LT3782AEUFD#TRPBF [Linear]

2-Phase Step-Up DC/DC Controller;
LT3782AEUFD#TRPBF
型号: LT3782AEUFD#TRPBF
厂家: Linear    Linear
描述:

2-Phase Step-Up DC/DC Controller

文件: 总20页 (文件大小:270K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3782A  
2-Phase Step-Up  
DC/DC Controller  
FeaTures  
DescripTion  
The LT®3782A is a current mode 2-phase step-up DC/DC  
converter controller. Its high switching frequency (up to  
500kHz) and 2-phase operation reduce system filtering  
capacitance and inductance requirements.  
n
2-Phase Operation Reduces Required Input and  
Output Capacitance  
n
Programmable Switching Frequency:  
150kHz to 500kHz  
6V to 40V Input Range  
10V Gate Drive with V ≥13V  
High Current Gate Drive (4A)  
Programmable Soft-Start and Current Limit  
Programmable Slope Compensation for  
High Noise Immunity  
n
With 10V gate drive (V ≥13V) and 4A peak drive current,  
CC  
n
CC  
the LT3782A can drive most industrial grade high power  
MOSFETs with high efficiency. For synchronous applica-  
tions, the LT3782A provides synchronous gate signals  
with programmable falling edge delay to avoid cross  
conduction when using external MOSFET drivers. Other  
features include programmable undervoltage lockout,  
soft-start, current limit, duty cycle clamp (50% or higher)  
and slope compensation. The LT3782A is identical to the  
LT3782 except that the LT3782A has a tighter current  
sense mismatch tolerance.  
n
n
n
n
MOSFET Gate Signals with Programmable  
Falling Edge Delay for External Synchronous Drivers  
Programmable Undervoltage Lockout  
Programmable Duty Cycle Clamp (50% or Higher)  
Thermally Enhanced 28-Lead TSSOP and 4mm ×  
5mm QFN Packages  
n
n
n
The LT3782A is available in thermally enhanced 28-lead  
TSSOP and 4mm × 5mm QFN packages.  
applicaTions  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks, ThinSOT  
n
Industrial Equipment  
and No R  
are trademarks of Linear Technology Corporation. All other trademarks are the  
SENSE  
property of their respective owners. Protected by U.S. Patents including 6144194.  
n
Telecom Infrastructure  
n
Interleaved Isolated Power Supply  
Typical applicaTion  
50V 4A Boost Converter  
Efficiency and Power Loss  
vs Load Current  
20µH  
V
V
IN  
10V TO 36V  
OUT  
50V, 4A  
97  
18  
15  
12  
9
20µH  
10µF  
D1  
V
GBIAS1  
GBIAS2  
CC  
×2  
V
= 24V  
IN  
EFFICIENCY  
+
10µF  
×2  
1µF  
2µF  
95  
93  
91  
89  
87  
85  
D2  
220µF  
825k  
274k  
V
= 12V  
= 12V  
GBIAS  
BGATE1  
IN  
Q1  
RUN  
V
IN  
LT3782A  
0.004Ω  
V
EE1  
V
= 24V  
IN  
59k  
6
Q2  
SLOPE  
DELAY  
DCL  
BGATE2  
POWER LOSS  
3
80k  
0.004Ω  
475k  
0
R
SET  
V
EE2  
+
0
1
2
3
4
5
10Ω  
10nF  
10Ω  
10nF  
I
(A)  
SS  
OUT  
24.9k  
0.1µF  
3782A TA01b  
SENSE1  
SENSE1  
V
C
+
SENSE2  
SENSE2  
13k  
6.8nF  
D1, D2: 30BQ060PbF  
Q1, Q2: Si7852DP-T1-E3  
100pF  
FB  
GND  
3782A TA01  
3782afc  
1
For more information www.linear.com/LT3782A  
LT3782A  
absoluTe MaxiMuM raTings  
(Note 1)  
V
Supply Voltage ...................................................40V  
SS...........................................................300µA Max I  
CC  
SS  
+
+
GBIAS, GBIAS1, GBIAS2 Pin  
SENSE1 , SENSE2 ,  
(Externally Forced)....................................................14V  
SYNC, RUN Pin.........................................................30V  
Operating Junction Temperature  
SENSE1 , SENSE2 ..................................... –0.3V to 2V  
Storage Temperature Range ..................65°C to 150°C  
Lead Temperature (Soldering, 10 sec)  
Range (Notes 2, 3)................................. –40°C to 125°C  
For FE Package .....................................................300°C  
pin conFiguraTion  
TOP VIEW  
TOP VIEW  
1
2
GBIAS  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
SGATE2  
SGATE1  
NC  
V
CC  
3
NC  
NC  
28 27 26 25 24 23  
4
GND  
SYNC  
DELAY  
DCL  
1
2
3
4
5
6
7
8
22 BGATE1  
21  
20  
19  
18  
17  
16  
15  
GBIAS1  
NC  
5
V
EE1  
SYNC  
DELAY  
DCL  
6
BGATE1  
GBIAS1  
GBIAS2  
BGATE2  
+
SENSE1  
NC  
29  
GND  
7
29  
GND  
SENSE1  
+
GBIAS2  
BGATE2  
8
SENSE1  
SLOPE  
9
SENSE1  
R
V
SET  
EE2  
10  
11  
12  
13  
14  
V
EE2  
SLOPE  
SENSE2  
NC  
NC  
R
SET  
9
10 11 12 13 14  
UFD PACKAGE  
RUN  
FB  
SENSE2  
SENSE2  
+
V
C
SS  
28-LEAD (4mm × 5mm) PLASTIC QFN  
= 125°C, θ = 37°C/ W  
FE PACKAGE  
T
28-LEAD PLASTIC TSSOP  
JMAX  
JMAX  
JA  
EXPOSED PAD (PIN 29) IS GND, MUST BE SOLDERED TO PCB  
T
= 125°C, θ = 30°C/ W  
JA  
EXPOSED PAD (PIN 29) IS GND, MUST BE SOLDERED TO PCB  
orDer inForMaTion  
LEAD FREE FINISH  
LT3782AEFE#PBF  
LT3782AIFE#PBF  
LT3782AEUFD#PBF  
LT3782AIUFD#PBF  
LEAD BASED FINISH  
LT3782AEFE  
TAPE AND REEL  
PART MARKING*  
LT3782AFE  
LT3782AFE  
3782A  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LT3782AEFE#TRPBF  
LT3782AIFE#TRPBF  
LT3782AEUFD#TRPBF  
LT3782AIUFD#TRPBF  
TAPE AND REEL  
28-Lead Plastic TSSOP  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
TEMPERATURE RANGE  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
28-Lead Plastic TSSOP  
28-Lead (4mm × 5mm) Plastic QFN  
28-Lead (4mm × 5mm) Plastic QFN  
PACKAGE DESCRIPTION  
3782A  
PART MARKING*  
LT3782AFE  
LT3782AFE  
3782A  
LT3782AEFE#TR  
28-Lead Plastic TSSOP  
LT3782AIFE  
LT3782AIFE#TR  
28-Lead Plastic TSSOP  
LT3782AEUFD  
LT3782AEUFD#TR  
LT3782AIUFD#TR  
28-Lead (4mm × 5mm) Plastic QFN  
28-Lead (4mm × 5mm) Plastic QFN  
LT3782AIUFD  
3782A  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
3782afc  
2
For more information www.linear.com/LT3782A  
LT3782A  
The l denotes the specifications which apply over the full operating junction  
elecTrical characTerisTics  
temperature range, otherwise specifications are at TJ = 25°C. VCC = 13V, RSET = 80k, no load on any outputs, unless otherwise noted.  
PARAMETER  
Overall  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
Supply Voltage (V  
)
6
40  
16  
V
CC  
Supply Current (I  
Shutdown  
)
V ≤ 0.5V (Switching Off), V ≤ 40V  
11  
mA  
VCC  
C
CC  
RUN Threshold  
2.3  
2.44  
80  
2.6  
V
RUN Threshold Hysteresis  
Supply Current in Shutdown  
mV  
1V ≤ RUN ≤ V  
0.4  
40  
0.65  
90  
mA  
µA  
REF  
RUN ≤ 0.3V, V ≤ 30V  
CC  
l
RUN Pin Input Current  
V
= 2.3V  
–0.5  
–2  
µA  
RUN  
Voltage Amplifier g  
