LT3804EFE [Linear]

Secondary Side Dual Output Controller with Opto Driver; 次级侧双输出控制器,光电驱动程序
LT3804EFE
型号: LT3804EFE
厂家: Linear    Linear
描述:

Secondary Side Dual Output Controller with Opto Driver
次级侧双输出控制器,光电驱动程序

光电 开关 光电二极管 驱动 控制器
文件: 总16页 (文件大小:257K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Final Electrical Specifications  
LT3804  
Secondary Side Dual  
Output Controller with Opto Driver  
U
June 2003  
DESCRIPTIO  
FEATURES  
The LT®3804 is a high efficiency step-down switching  
regulatorwithoptocouplerfeedbackcontrolforregulating  
multiple outputs in single-secondary winding isolated  
power supplies.  
Regulates Two Secondary Outputs  
Optocoupler Feedback Driver and Second Output  
Synchronous Driver Controller  
True Differential Remote Sensing Regulation  
High Switching Frequency: up to 800kHz  
Programmable Current Limit  
Programmable Soft-Start and Power Good  
Automatic Frequency Synchronization  
Available in Thermally Enhanced 28-Lead TSSOP  
TheLT3804contains anerroramplifierand anoptocoupler  
driver to regulate the first (main) output. For the second  
output regulation, the LT3804 contains a complete PWM  
controller todrivedualsynchronousN-channelMOSFETs.  
With leading edge modulation, it operates with either  
current or voltage mode control of the primary side. The  
LT3804 is synchronized to the falling edge of the trans-  
former secondary winding and can be used in single-  
ended or double-ended isolated power converter topolo-  
gies. A user selectable discontinuous conduction mode  
improves light load efficiency.  
U
APPLICATIO S  
48V Input Isolated DC/DC Converters  
Multiple Output Power Supplies  
Offline Converters  
DC/DC Power Modules  
True differential Kelvin sensing is used for each output  
feedback amplifier to achieve high regulation accuracy  
and design simplicity. Other features include soft start,  
current limit and power good flags.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
V
OUT1  
3.3V  
V
IN  
+
L1  
1.8µH  
V
V
AT 15A  
OS1  
36V  
0.003Ω  
+
+
V
CC  
BIAS  
TO 72V  
C
OUT1  
LT3804  
OS1  
SYNC  
CL1N  
L2  
1.8µH  
Q1  
OUT2  
TGATE  
SW  
Q4  
CL1P  
V
1.8V  
AT 15A  
OUT2  
0.003Ω  
LTC1693-1  
V
CC  
OUT1  
IN1  
C
OUT2  
Q3  
x2  
Q2  
x2  
BGATE  
PGND  
CSET  
IN2  
390pF  
+
V
V
GNDS1  
OS1  
CL2P  
CL2N  
TG  
BG  
604Ω  
V
AOUT2  
OS1  
V
V
FB1  
LT3781  
2.74k  
3.01k  
SG  
V
FB2  
V
V
1.5k  
REF  
AOUT1  
+
V
C
FB  
GNDS2  
OPTO  
3804 F01  
C
, C : SANYO POSCAP 4TPE680MF 680µF/4V  
OUT1 OUT2  
ISOLATION  
BOUNDARY  
L1, L2: SUMIDA CEP125-IR8MC-H  
Q1-Q4: SILICONIX Si7892DP  
Figure 1. 250kHz, 3.3V and 1.8V Output Isolated DC/DC Converter (Simplified Schematic)  
3804i  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
1
LT3804  
W W U W  
U
W
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
ORDER PART  
VCC Supply Voltage.................................................. 26V  
BOOST Pin Voltage with Respect to SW Pin ............ 10V  
BOOST Pin Voltage with Respect to GND Pin .......... 35V  
