  
Duty Cycle Clamp (D  
). This clamp moves inversely  
VSEC  
proportional to system input voltage to provide a volt-  
second clamp.  
SS2 (Pin 17): Capacitor controls soft-start of COMP pin.  
AlternativelycanconnecttoOPTOtocommunicatestartof  
switchingtosecondaryside. Ifunused, leavethepinopen.  
UVLO_V  
(Pin 9): A resistor divider from system in-  
SEC  
put allows switch maximum duty cycle to vary inversely  
proportional with system input. This volt-second clamp  
prevents transformer saturation for duty cycles above  
GND(Pin18):AnalogSignalGround.Electricalconnection  
exists inside the IC to the exposed pad (Pin 39).  
3752fb  
13  
For more information www.linear.com/LT3752  
LT3752/LT3752-1  
PIN FUNCTIONS  
PGND (Pins 19, 38, 39): The Power Grounds for the IC.  
The package has an exposed pad (Pin 39) underneath the  
ICwhichisthebestpathforheatoutofthepackage. Pin39  
should be soldered to a continuous copper ground plane  
under the device to reduce die temperature and increase  
the power capability of the LT3752/LT3752-1.  
INTV (Pin 26): A linear regulator supply generated from  
CC  
IN  
V . LT3752 supplies 7V for AOUT, SOUT, OUT and HOUT  
gate drivers. LT3752-1 supplies 10V for AOUT,SOUT, and  
OUT gate drivers (HOUT supplied from V ). INTV must  
IN  
CC  
be bypassed with a 4.7µF capacitor to power ground. Can  
beexternallydrivenbythehousekeepingsupplytoremove  
power from within the IC.  
I
(Pin 20): Negative input for the current sense  
SENSEN  
comparator. Kelvin connect to the sense resistor in the  
V (Pin28):InputSupplyPin. Bypasswith1µFtoground.  
IN  
source of the power MOSFET.  
SOUT (Pin 30): Sync signal for secondary side synchro-  
nous rectifier controller.  
I
(Pin 21): Positive input for the current sense  
SENSEP  
comparator. Kelvin connect to the sense resistor in the  
AOUT (Pin 32): Control signal for external active clamp  
switch. (P-channel LT3752, N-channel LT3752-1).  
source of the power MOSFET. A resistor in series with  
I
programs slope compensation.  
SENSEP  
HOUT (Pin 34): Drives the gate of an N-channel MOSFET  
used for the housekeeping supply. Active pull-off exists  
in shutdown.  
OC (Pin 22): An accurate 96mV threshold, independent  
of duty cycle, for detection of primary side MOSFET over-  
current and trigger of hiccup mode. Connect directly to  
sense resistor in the source of the primary side MOSFET.  
HI  
(Pin 36): Current sense input for the house keep-  
SENSE  
ing supply. Connect to sense resistor in the source of the  
Missing Pins 23, 25, 27, 29, 31, 33, 35: Pins removed  
for high voltage spacings and improved reliability.  
powerMOSFET.AresistorinserieswithHI  
slope compensation.  
programs  
SENSE  
OUT (Pin 24): Drives the gate of an N-channel MOSFET  
between0VandINTV .Activepull-offexistsinshutdown.  
CC  
3752fb  
14  
For more information www.linear.com/LT3752  
LT3752/LT3752-1  
BLOCK DIAGRAM  
HOUSEKEEPING CONTROLLER  
9
1
2
UVLO_V  
1.25V  
HFB  
HCOMP  
SEC  
+
+
79mV  
CLAMP  
1.25V  
REF  
0.4V  
1.0V  
+
SS1 > 1.25V  
HARD STOP  
5µA  
20µA (1 SHOT)  
1.25V  
HSS  
+
+
HISLP  
SS1 < 150mV  
HI  
SENSE  
HOUT  
SOFT STOP  
36  
34  
0.9mA  
+
HICCUP  
V
IN_ON  
OVLO  
1.25V (+)  
1.215V (–)  
+
V
10  
IN_OFF  
V
IN  
98mV  
+
EN  
0.7A  
R
Q
OUT  
PGOOD  
HISLP  
S
+
UVLO_V  
SEC  
IVSEC  
SYNC  
V
8
6
IN  
EN_SS1  
28  
26  
+
1.25V  
100k  
INTV  
CC  
SS1 > 2.2V  
OSC  
RT  
3
SS2  
(INVERT LEVEL FOR LT3752-1)  
17  
ISLP  
1.25V  
+
ON  
+
V
OFF  
AOUT  
SOUT  
OUT  
S
Q
FOLD  
BACK  
0.4A  
32  
30  
24  
SEC  
CLAMP  
R
ACTIVE CLAMP CONTROL  
SS1  
FG  
SYNCHRONOUS CONTROL  
CG  
+
7
TIMING  
LOGIC  
0.4A  
2A  
150mV  
HARD STOP  
SS1 < 1.25V  
S
OFF  
CONTROL  
ON  
Q
R
MAIN SWITCH  
INTV  
INTV  
CC_OV  
CC_UV  
Q
R
S
SOFT  
START  
SOFT  
STOP  
T > 170°C  
J
HICCUP  
BLANK  
SS2  
SS1  
EN_SS1  
+
+
OC  
22  
21  
20  
96mV  
ISLP  
I
I
SENSEP  
+
1.25V  
EA  
SENSEN  
(0220)mV  
FB  
COMP  
T
T
AS  
T
OS  
T GND  
BLNK  
PGND (19, 38)  
AO  
4
5
11  
12  
13  
14  
18  
3752 BD  
(+ EXPOSED (+ EXPOSED  
PAD PIN 39) PAD PIN 39)  
INTV  
CC  
PART  
SYSTEM INPUT MAX  
V
IN  
PIN MAX  
V
ON/OFF  
IN  
UVLO(+)/(REG)  
AOUT PHASING  
LT3752  
LT3752-1  
100V  
100V  
5.8V/5.5V  
9.5V/7.6V  
4.75V/7V  
for External PMOS  
for External NMOS  
Limited Only by  
External Components  
16V, 8mA  
(Internal V Clamp)  
7V/10V  
IN  
3752fb  
15  
For more information www.linear.com/LT3752  
LT3752/LT3752-1  
TIMING DIAGRAMS  
t
AOUT  
OUT  
OA  
0V  
0V  
t
AO  
V
/(1 – DUTY CYCLE)  
IN  
V
IN  
SWP  
0V  
t
SO  
SOUT  
CG  
t
OS  
t
AS  
0V  
0V  
0V  
FG  
V
/(1 – DUTY CYCLE)  
OUT  
FSW  
0V  
CSW  
0V  
T
OSC  
(1/f  
)
3752 F01  
t
AO  
t
OS  
PROGRAMMED BY R , t PROGRAMMED BY R  
TAO AS TAS  
PROGRAMMED BY R , t = 0.9 • t , t = t – t  
TOS OA  
AO SO AO AS  
Figure 1. LT3752 Timing Diagram  
(LT3752-1 Inverts AOUT Phase for N-Channel Control)  
CSW  
V
V
OUT  
IN  
SWP  
M1  
FSW  
M3  
FG  
LTXXXX  
SYNC  
CG  
M4  
OUT  
LT3752  
M2  
AOUT  
SOUT  
OS  
T
T
T
AO  
AS  
GND  
–V  
–V  
OUT  
IN  
3752 F02  
Figure 2. Timing Reference Circuit  
3752fb  
16  
For more information www.linear.com/LT3752  
LT3752/LT3752-1  
TIMING DIAGRAMS  
SYSTEM INPUT  
(LT3752 V PIN)  
SYSTEM INPUT (MIN)  
+V  
SYSTEM INPUT (MIN)  
IN  
HYST  
0V  
TRIGGER  
SOFT STOP  
UVLO_V  
SEC  
(RESISTOR DIVIDER  
FROM SYSTEM INPUT)  
1.25V  
0V  
7V (REG)  
4.75V UVLO(+)  
OPTIONAL  
BOOTSTRAP  
DIODE  
INTV  
CC  
FROM V  
HK  
0V  
PGOOD(+)  
(96% OF FULL-SCALE V  
)
V
HK  
HK  
(HOUSEKEEPING  
SUPPLY OUTPUT)  
SS1  
SOFT  
SS1  
SOFT  
COMPLETED SOFT-STOP  
SHUTDOWN:  
STARTS  
STOPS  
f
AND  
SEC  
f
,DV  
OSC  
DV  
OSC  
AND COMP  
SEC  
0.6V < UVLO_V  
< 1.25V  
SEC  
0V  
AND SS1 < 150mV  
SS1  
1.25V  
150mV  
0V  
COMP  
SWITCHING  
THRESHOLD  
1.25V  
COMP  
0V  
SS2  
SOFT  
STARTS  
COMP  
SS2  
0V  
FULL-SCALE f  
OSC  
f
OSC  
(SWITCHING  
FREQUENCY)  
FULL-SCALE f /4.6  
OSC  
AOUT, OUT, SOUT  
SWITCHING  
HOUT  
0Hz  
3752 F03  
SWITCHING  
Figure 3. LT3752 Start-Up and Shutdown Timing Diagram  
3752fb  
17  
For more information www.linear.com/LT3752  
LT3752/LT3752-1  
TIMING DIAGRAMS  
SYSTEM INPUT  
SYSTEM INPUT (MIN)  
+V  
SYSTEM INPUT (MIN)  
HYST  
0V  
TRIGGER  
SOFT STOP  
UVLO_V  
PIN  
SEC  
(RESISTOR DIVIDER  
1.25V  
FROM SYSTEM INPUT)  
0V  
V
16V CLAMP  
LT3752-1 V PIN  
IN  
(RESISTOR FROM  
SYSTEM INPUT)  
IN(ON)  
V
IN(OFF)  
BOOTSTRAP DIODE FROM V  
HK  
0V  
10V (REG)  
INTV  
CC  
OPTIONAL  
BOOTSTRAP  
DIODE  
7V UVLO(+)  
FROM V  
HK  
0V  
PGOOD(+)  
V
HK  
(96% OF FULL-SCALE V  
)
HK  
(HOUSEKEEPING  
SUPPLY OUTPUT)  
SS1  
SOFT  
SS1  
SOFT  
COMPLETED SOFT-STOP  
SHUTDOWN:  
STOPS  
STARTS  
f
,DV  
OSC  
AND COMP  
SEC  
f
AND  
SEC  
0.6V < UVLO_V  
< 1.25V  
OSC  
DV  
SEC  
AND SS1 < 150mV  
SS1  
1.25V  
150mV  
COMP  
COMP  
SWITCHING  
THRESHOLD  
1.25V  
SS2  
SOFT  
STARTS  
COMP  
SS2  
FULL-SCALE f  
OSC  
f
OSC  
(SWITCHING  
FREQUENCY)  
FULL-SCALE f /2.13  
OSC  
AOUT, OUT, SOUT  
SWITCHING  
HOUT  
3752 F04  
SWITCHING  
Figure 4. LT3752-1 Start-Up and Shutdown Timing Diagram  
3752fb  
18  
For more information www.linear.com/LT3752  
LT3752/LT3752-1  
OPERATION  
Introduction  
LT3752 Part Start-Up  
LT3752 start-up is best described by referring to the Block  
Diagram and to the start-up waveforms in Figure 3. For  
part start-up, system input voltage must be high enough  
The LT3752/LT3752-1 are primary side, current mode,  
PWM controllers optimized for use in a synchronous  
forward converter with active clamp reset. Combined with  
an integrated housekeeping controller, each IC provides  
a compact, versatile, and highly efficient solution. The  
to drive the UVLO_V  
pin above 1.25V and the V pin  
SEC  
IN  
must be greater than 6.5V. An internal linear regulator is  
activated and provides a 7V INTV supply for all gate  
LT3752 allows V pin operation between 6.5V and 100V.  
CC  
IN  
drivers. The housekeeping controller starts up before the  
forward controller. An internal soft-start (HSS) ramps  
the housekeeping HCOMP pin to allow switching at the  
gate driver output HOUT to drive an external N-channel  
MOSFET. The housekeeping controller output voltage  
For applications with system input voltages greater than  
100V, the LT3752-1 allows RC start-up from input voltage  
levels limited only by external components. The LT3752  
and LT3752-1 based forward converters are targeted for  
power levels up to 400W and are not intended for battery  
chargerapplications.Forhigherpowerlevelstheconverter  
V
is regulated when the HFB pin reaches 1.0V. V can  
HK  
HK  
be used to override INTV to reduce power in the part,  
CC  
outputs can be stacked in series. Connecting UVLO_V  
SEC  
increase efficiency and to optimize the INTV level. Dur-  
CC  
pins, OVLO pins, SS1 pins and SS2 pins together allows  
blocks to react simultaneously to all fault modes and  
conditions.  
ing start-up the housekeeping controller switches at the  
programmed switching frequency (f ) folded back by  
OSC  
1/4.6. The SS1 pin of the forward controller is allowed to  
Each IC contains an accurate programmable volt-second  
clamp. When set above the natural duty cycle of the con-  
verter, it provides a duty cycle guardrail to limit primary  
switch reset voltage and prevent transformer saturation  
during load transients. The accuracy and excellent line  
start charging when V reaches 96% of its target value  
HK  
(PGOOD). When SS1 reaches 1.25V, the SS2 pin begins  
to charge, controlling COMP pin rise and the soft-start of  
output inductor peak current. The SS1 pin independently  
soft starts switching frequency and a volt-second clamp.  
As SS1 charges towards 2.6V the switching frequencies  
of both controllers remain equal, synchronized and soft  
regulation of the volt-second clamp provides V  
regu-  
OUT  
lation for open-loop conditions such as no opto-coupler,  
reference or error amplifier on the secondary side.  
started towards full-scale f  
.
OSC  
For applications not requiring isolation but requiring high  
step-down ratios, each IC contains a voltage error ampli-  
fier to allow a very simple nonisolated, fully regulated  
synchronous forward converter.  
If secondary side control already exists for soft starting  
the converter output voltage then the SS2 pin can still be  
used to control initial inductor peak current rise. Simply  
programming the primary side SS2 soft-start faster than  
the secondary side allows the secondary side to take over.  
If SS2 is not needed for soft-start control, its pull-down  
strength and voltage rating also allow it to drive the input  
The integrated housekeeping controller reduces the com-  
plexity and size of the main power transformer by avoid-  
ing the need for extra windings to create bias supplies.  
Secondary side ICs no longer require start-up circuitry  
and can operate even when output voltage is 0V.  
of an opto-coupler connected to INTV . This allows  
CC  
the option of communicating to the secondary side that  
switching has begun.  
A range of protection features include programmable  
overcurrent (OC) hiccup mode, programmable system  
input undervoltage lockout (UVLO), programmable  
system input overvoltage lockout (OVLO) and built-in  
thermal shutdown. Programmable slope compensation  
and switching frequency allow the use of a wide range of  
output inductor values and transformer sizes.  
LT3752-1 Part Start-Up  
TheLT3752-1start-upofhousekeepingsupplyandforward  
converter are similar to the LT3752 except for a small  
changeinarchitectureandV pinlevel. LT3752-1start-up  
is best described by referring to the Block Diagram and to  
IN  
3752fb  
19  
For more information www.linear.com/LT3752  
LT3752/LT3752-1  
OPERATION  
the start-up waveforms in Figure 4. The LT3752-1 starts  
and avoids the need for an auxiliary winding in the main  
up by using a high valued resistor from system input to  
transformer. The part’s low start-up current at the V pin  
IN  
charge up the input capacitor at the V pin. If system  
allowstheuseofalargestart-upresistortominimizepower  
IN  
input is already high enough to generate UVLO_V  
lossfromsysteminput.TheV capacitorvaluerequiredfor  
SEC  
IN  
above 1.25V, then the part turns on once V pin charges  
proper start-up is minimized by providing a large V  
-
IN  
IN(ON)  
past V  
(9.5V). If system input is not high enough  
V
hysteresis, a low V I and a fast start-up time for  
IN(ON)  
to generate UVLO_V  
IN(OFF) IN Q  
above 1.25V, the V pin charges  
the housekeeping controller. In contrast to the LT3752, the  
LT3752-1 housekeeping gate driver (HOUT) runs from the  
SEC  
IN  
towards system input until it reaches an internal 16V, 8mA  
clamp. The part turns on when system input becomes  
V pin instead of INTV . This avoids having to use cur-  