m
Reference Voltage (V  
)
2.42  
2.4  
2.44  
2.464  
2.488  
V
V
REF  
l
l
l
Transconductance  
V
V
= 1V, ∆I  
=
2µA  
200  
260  
0.2  
1.5  
0.35  
11  
370  
0.6  
µmho  
µA  
V
VC  
VC  
Input Current I  
= V  
= 0  
= 0  
FB  
FB  
REF  
V High  
C
I
VC  
I
VC  
V Low  
C
0.4  
14  
28  
V
Source Current I  
V
= 0.7V – 1V, V = V – 100mV  
8
13  
0.3  
6
µA  
µA  
V
VC  
VC  
VC  
FB  
REF  
Sink Current I  
V
= 0.7V – 1V, V = V + 100mV  
20  
VC  
FB  
REF  
l
V Threshold for Switching Off (BGATE1, BGATE2 Low)  
C
Soft-Start Current I  
V
= 0.1V – 2.8V  
10  
15  
µA  
SS  
SS  
Current Amplifier CA1, CA2  
Voltage Gain ∆V /∆V  
4
C
SENSE  
+
+
Current Limit (V  
– V  
) (V  
– V  
)
V
= 2.3V  
55  
63  
70  
10  
mV  
mV  
µA  
SENSE1  
SENSE1  
SENSE2  
SENSE2  
FB  
Current Limit Mismatch  
(∆V  
– ∆V  
), V = 2.3V  
–10  
SENSE1  
SENSE2  
FB  
+
+
Input Current (I  
, I  
, I  
, I  
)
∆V  
= 0V  
SENSE  
60  
SENSE1 SENSE1 SENSE2 SENSE2  
Oscillator  
l
l
l
Switching Frequency  
R
SET  
R
SET  
R
SET  
= 130k  
= 80k  
= 40k  
130  
212  
386  
154  
250  
465  
177  
288  
533  
kHz  
kHz  
kHz  
Synchronization Pulse Threshold on SYNC Pin  
Rising Edge V  
0.8  
1.2  
2
V
SYNC  
Synchronization Frequency Range  
(Note: Operation Switching Frequency Equals  
Half of the Synchronization Frequency)  
R
SET  
R
SET  
R
SET  
= 130k  
= 80k  
= 40k  
180  
290  
550  
240  
392  
715  
kHz  
kHz  
kHz  
V
R
SET  
= 80k  
2.3  
V
RSET  
l
l
Maximum Duty Cycle  
V
= V – 25mV, R > 80k  
90  
83  
94  
90  
%
%
FB  
REF  
SET  
SET  
R
= 40k  
Duty Cycle Limit  
R
SET  
= 80k, V  
≤ 0.3V  
= 1.2V  
50  
75  
%
%
DCL  
DCL  
DCL  
V
V
= V  
Max Duty Cycle  
RSET  
l
DCL Pin Input Current  
V
≤ 0.3V  
–0.1  
–0.3  
µA  
DCL  
3782afc  
3
For more information www.linear.com/LT3782A  
LT3782A  
elecTrical characTerisTics  
The l denotes the specifications which apply over the full operating junction  
temperature range, otherwise specifications are at TJ = 25°C. VCC = 13V, RSET = 80k, no load on any outputs, unless otherwise noted.  
PARAMETER  
Gate Driver  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
V
I
< 70mA  
GBIAS  
10.2  
11  
11.7  
10.5  
V
GBIAS  
l
l
BGATE1, BGATE2 High Voltage  
13V ≤ V ≤ 24V, I  
V
= –100mA  
7.8  
3.8  
9.2  
5
V
V
CC  
= 8V, I  
BGATE  
= –100mA  
BGATE  
CC  
BGATE1, BGATE2 Source Current (Peak)  
Capacitive Load >22µF  
Capacitive Load >50µF  
3
4
A
A
l
l
BGATE1, BGATE2 Low Voltage  
8V ≤ V ≤ 24V, I  
= 100mA  
0.5  
0.7  
V
CC  
BGATE  
BGATE1, BGATE2 Sink Current (Peak)  
Capacitive Load >22µF  
Capacitive Load >50µF  
3
4
A
A
SGATE1, SGATE2 High Voltage  
SGATE1, SGATE2 Low Voltage  
SGATE1, SGATE2 Peak Current  
Delay of BGATE High  
8V ≤ V ≤ 24V, I  
= –20mA  
= 20mA  
4.5  
5.5  
0.5  
100  
6.7  
0.7  
V
V
CC  
SGATE  
8V ≤ V ≤ 24V, I  
CC  
SGATE  
500pF Load  
mA  
DELAY Pin and R Pin Shorted  
100  
150  
250  
500  
ns  
ns  
ns  
ns  
SET  
V
DELAY  
V
DELAY  
V
DELAY  
= 1V  
= 0.5V  
= 0.25V  
l
Delay Pin Input Current  
V
DELAY  
= 0.25V  
–0.1  
–0.3  
µA  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
full –40°C to 125°C operating junction temperature range. The maximum  
ambient temperature is determined by specific operating conditions in  
conjunction with board layout, the rated package thermal resistance and  
other environmental factors.  
Note 2: The LT3782AE is guaranteed to meet performance specifications  
from 0°C to 85°C operating junction temperature. Specifications over  
the –40°C to 125°C operating junction temperature range are assured by  
design, characterization and correlation with statistical process controls.  
The LT3782AI is guaranteed to meet performance specifications over the  
Note 3: This IC includes overtemperature protection that is intended  
to protect the device during momentary overload conditions. Junction  
temperature will exceed 125°C when overtemperature protection is active.  
Continuous operation above the specified maximum operating junction  
temperature may impair device reliability.  
Typical perForMance characTerisTics TJ = 25°C unless otherwise noted.  
∆VREF vs VCC, ∆Frequency vs VCC  
(RSET = 80k)  
VGBIAS vs IGBIAS  
ICC vs VCC  
11.0  
10.9  
10.8  
10.7  
10.6  
10.5  
10.4  
10.3  
10.2  
10.1  
10.0  
20  
18  
16  
14  
12  
10  
8
3
2
12  
10  
8
1
∆V  
REF  
0
6
–1  
–2  
–3  
–4  
–5  
4
2
∆FREQUENCY  
6
0
4
–2  
–4  
2
0
50  
(mA)  
0
100  
6
8
10 12 14 16 18 20 22 24 26 28 30  
(V)  
6
9
12  
15 18  
(V)  
21 24 27 30  
I
V
GBIAS  
V
CC  
CC  
3782A G01  
3782A G02  
3782A G03  
3782afc  
4
For more information www.linear.com/LT3782A  
LT3782A  
Typical perForMance characTerisTics TJ = 25°C, unless otherwise noted.  
Current Limit Threshold  
vs Temperature  
Reference Voltage  
vs Temperature  
Switching Frequency vs RFREQ  
600  
500  
400  
300  
200  
100  
2.446  
2.444  
2.442  
2.440  
2.438  
2.436  
2.434  
70  
67  
64  
61  
58  
55  
0
20 40 60 80 100 120 140 160 180 200  
(kΩ)  
30  
55  
–45 –20  
5
80 105 130  
0
25  
75  
100  
125  
150  
50  
R
JUNCTION TEMPERATURE (°C)  
TEMPERATURE (°C)  
FREQ  
3782A G04  
3782A G10  
3782A G05  
SGATE (Low) to BGATE (High)  
Delay vs VDELAY (RSET = 80k)  
V
GBIAS vs IGBIAS at Start-Up  
(Charging 2µF)  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
14  
800  
700  
600  
500  
400  
300  
200  
100  
0
12  
10  
8
V
GBIAS  
6
4
I
GBIAS  
2
0
–2  
0
0.5  
1.0  
V
1.5  
(V)  
2.0  
2.5  
0
250µ  
500µ  
750µ  
1m  
TIME (s)  
DELAY  
3782A G07  
3782A G06  
Switching Frequency  
vs Duty Cycle  
Maximum Duty Cycle Limit  
vs VDCL (RSET = 80k)  
105  
100  
95  
120  
110  
100  
90  
80  
90  
70  
60  
85  
50  
40  
80  
0.9 1.2  
(V)  
100  
200  
300  
400  
500  
600  
0
0.3 0.6  
1.5 1.8 2.1 2.4  
SWITCHING FREQUENCY (kHz)  
V
DCL  
3782A G08  
3782A G09  
3782afc  
5
For more information www.linear.com/LT3782A  
LT3782A  
pin FuncTions (FE/UFD)  
SGATE2(Pin1/Pin26):SecondPhaseSynchronousDrive  
Signal. An external driver buffer is needed to drive the top  
synchronous power FET.  
SS (Pin 14/Pin 11): Soft-Start. A capacitor on this pin sets  
the output ramp up rate. The typical time for SS to reach  
the programmed level is (C • 2.44V)/10µA.  
SGATE1 (Pin 2/Pin 27): First Phase Synchronous Drive  
Signal. An external driver buffer is needed to drive the top  
synchronous power FET.  
V (Pin15/Pin12):Theoutputoftheg erroramplifierand  
C m  
the control signal of the current loop of the current-mode  
PWM. Switching starts at 0.7V, and higher V voltages  
C
corresponds to higher inductor current.  
GND (Pin 4, Exposed Pad Pin 29/Pin 28, Exposed Pad  
Pin 29): Ground. Solder the exposed pad to the PCB  
ground plane for rated thermal performance. The exposed  
pad should be connected to the GND pin as close to the  
IC as possible.  
FB (Pin 16/Pin 13): Error Amplifier Inverting Input. A  
resistor divider to this pin sets the output voltage.  
RUN (Pin 17/Pin 14): LT3782A goes into shutdown mode  
when V  
is below 2.3V and goes to low bias current  
RUN  
SYNC (Pin 5/Pin 1): Synchronization Input. The pulse  
widthcanrangefrom10%to70%. Notethattheoperating  
frequency is half of the sync frequency.  
shutdown mode when V  
is below 0.3V.  
RUN  
V
(Pin 19/Pin 16): Gate Driver BGATE2 Ground. This  
EE2  
pin should be connected to ground as close to the IC as  
DELAY(Pin6/Pin2):Whensynchronousdriversareused,  
the programmable delay that delays BGATE turns on after  
SGATE turns off.  
possible.  
BGATE2 (Pin 20/Pin 17): Second Phase MOSFET Driver.  
GBIAS2 (Pin 21/Pin 18): Bias for Gate Driver BGATE2.  
ShouldbeconnectedtoGBIASoranexternalpowersupply  
between 12V to 14V.  
DCL (Pin 7/Pin 3): This pin programs the limit of the  
maximum duty cycle. When connected to V  
, it oper-  
RSET  
ates at natural maximum duty cycle, approximately 90%.  
GBIAS1 (Pin 22/Pin 21): Bias for Gate Driver BGATE1.  
Should be connected to GBIAS2.  
+
SENSE1 (Pin8/Pin4):FirstPhaseCurrentSenseAmplifier  
Positive Input. An RC filter is required across the current  
sense resistor. Current limit threshold is set at 63mV.  
BGATE1 (Pin 23/Pin 22): First Phase MOSFET Driver.  
V
(Pin 24/Pin 23): Gate Driver BGATE1 Ground. This  
SENSE1 (Pin 9/Pin 5): First Phase Current Sense Ampli-  
EE1  
pin should be connected to ground as close to the IC as  
fier Negative Input.  
possible.  
SLOPE (Pin 10/Pin 6): A resistor from SLOPE to GND  
increases the internal current mode PWM slope com-  
pensation.  
V
CC  
(Pin 27/Pin 24): Chip Power Supply. Good supply  
bypassing is required.  
GBIAS (Pin 28/Pin 25): Internal 11V regulator output for  
biasing internal circuitry. Should be connected to GBIAS1  
and GBIAS2. A bypass low ESR capacitor of 2µF or larger  
is needed and should be connected directly to the pin to  
minimize parasitic impedance.  
R
(Pin 11/Pin 7): A resistor from R to GND sets the  
SET  
SET  
oscillator charging current and the operating frequency.  
SENSE2 (Pin 12/Pin 8): Second Phase Current Sense  
Amplifier Negative Input.  
+
SENSE2 (Pin 13/Pin 10): Second Phase Current Sense  
NC(Pins3,18,25,26/Pins9,15,19,20):NotConnected.  
Can be connected to GND.  
Amplifier Positive Input. An RC filter is required across  
the current sense resistor. Current limit threshold is set  
at 63mV.  
3782afc  
6
For more information www.linear.com/LT3782A  
LT3782A  
block DiagraM  
V
V
OUT  
IN  
L1  
D1  
V
CC  
15µH  
V
= V – 1V AND CLAMPED AT 11V  
CC  
GBIAS  
C
IN  
20µF  
27  
REGULATOR  
L2  
D2  
GBIAS1  
+
15µH  
C
LOW POWER  
SHUTDOWN  
OUT  
100µF  
22  
21  
28  
+
+
+
R6  
R8  
GBIAS2  
GBIAS  
C3  
2µF  
A5  
A11  
A8  
RUN  
17  
+
+
+
0.5V  
7V  
A6  
V
CC  
– 2.5V  
R
F1  
+
R
F2  
A7  
+
A20  
2.44V  
SGATE1  
DELAY  
2
6
A4  
A1  
ONE SHOT  
GBIAS1  
A9  
R
SET  
+
+
A12  
2.5V  
BGATE1  
BGATE1  
A13  
23  
8
M1  
R
A14  
R1  
50k  
SLOPE COMP  
CH1  
R7  
+
SENSE1  
S1  
10Ω  
C2  
2nF  
+
BLANKING  
SENSE1  
PWM1  
R3  
9
V
+
EE1  
24  
A3  
BGATE1  
CL1  
+
SGATE1  
SET  
DELAY  
60mV  
SGATE2  
1
A15  
A17  
+
+
A16  
2.5V  
DELAY  
BGATE2  
ONE SHOT  
GBIAS2  
BGATE2  
A18  
A2  
20  
13  
M2  
A19  
R2  
50k  
SLOPE COMP  
CH2  
R9  
+
R
S2  
SENSE2  
10Ω  
SET  
SLOPE  
SYNC  
C4  
2nF  
+
BLANKING  
CH1  
CH2  
SENSE2  
SLOPE  
COMP  
PWM2  
10  
5
R4  
S
R
S
R
12  
19  
V
EE2  
A10  
R
SET  
D6  
D7  
FB  
11  
OSC  
CK  
D
Q
Q
+
16  
3782A BD  
LOGIC  
R
FREQ  
+
GM  
C5  
20pF  
NOTE:  
CL2  
PACKAGE BOTTOM METAL PLATE (PIN 29)  
IS FUSED TO CHIP DIE AGND  
V
REF  
+
GND  
I1  
10µA  
60mV  
4
D4  
4V  
V
C
SS  
14  
7
15  
R5  
2k  
C7  
10nF  
DCL  
C1  
2000pF  
3782afc  
7
For more information www.linear.com/LT3782A  
LT3782A  
applicaTions inForMaTion  
Operation  
Soft-Start and Shutdown  
The LT3782A is a two phase constant frequency current  
mode boost controller. Switching frequency can be pro-  
grammed up to 500kHz. During normal switching cycles,  
the two channels are controlled by internal flip-flops and  
are 180 degrees out-of-phase.  
During soft-start, the voltage on the SS pin (V ) controls  
SS  
the output voltage. The output voltage thus ramps up fol-  
lowing V . The effective range of V is from 0V to 2.44V.  
SS  
SS  
The typical time for the output to reach the programmed  
level is:  
ReferringtotheBlockDiagram, theLT3782A’sbasicfunc-  
C 2.44V  
t =  
tionsincludeatransconductanceamplifier(g )toregulate  
m
10µA  
the output voltage and to control the current mode PWM  
current loop. It also includes the necessary logic and flip-  
flop to control the PWM switching cycles, two high speed  
gate drivers to drive high power N-channel MOSFETs, and  
2-phase control signals to drive external gate drivers for  
optional synchronous operation.  
C is the capacitor connected from the SS pin to GND.  
Undervoltage Lockout and Shutdown  
Only when V  
is higher than 2.45V V  
will be active  
RUN  
GBIAS  
and the switching enabled. The LT3782A goes into low  
current shutdown when V is below 0.3V. A resistor  
In normal operation, each switching cycle starts with a  
switch turn-on. The inductor current of each channel is  
sampled through the current sense resistor and amplified  
RUN  
divider can be used on RUN pin to set the desired V  
undervoltage lockout voltage. 80mV of hysteresis is built  
in on RUN pin thresholds.  
CC  
then compared to the error amplifier output V to turn  
C
the switch off. The phase delay of the second channel is  
controlled by the divide-by-two D flip-flop and is exactly  