IN  
CC  
high enough to generate UVLO_V  
above 1.25V. As the  
rentfromtheV pintochargetheINTV capacitorduring  
SEC  
IN CC  
supply current of the part discharges the V capacitor a  
initialstart-up.Thismeanstheregulated10VINTV onthe  
IN  
CC  
bootstrap supply must be generated to prevent V pin  
LT3752-1 does not wake up until the housekeeping supply  
is valid. Start-up from this point is similar to the LT3752.  
The housekeeping supply and forward converter switch  
together with a soft-started frequency and volt-second  
clamp.Theforwardconverterpeakinductorcurrentisalso  
soft started similar to the LT3752.  
IN  
from falling below V  
(7.6V).  
IN(OFF)  
TheLT3752-1usesthehousekeepingcontrollertoprovide  
thebootstrapbiastotheV pinduringRCstart-upinstead  
IN  
ofwaitingfortheforwardconvertertoalsostart.Thismeth-  
od is more efficient, requires a smaller V input capacitor  
IN  
3752fb  
20  
For more information www.linear.com/LT3752  
LT3752/LT3752-1  
APPLICATIONS INFORMATION  
Programming System Input Undervoltage Lockout  
(UVLO) Threshold and Hysteresis  
used to pull down the UVLO_V pin below 1.25V but not  
SEC  
below the micropower shutdown threshold of 0.6V(max).  
Typical V quiescent current after soft-stop is 165µA.  
IN  
The LT3752/LT3752-1 have an accurate 1.25V shutdown  
threshold at the UVLO_V  
pin. This threshold can be  
SEC  
Micropower Shutdown  
used in conjunction with an external resistor divider to  
If a micropower shutdown is required using an external  
control signal, an open-drain transistor can be directly  
definethefallingundervoltagelockoutthreshold(UVLO(–))  
for the converter’s system input voltage (V ) (Figure 5).  
S
connected to the UVLO_V  
pin. The LT3752/LT3752-1  
A pin hysteresis current of 5µA allows programming of  
SEC  
haveamicropowershutdownthresholdoftypically0.4Vat  
the UVLO(+) threshold.  
the UVLO_V  
pin. V quiescent current in micropower  
SEC  
IN  
V (UVLO(–)) [begin SOFT-STOP then shut down]  
S
shutdown is 20µA.  
R1  
R2+R3  
=1.25 1+  
Programming System Input Overvoltage Lockout  
(OVLO) Threshold  
V (UVLO(+)) [begin SOFT-START]  
TheLT3752/LT3752-1haveanaccurate1.25Vovervoltage  
shutdown threshold at the OVLO pin. This threshold can  
be used in conjunction with an external resistor divider to  
define the rising overvoltage lockout threshold (OVLO(+))  
S
= V (UVLO(–)) + (5µA • R1)  
S
It is important to note that the part enters soft-stop when  
the UVLO_V  
pin falls back below 1.25V. During soft-  
SEC  
for the converter’s system input voltage (V ) (Figure 6).  
S
stop the converter continues to switch as it folds back  
switching frequency, volt-second clamp and COMP pin  
voltage. See Soft-Stop in the Applications Information  
section. When the SS2 pin is finally discharged below its  
150mV reset threshold both the housekeeping supply and  
forward converter are shut down.  
When OVLO(+) is reached, the part stops switching im-  
mediately and a hard stop discharges the SS1 and SS2  
pins. The falling threshold OVLO(–) is fixed internally at  
1.215V and allows the part to restart in soft-start mode.  
A single resistor divider can be used from system input  
supply (V ) to define both the undervoltage and overvolt-  
S
age thresholds for the system. Minimum value for R3 is  
1k. If OVLO is unused, place a 10k resistor from OVLO  
pin to ground.  
SYSTEM  
INPUT (V )  
S
LT3752/LT3752-1  
R1  
UVLO_V  
SEC  
+
V OVLO(+) [stop switching; HARD STOP]  
S
5µA  
R2  
R3  
TO  
OVLO PIN  
R1+R2  
1.250V  
=1.25 1+  
R3  
V OVLO(–) [begin SOFT-START]  
S
3752 F05  
1.215  
1.25  
= VS OVLO + •  
(
)
Figure 5. Programming Undervoltage Lockout (UVLO)  
Soft-Stop Shutdown  
Soft-stop shutdown (similar to system undervoltage) can  
be commanded by an external control signal. A MOSFET  
with a diode (or diodes) in series with the drain should be  
3752fb  
21  
For more information www.linear.com/LT3752  
LT3752/LT3752-1  
APPLICATIONS INFORMATION  
SYSTEM  
INPUT (V )  
VHK (HOUSEKEEPING SUPPLY OUTPUT)  
LT3752-1  
SYSTEM  
INPUT (V )  
LT3752/LT3752-1  
S
S
R
START  
C
16V  
8mA  
V
R1  
R2  
R3  
IN  
TO  
UVLO_V  
PIN  
1.250V(+)  
+
SEC  
1.215V(–)  
START  
OVLO  
+
OVLO  
1.250V  
3752 F06  
GND  
Figure 6. Programming Overvoltage Lockout (OVLO)  
3752 F07  
LT3752-1 Micropower Start-Up from High System  
Input Voltages  
Figure 7. Micropower Start-Up from High System Input  
The start-up capacitor can be calculated as:  
The LT3752-1 starts up from system input voltage levels  
limited only by external components (Figure 7). The low  
start-up current of the LT3752-1 allows a large start-up  
tHSS(MAX)  
CSTART(MIN) = IHKEEP +IDRIVE (MAX),•  
(
)
VDROOP(MIN)  
resistor (R  
) to be connected from system input volt-  
IN  
START  
age (V ) to the V pin.  
S
where:  
Whensysteminputvoltageisapplied,thestart-upcapacitor  
(C ) begins charging at the V pin. Once the V pin  
I
I
f
= Housekeeping I (not switching)  
Q
HKEEP  
START  
IN  
IN  
= (f /2.13) • Q )  
DRIVE  
OSC  
G
exceeds9.5V(andUVLO_V >1.25V)thehousekeeping  
SEC  
= full-scale controller switching frequency  
OSC  
controller will start to switch and V supply current will  
IN  
START  
begin to discharge C  
. The C  
capacitor value  
Q = gate charge (V = V )(HOUT MOSFET)  
START  
G
GS  
IN  
should be chosen high enough to prevent the V pin  
IN  
t
= housekeeping output voltage soft-start time  
HSS  
from falling below 7.6V before the housekeeping supply  
V
= 16V(clamp) – V  
or V  
DROOP  
IN(OFF) IN(ONOFFHYST)  
can provide a bootstrap bias to the V pin. The LT3752-1  
IN  
The start-up resistor can be calculated as:  
start-up architecture minimizes the value of C  
by  
START  
activating only the house keeping controller for provid-  
VS(MAX) – V  
IN(ON)(MAX)  
RSTART(MAX)  
=
ing drive back to the V pin. The forward controller only  
IN  
ISTART(MAX) •k  
operates once the housekeeping supply is established. (If  
a bootstrap diode is used from the housekeeping supply  
where:  
back to INTV , this only uses current from system input  
CC  
and not from the V pin).  
V
V
= Maximum system input voltage  
IN  
S(MAX)  
= Maximum V pin turn on threshold  
IN(ON)(MAX)  
IN  
I
= Maximum V I for part start-up  
IN Q  
START(MAX)  
k > 1.0 reduces R  
and V charge-up time  
IN  
START  
3752fb  
22  
For more information www.linear.com/LT3752  
LT3752/LT3752-1  
APPLICATIONS INFORMATION  
Worst-case values should be used to calculate the C  
where,  
X = (10 /f ) – 365  
START  
and R  
required to guarantee start-up and to turn on  
9
START  
in the time required.  
OSC  
7
7
Y = (300kHz – f )/10 (f  
< 300kHz)  
> 300kHz)  
OSC  
OSC  
OSC  
Example: (LT3752-1)  
Y = (f  
– 300kHz)/10 (f  
OSC  
For V  
= 75V, V  
= 10.4V  
Example: For f  
= 200kHz,  
S(MIN)  
IN(ON)(MAX)  
OSC  
I
= 265µA, I  
= 4.6mA  
= 150kHz  
= 1.61V  
START(MAX)  
HKEEP(MAX)  
R = 8.39 • 4635 • (1 + 0.01) = 39.28k (choose 39.2k)  
T
Q = 8nC (at V = 10V), f  
G
IN  
OSC  
The LT3752/LT3752-1 include frequency foldback at start-  
up (see Figures 3 and 4). In order to make sure that a  
SYNC input does not override frequency foldback during  
start-up,theSYNCfunctionisignoreduntilSS1pinreaches  
2.2V. Both the housekeeping and forward controllers run  
synchronized to each other and in phase, with or without  
the SYNC input.  
t
= 4ms, V  
HSS(MAX)  
DROOP(MIN)  
4ms  
1.61V  
CSTART(MIN) = 4.6mA+71kHz 8nC •  
(
)
=12.8µF Choose 14.7µF  
(
)
75V 10.4V  
265µA k  
RSTART(MAX)  
=
= 243k for k =1.0  
(
)
Table 1. RT vs Switching Frequency (fOSC  
)
SWITCHING FREQUENCY (kHz)  
R (kΩ)  
T
100  
150  
200  
250  
300  
350  
400  
450  
500  
82.5  
53.6  
39.2  
30.9  
24.9  
21  
The R  
value should be chosen with higher k  
START(MAX)  
values until the charge-up time for C  
is acceptable.  
START  
In most cases, C  
will be charged to the 16V clamp  
START  
on the LT3752-1 V pin before system input reaches its  
IN  
UVLO(+) threshold (Figure 4). This will allow an extra  
5.6V for V  
in the C  
equation, allowing a smaller  
DROOP  
START  
18.2  
15.8  
14  
C
value and hence a faster start-up time.  
START  
The trade-off of lower R  
tion, given by:  
is greater power dissipa-  
START  
2
Synchronizing to an External Clock  
P
= (V – V ) /R  
RSTART  
S
IN  
START  
for R  
= 200k, V  
= 150V, V = 10V (back  
The LT3752 / LT3752-1 internal oscillator can be synchro-  
nized to an external clock at the SYNC pin. SYNC pin high  
level should exceed 1.8V for at least 100ns and SYNC  
pin low level should fall below 0.6V for at least 100ns.  
The SYNC pin frequency should be set equal to or higher  
than the typical frequency programmed by the RT pin.  
START  
S(MAX) IN  
driven from housekeeping supply)  
2
P
= (150 – 10) /200k = 98mW.  
RSTART  
Programming Switching Frequency  
The switching frequency for the housekeeping supply  
and the main forward converter are programmed using a  
resistor, R , connected from analog ground (Pin 18) to the  
RT pin. Table 1 shows typical f  
The value for R is given by:  
An f  
/f  
ratio of x (1.0 < x < 1.25) will reduce the  
SYNC OSC  
externally programmed slope compensation by a factor  
of 1.2x. If required, the external resistor R can be  
T
ISLP  
vs R resistor values.  
OSC  
T
reprogrammed higher by a factor of 1.2x. (see Current  
Sensing and Programmable Slope Compensation).  
T
R = 8.39 • X • (1 + Y)  
T
3752fb  
23  
For more information www.linear.com/LT3752  
LT3752/LT3752-1  
APPLICATIONS INFORMATION  
be externally overdriven by the housekeeping supply to  
improve efficiency, remove power dissipation from within  
the IC and provide more than 35mA output current ca-  
pability. Any overdrive level should exceed the regulated  
The part injection locks the internal oscillator to every ris-  
ing edge of the SYNC pin. If the SYNC input is removed  
at any time during normal operation the part will simply  
changeswitchingfrequencybacktotheoscillatorfrequency  
INTV level but not exceed 16V.  
programmedbytheR resistor. Thisinjectionlockmethod  
CC  
T
avoids the possible issues from a PLL method which can  
potentially cause a large drop in frequency if SYNC input  
is removed.  
In the case of a short-circuit fault from INTV to ground,  
CC  
eachICreducestheINTV outputcurrentlimittotypically  
CC  
23mA. The INTV regulator has an undervoltage lockout  
CC  
rising threshold, UVLO(+), which prevents gate driver  
During soft-start the SYNC input is ignored until SS1 ex-  
ceeds 2.2V. During soft-stop the SYNC input is completely  
ignored. If the SYNC input is to be used, recall that the  
switching until INTV reaches 4.75V (7V for LT3752-1)  
CC  
andmaintainsswitchinguntilINTV fallsbelowaUVLO(–)  
CC  
threshold of 4.6V (6.8V for LT3752-1).  
programmabledutycycleclampD  
isdependentonthe  
VSEC  
switchingfrequencyofthepart(seesectionProgramming  
Duty Cycle Clamp). R should be reprogrammed by  
For V levels close to or below the INTV regulated level,  
IN  
CC  
IVSEC  
ratio of x.  
the INTV linear regulator may enter dropout. The result-  
CC  
1/x for an f  
/f  
SYNC OSC  
ing lower INTV level will still allow gate driver switching  
CC  
as long as INTV remains above INTV UVLO(–) levels.  
CC  
CC  
INTV Regulator Bypassing and Operation  
CC  
See the Typical Performance Characteristics section for  
INTV performance vs V and load current.  
The INTV pin is the output of an internal linear regula-  
CC  
CC  
IN  
tor driven from V and provides the supply for onboard  
IN  
gate drivers. The LT3752 INTV provides a regulated 7V  
CC  
HOUSEKEEPING CONTROLLER  
supply for gate drivers AOUT, SOUT, OUT and HOUT. The  
The LT3752/LT3752-1 include an internal constant fre-  
quency, current mode, PWM controller for creating a  
housekeepingsupply(seetheBlockDiagramandFigure8).  
Connected as a flyback converter with multiple outputs,  
the housekeeping supply is able to efficiently provide bias  
to both primary and secondary ICs. It eliminates the need  
to generate bias supplies from auxiliary windings in the  
main forward transformer, reducing the complexity, size  
and cost of the transformer.  
LT3752-1INTV providesaregulated10Vsupplyforgate  
CC  
drivers AOUT, SOUT and OUT. INTV should be bypassed  
CC  
with a 4.7µF low ESR, X7R or X5R ceramic capacitor to  
power ground to ensure stability and to provide enough  
charge for the gate drivers.  
The INTV regulator has a minimum 35mA output cur-  
CC  
rent limit. This current limit should be considered when  
choosingtheswitchingfrequencyandcapacitanceloading  
on each gate driver. Average current load on the INTV  
CC  
pin for a single gate driver driving an external MOSFET  
V
V
AUX  
*
IN  
is given as :  
V
IN  
I
= f • Q  
OSC G  
INTVCC  
INTV  
INTV  
HOUT  
CC  
CC  
INTV  
where:  
CC  
LTC3752/LT3752-1  
R