180 degrees out-of-phase of the first channel. With a re-  
sistor divider connected to the FB pin, the output voltage  
is programmed to the desired value. The 10V gate drivers  
aresufficienttodrivemosthighpowerN-channelMOSFET  
in many industrial applications.  
Oscillation Frequency Setting and Synchronization  
The switching frequency of LT3782A can be set up to  
500kHz by a resistor R  
from pin R to ground.  
FREQ  
SET  
For f = 250kHz, R  
= 80k  
SET  
FREQ  
Oncetheswitchingfrequencyf ischosen, R  
canbe  
SET  
FREQ  
foundfromtheSwitchingFrequencyvsR  
graphfound  
FREQ  
Additional important features include shutdown, cur-  
rent limit, soft-start, synchronization and programmable  
maximum duty cycle. Additional slope compensation can  
be added also.  
under the Typical Performance Characteristics section.  
Note that because of the 2-phase operation, the internal  
oscillator is running at twice the switching frequency. To  
synchronizetheLT3782Atothesystemfrequencyf  
,
SYSTEM  
Output Voltage Programming  
the synchronizing frequency f  
should be two times  
SYNC  
f
,andtheLT3782Aswitchingfrequencyf should  
With a 2.44V feedback reference voltage V , the output  
SYSTEM  
SET  
REF  
be set below 80% of f  
.
V
is programmed by a resistor divider as shown in  
SYSTEM  
OUT  
the Block Diagram.  
f
= 2f  
and f < (f  
• 0.8)  
SYNC  
SYSTEM  
SET  
SYSTEM  
RF1  
RF2  
For example, to synchronize the LT3782A to 200kHz sys-  
tem frequency f , f needs to be set at 400kHz  
VOUT = 2.44 1+  
SYSTEM SYNC  
and f  
needs to be set at 160kHz. From the Switching  
SET  
Frequency vs R  
graph found under the Typical Per-  
FREQ  
formance Characteristics section, R  
= 130k.  
FREQ  
3782afc  
8
For more information www.linear.com/LT3782A  
LT3782A  
applicaTions inForMaTion  
Witha200nsone-shottimeronchip,theLT3782Aprovides  
flexibility on the external sync pulse width. The sync pulse  
threshold is about 1.2V (Figure 1). This pin can be floated  
when the sync function is not used.  
-
to drive external MOSFET drivers for synchronous recti  
fier operation. Note that SGATE drives the top switch and  
BGATEdrivesthebottomswitch.To avoidcrossconduction  
between top and bottom switches, the BGATE turn-on is  
delayed 100ns (when DELAY pin is tied to R pin) from  
SET  
Current Limit  
SGATE turn-off (see Figure 2). If a longer delay is needed  
to compensate for the propagation delay of external gate  
Current limit is set by the 63mV threshold across SEN1P,  
SEN1N for channel one and SEN2P, SEN2N for channel  
driver,aresistordividercanbeusedfromR togroundto  
SET  
program V  
for the longer delay needed. For example,  
two. By connecting an external resistor R (see Block  
DELAY  
S
for a switching frequency of 250kHz and delay of 150ns,  
then R + R should be 80k and V should  
Diagram), the current limit is set for 63mV/R . R should  
S
S
be placed very close to the power switch with very short  
traces. A low pass R filter is needed across R to filter out  
FREQ1  
be 1V, with V  
= 32.5k (see Figure 3).  
FREQ2  
DELAY  
= 47.5k and R  
= 2.3V then R  
RSET  
FREQ1 FREQ2  
C
S
the switching spikes. Good Kelvin sensing is required for  
accurate current limit. The input bypass capacitor ground  
should be at the same ground point of the current sense  
resistor to minimize the ground current path.  
Duty Cycle Limit  
When DCL pin is shorted to R  
pin and switching fre-  
> 80k), the maximum  
duty cycle of LT3782A will be at least 90%. The maximum  
duty cycle can be clamped to 50% by grounding the DCL  
voltage to 1.2V with a  
resistor divider from R pin to ground. The typical DCL  
SET  
quency is less than 250kHz (R  
FREQ  
Synchronous Rectifier Switches  
For high output voltage applications, the power loss of the  
catchdiodesarerelativelysmallbecauseofhighdutycycle.  
If diodes power loss or heat is a concern, the LT3782A  
provides PWM signals through SGATE1 and SGATE2 pins  
pin or to 75% by forcing the V  
DCL  
SET  
pin input current is 0.1µA.  
5V TO 20V  
5k  
LT3782A  
BGATE1  
SYNC  
SGATE1  
SET  
DELAY  
VN2222  
3782A F01  
PULSE WIDTH > 200ns  
3782A F02  
Figure 1. Synchronizing with External Clock  
Figure 2. Delay Timing  
DELAY  
LT3782A  
R
SET  
R
3782A F03  
FREQ1  
47.5k  
R
FREQ2  
32.5k  
Figure 3. Increase Delay Time  
3782afc  
9
For more information www.linear.com/LT3782A  
LT3782A  
applicaTions inForMaTion  
Slope Compensation  
Based on the fact that, ideally, the output power is equal  
to the input power, the maximum average input current is:  
IO(MAX)  
The LT3782A is designed for high voltage and/or high  
current applications, and very often these applications  
generate noise spikes that can be picked up by the cur-  
rent sensing amplifier and cause switching jitter. To avoid  
switching jitter, careful layout is absolutely necessary to  
minimize the current sensing noise pickup. Sometimes  
increasing slope compensation to overcome the noise  
can help to reduce jitter. The built-in slope compensa-  
I
=
IN(MAX)  
1DMAX  
The peak current is:  
IO(MAX)  
IIN(PEAK) = 1.2 •  
1DMAX  
The maximum duty cycle, D  
, should be calculated at  
MAX  
tion can be increased by adding a resistor R  
from  
SLOPE  
increases  
allowed is  
minimum V .  
IN  
SLOPE pin to ground. Note that smaller R  
SLOPE  
SLOPE  
Power Inductor Selection  
slope compensation and the minimum R  
/2.  
R
FREQ  
In a boost circuit, a power inductor should be designed  
to carry the maximum input DC current. The inductance  
should be small enough to generate enough ripple current  
to provide adequate signal to noise ratio to the LT3782A.  
An empirical starting of the inductor ripple current (per  
phase) is about 40% of maximum DC current, which is  
half of the input DC current in a 2-phase circuit:  
Layout Considerations  
To prevent EMI, the power MOSFETs and input bypass  
capacitor leads should be kept as short as possible. A  
groundplaneshouldbeusedundertheswitchingcircuitry  
to prevent interplane coupling and to act as a thermal  
spreading path. Note that the bottom pad of the package  
is the heat sink, as well as the IC signal ground, and must  
be soldered to the ground plane.  
IOUT(MAX) VOUT  
IOUT(MAX) VOUT  
ΔIL 40% •  
= 20% •  
2V  
V
IN  
IN  
Inaboostconverter,theconversiongain(assuming100%  
efficiency) is calculated as (ignoring the forward voltage  
drop of the boost diode):  
where V , V  
and I  
are the DC input voltage, output  
OUT  
IN OUT  
voltage and output current, respectively.  
And the inductance is estimated to be:  
VOUT  
1
=
V D  
fs ΔIL  
IN  
V
1D  
L =  
IN  
where D is the duty ratio of the main switch. D can then  
be estimated from the input and output voltages:  
where f is the switching frequency per phase.  
s
The saturation current level of inductor is estimated to be:  
V
V
VOUT  
IN(MIN)  
IN  
D = 1−  
;DMAX = 1−  
VOUT  
IOUT(MAX) VOUT  
ΔIL  
I
IN  
ISAT  
+
70% •  
2
2
V
IN(MIN)  
The Peak and Average Input Currents  
The control circuit in the LT3782A measures the input  
current by using a sense resistor in each MOSFET source,  
so the output current needs to be reflected back to the  
input in order to dimension the power MOSFET properly.  
3782afc  
10  
For more information www.linear.com/LT3782A  
LT3782A  
applicaTions inForMaTion  
Sense Resistor Selection  
taken to ensure that the converter is capable of delivering  
therequiredloadcurrentoveralloperatingconditions(line  
voltage and temperature), and for the worst-case speci-  
During the switch on-time, the control circuit limits the  
maximum voltage drop across the sense resistor to about  
63mV. The peak inductor current is therefore limited to  
63mV/R. The relationship between the maximum load  
fications for V  
and the R  
of the MOSFET  
SENSE(MAX)  
DS(ON)  
listed in the manufacturer’s data sheet.  
The power dissipated by the MOSFET in a 2-phase boost  
current, duty cycle and the sense resistor R  
is:  
SENSE  
converter is:  
1DMAX  
2
R VSENSE(MAX)  
IO(MAX)  
2
IO(MAX)  
1.2 •  
2
PFET  
=
RDS(ON) D ρT  
1D  
(
)
Power MOSFET Selection  
Important parameters for the power MOSFET include the  
drain-to-sourcebreakdownvoltage(BV ),thethreshold  
IO(MAX)  
2
2
DSS  
DS(ON)  
+k VO •  
CRSS f  
1D  
voltage(V  
),theon-resistance(R  
)versusgate-  
(
)
GS(TH)  
to-source voltage, the gate-to-source and gate-to-drain  
2
The first term in the equation above represents the I R  
losses in the device, and the second term, the switching  
losses.Theconstant,k=1.7,isanempiricalfactorinversely  
related to the gate drive current and has the dimension  
charges (Q and Q , respectively), the maximum drain  
GS  
GD  
current (I  
) and the MOSFET’s thermal resistances  
D(MAX)  
and R  
(R  
).  
TH(JA)  
TH(JC)  
of 1/current. The ρ term accounts for the temperature  
The gate drive voltage is set by the 10V GBIAS regulator.  
Consequently, 10V rated MOSFETs are required in most  
high voltage LT3782A applications.  
T
coefficientoftheR  
oftheMOSFET,whichistypically  
DS(ON)  
0.4%/°C. Figure 4 illustrates the variation of normalized  
R
over temperature for a typical power MOSFET.  
DS(ON)  
Pay close attention to the BV  
specifications for the  
DSS  
MOSFETs relative to the maximum actual switch voltage  
in the application. The switch node can ring during the  
turn-off of the MOSFET due to layout parasitics. Check  
the switching waveforms of the MOSFET directly across  
the drain and source terminals using the actual PC board  
layout(notjustonalabbreadboard!)forexcessiveringing.  
2.0  
1.5  
1.0  
0.5  
0
Calculating Power MOSFET Switching and Conduction  
Losses and Junction Temperatures  
In order to calculate the junction temperature of the power  
MOSFET,thepowerdissipatedbythedevicemustbeknown.  
This power dissipation is a function of the duty cycle, the  
load current and the junction temperature itself (due to  
50  
100  
–50  
150  
0
JUNCTION TEMPERATURE (°C)  
3782A F04  
the positive temperature coefficient of its R  
). As a  
DS(ON)  
Figure 4. Normalized RDS(ON) vs Temperature  
result, some iterative calculation is normally required to  
determine a reasonably accurate value. Care should be  
3782afc  
11  
For more information www.linear.com/LT3782A  
LT3782A  
applicaTions inForMaTion  
From a known power dissipated in the power MOSFET, its  
junction temperature can be obtained using the following  
formula:  
willfurtherreducetheinputcapacitorripplecurrentrating.  
The ripple current is plotted in Figure 5. Please note that  
the ripple current is normalized against:  
VIN  
T = T + P R  
J
A
FET  
TH(JA)  
Inorm  
=
L fs  
The R  
to be used in this equation normally includes  
TH(JA)  
the R  
for the device plus the thermal resistance from  
TH(JC)  
the case to the ambient temperature (R  
). This value  
TH(CA)  
Output Capacitor Selection  
of T can then be compared to the original, assumed value  
J
The voltage rating of the output capacitor must be greater  
than the maximum output voltage with sufficient derat-  
ing. Because the ripple current in output capacitor is a  
pulsating square wave in a boost circuit, it is important  
that the ripple current rating of the output capacitor  
be high enough to deal with this large ripple current.  
Figure 6 shows the output ripple current in the 1- and  
2-phase designs. As shown, the output ripple current of a  
2-phase boost circuit reaches almost zero when the duty  
cycleequals50%ortheoutputvoltageistwiceasmuchas  
theinputvoltage.Thusthe2-phasetechniquesignificantly  
reduces the output capacitor size.  
used in the iterative calculation process.  
Input Capacitor Choice  
The input capacitor must have high enough voltage and  
ripplecurrentratingstohandlethemaximuminputvoltage  
and RMS ripple current rating. The input ripple current in  
a boost circuit is very small because the input current is  
continuous.With2-phaseoperation,theripplecancellation  
1.00  
0.90  
0.80  
0.70  
3.25  
3.00  
2.75  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
0.60  
1-PHASE  
0.50  
0.40  
2-PHASE  
0.30  
0.20  
0.10  
0
1-PHASE  
0
0.2  
0.4  
0.6  
0.8  
1.0  
DUTY CYCLE  
2-PHASE  
3782A F05  
VIN  
=
0.4 0.5  
DUTY CYCLE OR (1-V /V  
0.1 0.2 0.3  
0.6 0.7 0.8 0.9  
Inorm  
)
IN OUT  
L fs  
3782A F06  
The RMS Ripple Current is About 29% of  
the Peak-to-Peak Ripple Current.  
Figure 6. Normalized Output RMS Ripple Currents in Boost  
Converter: 1-Phase and 2-Phase. IOUT Is the DC Output Current.  