HISLP  
HCOMP  
GND  
HI  
SENSE  
f
= controller switching frequency  
OSC  
HFB  
Q = gate charge (V = INTV )  
G
GS  
CC  
R
HSENSE  
While the INTV 50mA output current limit is sufficient  
CC  
R2  
R1  
VHK  
for LT3752/LT3752-1 applications, efficiency and internal  
*OPTIONAL ISOLATED SUPPLY FOR SECONDARY SIDE  
power dissipation should also be considered. INTV can  
3752 F08  
CC  
Figure 8. Housekeeping Supply  
3752fb  
24  
For more information www.linear.com/LT3752  
LT3752/LT3752-1  
APPLICATIONS INFORMATION  
Integrating the housekeeping controller saves cost and  
space and allows switching frequency to be inherently  
synchronized to the main forward converter.  
to achieve regulation. The housekeeping controller is shut  
down and the internal soft-start capacitor is discharged  
for any of the following conditions (typical values):  
The housekeeping supply can be used to overdrive the  
(1) UVLO_V  
< 1.25V  
SEC  
INTV pin to take power outside of the part, improve  
(and SS1 < 0.15V)  
:Soft-Stop Shutdown  
:Micropower Shutdown  
:System Input OVLO  
CC  
efficiency, provide more drive current and optimize the  
(2) UVLO_V < 0.4V  
SEC  
INTV level. It can also be used as a bootstrap bias to  
CC  
(3) OVLO > 1.250V  
(4) HI > 98mV  
(5) INTV < X, > 16.5V :INTV UVLO, OVLO  
the V pin as described in the section LT3752-1 Part  
IN  
:Housekeeping Overcurrent  
SENSE  
Start-Up. The housekeeping supply also allows bias to  
any secondary side IC before the main forward converter  
starts switching. This removes the need for external start-  
up circuitry on the secondary side. Alternative methods  
involve powering secondary side ICs directly from the  
output voltage of the forward converter. This can cause  
issues depending on the minimum and maximum allowed  
input voltages for each IC.  
CC  
CC  
(6) T > 170°C  
:Thermal Shutdown  
:V Pin UVLO  
IN  
J
(7) V < Y  
IN  
(X = 4.6V, Y = 5.5V for LT3752)  
(X = 6.8V, Y = 7.6V for LT3752-1)  
Housekeeping: Programming Output Voltage  
The output voltage, V , of the housekeeping controller  
Housekeeping: Operation  
HK  
is programmed using a resistor divider between V and  
HK  
The LT3752/LT3752-1 housekeeping controller opera-  
tion is best described by referring to the Block Diagram  
and Figure 8. The housekeeping controller uses a 0.7A  
gate driver at HOUT to control an external N-channel  
MOSFET.Whencurrentintheprimarywindingoftheflyback  
transformer exceeds a level commanded by HCOMP and  
the HFB pin (Figure 8) using the equation:  
R1  
R2  
VHK =1V 1+  
The HFB pin bias current is typically 85nA.  
sensed at the HI  
pin, the duty cycle of the HOUT is  
SENSE  
Housekeeping: Programming Cycle-by-Cycle Peak  
Inductor Current and Slope Compensation  
terminated. Stored energy in the transformer is delivered  
to the output during the off time of HOUT. The housekeep-  
ing output voltage is programmed using a resistor divider  
to the HFB pin. A transconductance amplifier monitors  
the error signal between HFB pin and a 1.0V reference to  
control HCOMP level and hence peak switch current. A  
simple RC network from HCOMP pin to ground provides  
compensation. Overcurrentprotectionexistsfortheexter-  
The housekeeping controller limits cycle-by-cycle peak  
current in the external switch and primary winding of  
the flyback transformer by sensing voltage at a resistor  
(R  
)connectedinthesourceoftheexternalN-chan-  
HISENSE  
nel MOSFET (Figure 8). This sense voltage is compared to  
asensethresholdattheHI pin,controlledbyHCOMP  
SENSE  
nal switch when 98mV is sensed at the HI  
pin. This  
SENSE  
with an upper limit of 79mV. Since there is only one sense  
line from the positive terminal of the sense resistor, any  
parasitic resistance in ground side will increase its effec-  
tive value and reduce available peak switch current. For  
operation in continuous mode and above 50% duty cycle,  
required slope compensation can be programmed by  
causes a low power hiccup mode (repeated retry cycles’  
of shutdown followed by soft-start) until the overcurrent  
condition is removed.  
Housekeeping: Soft-Start/Shutdown  
Duringstart-upoftheLT3752/LT3752-1,thehousekeeping  
controller has a built-in soft-start of approximately 2.2ms.  
The time will vary depending on the HCOMP level needed  
adding a resistor R  
in series with the HI  
pin. A  
HISLP  
SENSE  
ramped current always flows out of the HI  
pin. The  
SENSE  
current starts from 2µA at 0% duty cycle and ramps to  
52µAat100%dutycycle.Minimizecapacitanceonthispin.  
3752fb  
25  
For more information www.linear.com/LT3752  
LT3752/LT3752-1  
APPLICATIONS INFORMATION  
hiccup mode over current level in the switch and primary  
winding is given by:  
For a desired peak switch current, the value for R  
HISENSE  
should be calculated using a 30% derated 79mV sense  
thresholdwiththeeffectsofslopecompensationincluded:  
98mV VHSLP  
ILP(OVERCURRENT)  
=
52.5mV VHSLP  
RHSENSE  
RHSENSE  
where:  
=
ILP(PEAK)  
where:  
V  
= (2µA + D • (62.5µA) • R  
)
HSLP  
HISLP  
V  
= (2µA + D • (62.5µA) • R  
)
D = switch duty cycle  
HSLP  
HISLP  
I
= cycle-by-cycle peak current in primary  
R
R
= slope compensation programming resistor  
LP(PEAK)  
winding  
HISLP  
= current sense resistor  
HSENSE  
D = switch duty cycle  
= slope compensation programming resistor  
Housekeeping: Output Overvoltage and Power Good  
R
HISLP  
The housekeeping controller monitors its supplies’ ris-  
If operating in continuous mode above 50% duty cycle,  
a good starting value for R is 499Ω which gives a  
ing output voltage V via the HFB pin and determines  
HK  
HISLP  
power good (PGOOD(+)) when V reaches 96% of its  
HK  
26mV total drop in current comparator threshold at 80%  
programmed value. 10µs after confirmation of PGOOD,  
the circuitry for the LT3752/LT3752-1 forward controller  
is activated.  
duty cycle. An f /f ratio of x (1.0V < x < 1.25) will  
SYNC OSC  
reducetheexternallyprogrammedslopecompensationby  
a factor of 1.2x. If required, the external resistor R  
can be reprogrammed higher by a factor of 1.2x.  
HISLP  
The SS1 pin is allowed to begin charging and eventually  
allows the forward converter to start switching. If V  
HK  
Housekeeping: Adaptive Leading Edge Blanking  
falls below 92% of its programmed level (PGOOD(–)),  
the SS1 pin is discharged and forward controller circuitry  
is disabled.  
Blanking of the HI  
signal on the leading edge of  
SENSE  
HOUT is adaptive to allow a wide range of MOSFETs. The  
blanking occurs from the start of HOUT rise and waits  
until HOUT has reached within 1V of its maximum level  
Tolimithousekeepingoutputovervoltage,V ,thehouse-  
HK  
keeping controller overrides it’s own regulation loop and  
immediately stops switching if its output voltage exceeds  
20% of its programmed value. This is especially impor-  
tant when using the housekeeping supply to bias other  
ICs. The forward controller is still allowed to switch. The  
housekeepingcontrollerreturnstonormalregulationloop  
(INTV for LT3752, V for LT3752-1) before adding an  
CC  
IN  
additional fixed 100ns of blanking.  
Housekeeping: Overcurrent Hiccup Mode  
To protect the housekeeping controller during a short-  
to-ground fault on the housekeeping output voltage, a  
control when it’s output voltage, V , falls to less than  
HK  
15% above it’s programmed value.  
98mV fixed overcurrent threshold exists at the HI  
SENSE  
pin to discharge the internal soft-start capacitor and enter  
a hiccup (retry) mode. This hiccup mode significantly  
reduces the average power in the external components  
compared to continued cycle-by-cycle switching at the  
Housekeeping: Transformer Turns Ratio and Leakage  
Inductance  
The external resistor divider used to set the output voltage  
of the housekeeping supply provides a relative freedom  
in selecting the transformer turns ratio to suit a given  
79mV threshold. Having already calculated the R  
HSENSE  
resistor for peak cycle-by-cycle current, the typical  
3752fb  
26  
For more information www.linear.com/LT3752  
LT3752/LT3752-1  
APPLICATIONS INFORMATION  
application. Simple integer turns ratios can be used which  
allowoff-the-shelftransformers(seeexamplecircuitsinthe  
Typical Applications section). Turns ratios can be chosen  
on the basis of desired duty cycle. However, the input and  
output levels, turns ratio and flyback leakage spike must  
be considered for the breakdown rating of the MOSFET.  
Transformer leakage inductance causes a voltage spike to  
occur after the switch turns off. In some cases a snubber  
circuit will be required to limit this spike.  
be used in a fully regulated forward converter application.  
In addition, they can still operate if damage occurs to  
the feedback path—no secondary side error amplifier or  
opto-coupler—by using an accurate, programmable volt-  
secondclamptoregulatedutycycleinverselyproportional  
to transformer input voltage.  
Adaptive Leading Edge Blanking Plus Programmable  
Extended Blanking  
The LT3752/LT3752-1 provide a 2A gate driver at the  
OUT pin to control an external N-channel MOSFET for  
main power delivery in the forward converter (Figure 10).  
During gate rise time and sometime thereafter, noise can  
be generated in the current sensing resistor connected  
to the source of the MOSFET. This noise can potentially  
cause a false trip of sensing comparators resulting in  
early switch turn off and in some cases re-soft-start of  
the system. To prevent this, LT3752/LT3752-1 provide  
Housekeeping: Operating Without This Supply  
The housekeeping supply is highly recommended for  
providing local bias voltages for both the primary and  
secondary sides (to improve efficiency, simplify the main  
transformer design and ensure all ICs are activated even  
for V  
= 0V). The LT3752 (not LT3752-1) housekeeping  
OUT  
supply components can be omitted (not populated) if an  
extra winding already exists from the main transformer  
to create an auxiliary supply. Care must be taken that the  
auxiliary supply (for either the primary side or secondary  
side or both) does not affect proper operation. A resistor  
divider (Figure 8) should now be connected directly from  
adaptive leading edge blanking of both OC and I  
SENSEP  
signals to allow a wide range of MOSFET Q ratings. In  
G
addition, a resistor R  
connected from T  
pin to  
TBLNK  
BLNK  
analog ground (Pin 18) programs an extended blanking  
duration (Figure 9).  
INTV to supply the HFB pin with a ratio :  
CC  
R1/R2 = 3  
(ADAPTIVE)  
LEADING  
EDGE  
BLANKING  
(PROGRAMMABLE)  
EXTENDED  
CURRENT  
SENSE  
DELAY  
(Example : R1 = 10k, R2 = 3.32k).  
BLANKING  
This ratio ensures HFB >> 0.96V (typical PGOOD level to  
enable SS1 and the forward converter).  
(a) At INTV = 4.75V (UVLO(+)), HFB = 1.2V.  
CC  
7.32k ≤ R  
≤ 249k  
TBLNK  
220ns  
OUT  
t
= 50ns + (2.2ns • R  
)
BLNK  
TBLNK  
(b) At INTV = 7V (Regulated), HFB = 1.7V.  
CC  
k
(c) At INTV = 8V (Overdriven), HFB = 2V.  
CC  
3752 F09  
Care should be taken not to exceed HFB = 3V.  
Figure 9. Adaptive Leading Edge Blanking Plus  
Programmable Extended Blanking  
FORWARD CONTROLLER  
The LT3752/LT3752-1 are primary side, current mode,  
PWM controllers optimized for use in a synchronous  
forward converter with active clamp reset. Each IC can  
3752fb  
27  
For more information www.linear.com/LT3752  
LT3752/LT3752-1  
APPLICATIONS INFORMATION  
connectedinthesourceoftheexternaln-channelMOSFET  
(Figure 10).  
Adaptive leading edge blanking occurs from the start of  
OUT rise and completes when OUT reaches within 1V of  
its maximum level (INTV for LT3752, V for LT3752-1).  
CC  
IN  
V
V
OUT  
IN  
Anextendedblankingthenoccurswhichisprogrammable  
using the R resistor given by:  
TBLNK  
V
IN  
2.2ns  
k
INTV  
CC  
M1  
INTV  
OUT  
LTC3752/LT3752-1  
OC  
CC  
tBLNK = 50ns+  
R  
,
TBLNK  
FROM  
REGULATION  
LOOP  
7.32k < R  
< 249k  
I
COMP  
TBLNK  
SENSEP  
R
ISLP  
R
SENSE  
Adaptive leading edge blanking minimizes the value re-  
quiredforR .IncreasingR furtherthanrequired  
increases M1 minimum on time (Figure 10).  
I
SENSEN  
TBLNK  
TBLNK  
GND  
3752 F10  
In addition, the critical volt-second clamp (D  
) is not  
VSEC  
Figure 10. Current Sensing and Programmable  
Slope Compensation  
blanked. Therefore, if D  
decreases far enough (in soft  
VSEC  
startfoldbackandatmaximuminputvoltage)M1mayturn  
off before blanking has completed. Since OC and I  
The sense voltage across R  
is compared to a sense  
SENSE  
SENSEP  
threshold at the I  
pin, controlled by COMP pin level.  
SENSEP  
signals are only seen when M1 is on (and after blanking  
Two sense inputs, I  
and I  
, are provided to  
SENSEP  
SENSEN  
has completed), R value should be limited by:  
TBLNK  