Figure 5. Normalized Input Peak-to-Peak Ripple Current  
3782afc  
12  
For more information www.linear.com/LT3782A  
LT3782A  
applicaTions inForMaTion  
For a given V and V , we can calculate the duty cycle D  
improvement. Although all dissipative elements in the  
circuit produce losses, four main sources usually account  
for the majority of the losses in LT3782A application  
circuits:  
IN  
OUT  
andthenderivetheoutputRMSripplecurrentfromFigure6.  
After choosing output capacitors with sufficient RMS  
ripple current rating, we also need to consider the ESR  
requirement if electrolytic caps, tantalum caps, POSCAPs  
or SP CAPs are selected. Given the required output ripple  
1. The supply current into V . The V current is the sum  
IN  
IN  
of the DC supply current I (given in the Electrical Char-  
Q
voltagespecV (inRMSvalue)andthecalculatedRMS  
OUT  
acteristics)andtheMOSFETdriverandcontrolcurrents.  
ripple current ∆I , one can estimate the ESR value of  
OUT  
The DC supply current into the V pin is typically about  
IN  
the output capacitor to be  
7mA and represents a small power loss (much less  
ΔVOUT  
ESR ≤  
than 1%) that increases with V . The driver current  
IN  
resultsfromswitchingthegatecapacitanceofthepower  
MOSFET; this current is typically much larger than the  
DC current. Each time the MOSFET is switched on and  
ΔIOUT  
External Regulator to Bias Gate Drivers  
then off, a packet of gate charge Q is transferred from  
G
For applications with V higher than 24V, the IC tempera-  
GBIAS to ground. The resulting dQ/dt is a current that  
IN  
turemaygettoohigh.To reduceheat,anexternalregulator  
must be supplied to the GBIAS capacitor through the  
between12Vto14Vshouldbeusedtooverridetheinternal  
V pin by an external supply. In normal operation:  
IN  
V
regulator to supply the current needed for BGATE1  
GBIAS  
I
≈ I = f Q  
Q G  
Q(TOT)  
and BGATE2 (see Figure 7).  
P = V • (I + f Q )  
IC  
IN  
Q
G
Efficiency Considerations  
2. Power MOSFET switching and conduction losses:  
2
The efficiency of a switching regulator is equal to the out-  
put power divided by the input power (¥100%). Percent  
efficiency can be expressed as:  
IO(MAX)  
2
PFET  
=
RDS(ON) DMAX ρT  
1D  
MAX  
% Efficiency = 100% – (L1 + L2 + L3 + …),  
where L1, L2, etc. are the individual loss components  
as a percentage of the input power. It is often useful to  
analyze individual losses to determine what is limiting  
the efficiency and which change would produce the most  
IO(MAX)  
2
2
+ k VO •  
CRSS f  
1DMAX  
LT3782A  
GBIAS  
+
12V  
GBIAS1  
GBIAS2  
3782A F07  
2µF  
Figure 7  
3782afc  
13  
For more information www.linear.com/LT3782A  
LT3782A  
applicaTions inForMaTion  
3. The I R losses in the sense resistor can be calculated  
2
PCB Layout Considerations  
almost by inspection:  
To achieve best performance from an LT3782A circuit,  
the PC board layout must be carefully done. For lower  
power applications, a two-layer PC board is sufficient.  
However, at higher power levels, a multiplayer PC board  
is recommended. Using a solid ground plane under the  
circuit is the easiest way to ensure that switching noise  
does not affect the operation.  
2
IO(MAX)  
2
PR(SENSE)  
=
R DMAX  
1D  
MAX  
4. The losses in the inductor are simply the DC input cur-  
rent squared times the winding resistance. Expressing  
In order to help dissipate the power from MOSFETs and  
diodes, keep the ground plane on the layers closest to the  
layers where power components are mounted. Use power  
planes for MOSFETs and diodes in order to improve the  
spreadingoftheheatfromthesecomponentsintothePCB.  
this loss as a function of the output current yields:  
2
IO(MAX)  
2
PR(WINDING)  
=
RW  
1D  
MAX  
Forbestelectricalperformance,theLT3782Acircuitshould  
be laid out as follows:  
5. Losses in the boost diode. The power dissipation in the  
boost diode is:  
Place all power components in a tight area. This will  
minimize the size of high current loops. Orient the input  
andoutputcapacitorsandcurrentsenseresistorsinaway  
that minimizes the distance between the pads connected  
to ground plane.  
IO(MAX)  
PDIODE  
=
VD  
2
The boost diode can be a major source of power loss  
in a boost converter. For 13.2V input, 42V output at 3A,  
a Schottky diode with a 0.4V forward voltage would  
dissipate 600mW, which represents about 1% of the  
input power. Diode losses can become significant at  
low output voltages where the forward voltage is a  
significant percentage of the output voltage.  
Place the LT3782A and associated components tightly  
together and next to the section with power components.  
Use a local via to ground plane for all pads that connect to  
ground. Use multiple vias for power components.  
Connect the current sense inputs of LT3782A directly  
to the current sense resistor pads. Connect the current  
sense traces on the opposite sides of pads from the traces  
carrying the MOSFETs source currents to ground. This  
technique is referred to as Kelvin sensing.  
6. Other losses, including C and C ESR dissipation and  
IN  
O
inductor core losses, generally account for less than  
2% of the total losses.  
3782afc  
14  
For more information www.linear.com/LT3782A  
LT3782A  
Typical applicaTions  
10V to 24V Input to 24V, 8A Output Boost Converter  
10V TO 24V INPUT  
1
28  
SGATE2  
GBIAS  
2R2  
2
27  
SGATE1  
V
CC  
L1  
3
26  
25  
24  
23  
D1  
PDS1040  
PB2020-103  
NC  
NC  
NC  
1µF  
4
Q1  
GND  
PH3330  
LT3782A  
5
6
C
OUT2  
330µF, 35V, ×2  
SYNC  
V
EE1  
CS1  
DELAY  
BGATE1  
GBIAS1  
GBIAS2  
0.004Ω  
7
8
22  
21  
DCL  
OUTPUT  
24V  
8A  
10Ω  
+
CS1  
SENSE1  
C
C
OUT1  
22µF, 25V, ×4  
IN  
2.2µF  
10nF  
22µF  
25V  
9
20  
19  
SENSE1  
SLOPE  
BGATE2  
0.004Ω  
CS2  
59k  
82k  
10  
V
EE2  
NC  
825k  
274k  
11  
12  
18  
17  
R
SET  
Q2  
PH3330  
+
SENSE2  
RUN  
FB  
10nF  
10Ω  
24.9k  
221k  
13  
14  
16  
15  
L2  
PB2020-103  
CS2  
SENSE2  
SS  
D2  
PDS1040  
V
C
3782A TA02  
4.7nF  
L1, L2: PULSE PB2020-103  
ALL CERAMIC CAPACITORS ARE X7R, TDK  
C
C1  
R
C1  
C
C2  
6.8nF  
13.3k  
*OUTPUT CURRENT WITH BOTH INPUTS PRESENT  
100pF  
Efficiency  
100  
98  
96  
94  
92  
90  
88  
86  
15V  