allow a Kelvin connection to R  
. For operation in con-  
SENSE  
(2.2ns/k)R  
< T  
– t  
– 50ns  
ADAPTIVE  
TBLNK  
VSEC(MIN)  
tinuous mode and above 50% duty cycle, required slope  
compensation can be programmed by adding a resistor,  
where,  
R
, in series with the I  
pin. A ramped current  
pin. The current starts from  
ISLP  
SENSEP  
9
T
= 10 (D  
/(fold.fosc))  
VSEC(MIN)  
VSEC (MAX)  
always flows out of the I  
SENSE  
(Input  
/Input  
)
(MIN)  
(MAX)  
2µA at 0% duty cycle and linearly ramps to 33µA at 80%  
duty cycle. A good starting value for R is 1.5kΩ which  
gives a 41mV total drop in current comparator threshold  
at 65% duty cycle.  
fold = f  
and D  
foldback ratio (for OUT pin)  
OSC  
VSEC  
ISLP  
( = 4 for LT3752 , = 2 for LT3752-1)  
t
= OUT pin rise time to INTV – 1V  
ADAPTIVE  
CC  
The COMP pin commands an I  
0mV and 220mV. The 220mV allows a large slope com-  
pensation voltage drop to exist in R without effecting  
threshold between  
SENSEP  
Example: For Figure 20 circuit,  
D
= 0.77,  
= 23ns  
ADAPTIVE  
VSEC(MAX)  
= 17.4V/74V, fold = 4, t  
Input  
(MIN)/(MAX)  
ISLP  
and f  
= 240kHz,  
OSC  
the programming of R  
currents in M1. An f  
to set maximum operational  
SENSE  
9
5
T
= 10 (0.77/(4 • 2.4 • 10 )) • 17.4/74 = 188ns  
/f  
ratio of x (1.0 < x < 1.25)  
VSEC(MIN)  
SYNC OSC  
will reduce the externally programmed slope compensa-  
(2.2ns/1k)R  
< 188 – 23 – 50  
TBLNK  
tion by a factor of 1.2x. If required, the external resistor  
R
TBLNK  
< 52.5k (Actual Circuit Uses 34k)  
R
can be reprogrammed higher by a factor of 1.2x.  
ISLP  
Current Sensing and Programmable Slope  
Compensation  
Overcurrent: Hiccup Mode  
The LT3752/LT3752-1 use a precise 96mV sense thresh-  
old at the OC pin to detect excessive peak switch current  
(Figure 10). During an overload condition switching  
The LT3752/LT3752-1 command cycle-by-cycle peak  
current in the external switch and primary winding of the  
forward transformer by sensing voltage across a resistor  
3752fb  
28  
For more information www.linear.com/LT3752  
LT3752/LT3752-1  
APPLICATIONS INFORMATION  
t
stops immediately and the SS1/SS2 pins are rapidly  
discharged. The absence of switching reduces the sense  
voltage at the OC pin, allowing SS1/SS2 pins to recharge  
and eventually attempt switching again. The part exists  
in this hiccup mode as long as the overcurrent condition  
exists. This protects the converter and reduces power  
dissipation in the components (see Hard Stop in the  
Applications Information section). The 96mV peak switch  
current threshold is independent of the voltage drop in  
t
ON_VSEC  
(PROGRAMMED  
BY R  
)
IVSEC  
t
OUT  
ON  
DV  
= t  
/t  
SEC ON_VSEC  
D = t /t  
ON  
3752 F11  
DV  
= “DUTY CYCLE GUARDRAIL”  
SEC  
Figure 11. Volt-Second (DVSEC) Clamp  
R
ISLP  
used for slope compensation.  
Output DC load current to trigger hiccup mode:  
SYSTEM  
INPUT  
LOAD(OVERCURRENT)  
R1  
N
NP 96mV  
UVLO_V  
SEC  
=
– 1/2 I  
(
)
RIPPLE(P-P)  
R2  
R3  
R
ISENSE  
TO  
OVLO  
PIN  
S
LT3752/LT3752-1  
where:  
N = forward transformer primary turns  
IVSEC  
R
RT  
R
IVSEC  
T
P
3752 F12  
N = forward transformer secondary turns  
S
Figure 12. Programming DVSEC  
I
= Output inductor peak-to-peak ripple  
RIPPLE(P-P)  
current  
A resistor R  
from the IVSEC pin to analog ground  
IVSEC  
R
shouldbeprogrammedtoallowmaximumDCload  
ISENSE  
(Pin 18) programs D  
.
VSEC  
currentfortheapplicationplusenoughmarginduringload  
transients to avoid overcurrent hiccup mode.  
D
VSEC  
(OUT pin duty cycle clamp)  
RIVSEC fOSC  
51.1k 300 UVLO_VSEC  
1.25  
Programming Maximum Duty Cycle Clamp: D  
(Volt-Second Clamp)  
VSEC  
= 0.725 •  
Unlike other converters which only provide a fixed maxi-  
mum duty cycle clamp, the LT3752/LT3752-1 provide an  
accurate programmable maximum duty cycle clamp  
where:  
R
f
= programming resistor at IVSEC pin  
= switching frequency (kHz)  
IVSEC  
(D  
) on the OUT pin which moves inversely with  
VSEC  
system input. D  
OSC  
provides a duty cycle guardrail to  
VSEC  
UVLO_V  
= resistor divided system input voltage  
SEC  
limit the volt-seconds-on product over the entire natural  
duty cycle range (Figures 11 and 12). This limits the  
drain voltage required for complete transformer reset.  
R
IVSEC  
can program any D  
required at minimum  
VSEC  
system input. D  
will then follow natural duty cycle  
VSEC  
as V varies. Maximum programmable D  
is typi-  
IN  
VSEC  
3752fb  
29  
For more information www.linear.com/LT3752  
LT3752/LT3752-1  
APPLICATIONS INFORMATION  
cally 0.75 but may be further limited by the transformer  
design and voltage ratings of components connected to  
the drain of the primary side power MOSFET (SWP). See  
voltagecalculationsintheLOsideandHIsideactiveclamp  
topologies sections.  
secondaryside. D  
controlstheoutputoftheconverter  
VSEC  
by controlling duty cycle inversely proportional to system  
input. If D duty cycle guardrail is programmed X%  
VSEC  
above natural duty cycle, V  
will only increase by X%  
OUT  
if a closed loop system breaks open. This volt-second  
clamp is operational over a 10:1 system input voltage  
If system input voltage falls below it's UVLO threshold  
the part will enter soft-stop with continued switching.  
The LT3752/LT3752-1 include an intelligent circuit which  
range. See D  
versus UVLO_V  
pin voltage in the  
VSEC  
SEC  
Typical Performance Characteristics section.  
prevents D  
from continuing to rise as system input  
VSEC  
R
IVSEC  
: Open Pin Detection Provides Safety  
voltagefalls(seeSoft-Stop).Withoutthis,toolargeaD  
VSEC  
The LT3752/LT3752-1 provide an open-detection safety  
feature for the R pin. If the R resistor goes  
open circuit the part immediately stops switching. This  
prevents the part from running without the volt-second  
clamp in place.  
would require extremely high reset voltages on the SWP  
node to properly reset the transformer. The UVLO_V  
IVSEC  
IVSEC  
SEC  
pin maximum operational level is the lesser of V – 2V  
IN  
or 12.5V.  
The LT3752/LT3752-1 volt-second clamp architecture  
is superior to an external RC network connected from  
system input to trip an internal comparator threshold.  
The RC method suffers from external capacitor error, part-  
to-part mismatch between the RC time constant and the  
IC’s switching period, the error of the internal comparator  
threshold and the nonlinearity of charging at low input  
Transformer Reset: Active Clamp Technique  
The LT3752/LT3752-1 include a 0.4A gate driver at the  
AOUT pin to allow the use of an active clamp transformer  
resettechnique(Figures13, 17). Theactiveclampmethod  
improves efficiency and reduces voltage stress on the  
main power switch, M1. By switching in the active clamp  
capacitor only when needed, the capacitor does not lose  
itschargeduringM1on-time.Byallowingtheactiveclamp  
voltages. The LT3752/LT3752-1 use the R  
resistor to  
IVSEC  
define the charge current for an internal timer capacitor to  
set an OUT pin maximum on-time, t . The voltage  
ON(VSEC)  
pin voltage (divided  
capacitor, C , to store the average voltage required to  
CL  
across R  
follows UVLO_V  
IVSEC  
SEC  
reset the transformer, the main power switch sees lower  
down from system input voltage). Hence, R  
current  
IVSEC  
drain voltage.  
varies linearly with input supply. The LT3752/LT3752-1  
also trim out internal timing capacitor and comparator  
thresholderrorstooptimizepart-to-partmatchingbetween  
An imbalance of volt-seconds will cause magnetizing cur-  
rent to walk upwards or downwards until the active clamp  
capacitor is charged to the optimal voltage for proper  
transformer reset. The voltage rating of the capacitor will  
depend on whether the active clamp capacitor is actively  
switched to ground (Figure 13) or actively switched to  
t
and T.  
ON(VSEC)  
D
Open Loop Control: No Opto-Coupler, Error  
VSEC  
Amplifier or Reference  
The accuracy of the programmable volt-second clamp  
(D  
) safely controls V  
if open loop conditions exist  
VSEC  
OUT  
suchasnoopto-coupler,erroramplifierorreferenceonthe  
3752fb  
30  
For more information www.linear.com/LT3752  
LT3752/LT3752-1  
APPLICATIONS INFORMATION  
L
LEAK  
CSW  
FSW  
V
IN  
V
OUT  
L
MAG  
L
LEAK  
SWP  
C
CL  
OUT  
LT3752  
AOUT  
M1  
LTXXXX  
FG CG  
C1  
M2  
M3  
M4  
V
D
R1  
D1  
–V  
IN  
–V  
OUT  
3752 F13  
Figure 13. LO Side Active Clamp Topology  
I
MAG  
1A/DIV  
SWP  
50V/DIV  
3752 F14  
20µs/DIV  
Figure 14. Active Clamp Reset: Magnetizing Current and M1 Drain Voltage  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
system input (Figure 17). In an active clamp reset topol-  
ogy, volt-second balance requires:  
LO SIDE ACTIVE CLAMP TOPOLOGY  
V • D = (SWP – V ) • (1 – D)  
IN  
IN  
where:  
V = Transformer input supply  
IN  
D = (V /V ) • N = switch M1 duty cycle  
OUT IN  
V
= Output voltage (including the voltage drop  
OUT  
contribution of M4 catch diode during M1 off)  
60  
DUTY CYCLE (%)  
80  
20  
30  
40  
50  
70  
N = Transformer turns ratio = N /N  
P
S
3752 F15  
SWP = M1 drain voltage  
Figure 15. LO Side VCCL vs Duty Cycle  
(Normalized to 50% Duty Cycle)  
3752fb  
31  
For more information www.linear.com/LT3752  
LT3752/LT3752-1  
APPLICATIONS INFORMATION  
LO Side Active Clamp Topology (LT3752)  
During load transients, duty cycle and hence V  
may  
CCL  
increase. Replace D with D  
in the equation above to  
VSEC  
The steady-state active clamp capacitor voltage, V  
,
CCL  
calculate transient V  
values. See the previous section  
ProgrammingDutyCycleClamp–D  
CCL  
required to reset the transformer in a LO side active clamp  
.TheD  
guard-  
VSEC  
VSEC  
topology (Figure 13) can be approximated as the drain-to-  
rail can be programmed as close as 5% higher than D but  
mayrequirealargermargintoimprovetransientresponse.  
source voltage (V ) of switch M1, given by:  
DS  
V
CCL  
(LO side):  
As shown in Figure 15, the maximum steady-state value  
(a) Steady state: V  
= SWP = V  
for V  
may occur at minimum or maximum input volt-  
CCL  
DS  
CCL  
age. HenceV shouldbecalculatedatbothinputvoltage  
CCL  
2
V
1
1D  
IN  
levels and the largest of the two calculations used. M1  
=
V =  
IN  
V – V  
N  
(
)
(
)
IN  
OUT  
drain should be rated for a voltage greater than the above  
steady-state V calculation due to tolerances in duty  
DS  
(b) Transient:  
cycle, load transients, voltage ripple on C and leakage  
CL  
inductance spikes. C should be rated higher due to the  
CL  
effect of voltage coefficient on capacitance value. A typical  
2.5  
2.3  
2.0  
1.8  
1.5  
1.3  
1.0  
0.8  
choice for C is a good quality X7R capacitor. M2 should  
CL  
have a V rating greater than V since the bottom plate  
HI SIDE ACTIVE CLAMP TOPOLOGY  
DS  
CCL  
of C is –V  
during M1 on and M2 off. For high input  
CL  
CCL  
voltage applications, the limited V rating of available  
DS  
P-channel MOSFETs might require changing from a LO  
side to HI side active clamp topology.  
Forthelosideactiveclamptopologyinsteadystate,during  
M1 on time, magnetizing current (I  
) increases from a  
MAG  
negative value to a positive value (Figure 14). When M1  
turnsoff,magnetizingcurrentchargesSWPuntilitreaches  
CCL  
0.5  
20  
40  
50  
60  
70  
30  
80  
DUTY CYCLE (%)  
V
plus the voltage drop of the M2 body diode. At this  
3752 F16  
Figure 16. HI Side VCCL vs Duty Cycle  
(Normalized to 50% Duty Cycle)  
L
LEAK  
FSW  
CSW  
V
IN  
V
OUT  
L
MAG  
C
CL  
C2  
C1  
T4  
M2  
V
D
L
LEAK  
R1  
D1  
LTXXXX  
FG CG  
SWP  
–V  
M3  
M1  
M4  
IN  
AOUT  
LT3752-1  
OUT  
–V  
IN  
–V  
OUT  
3752 F17  
Figure 17. HI Side Active Clamp Topology  
3752fb  
32  
For more information www.linear.com/LT3752  
LT3752/LT3752-1  
APPLICATIONS INFORMATION  
moment the active clamp capacitor is passively switched  
in to ground (due to the forward conduction of M2 body  
diode) and the drain voltage increases at a slower rate  
During load transients, duty cycle and hence V  
may  
CCL  
increase. Replace D with D  
in the equation above to  
VSEC  
values. D  
calculate transient V  
guardrail can be  
CCL  
VSEC  
due to the loading of C . SWP above V causes I  
programmedascloseas6%higherthanDbutmayrequire  
a larger margin to improve transient response. See the  
previous section Programming Duty Cycle Clamp–D  
CL  
IN  
MAG  
/dT  
to reduce from a positive value towards zero (dV  
SWP  
= 0). As I  
becomes negative it begins to discharge  
.
MAG  
VSEC  
the SWP node. Switching in M2 before I  
actively connects the bottom plate of C to ground and  
reverses,  
MAG  
C
should be rated for a voltage higher than the above  
CL  
CL  
steady-state calculation due to tolerances in duty cycle,  
allows SWP to be discharged slowly. The resulting SWP  
waveform during M1 off-time appears as a square wave  
with a superimposed sinusoidal peak representing ripple  
load transients, voltage ripple on C and the effect of  
CL  
voltage coefficient on capacitance value. A typical choice  
for C is a good quality (X7R) capacitor. When using a  
CL  
voltage on C .  
CL  
gate drive transformer to provide control of the active  
clamp switch (M2), the external components C1, C2, R1,  
D1 and T4 are required. T4 size will increase for lower  
programmed switching frequencies due to a minimum  
volt-secondrequirement.Alternatively,asimplegatedriver  
opto-coupler can be used as a switch to control M2, for a  
smallersolutionsize.Theinputsupplycapacitorforthegate  
drive opto-coupler is easily charged using the housekeep-  
ing supply of the LT3752-1. Common component values  
are shown in the Typical Applications section.  
The switch M2 experiences near zero voltage switching  
(ZVS) since only the body diode voltage drop appears  
across it at switch turn on.  
HI Side Active Clamp Topology (LT3752-1)  
For high input voltage applications the V rating of avail-  
DS  
able P-channel MOSFETs might not be high enough to  
be used as the active clamp switch in the LO side active  
clamptopology(Figure13). AnN-channelapproachusing  
the HI side active clamp topology (Figure 17) should be  
used. This topology requires a gate drive transformer or  
a simple gate drive opto-coupler to drive the N-channel  
MOSFET (M2) for switching in the active clamp capacitor  
Active Clamp Capacitor Value and Voltage Ripple  
The active clamp capacitor value should be chosen based  
on the amount of voltage ripple which can be tolerated  
from SWP to V . The M1 drain voltage calculation is the  
by components attached to SWP. Lower C values will  
IN  
CL  
same as in the LO side active clamp case and M1 should  
be rated in a similar manner. The voltage across the clamp  
capacitor in the HI side architecture, however, is lower by  
createlargervoltageripple(increaseddrainvoltageforthe  
primary side power MOSFET) but will require less swing  
in magnetizing current to move the active clamp capacitor  
during duty cycle changes. Choosing too high a value for  
the active clamp capacitor (beyond what is needed to keep  
ripple voltage to an acceptable level) will require unneces-  
sary additional flux swing during transient conditions. For  
systems with flux swing detection, too high a value for the  
active clamp capacitor will trigger the detection system  
early and degrade transient response.  
V since it is referenced to V .  
IN  
IN  
The steady-state active clamp capacitor voltage V  
to  
CCL  
reset the transformer in a HI side active clamp topology  
can be approximated by:  
V
CCL  
(HI side):  
(a) Steady state: V  
= V  
= V – V  
CCL  
RESET  
DS  
IN  
D
1D  
N
=
V = V V  
IN  
IN  
OUT  
V – V  
N  
(
)
IN  
OUT  
(b) Transient:  
3752fb  
33  
For more information www.linear.com/LT3752  
LT3752/LT3752-1  
APPLICATIONS INFORMATION  
AnotherfactortoconsideristheresonancebetweenC and  
Active Clamp MOSFET Selection  
CL  
themagnetizinginductance(L  
)ofthemaintransformer.  
MAG  
The selection of active clamp MOSFET is determined by  
the maximum levels expected for the drain voltage and  
drain current. The active clamp switch (M2) in a either a lo  
side or hi side active clamp topology has the same BVdss  
requirements as the main N-channel power MOSFET. The  
current requirements are divided into two categories :  
An RC snubber (R , C ) in parallel with C will dampen  
S
S
CL  
the sinusoidal ringing and limit the peak voltages at the  
primary side MOSFET drain during input/load transients.  
Check circuit performance to determine if the snubber  
is required. Component values can be approximated as:  
2
10  
(1D  
2•π •f  
OSC  
)
MIN  
(A) Drain Current  
C (active clampcapacitance)=  
CL  
L
MAG  
This is typically less than the main N-channel power  
MOSFET because the active clamp MOSFET sees only  
magnetizing current, estimated as :  
where,  
D
MIN  
= (V /V  
) • N /N  
OUT IN(MAX) P S  
Peak I  
MAG  
(steady state) = (1/2) • (N /N ) • (V  
OSC  
/
MAG  
) • (1/f  
P
S
OUT  
and (if needed),  
C (snubber capacitance) = 6 • C  
L
)
where,  
L
S
CL  
R (snubber resistance) = (1/(1-D  
)) • √(L  
/C )  
= main transformer’s magnetizing inductance  
S
MAX  
MAG CL  
MAG  
where,  
Example (LT3752) : For V  
=12V, N /N = 2, f  
OSC  
=
OUT  
P
S
250kHz and L  
= 100µH, Peak I  
= 0.48A.  
MAG  
MAG  
D
MAX  
= ( V /V  
) • N /N  
OUT IN(MIN) P S  
This value should be doubled for safety margin due to  
variations in L , f and transient conditions.  
Check the voltage ripple on SWP during steady-state  
operation.  
MAG OSC  
(B) Body Diode Current  
C
V
voltage ripple can be estimated as:  
CL  
2
2
The body diode will see reflected output current as a pulse  
every time the main N-channel power MOSFET turns off.  
This is due to residual energy stored in the transformer's  
leakage inductance. The body diode of the active clamp  
MOSFET should be rated to withstand a forward pulsed  
current of:  
= V  
• (1-D) /(8 • C • L  
• f  
)
CCL(RIPPLE)  
CCL  
CL  
MAG OSC  
where,  
D = (V /V ) • (N /N )  
OUT IN  
P
S
V
CCL  
V
CCL  
= V /(1-D) (Lo side active clamp topology)  
IN  
= D • V /(1-D) (Hi side active clamp topology)  
IN  
I
= (N /N ) (I  
+ (I /2))  
L(RIPPLE)(P-P)  
D(MAX)  
S
P
OUT(MAX)  
Example : For V = 36V, V  
= 12V, N /N = 2, V  
CCL  
=
IN  
OUT  
P
S
where,  
108V (Lo side active clamp topology), C = 22nF, L  
CL  
MAG  
2
I
= output inductor ripple current = (V  
/
= 100µH, f  
= 250kHz, V  
= 108(0.33) /(8(22  
L(RIPPLE)(P-P)  
(L  
OUT  
OSC  
CCL(RIPPLE)  
–9  
–4  
4 2  
• f )) • (1–(V /V )(N /N ))  
• 10 )(10 )(2.5 • 10 ) ) = 10.7V  
OUT OSC  
OUT IN P S  
I
= maximum output load current  
Thetransformeristypicallychosentooperateatamaximum  
flux density that is low enough to avoid excessive core  
losses. This also allows enough headroom during input  
and load transients to move the active clamp capacitor at  
a fast enough rate to keep up with duty cycle changes.  
OUT(MAX)  
3752fb  
34  
For more information www.linear.com/LT3752  
LT3752/LT3752-1  
APPLICATIONS INFORMATION  
Programming Active Clamp Switch Timing: AOUT to  
Programming Synchronous Rectifier Timing: SOUT to  
OUT (t ) and OUT to AOUT (t ) Delays  
OUT (t ) and OUT to SOUT (t ) Delays  
AO  
OA  
SO OS  
Thetimingst andt representthedelaysbetweenAOUT  
The LT3752/LT3752-1 include a 0.4A gate driver at the  
SOUT pin to send a control signal via a pulse transformer  
to the secondary side of the forward converter for syn-  
chronous rectification (see Figures 1 and 2). For the  
highest efficiency, M4 should be turned on whenever M1  
is turned off. This suggests that SOUT should be a non-  
overlapping signal with OUT with very small non-overlap  
times. Inherent timing delays, however, which can vary  
from application to application, can exist between OUT to  
CSW and between SOUT to CG. Possible shoot-through  
can occur if both M1 and M4 are on at the same time,  
resulting in transformer and/or switch damage.  
AO  
OA  
and OUT edges (Figures 1 and 2) and are programmed  
by a single resistor, R , connected from analog ground  
TAO  
(Pin 18) to the T pin. Once t is programmed for the  
AO  
AO  
reasons given below, t will be automatically generated.  
OA  
Front-end timing t (M2 off, M1 on)  
AO  
= AOUT(edge)-to-OUT(rising)  
R
1k  
TAO  
= 50ns+3.8ns •  
, 14.7k <RTAO < 125k  
Inordertominimizeturn-ontransitionlossinM1thedrain  
of M1 should be as low as possible before M1 turns on.  
Front-end timing: t (M4 off, M1 on)  
SO  
To achieve this, AOUT should turn M2 off a delay of t  
= SOUT(falling)-to-OUT(rising) delay  
AO  
beforeOUTturnsM1on.Thisallowsthemaintransformer’s  
= t = t – t  
AS  
SO  
AO  
magnetizingcurrenttodischargeM1drainvoltagequickly  
= 3.8ns • (R – R  
)
TAO  
TAS  
towards V before M1 turns on.  
IN  
where:  
As SWP falls below V , however, the rectifying diodes on  
IN  
t
AS  
= 50ns + (3.8ns • R /1k) , 14.7k < R < 125k,  
the secondary side are typically active and clamp the SWP  
TAS  
TAS  
node close to V . If enough leakage inductance exists,  
IN  
t
AO  
= 50ns + (3.8ns • R /1k), 14.7k < R  
< 125k,  
TAO  
TAO  
however, the clamping action on SWP by the secondary  
side will be delayed—potentially allowing the drain of  
M1 to be fully discharged to ground just before M1 turns  
on. Even with this delay due to the leakage inductance,  
t
is defined by resistors R and R connected from  
TAS TAO  
SO  
analog ground (Pin 18) to their respective pins T and  
AS  
T . Each of these resistor defines a delay referenced  
to the AOUT edge at the start of each cycle. R  
AO  
was  
TAO  
L
needs to be low enough to allow I  
to be negative  
MAG  
MAG  
already programmed based on requirements defined in  
the previous section Programming AOUT to OUT Delay.  
enough to slew SWP down to ground before M1 turns on.  
If achievable, M1 will experience zero voltage switching  
(ZVS) for highest efficiency. As will be seen in a later sec-  
tion entitled Primary-Side Power MOSFET Selection, M1  
transition loss is a significant contributor to M1 losses.  
R
is then programmed as a delay from AOUT to SOUT  
TAS  
to fulfill the equation above for t . By choosing R less  
SO  
TAS  
than or greater than R , the delay between SOUT falling  
TAO  
and OUT rising can be programmed as positive or nega-  
Back-end timing t (M1 off, M2 on) is automatically  
OA  
tive. While a positive delay can always be programmed  
generated  
for t , the ability to program a negative delay allows for  
SO  
improved efficiency if OUT(rising)-to-CSW(rising) delay  
= OUT(falling)-to-AOUT(edge) = 0.9 • t  
AO  
is larger than SOUT(falling)-to-CG(rising) delay.  
t
should be checked to ensure M2 is not turned on until  
OA  
M1 and M3 are turned off.  
3752fb  
35  
For more information www.linear.com/LT3752  
LT3752/LT3752-1  
APPLICATIONS INFORMATION  
Back-end timing: t (M1 off, M4 on)  
= OUT (falling)-to-SOUT (rising) delay  
SS1 = 1.25V to 2.45V (soft-start f , D  
). This is the  
OS  
OSC VSEC  
SS1rangeforsoft-startingf andD  
foldedbackfrom  
OSC  
VSEC  
22% (50% for LT3752-1) to 100% of their programmed  
= t = 35ns + (2.2ns • R /1k), 7.32k < R < 249k  
TOS  
OS  
TOS  
levels. Fold back of f  
and D  
reduces effective  
OSC  
VSEC  
Thetimingresistor,R ,definestheOUT(falling)-to-SOUT  
TOS  
minimum duty cycle for the primary side MOSFET. This  
allows inductor current to be controlled at low output  
voltages during start-up.  
(rising) delay. This pin allows programming of a positive  
delay, for applications which might have a large inherent  
delay from OUT fall to SW2 fall.  
SS1 ramp rate is chosen slow enough to ensure f  
and  
OSC  
D
foldback lasts long enough for the converter to take  
VSEC  
Soft-Start (SS1, SS2)  
control of inductor current at low output voltages. In ad-  
dition, slower SS1 ramp rate increases the non-switching  
periodduringanoutputshorttogroundfault(overcurrent  
hiccup mode) to reduce average power dissipation (see  
Hard-Stop).  
TheLT3752/LT3752-1useSS1andSS2pinsforsoftstarting  
various parameters (Figures 3, 4 and 18). SS1 soft starts  
internal oscillator frequency and D  
(maximum duty  
VSEC  
cycle clamp). SS2 soft starts COMP pin voltage to control  
outputinductorpeakcurrent.UsingseparateSS1andSS2  
pins allows the soft-start ramp of oscillator frequency and  
SS2 = 0V to 1.6V (soft-start COMP pin). This is the SS2  
range for soft-starting COMP pin from approximately 1V  
to 2.6V.  
D
to be independent of COMP pin soft-start. Typically  
VSEC  
SS1capacitor(C )ischosenas0.47µF andSS2capaci-  
SS1  
tor (C ) is chosen as 0.1µF. Soft-start charge currents  
SS2  
SS2 ramp rate is chosen fast enough to allow a (slower)  
soft-start control of COMP pin from a secondary side  
opto-coupler controller.  
are 11.5µA for SS1 and 21µA for SS2.  
SS1 is allowed to start charging (soft-start) if all of the  
following conditions exist (typical values) :  
SS1 soft-start non-switching period (0V to 1.25V)  
= 1.25V • C /11.5µA  
SS1  
(1) UVLO_V  
> 1.25V: System input not in UVLO  
SEC  
SS1 soft-start f , D  
period (1.25V to 2.45V)  
VSEC  
OSC  
(2) OVLO < 1.215V: System input not in OVLO  
(3) HFB > 0.96V: Housekeeping supply valid  
(4) OC < 96mV: No over current condition  
= 1.2V • C /11.5µA  
SS1  
SS2soft-startCOMPperiod(0Vto1.6V)=1.6V•C /21µA  
SS2  
Soft-Stop (SS1)  
(5) X < INTV < 16V: INTV valid  
CC  
CC  
The LT3752/LT3752-1 gradually discharge the SS1 pin  
(soft-stop) when a system input UVLO occurs or when  
an external soft-stop shutdown command occurs (0.4V <  
(6) T < 165°C: Junction temperature valid  
J
(7) V > Y: V pin valid  
IN  
IN  