IN  
12V  
IN  
0
1
2
3
4
5
6
7
8
I
(A)  
OUT  
3782A TA02b  
3782afc  
15  
For more information www.linear.com/LT3782A  
LT3782A  
Typical applicaTions  
3782afc  
16  
For more information www.linear.com/LT3782A  
LT3782A  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
FE Package  
28-Lead Plastic TSSOP (4.4mm)  
(Reference LTC DWG # 05-08-1663 Rev K)  
Exposed Pad Variation EB  
9.60 – 9.80*  
(.378 – .386)  
4.75  
(.187)  
4.75  
(.187)  
28 27 26 2524 23 22 21 20 1918 17 16 15  
2.74  
(.108)  
EXPOSED  
PAD HEAT SINK  
ON BOTTOM OF  
PACKAGE  
6.60 0.10  
4.50 0.10  
SEE NOTE 4  
6.40  
2.74  
(.252)  
(.108)  
BSC  
0.45 0.05  
1.05 0.10  
0.65 BSC  
RECOMMENDED SOLDER PAD LAYOUT  
5
7
1
2
3
4
6
8
9 10 12 13 14  
11  
1.20  
(.047)  
MAX  
4.30 – 4.50*  
(.169 – .177)  
0.25  
REF  
0° – 8°  
0.65  
(.0256)  
BSC  
0.09 – 0.20  
(.0035 – .0079)  
0.50 – 0.75  
(.020 – .030)  
0.05 – 0.15  
(.002 – .006)  
FE28 (EB) TSSOP REV K 0913  
0.195 – 0.30  
(.0077 – .0118)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: MILLIMETERS 4. RECOMMENDED MINIMUM PCB METAL SIZE  
2. DIMENSIONS ARE IN  
FOR EXPOSED PAD ATTACHMENT  
MILLIMETERS  
(INCHES)  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.150mm (.006") PER SIDE  
3. DRAWING NOT TO SCALE  
3782afc  
17  
For more information www.linear.com/LT3782A  
LT3782A  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
UFD Package  
28-Lead Plastic QFN (4mm × 5mm)  
(Reference LTC DWG # 05-08-1712 Rev B)  
0.70 ±0.05  
4.50 ±0.05  
3.10 ±0.05  
2.50 REF  
2.65 ±0.05  
3.65 ±0.05  
PACKAGE OUTLINE  
0.25 ±0.05  
0.50 BSC  
3.50 REF  
4.10 ±0.05  
5.50 ±0.05  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
PIN 1 NOTCH  
R = 0.20 OR 0.35  
× 45° CHAMFER  
2.50 REF  
R = 0.115  
TYP  
R = 0.05  
TYP  
0.75 ±0.05  
4.00 ±0.10  
(2 SIDES)  
27  
28  
0.40 ±0.10  
PIN 1  
TOP MARK  
(NOTE 6)  
1
2
5.00 ±0.10  
(2 SIDES)  
3.50 REF  
3.65 ±0.10  
2.65 ±0.10  
(UFD28) QFN 0506 REV B  
0.25 ±0.05  
0.200 REF  
0.50 BSC  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING PROPOSED TO BE MADE A JEDEC PACKAGE OUTLINE MO-220 VARIATION (WXXX-X).  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
3782afc  
18  
For more information www.linear.com/LT3782A  
LT3782A  
revision hisTory  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
2/10  
Change Ambient Temp on FE Package  
Changes to Order Information  
Addition to Note 2  
2
2
4
Change T = 25°C to T = 25°C  
3, 4, 5  
A
J
Changes to Pin Functions  
6
Changes to Block Diagram  
7
Changes to Typical Applications  
16, 20  
Updated Related Parts  
20  
1
B
C
4/10  
4/14  
Add Part Numbers for D1, D2, Q1 and Q2 on Typical Application  
Addition to Note 2  
4
Adjusted RUN Threshold in the Electrical Characteristics table.  
Changed the RUN Pin description in the Pin Functions section.  
Changed Duty Cycle Limit in the Applications Information section.  
3
6
9
3782afc  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
19  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
LT3782A  
Typical applicaTion  
28V Output Base Station Power Converter with Redundant Input  
V
INA  
0V TO 28V*  
1
2
3
4
5
6
28  
27  
26  
25  
24  
23  
SGATE2  
SGATE1  
NC  
GBIAS  
2R2  
L1  
10µH  
V
CC  
D1  
PDS1040  
BAS516  
NC  
NC  
Q1  
PH4840S  
1µF  
GND  
C
INA  
22µF  
LT3782A  
C
OUT2  
330µF, 35V, ×2  
CS1  
0.004Ω  
SYNC  
DELAY  
V
EE1  
BGATE1  
GBIAS1  
GBIAS2  
7
8
22  
21  
DCL  
OUTPUT  
28V  
4A (8A**)  
10Ω  
+
CS1  
SENSE1  
C
OUT1  
2.2µF  
10nF  
10µF, 50V, ×4  
9
20  
19  
SENSE1  
SLOPE  
BGATE2  
0.004Ω  
CS2  
59k  
82k  
10  
V
EE2  
NC  
C
INB  
22µF  
825k  
274k  
11  
12  
18  
17  
R
SET  
Q2  
PH4840S  
+
SENSE2  
RUN  
FB  
10nF  
10Ω  
24.9k  
261k  
13  
14  
16  
15  
L2  
10µH  
BAS516  
CS2  
SENSE2  
SS  
D2  
PDS1040  
V
C
3782A TA03  
NOTE:  
4.7nF  
V
INB  
0V TO 28V*  
C
C1  
4.7nF  
*INPUT VOLTAGE RANGE FOR VINA AND VINB IS 0V TO 28V.  
AT LEAST ONE OF THE INPUTS MUST BE 12V OR HIGHER.  
R
C1  
C
C2  
100pF  
15k  
L1, L2: PULSE PB2020-103  
ALL CERAMIC CAPACITORS ARE X7R, TDK  
**OUTPUT CURRENT WITH BOTH INPUTS 12V OR HIGHER  
relaTeD parTs  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC3862/LTC3862-1 Multiphase Current Mode Step-Up DC/DC  
Controller  
2.5V ≤ V ≤ 32V, 5V or 10V Gate Drive, 75kHz to 500kHz, TSSOP-24,  
IN  
SSOP-24, 5mm × 5mm QFN-24  
LTC3788/LTC3788-1 Multiphase, Dual Output Synchronous Step-Up 2.5V ≤ V ≤ 38V, V  
Up to 60V, 50kHz to 900kHz, 5mm × 5mm QFN-32,  
IN  
OUT  
Controller  
SSOP-28  
LTC3813  
100V Maximum V  
Current Mode  
No R  
™, 1Ω Gate Driver, Adjustable Off-Time, SSOP-28  
, 1Ω Gate Driver, Adjustable Off-Time, TSSOP-16  
OUT  
SENSE  
Synchronous Step-Up DC/DC Controller  
LTC3814-5  
60V Maximum V  
Current Mode Synchronous No R  
OUT  
SENSE  
Step-Up DC/DC Controller  
LTC1871/LTC1871-1/ Wide Input Range, No R  
Low Quiescent  
Adjustable Fixed Synchronizable 50kHz to 1MHz Operating Frequency,  
2.5V ≤ V ≤ 36V, MSOP-10  
SENSE  
LTC1871-7  
Current Flyback, Boost and SEPIC DC/DC  
Controller  
IN  
LT3757  
Boost, Flyback, SEPIC and Inverting DC/DC  
Controller  
2.9V ≤ V ≤ 40V, Adjustable Fixed Synchronizable 100kHz to 1MHz Operating  
IN  
Frequency, 3mm × 3mm DFN-10 and MSOP-10E  
LT3758  
Boost, Flyback, SEPIC and Inverting DC/DC  
Controller  
5.5V ≤ V ≤ 100V, Adjustable Fixed Synchronizable 100kHz to 1MHz Operating  
IN  
Frequency, 3mm × 3mm DFN-10 and MSOP-10E  
LTC3805/LTC3805-5 Adjustable Frequency Boost, Flyback and SEPIC  
DC/DC Controller  
V
and V  
Limited Only by External Components, 3mm × 3mm DFN-10,  
IN  
OUT  
MSOP-10E  
LTC3803/LTC3803-3/ Flyback DC/DC Controller with Fixed 200kHz or  
V
and V Limited Only by External Components, 6-Pin ThinSOT™ Package  
OUT  
IN  
LTC3803-5  
300kHz Operating Frequency  
LTC3872  
No R  
Current Mode Boost DC/DC  
550kHz Fixed Frequency, 2.75V ≤ V ≤ 9.8V, ThinSOT Package  
IN  
SENSE  
Controller  
LTC3780  
High Efficiency Synchronous 4-Switch  
Buck-Boost DC/DC Controller  
4V ≤ V ≤ 36V, 0.8V ≤ V  
≤ 30V, SSOP-24, 5mm × 5mm QFN-32  
IN  
OUT  
3782afc  
LT 0414 REV C • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
LINEAR TECHNOLOGY CORPORATION 2008  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LT3782A  

相关型号:

LT3782AEUFD-PBF

2-Phase Step-Up DC/DC Controller
Linear

LT3782AEUFD-TR

2-Phase Step-Up DC/DC Controller
Linear

LT3782AEUFD-TRPBF

2-Phase Step-Up DC/DC Controller
Linear

LT3782AIFE

2-Phase Step-Up DC/DC Controller
Linear

LT3782AIFE#TR

IC 0.07 A SWITCHING CONTROLLER, 533 kHz SWITCHING FREQ-MAX, PDSO28, 4.40 MM, PLASTIC, TSSOP-28, Switching Regulator or Controller
Linear

LT3782AIFE#TRPBF

LT3782A - 2-Phase Step-Up DC/DC Controller; Package: TSSOP; Pins: 28; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3782AIFE-PBF

2-Phase Step-Up DC/DC Controller
Linear

LT3782AIFE-TR

2-Phase Step-Up DC/DC Controller
Linear

LT3782AIFE-TRPBF

2-Phase Step-Up DC/DC Controller
Linear

LT3782AIUFD

2-Phase Step-Up DC/DC Controller
Linear

LT3782AIUFD#PBF

LT3782A - 2-Phase Step-Up DC/DC Controller; Package: QFN; Pins: 28; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3782AIUFD#TR

IC 0.07 A SWITCHING CONTROLLER, 533 kHz SWITCHING FREQ-MAX, PQCC28, 4 X 5 MM, PLASTIC, MO-220WXXX-X, QFN-28, Switching Regulator or Controller
Linear