UVLO_V < 1.25V). During SS1 soft-stop the converter  
(X = 4.75V, Y = 5.8V for LT3752)  
(X = 7.0V, Y = 9.5V for LT3752-1)  
SEC  
continues to switch, folding back f , D  
and COMP  
OSC VSEC  
pin voltage (Figures 3, 4 and 18). Soft-stop discharge  
SS1 = 0V to 1.25V (no switching). This is the SS1 range  
for no switching for the forward converter. SS2 = 0V.  
current is 10.5µA for SS1. Soft-stop provides:  
(1) Activecontrolofthesecondarywindingduringoutput  
dischargeforcleanshutdowninself-drivenapplica-  
tions.  
SS1 > 1.25V allows SS2 to begin charging from 0V.  
(2)Controlled discharge of the active clamp capacitor  
tominimizemagnetizingcurrentswingduringrestart.  
3752fb  
36  
For more information www.linear.com/LT3752  
LT3752/LT3752-1  
APPLICATIONS INFORMATION  
SS1: 2.45V to 1.25V (soft-stop f , D  
, COMP). This  
(3) HFB < 0.92V: Housekeeping supply UVLO  
(4) OC > 96mV: Over current condition  
OSC VSEC  
is the SS1 range for soft-stop folding back of:  
(1)f andD  
from100%to22%(50%forLT3752-1)  
OSC  
VSEC  
(5) INTV < X(UVLO), > 16.5V (OVLO)  
CC  
of their programmed levels.  
(6) T > 170°C: Thermal shutdown  
J
(2)COMP pin (100% to 0% of commanded peak  
current).  
(7) V < Y: V pin UVLO  
IN  
IN  
(X = 4.6V, Y = 5.5V for LT3752)  
(X = 6.8V, Y = 7.6V for LT3752-1)  
SS1soft-stopf  
, D  
, COMPperiod (2.45Vto1.25V)  
OSC VSEC  
= 1.2V • C /10.5µA  
SS1  
SS1 < 1.25V. Forward converter stops switching and SS2  
pin is discharged to 0V using 2.8mA.  
Switching stops immediately for any of the faults listed  
above.WhenSS1dischargesbelow0.15Vitbeginscharg-  
ing again if all faults have been removed. For an over cur-  
rent fault triggered by OC > 96mV, the disable of switching  
will cause the OC pin voltage to fall back below 96mV.  
This will allow SS1 and SS2 to recharge and eventually  
attempt switching again. If the over current condition still  
exists, OC pin will exceed 96mV again and the discharge/  
charge cycle of SS1 and SS2 will repeat in a hiccup mode.  
The non-switching dead time period during hiccup mode  
reduces the average power seen by the converter in an  
over current fault condition. The dead time is dominated  
by SS1 recharging from 0.15V to 1.25V.  
SS1=1.25Vto0V:WhenSS1fallsbelow0.15Vtheinternal  
SS1 latch is reset. If all faults are removed, SS1 begins  
charging again. If faults still remain, SS1 discharges to 0V.  
SS1 soft-stop non-switching period (1.25V to 0V)  
= 1.25V • C /10.5µA  
SS1  
D
rises as system input voltage falls in order to  
VSEC  
provide a maximum duty cycle guardrail (volt-second  
clamp). When system input falls below it's UVLO thresh-  
old, however, this triggers a soft-stop with the converter  
continuing to switch. It is important that D  
no longer  
VSEC  
increases even though system input voltage may still be  
falling. The LT3752/LT3752-1 achieve an upper clamp on  
Non-switching period in over current (hiccup mode):  
= 1.1V • C /11.5µA  
SS1  
D
by clamping the minimum level for the I  
pin  
VSEC  
VSEC  
to 1.25V. As SS1 pin discharges during soft-stop it folds  
back D . As D falls below the natural duty cycle  
OUT, AOUT, SOUT Pulse-Skipping Mode  
VSEC  
VSEC  
During load steps, initial soft-start, end of soft-stop or  
light load operation (if the forward converter is designed  
tooperateinDCM),theloopmayrequirepulseskippingon  
the OUT pin. This occurs when the COMP pin falls below  
its switching threshold. If the COMP pin falls below it's  
switching threshold while OUT is turned on, the LT3752/  
LT3752-1 will immediately turn OUT off ; both AOUT and  
SOUTwillcompletetheirnormalsignaltimingsreferenced  
from the OUT falling edge. If the COMP pin remains below  
it's switching threshold at the start of the next switching  
cycle, the LT3752/LT3752-1 will skip the next OUT pulse  
and therefore also skip AOUT and SOUT pulses. For AOUT  
control, this prevents the active clamp capacitor from be-  
of the converter, the converter loop follows D  
. If the  
VSEC  
system input voltage rises (I  
pin rises) during soft-  
VSEC  
stop the volt-second clamp circuit further reduces D  
.
VSEC  
The I.C. chooses the lowest D  
commanded by either  
VSEC  
the I  
pin or the SS1 soft-stop function.  
VSEC  
Hard-Stop (SS1, SS2)  
Switching immediately stops and both SS1 and SS2 pins  
are rapidly discharged (Figure 18. Hard-Stop) if any of the  
following faults occur (typical values):  
(1) UVLO_V  
< 0.4V: Micropower shutdown  
SEC  
(2) OVLO > 1.250V: System input OVLO  
3752fb  
37  
For more information www.linear.com/LT3752  
LT3752/LT3752-1  
APPLICATIONS INFORMATION  
HARD STOP  
(FAULTS)  
SOFT-START  
(WHEN ALL CONDITIONS SATISFIED)  
SOFT-STOP  
(0.4V < UVLO_V  
< 1.25)  
SEC  
(1) UVLO_V  
< 0.4V  
(1) UVLO_V  
> 1.25V  
SEC  
(1) EXTERNAL SOFT-STOP SHUTDOWN  
(2) SYSTEM INPUT UVLO  
SEC  
(2) OVLO > 1.25V  
(3) HFB < 0.92V  
(4) OC > 96mV  
(2) OVLO < 1.215V  
(3) HFB > 0.96V  
(4) OC < 96mV  
(5) INTV < X, > 16.5V  
(5) X < INTV < 16V  
CC  
CC  
(6) T > 170°C  
(6) T < 165°C  
J
J
(7) V < Y  
IN  
(7) V > Y  
IN  
(X = 4.6V, Y = 5.5V: LT3752)  
(X = 6.8V, Y = 7.6V: LT3752-1)  
(X = 4.75V, Y = 5.8V: LT3752)  
(Y = 7.0V, Y = 9.5V: LT3752-1)  
HARD  
STOP  
SS1 SOFT STARTS  
SS1 SOFT STOPS  
f , D AND COMP  
OSC VSEC  
f
AND D  
OSC  
VSEC  
2.6V  
SS1 LATCH  
RESET THRESHOLD  
SS1  
1.25V  
0.15V  
0V  
0V  
0V  
2.6V  
SS2 SOFT STARTS  
COMP  
SS2  
0.25V  
2.6V  
COMP  
RANGE  
COMP 1.25V  
SWITCHING THRESHOLD  
COMP  
1V  
3752 F18  
Figure 18. SS1, SS2 and COMP Pin Voltages During Faults, Soft-Start and Soft-Stop  
ing accidentally discharged during missing OUT pulses  
In order to ensure the active clamp switch controlled by  
AOUTdoesnotstayontoolong,theLT3752/LT3752-1have  
an internal 15µs timeout to turn off the AOUT signal. This  
prevents the active clamp capacitor from being connected  
across the transformer primary winding long enough to  
create reverse saturation.  
and/or causing reverse saturation of the transformer.  
For SOUT control, this prevents the secondary side syn-  
chronous rectifier controller from incorrectly switching  
between forward FET and synchronous FET conduction.  
The LT3752/LT3752-1 correctly re-establish the required  
AOUT, SOUT control signals if the OUT signal is required  
for the next cycle.  
Main Transformer Selection  
The LT3752/LT3752-1 simplify the design of the main  
transformer and output inductor by removing the need for  
any auxiliary windings. Any bootstrap supplies required  
for the primary side or bias supplies required for the  
secondary side can all be provided by the housekeeping  
DC/DC controller included in the LT3752/LT3752-1. (see  
Housekeeping Controller in the Applications Information  
Section).  
AOUT Timeout  
During converter start-up in soft-start, the switching fre-  
quency and maximum duty cycle clamp D  
folded back. While this correctly reduces the effective  
minimumontimeoftheOUTpin(toallowcontrolofinduc-  
tor current for very low output voltages during start-up),  
this means the AOUT pin on time duration can be large.  
are both  
VSEC  
3752fb  
38  
For more information www.linear.com/LT3752  
LT3752/LT3752-1  
APPLICATIONS INFORMATION  
The selection of the main transformer will depend on the  
applications requirements : isolation voltage, power level,  
maximumvolt-seconds,turnsratio,componentsize,power  
losses and switching frequency.  
density. After calculating N , the number of primary turns  
S
(N ) can be calculated from,  
P
N = N • D  
V
/V  
P
S
MAX IN(MIN) OUT  
where,  
Transformerconstructionusingtheplanarwindingtechnol-  
ogy is typically chosen for minimizing leakage inductance  
and reducing component height. Transformer core type is  
usually a ferrite material for high frequency applications.  
V
= minimum system input voltage  
IN(MIN)  
D
MAX  
=maximumswitchdutycycleatV  
(typically  
IN(MIN)  
chosen between 0.6 and 0.7)  
At minimum input voltage the converter will run at a maxi-  
mum duty cycle D . A higher transformer turns ratio  
Find a family of transformers that meet both the isolation  
and power level requirements of the application. The next  
step is to find a transformer within that family which is  
suitable for the application. The subsequent thought pro-  
cess for the transformer design will include :  
MAX  
(N /N ) will create a higher D but it will also require  
P
S
MAX  
higher voltages at the drain of the primary side switch to  
resetthetransformer(seeprevioussectionsLosideActive  
ClampTopologyandHisideActiveClampTopology).D  
(1)Secondary turns (N ), core losses, temperature  
MAX  
S
values are typically chosen between 0.6 and 0.7. Even for  
rise, flux density, switching frequency  
a given D  
value, the loop must also provide protection  
MAX  
(2)Primary turns (N ), maximum duty cycle and reset  
P
against duty cycles that may excessively exceed D  
MAX  
voltages  
during transients or faults. While most converters only  
(3)Copper losses  
provide a fixed duty cycle clamp, the LT3752/LT3752-1  
provideaprogrammablemaximumdutycycleclampD  
that also moves inversely with input voltage.  
VSEC  
The expression for secondary turns (N ) is given by,  
S
8
N = 10 V /(f  
• A • B )  
C M  
S
OUT OSC  
The resulting function is that of a programmable volt-  
secondclamp.Thisallowstheusertochooseatransformer  
where,  
2
turns ratio for D  
and then customize a maximum duty  
MAX  
A = cross-sectional area of the core in cm  
C
cycle clamp D  
above D  
for safety. D  
then  
VSEC  
MAX  
VSEC  
B = maximum AC flux density desired  
M
follows the natural duty cycle of the converter as a safety  
guardrail (see previous section Programming Duty Cycle  
Clamp).  
For flux density, choose a level which achieves an accept-  
ablelevelofcoreloss/temperatureriseatagivenswitching  
frequency. The transformer data sheet will provide curves  
of core loss versus flux density at various switching fre-  
quencies.Thedatasheetwillalsoprovidetemperaturerise  
versus core loss. While choosing a value for BM to avoid  
excessivecorelosseswillusuallyallowenoughheadroom  
for flux swing during input / load transients, still make  
sure to stay well below the saturation flux density of the  
Afterdecidingontheparticulartransformerandturnsratio,  
the copper losses can then be approximated by,  
2
2
P
= D • I(Load)  
(R  
+ (N /N ) R  
)
PRI  
CU  
(MAX)  
SEC  
S
P
where,  
D = switch duty cycle (choose nominal 0.5)  
I(Load) = maximum load current  
transformer core. If needed, increasing N will reduce flux  
S
(MAX)  
3752fb  
39  
For more information www.linear.com/LT3752  
LT3752/LT3752-1  
APPLICATIONS INFORMATION  
R
PRI  
= primary winding resistance  
perature is known. A final value for R  
CONDUCTION  
and therefore  
DS(ON)  
P
can be achieved from a few iterations.  
R
= secondary winding resistance  
SEC  
(ii) P  
= (Q • INTV • f  
)
GATEDRIVER  
G
CC OSC  
If there is a large difference between the core losses and  
the copper losses then the number of secondary turns  
can be adjusted to achieve a more suitable balance. The  
number of primary turns should then be recalculated to  
maintain the desired turns ratio.  
where,  
Q = gate charge (V = INTV )  
G
GS  
CC  
(iii) P  
= P  
+ P  
(≈ 0 if ZVS)  
TRANSITION  
TURN_OFF  
TURN_ON  
(a) P  
= (1/2)I  
OSC  
(N /N )(V /1-D)  
OUT(MAX) S P IN  
TURN_OFF  
Primary-Side Power MOSFET Selection  
(Q /I  
) • f  
GD GATE  
Theselectionoftheprimary-sideN-channelpowerMOSFET  
M1 is determined by the maximum levels expected for the  
drain voltage and drain current. In addition, the power  
losses due to conduction losses, gate driver losses and  
transition losses will lead to a fine tuning of the MOSFET  
selection. If power losses are high enough to cause an  
unacceptabletemperatureriseintheMOSFETthenseveral  
MOSFETs may be required to be connected in parallel.  
where,  
Q
GD  
= gate to drain charge  
I
= 2A source/sink for OUT pin gate driver  
GATE  
(b)P  
=(1/2)I  
(N /N )(V )(Q /I  
)
TURN_ON  
OSC  
OUT(MAX)  
S
P
DS  
GD GATE  
• f  
where,  
The maximum drain voltage expected for the MOSFET M1  
follows from the equations previously stated in the active  
clamp topology sections:  
V
V
= M1 drain voltage at the beginning of M1 turn on  
DS  
typically sits between V and 0V (ZVS)  
DS  
IN  
Duringprogrammabletimingt ,negativeI  
discharges  
2
AO  
MAG  
V
DS  
(M1) = V /(V – (V  
• N))  
IN  
IN  
OUT  
M1 drain SWP towards V (Figure 1). ZVS is achieved if  
IN  
The MOSFET should be selected with a BV  
rating ap-  
enough leakage inductance exists—to delay the second-  
DSS  
proximately 20% greater than the above steady state V  
ary side from clamping M1 drain to V —and if enough  
DS  
IN  
calculationduetotolerancesindutycycle, loadtransients,  
energy is stored in L  
to discharge SWP to 0V during  
MAG  
voltage ripple on C and leakage inductance spikes. A  
thatdelay.(seeProgrammingActiveClampSwitchTiming:  
CL  
MOSFET with the lowest possible voltage rating for the  
application should be selected to minimize switch on re-  
sistance for improved efficiency. In addition, the MOSFET  
should be selected with the lowest gate charge to further  
minimize losses.  
AOUT to OUT (t )).  
AO  
Synchronous Control (SOUT)  
The LT3752 / LT3752-1 use the SOUT pin to communicate  
synchronous control information to the secondary side  
synchronous rectifier controller (Figure 19). The isolating  
transformer(T  
tiveload(R  
to generate positive and negative signals required at the  
SYNC input of the secondary side synchronous rectifier  
controller. For the typical LT3752/LT3752-1 applications  
operating with an LT8311, C  
and T  
MOSFET M1 losses at maximum output current can be  
approximated as :  
),couplingcapacitor(C  
)andresis-  
SYNC  
SYNC  
)allowthegroundreferencedSOUTsignal  
SYNC  
P
M1  
= P  
+ P  
+ P  
CONDUCTION  
GATEDRIVER TRANSITION  
(i) P  
I
= (N /N ) • (V /V ) • (N /N •  
P S OUT IN S P  
DS(ON)  
CONDUCTION  
2
) • R  
OUT(MAX)  
is 220pF, R  
is 560Ω  
SYNC  
SYNC  
Note: The on resistance of the MOSFET, R  
, in-  
DS(ON)  
DS(ON)  
is typically a PULSE PE-68386NL.  
SYNC  
creases with the MOSFET’s junction temperature. R  
should therefore be recalculated once junction tem-  
3752fb  
40  
For more information www.linear.com/LT3752  
LT3752/LT3752-1  
APPLICATIONS INFORMATION  
C
TheLT3752/LT3752-1allowverylargeI values(lowL  
SYNC  
L
OUT  
220pF  
T
values) without the worry of insufficient slope compensa-  
SYNC  
1
2
3
6
5
4
SOUT  
(LT3752/LT3752-1)  
SYNC  
(SECONDARY SIDE  
CONTROLLER)  
tion—byallowingslopecompensationtobeprogrammed  
R
SYNC  
560Ω  
with an external resistor in series with the I  
pin (see  
SENSEP  
CurrentSensingandProgrammableSlopeCompensation).  
3752 F19  
LargerI willallowlowerL ,reducingcomponentsize,  
L
OUT  
Figure 19. SOUT Pulse Transformer  
but will also cause higher output voltage ripple and core  
losses. For LT3752/LT3752-1 applications, ∆I is typically  
L
Typically choose C  
between 220pF and 1nF. R  
SYNC  
SYNC  
chosen to be 40% of I  
.
OUT(MAX)  
should then be chosen to obey :  
Output Capacitor Selection  
(1) SOUT  
/100mA ≤ R  
≤ √(L  
/C  
)
MAX  
SYNC  
MAG SYNC  
The choice of output capacitor value is dependent on  
output voltage ripple requirements given by :  
where,  
SOUT  
= INTV  
MAX  
CC  
∆V  
≈ ∆I (ESR + (1/(8 • f  
• C ))  
OSC OUT  
OUT  
L
L
MAG  
= T  
magnetizing inductance  
SYNC’S  
where,  
∆I = output inductor ripple current I  
100mA = SOUT gate driver minimum source current  
and  
(2) R  
L
L(RIPPLE)(P-P)  
ESR = effective series resistance (of C  
)
OUT  
• C  
≥ (–1) • Y/(ln (Z/SOUT  
))  
SYNC  
SYNC  
MAX  
f
= switching frequency  
= output capacitance  
OSC  
where,  
C
OUT  
Y = SYNC minimum pulse duration (50ns; LT8311)  
Z = |SYNC level to achieve Y| ( 2V: LT8311)  
This gives:  
= ∆I /(8 • f  
C
• ( ∆V – ∆I • ESR))  
OUT L  
OUT  
L
OSC  
Even though the LT3752/LT3752-1 INTV pin is allowed  
CC  
TypicallyC ismadeupofalowESRceramiccapacitor(s)  
OUT  
to be over driven by as much as 15.4V using the house-  
to minimize ∆V . Additional bulk capacitance is added  
OUT  
keeping supply, SOUT  
level should be designed to not  
MAX  
in the form of electrolytic capacitors to minimize output  
cause T  
output to exceed the maximum ratings of the  
SYNC  
voltage excursions during load steps.  
LT8311’s SYNC pin.  
Cost/Space reduction : If discontinuous conduction mode  
(DCM) operation is acceptable at light load, the LT8311  
has a preactive mode which controls the synchronous  
Input Capacitor Selection  
The active clamp forward converter demands pulses of  
current from the input due to primary winding current and  
magnetizing current. The input capacitor is required to  
providehighfrequencyfilteringtoachieveaninputvoltage  
as close as possible to a pure DC source with low ripple  
voltage. For low impedance input sources and medium to  
low voltage input levels, a simple ceramic capacitor with  
low ESR should suffice. It should be rated to operate at a  
worst case RMS input current of :  
MOSFETs without T  
, C  
, R  
or the LT3752/  
SYNC SYNC  
SYNC  
LT3752-1 timing resistors R , R  
(leave open).  
TAS TOS  
Output Inductor Value  
The choice of output inductor value L  
will depend on  
OUT  
theamountofallowableripplecurrent. Theinductorripple  
current is given by:  
I
L(RIPPLE)(P-P)  
I
= (N /N ) I  
/2  
CIN(RMS)  
S
P
OUT(MAX)  
= ∆I = (V /(L  
• f )) • (1 – (V /V )(N /N ))  
OUT IN P S  
L
OUT OUT OSC  
3752fb  
41  
For more information www.linear.com/LT3752  
LT3752/LT3752-1  
APPLICATIONS INFORMATION  
A small 1µF bypass capacitor should also be placed close  
3.Thecurrentsenseresistorfortheforwardconvertermust  
useshortKelvinconnectionstotheI andI  
SENSEN  
to the IC between V and GND.  
IN  
SENSEP  
pins. The current sense resistor for the housekeeping  
supply should have it’s ground connection as close as  
possible to the power ground (PGND) pin 38.  
Asinputvoltagelevelsincrease,anyuseofbulkcapacitance  
to minimize input ripple can impact on solution size and  
cost. Inaddition, inputswithhighersourceimpedancewill  
cause an increase in voltage ripple. In these applications it  
is recommended to include an LC input filter. The output  
impedance of the input filter should remain below the  
negativeinputimpedanceoftheDC/DCforwardconverter.  
4. High dv/dt lines should be kept away from all timing  
resistors, current sense inputs, HCOMP/COMP pins,  
UVLO_VSEC/OVLO pins and both HFB and FB feedback  
traces.  
5. Gate driver traces (HOUT, AOUT, SOUT, OUT) should be  
kept as short as possible.  
PCB Layout / Thermal Guidelines  
For proper operation, PCB layout must be given special  
attention. Critical programming signals must be able to  
co-exist with high dv/dt signals. Compact layout can be  
achieved but not at the cost of poor thermal management.  
The following guidelines should be followed to approach  
optimal performance.  
6. When working with high power components, multiple  
parallel components are the best method for spread-  
ing out power dissipation and minimizing temperature  
rise. In particular, multiple copper layers connected  
by vias should be used to sink heat away from each  
power MOSFET.  
1. Ensure that a local bypass capacitor is used (and placed  
7. Keep high switching current PGND paths away from  
signal ground. Also minimize trace lengths for those  
high current switching paths to minimize parasitic  
inductance.  
as close as possible) between V and GND for the  
IN  
controller IC(s).  
2. The critical programming resistors for timing (pins  
T ,T ,T ,T ,IVSECandRT)mustuseshorttraces  
AO AS OS BLNK  
to each pin. Each resistor should also use a short trace  
toconnecttoasinglegroundbusspecificallyconnected  
to pin 18 of the IC (GND).  
3752fb  
42  
For more information www.linear.com/LT3752  
LT3752/LT3752-1  
APPLICATIONS INFORMATION  
V
OUT  
12V  
V
IN  
18V TO 72V  
T1  
L1  
12.5A  
C1  
T2  
INTV  
V
AUX  
4:4  
CC  
6.8µH  
+
C14  
470µF  
16V  
4.7µF  
100V  
×3  
R38  
20k  
D2  
D3  
C9  
2.2µF  
C10  
2.2µF  
D4  
C8  
C13  
15nF  
ZVN4525E6  
M5  
C24  
2.2nF  
250V  
BSC077N12NS3  
C7  
100nF  
22µF  
16V  
×2  
FDMS86101  
Si2325DS  
D1  
M4  
M2  
M3  
R17  
R18  
0.15Ω  
R16  
10k  
499Ω  
R21  
100Ω  
R22  
100Ω  
BSC077N12NS3  
M1  
HOUT HI  
AOUT  
V
SENSE  
OUT  
OC  
IN  
V
V
IN  
AUX  
C11  
2.2µF  
R1  
C28  
68pF  
SYNC  
R30  
R27  
100k  
I
SENSEP  
100k  
GND  
R14  
2k  
100k  
R15  
0.006Ω  
UVLO_V  
SEC  
LT8311  
FB  
PGOOD  
R2  
5.9k  
R31  
T3  
SYNC  
I
SENSEN  
SOUT  
11.3k  
LT3752  
C6 220pF  
OVLO  
GND  
R13  
560Ω  
R3  
1.82k  
INTV  
CC  
V
INTV  
AUX  
CC  
R28  
3.16k  
C17  
220nF  
R20  
499k  
R11  
10k  
R25  
100Ω  
C5  
4.7µF  
C16  
1µF  
R29  
13.7k  
C12  
4.7µF  
C18  
68pF  
PS2801-1  
2.2nF  
C19  
4.7nF  
HFB  
R12  
1.1k  
R5  
22.6k  
R4  
R7  
R9  
31.6k  
R8  
C3  
R10  
2.8k  
C4  
3752 F20a  
34k  
22nF  
C2  
0.33µF  
R24  
100k  
R6  
7.32k  
R23  
100k  
R26  
1k  
22nF  
49.9k  
71.5k  
T1: CHAMPS G45AH2-0404-04  
T2: BH ELECTRONICS L00-3250  
T3: PULSE PE-68386NL  
L1: CHAMPS PQI2050-6R8  
D1, D2, D3: BAS516  
D4: CENTRAL SEMI CMMR1U-02  
Efficiency vs Load Current  
96  
94  
92  
90  
88  
86  
24V  
48V  
72V  
IN  
IN  
IN  
0
3
6
9
12  
15  
LOAD CURRENT (A)  
3752 F20b  
Figure 20. 18V to 72V, 12V/12.5A, 150W Active Clamp Isolated Forward Converter  
3752fb  
43  
For more information www.linear.com/LT3752  
LT3752/LT3752-1  
TYPICAL APPLICATIONS  
18V to 72V, 12V/12.5A, 150W No-Opto, Active Clamp Isolated Forward Converter  
V
OUT  
V
IN  
18V TO 72V  
12V  
T1  
L1  
12.5A  
T2  
C1  
INTV  
V
AUX  
4:4  
CC  
6.8µH  
+
C14  
470µF  
16V  
4.7µF  
100V  
×3  
R38  
20k  
D2  
D3  
C9  
2.2µF  
C10  
2.2µF  
D4  
C8  
15nF  
C13  
22µF  
16V  
×2  
C24  
2.2nF  
250V  
BSC077N12NS3  
C7  
100nF  
FDMS86101  
Si2325DS  
D1  
M5 ZVN4525E6  
M4  
M2  
M3  
R17  
R18  
0.15Ω  
R16  
10k  
499Ω  
R21  
100Ω  
R22  
100Ω  
BSC077N12NS3  
M1  
HOUT HI  
AOUT  
V
SENSE  
OUT  
OC  
IN  
V
V
IN  
AUX  
C11  
2.2µF  
R1  
100k  
SYNC  
I
SENSEP  
GND  
R14  
2k  
R15  
UVLO_V  
SEC  
LT8311  
FB  
0.006Ω  
PGOOD  
SYNC  
R2  
5.9k  
T3  
I
SENSEN  
SOUT  
LT3752  
C6 220pF  
OVLO  
GND  
R13  
560Ω  
R3  
1.82k  
V
AUX  
INTV  
INTV  
CC  
CC  
R11  
10k  
C12  
4.7µF  
R20  
499k  
C5  
4.7µF  
HFB  
R12  
1.1k  
R5  
22.6k  
R4  
R7  
R9  
31.6k  
R8  
C3  
22nF  
C2  
R10  
2.8k  
C4  
2.2nF  
34k  
3752 TA02  
R6  
7.32k  
22nF  
49.9k  
60.4k  
0.33µF  
T1: CHAMPS G45AH2-0404-04  
T2: BH ELECTRONICS L00-3250  
T3: PULSE PE-68386NL  
L1: CHAMPS PQI2050-6R8  
D1, D2, D3: BAS516  
D4: CENTRAL SEMI CMMR1U-02  
V
OUT vs Load Current (No-Opto)  
Efficiency vs Load Current  
14.0  
96  
13.5  
13.0  
12.5  
12.0  
11.5  
11.0  
10.5  
10.0  
94  
92  
90  
88  
86  
V
V
V
V
V
= 70V  
= 60V  
= 48V  
= 36V  
= 20V  
IN  
IN  
IN  
IN  
IN  
24V  
48V  
72V  
IN  
IN  
IN  
0
2
4
6
8
10  
12  
0
3
6
9
12  
15  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
3752 TA02a  
3752 TA02b  
3752fb  
44  
For more information www.linear.com/LT3752  
LT3752/LT3752-1  
TYPICAL APPLICATIONS  
150V to 400V, 12V/16.7A, 200W Active Clamp Isolated Forward Converter  
T1  
V
V
OUT  
IN  
31:5  
150V TO  
400V  
12V  
L1  
16.7A  
T2  
R38  
10k  
C1  
2.2µF  
630V  
R19  
INTV  
CC  
V
AUX  
INTV  
C10  
CC  
R35  
R16 4.2Ω  
D4  
15µH  
+
C14  
330µF  
16V  
C15  
10nF  
630V  
402Ω  
D3  
FDMS86200  
×3  
374k  
D2  
C9  
10µF  
4.7µF  
C8  
47nF  
630V  
R36  
374k  
ACPL-W346  
M4  
D5  
V
D1  
C13  
33µF  
16V  
×4  
CC  
RJK0653DPB  
×2  
C24  
10nF  
250V  
M5  
BSP300  
V
M2  
OUT  
R38  
ANODE  
CATHODE  
C21  
0.22µF  
C20  
10µF  
0.002  
M3  
R17  
R18  
0.15Ω  
V
EE  
499Ω  
IPD60R1K4C6  
R21  
100Ω  
R22  
100Ω  
C27  
120pF  
R34  
IPD65R25OC6  
M1  
499k  
HOUT  
HI  
SENSE  
AOUT  
V
OUT  
OC  
IN  
V
AUX  
V
IN  
C11  
2.2µF  
C28  
68pF  
R30  
R1  
499k  
SYNC  
R27  
100k  
I
SENSEP  
100k  
GND  
R14  
2k  
R15  
0.022Ω  
FB  
UVLO_V  
SEC  
LT8311  
PGOOD  
SYNC  
R2  
5.76k  
R31  
11.3k  
T3  
I
SENSEN  
SOUT  
LT3752-1  
C6 220pF  
OVLO  
GND  
R13  
560Ω  
R3  
2.94k  
INTV  
CC  
V
INTV  
CC  
AUX  
C12  
R28  
3.16k  
C17  
1µF  
R20  
432k  
C18  
100pF  
R29  
R11  
10k  
R25  
100Ω  
5.11k  
C5  
4.7µF  
PS2801-1  
4.7µF  
C19  
22nF  
HFB  
R12  
806Ω  
C16  
1µF  
C3  
R5  
40.2k  
R4  
R7  
100k  
R6  
R9  
78.7k  
R8  
R10  
22k  
3752 TA03  
0.22µF  
C2  
R24  
22k  
R23  
22k  
R26  
1.2k  
95.3k  
13k  
124k  
0.47µF  
C4  
3.3nF  
2.2nF  
T1: CHAMPS LT80R2-12AC-3124005  
T2: WÜRTH 750817020  
T3: PULSE PE-68386NL  
L1: COILCRAFT AGP2923-153  
D1: CENTRAL SEMI CMR1U-10  
D2, D3, D5: BAS516  
D4: CENTRAL SEMI CMMR1U-02  
Efficiency vs Load Current  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
V
V
V
V
= 150V  
= 250V  
= 350V  
= 400V  
IN  
IN  
IN  
IN  
0
2.5  
5
7.5  
10 12.5 15 17.5  
LOAD CURRENT (A)  
3752 TA03a  
3752fb  
45  
For more information www.linear.com/LT3752  
LT3752/LT3752-1  
TYPICAL APPLICATIONS  
150V to 400V, 12V/16.7A, 200W No-Opto, Active Clamp Isolated Forward Converter  
T1  
V
V
OUT  
IN  
31:5  
150V TO  
400V  
12V  
L1  
16.7A  
C1  
2.2µF  
630V  
T2  
R38  
10k  
R19  
INTV  
CC  
V
AUX  
R16 4.2Ω  
CC  
R35  
15µH  
D4  
+
C14  
330µF  
16V  
C15  
10nF  
630V  
402Ω  
FDMS86200  
×3  
D3  
INTV  
374k  
D2  
C10  
4.7µF  
C9  
10µF  
C8  
47nF  
630V  
D5  
ACPL-W346  
R36  
374k  
M4  
V
D1  
C13  
33µF  
16V  
×4  
CC  
RJK0653DPB  
×2  
M5  
BSP300  
C24  
10nF  
250V  
V
M2  
OUT  
R38  
0.002  
ANODE  
CATHODE  
C21  
0.22µF  
C20  
10µF  
M3  
R17  
R18  
0.15Ω  
V
EE  
499Ω  
IPD60R1K4C6  
R21  
100Ω  
R22  
100Ω  
C27  
120pF  
R34  
IPD65R25OC6  
M1  
499k  
HOUT HI  
AOUT  
V
SENSE  
OUT  
IN  
V
AUX  
V
IN  
C11  
2.2µF  
OC  
SENSEP  
R1  
499k  
SYNC  
I
GND  
R14  
2k  
R15  
UVLO_V  
OVLO  
SEC  
LT8311  
FB  
0.022Ω  
PGOOD  
SYNC  
R2  
5.76k  
T3  
I
SENSEN  
SOUT  
LT3752-1  
C6 220pF  
R13  
560Ω  
R3  
2.94k  
V
AUX  
INTV  
CC  
INTV  
CC  
GND  
R11  
10k  
C12  
4.7µF  
R20  
432k  
HFB  
C5  
4.7µF  
R12  
806Ω  
C3  
R5  
40.2k  
R4  
R7  
100k  
R6  
R9  
78.7k  
R8  
R10  
22k  
C4  
3752 TA04  
2.2nF  
0.22µF  
C2  
0.47µF  
95.3k  
13k  
107k  
3.3nF  
T1: CHAMPS LT80R2-12AC-3124005  
T2: WÜRTH 750817020  
T3: PULSE PE-68386NL  
L1: COILCRAFT AGP2923-153  
D1: CENTRAL SEMI CMR1U-10  
D2, D3, D5: BAS516  
D4: CENTRAL SEMI CMMR1U-02  
VOUT vs Load Current (No-Opto)  
Efficiency vs Load Current  
14.0  
96  
95  
13.5  
13.0  
12.5  
12.0  
11.5  
11.0  
10.5  
10.0  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
V
V
V
V
= 150V  
= 250V  
= 350V  
= 400V  
V
V
V
V
= 150V  
= 250V  
= 350V  
= 400V  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
0
2
4
6
8
10 12 14 16 18  
0
2.5  
5
7.5  
10 12.5 15 17.5  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
3752 TA04a  
3752 TA04b  
3752fb  
46  
For more information www.linear.com/LT3752  
LT3752/LT3752-1  
TYPICAL APPLICATIONS  
150V to 400V, 12V/16.7A, 200W, Active Clamp Isolated Forward Converter  
(Using Gate Drive Transformer for High Side Active Clamp)  
T1  
V
V
OUT  
IN  
31:5  
150V TO  
400V  
12V  
L1  
D3  
16.7A  
R19  
T2  
C15  
10nF  
630V  
INTV  
D5  
V
AUX  
C10  
4.7µF  
R35  
CC  
R38  
10k  
15µH  
+
C14  
330µF  
16V  
402Ω  
D4  
FDMS86200  
×3  
374k  
D2  
C1  
C8  
47nF  
630V  
C9  
10µF  
2.2µF  
630V  
R36  
374k  
C22  
220nF  
M4  
C23 3.3nF  
T4  
C13  
33µF  
16V  
×4  
M2  
RJK0653DPB  
×2  
M5  
BSP300  
C24  
10nF  
250V  
D1  
R38  
R16  
10k  
C20  
0.002  
C21  
470pF  
M3  
10µF  
R17  
R18  
0.15Ω  
R37  
100Ω  
499Ω  
R21  
100Ω  
R22  
100Ω  
IPD60R1K4C6  
C27  
120pF  
R34  
IPD65R25OC6  
M1  
499k  
HOUT HI  
AOUT  
V
SENSE  
OUT  
IN  
V
AUX  
V
IN  
C11  
2.2µF  
OC  
SENSEP  
R1  
499k  
SYNC  
R30  
100k  
R27  
100k  
C28  
68pF  
I
GND  
R14  
2k  
R15  
0.022Ω  
UVLO_V  
SEC  
LT8311  
FB  
PGOOD  
SYNC  
R2  
5.76k  
T3  
R31  
I
SENSEN  
SOUT  
11.3k  
LT3752-1  
C6 220pF  
OVLO  
GND  
R13  
560Ω  
R3  
2.94k  
INTV  
CC  
INTV  
CC  
V
AUX  
R28  
3.16k  
C17  
1µF  
R20  
432k  
C18  
100pF  
R29  
R25  
100Ω  
R11  
10k  
C12  
5.11k  
C5  
4.7µF  
4.7µF  
PS2801-1  
2.2nF  
C19  
22nF  
HFB  
R12  
806k  
C16  
1µF  
C3  
R5  
40.2k  
R4  
R7  
100k  
R6  
R9  
R10  
3752 TA05  
0.22µF  
78.7k  
R8  
22k  
R24  
22k  
C2  
0.47µF  
R23  
22k  
R26  
1.2k  
95.3k  
13k  
124k  
C4  
3.3nF  
T1: CHAMPS LT80R2-12AC-3124005  
T2: WÜRTH 750817020  
T3: PULSE PE-68386NL  
T4: ICE GT05-111-100  
L1: COILCRAFT AGP2923-153  
D1: CENTRAL SEMI CMR1U-10  
D2, D3, D5: BAS516  
D4: CENTRAL SEMI CMMR1U-02  
Efficiency vs Load Current  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
V
V
V
V
= 150V  
= 250V  
= 350V  
= 400V  
IN  
IN  
IN  
IN  
0
2.5  
5
7.5  
10 12.5 15 17.5  
LOAD CURRENT (A)  
3752 TA05a  
3752fb  
47  
For more information www.linear.com/LT3752  
LT3752/LT3752-1  
TYPICAL APPLICATIONS  
150V to 400V, 12V/16.7A 200W, No-Opto, Active Clamp Isolated Forward Converter  
(Using Gate Drive Transformer for High Side Active Clamp)  
T1  
V
V
OUT  
IN  
31:5  
150V TO  
400V  
12V  
L1  
D3  
16.7A  
R19  
T2  
R38  
10k  
C15  
10nF  
630V  
INTV  
D5  
V
AUX  
C10  
4.7µF  
R35  
CC  
D4  
15µH  
+
C14  
330µF  
16V  
402Ω  
FDMS86200  
×3  
374k  
D2  
C1  
C8  
47nF  
630V  
C9  
10µF  
2.2µF  
630V  
R36  
374k  
M4  
C22  
220nF  
C23 3.3nF  
T4  
C13  
33µF  
16V  
×4  
M2  
RJK0653DPB  
×2  
C24  
10nF  
250V  
M5  
BSP300  
R38  
D1  
R16  
10k  
0.002Ω  
C20  
C21  
470pF  
M3  
10µF  
R17  
R18  
0.15Ω  
R37  
100Ω  
499Ω  
R21  
100Ω  
R22  
100Ω  
C27  
120pF  
IPD60R1K4C6  
R34  
IPD65R25OC6  
499k  
HOUT HI  
AOUT  
V
SENSE  
OUT  
M1  
IN  
V
V
AUX  
IN  
C11  
2.2µF  
OC  
SENSEP  
R1  
499k  
SYNC  
I
GND  
R14  
2k  
R15  
UVLO_V  
SEC  
LT8311  
FB  
0.022Ω  
PGOOD  
SYNC  
R2  
5.76k  
T3  
I
SENSEN  
SOUT  
LT3752-1  
C6 220pF  
OVLO  
GND  
R13  
R3  
2.94k  
560Ω  
3752 TA06  
V
INTV  
CC  
AUX  
R11  
10k  
R20  
432k  
C12  
4.7µF  
2.2nF  
HFB  
C5  
4.7µF  
R12  
806Ω  
C3  
R5  
40.2k  
R4  
R7  
100k  
R6  
R9  
R10  
22k  
C4  
3.3nF  
0.22µF  
C2  
78.7k  
R8  
95.3k  
13k  
107k  
0.47µF  
T1: CHAMPS LT80R2-12AC-3124005  
T2: WÜRTH 750817020  
T3: PULSE PE-68386NL  
T4: ICE GT05-111-100  
L1: COILCRAFT AGP2923-153  
D1: CENTRAL SEMI CMR1U-10  
D2, D3, D5: BAS516  
D4: CENTRAL SEMI CMMR1U-02  
VOUT vs Load Current (No-Opto)  
Efficiency vs Load Current  
14.0  
96  
95  
13.5  
13.0  
12.5  
12.0  
11.5  
11.0  
10.5  
10.0  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
V
V
V
V
= 150V  
= 250V  
= 350V  
= 400V  
V
V
V
V
= 150V  
= 250V  
= 350V  
= 400V  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
0
2
4
6
8
10 12 14 16 18  
0
2.5  
5
7.5  
10 12.5 15 17.5  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
3752 TA06a  
3752 TA06b  
3752fb  
48  
For more information www.linear.com/LT3752  
LT3752/LT3752-1  
TYPICAL APPLICATIONS  
75V to 150V, 24V/14A 340W Active Clamp Isolated Forward Converter  
(Using Gate Drive Transformer for High Side Active Clamp)  
T1  
V
V
24V  
14A  
IN  
OUT  
10:6  
75V TO  
150V  
L1  
D3  
R19  
T2  
C15  
4.7nF  
250V  
INTV  
D5  
V
AUX  
C10  
4.7µF  
R35  
CC  
R38  
10k  
15µH  
+
C14  
470µF  
25V  
1k  
D4  
102k  
D2  
C1  
IPB072N15N3G  
C8  
15nF  
250V  
M2  
IRFL214  
C9  
10µF  
2.2µF  
250V  
R36  
102k  
C22  
220nF  
M4  
C23 3.3nF  
T4  
C13  
BSC047N08NS3  
×2  
M5  
BSP300  
C24  
10nF  
250V  
22µF  
25V  
×4  
D1  
R38  
R16  
10k  
C20  
0.003Ω  
C21  
470pF  
M3  
10µF  
R17  
R18  
0.15Ω  
R37  
100Ω  
499Ω  
R21  
100Ω  
R22  
100Ω  
C27  
120pF  
R34  
IPB200N25N3  
M1  
698k  
HOUT HI  
AOUT  
V
SENSE  
OUT  
IN  
V
AUX  
V
IN  
C11  
2.2µF  
OC  
SENSEP  
R1  
6.98k  
C28  
68pF  
SYNC  
R30  
100k  
R27  
100k  
I
GND  
R14  
2k  
R15  
0.0075Ω  
UVLO_V  
SEC  
LT8311  
FB  
PGOOD  
SYNC  
R2  
6.04k  
T3  
R31  
I
SENSEN  
SOUT  
5.36k  
LT3752-1  
C6 220pF  
OVLO  
GND  
R13  
560Ω  
R3  
5.76k  
INTV  
CC  
V
INTV  
CC  
AUX  
C17  
R28  
3.16k  
C18  
100pF  
R29  
0.33µF  
R25  
100Ω  
C12  
4.7µF  
5.11k  
R11  
10k  
C5  
4.7µF  
R20  
365k  
PS2801-1  
2.2nF  
C19  
22nF  
HFB  
R12  
806Ω  
C16  
1µF  
C3  
R5  
53k  
R4  
93.1k  
R7  
80.1k  
R6  
R9  
R10  
3752 TA07  
0.22µF  
C2  
52.3k  
R8  
22k  
R24  
22k  
R23  
22k  
R26  
1.2k  
10k  
82.5k  
0.47µF  
C4  
3.3nF  
T1: CHAMPS LT80R2-12AC-1006  
T2: WÜRTH 750817020  
T3: PULSE PE-68386NL  
T4: ICE GT05-111-100  
L1: COILCRAFT AGP2923-153  
D1: CENTRAL SEMI CMR1U-10  
D2, D3, D5: BAS516  
D4: CENTRAL SEMI CMMR1U-02  
Efficiency vs Load Current  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
V
V
V
V
= 75V  
IN  
IN  
IN  
IN  
= 100V  
= 125V  
= 150V  
0
2.5  
5
7.5  
10  
12.5  
15  
LOAD CURRENT (A)  
3752 TA07a  
3752fb  
49  
For more information www.linear.com/LT3752  
LT3752/LT3752-1  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
FE Package  
Package Variation: FE38 (31)  
38-Lead Plastic TSSOP (4.4mm)  
(Reference LTC DWG # 05-08-1665 Rev B)  
Exposed Pad Variation AB  
4.75 REF  
9.60 – 9.80*  
(.378 – .386)  
4.75  
(.187)  
REF  
38  
20  
6.60 0.10  
4.50 REF  
2.74 REF  
SEE NOTE 4  
6.40  
REF (.252)  
BSC  
2.74  
(.108)  
0.315 0.05  
1.05 0.10  
0.50 BSC  
RECOMMENDED SOLDER PAD LAYOUT  
1
PIN NUMBERS 23, 25, 27, 29, 31, 33 AND 35 ARE REMOVED  
19  
1.20  
(.047)  
MAX  
4.30 – 4.50*  
(.169 – .177)  
0.25  
REF  
0° – 8°  
0.50  
(.0196)  
BSC  
0.09 – 0.20  
(.0035 – .0079)  
0.50 – 0.75  
(.020 – .030)  
0.05 – 0.15  
(.002 – .006)  
0.17 – 0.27  
(.0067 – .0106)  
TYP  
FE38 (AB) TSSOP REV B 0910  
NOTE:  
1. CONTROLLING DIMENSION: MILLIMETERS 4. RECOMMENDED MINIMUM PCB METAL SIZE  
2. DIMENSIONS ARE IN  
FOR EXPOSED PAD ATTACHMENT  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.150mm (.006") PER SIDE  
MILLIMETERS  
(INCHES)  
3. DRAWING NOT TO SCALE  
3752fb  
50  
For more information www.linear.com/LT3752  
LT3752/LT3752-1  
REVISION HISTORY  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
06/14 Minor typographical changes throughout data sheet.  
All  
B
07/15 Changed Absolute Maximum SS2 rating to 16V.  
Changed Absolute Maximum SS1 rating to 3V.  
3
3
3
5
6
6
6
7
Changed Output Low Level in Shutdown conditions to INTV = 3V.  
CC  
Changed AOUT Rise and Fall Times.  
Changed SOUT Rise and Fall Times.  
Changed SS2 Discharge Current conditions to SS2 = 2.5V.  
Changed SS2 Charge Current conditions to SS2 = 1.5V.  
Changed HOUT Rise and Fall Times.  
3752fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
51  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
LT3752/LT3752-1  
TYPICAL APPLICATION  
75V to 150V, 24V/14A 340W No-Opto, Active Clamp Isolated Forward Converter  
T1  
L1, 15µH  
D4  
V
V
24V  
14A  
IN  
OUT  
10:6  
75V TO  
150V  
D3  
C15  
4.7nF  
250V  
R19  
1k  
C8  
R38  
10k  
T2  
INTV  
D5  
V
AUX  
C10  
4.7µF  
CC  
R35  
R36  
+
C14  
470µF  
25V  
D2  
IPB072N15N3G  
C1  
2.2µF  
250V  
C9  
10µF  
C24  
10nF  
250V  
15nF  
M4  
C22  
220nF  
C23 3.3nF  
T4  
250V  
M2  
IRFL214  
BSC047N08NS3  
×2  
C13  
M5  
BSP300  
R38  
0.003Ω  
22µF  
25V  
×4  
D1  
R16  
10k  
C20  
C21  
470pF  
M3  
10µF  
R17  
R18  
0.15Ω  
R37  
100Ω  
499Ω  
R21  
R22  
100Ω  
C27  
120pF  
100Ω  
R34  
IPB200N25N3  
M1  
698k  
HOUT HI  
AOUT  
V
SENSE  
OUT  
IN  
V
V
AUX  
IN  
C11  
OC  
SENSEP  
R1  
6.98k  
SYNC  
I
2.2µF  
GND  
R14  
2k  
R15  
UVLO_V  
SEC  
LT8311  
FB  
0.0075Ω  
PGOOD  
SYNC  
R2  
6.04k  
T3  
I
SENSEN  
SOUT  
LT3752-1  
C6 220pF  
OVLO  
GND  
R13  
R3  
5.76k  
560Ω  
3752 TA08  
INTV  
INTV  
C5  
CC  
CC  
C12  
4.7µF  
R11  
10k  
R20  
432k  
2.2nF  
HFB  
R12  
806Ω  
4.7µF  
R5  
53k  
R4  
93.1k  
R7  
80.1k  
R6  
R9  
C3  
0.1µF  
C2  
R10  
22k  
C4  
3.3nF  
52.3k  
R8  
75k  
10k  
0.47µF  
T1: CHAMPS LT80R2-12AC-1006  
T2: WÜRTH 750817020  
VOUT vs Load Current (No-Opto)  
Efficiency vs Load Current  
T3: PULSE PE-68386NL  
28  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
T4: ICE GT05-111-100  
L1: COILCRAFT AGP2923-153  
D1: CENTRAL SEMI CMR1U-10  
D2, D3, D5: BAS516  
27  
26  
25  
24  
23  
22  
21  
20  
D4: CENTRAL SEMI CMMR1U-02  
V
V
V
V
= 75V  
V
V
V
V
= 75V  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
= 100V  
= 125V  
= 150V  
= 100V  
= 125V  
= 150V  
0
2
4
6
8
10 12 14 16  
0
2.5  
5
7.5  
10  
12.5  
15  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
3752 TA08a  
3752 TA08b  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT8311  
Preactive Secondary Synchronous and  
Opto Control for Forward Converters  
Optimized for Use with Primary-Side LT3752/-1, LT3753 and LT8310 Controllers  
LTC3765/LTC3766  
Synchronous No-Opto Forward Controller  
Chip Set with Active Clamp Reset  
Direct Flux Limit, Supports Self Starting Secondary Forward Control  
LTC3722/LTC3722-2  
Synchronous Full Bridge Controllers  
Adaptive or Manual Delay Control for Zero Voltage Switching, Adjustable  
Synchronous Rectification Timing  
LT3748  
LT3798  
100V Isolated Flyback Controller  
5V ≤ V ≤ 100V, No Opto Flyback , MSOP-16 with High Voltage Spacing  
IN  
Off-Line Isolated No-Opto Flyback  
Controller with Active PFC  
V
IN  
and V  
Limited Only by External Components  
OUT  
3752fb  
LT 0715 REV B • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
52  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LT3752  
LINEAR TECHNOLOGY CORPORATION 2014  

相关型号:

LT3752_15

Active Clamp Synchronous Forward Controllers with Internal Housekeeping Controller
Linear

LT3753

Synchronous Rectifier Controller with Opto-Coupler Driver for Forward Converters
Linear

LT3754

16-Channel × 50mA LED Driver
Linear

LT3754EUH#PBF

LT3754 - 16-Channel x 50mA LED Driver; Package: QFN; Pins: 32; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3754EUH#TRPBF

LT3754 - 16-Channel x 50mA LED Driver; Package: QFN; Pins: 32; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3754EUHPBF

16-Channel × 50mA LED Driver
Linear

LT3754EUHTRPBF

16-Channel × 50mA LED Driver
Linear

LT3754IUH#PBF

LT3754 - 16-Channel x 50mA LED Driver; Package: QFN; Pins: 32; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3754IUH#TRPBF

LT3754 - 16-Channel x 50mA LED Driver; Package: QFN; Pins: 32; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3754IUHPBF

16-Channel × 50mA LED Driver
Linear

LT3754IUHTRPBF

16-Channel × 50mA LED Driver
Linear

LT3755

40VIN, 75VOUT LED Controller
Linear