SYNC Pin Voltage (Note 2) ..................................... 30V  
GNDS1 Pin Voltage................................................... 1V  
GNDS2 Pin Voltage................................................... 1V  
Operating Junction Temperature Range  
LT3804E (Note 3) ..............................–40°C to 125°C  
Storage Temperature Range ..................–65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
TOP VIEW  
NUMBER  
CL1P  
CL1N  
1
2
28 I  
LCOMP1  
27 GBIAS  
26 BGATE  
LT3804EFE  
I
3
LCOMP2  
BOOST  
4
25 V  
CC  
TGATE  
SW  
5
24 PGND  
23 OPTO  
6
29  
CSET  
7
22  
21  
20  
19  
18  
17  
16  
15  
V
AOUT1  
8
SYNC  
SS2  
CL2N  
9
CL2P  
10  
11  
12  
13  
14  
PGIN1  
PGIN2  
GNDS2  
GNDS1  
PGOOD  
V
FB1  
SS1  
BGS  
V
FB2  
V
AOUT2  
FE PACKAGE  
28-LEAD PLASTIC TSSOP  
TJMAX = 125°C, θJA = 38°C/W  
EXPOSED PAD IS SGND (PIN 29)  
MUST BE CONNECTED TO PCB  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 11V, GNDS1=GNDS2=0V, operating maximum VCC = 25V, no load  
on any outputs, unless otherwise noted.  
PARAMETER  
Overall  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Supply Voltage (V  
)
8
25  
13  
V
CC  
Supply Current (I  
)
V
V
1.2V (Switching Off)  
9
mA  
VCC  
AOUT2  
BOOST  
BOOST Pin Current  
= V + 8V, 0V V 24V  
SW SW  
TGATE High  
TGATE Low  
2
2
3
3
mA  
mA  
Voltage Amplifier V ,V  
A1 A2  
Reference Voltage (V  
,V  
)
Common Mode: ±20mV (0°C to 125°C)  
(–40°C to 125°C)  
0.591  
0.587  
0.6  
0.609  
0.609  
V
V
REF1 REF2  
V over Common Mode: ±100mV  
REF  
–3  
3
mV  
µA  
µA  
V
V
, V Pin Input Current  
FB1 FB2  
V
= V  
, V = V  
REF1 FB2 REF2  
0.2  
–50  
1.75  
1.45  
0.7  
0.5  
FB1  
Remote Ground Pin (GNDS1,GNDS2) Current  
–100mV GNDS1, GNDS2 100mV  
–100  
V
V
V
V
V
V
V
High at OA1 Threshold 1.5V  
V
V
V
V
V
= V  
= V  
= V  
= V  
= V  
– 10mV, I  
– 10mV, I  
+ 10mV, I  
– 10mV, I  
+ 10mV, I  
= –50µA  
= –50µA  
= 100µA  
= –50µA  
= 100µA  
AOUT1  
AOUT1  
AOUT1  
AOUT2  
AOUT2  
AOUT1  
AOUT2  
FB1  
FB1  
FB1  
FB2  
FB2  
REF1  
REF1  
REF1  
REF2  
REF2  
VAOUT1  
VAOUT1  
VAOUT1  
VAOUT2  
VAOUT2  
High at OA1 Threshold 1.25V  
V
Low  
V
High  
4.5  
V
Low  
0.8  
V
Source Current  
Source Current  
100  
70  
230  
150  
100  
10  
400  
250  
µA  
µA  
dB  
MHz  
µA  
Open-Loop Gain  
Gain Bandwidth Product  
Soft-Start Current (SS1,SS2)  
5
10  
24  
3804i  
2
LT3804  
ELECTRICAL CHARACTERISTICS  
on any outputs, unless otherwise noted.  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 11V, GNDS1=GNDS2=0V, operating maximum VCC = 25V, no load  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Opto Driver Amplifier OA1  
OA1 Upper Threshold  
OA1 Threshold Hysteresis  
1.4  
1.55  
0.25  
6
1.65  
V
V
V
V
V
OA1 Voltage Gain (V  
/V  
)
1.2V < V  
< 4V, R = 1k  
OPTO  
5.6  
4.5  
0
6.4  
6
OPTO AOUT1  
OPTO  
V
V
High  
Low  
V
V
= 0.9V, I = –10mA  
OPTO  
5.2  
0.1  
OPTO  
OPTO  
OPTO  
AOUT1  
= V  
– 10mV, R = 1k  
OPTO  
0.25  
FB1  
REF1  
I
Short-Circuit Current Limit  
V
V
=V  
OPTO  
– 10mV, GNDS1 = 0V,  
FB1 REF1  
= 4V  
–50  
–25  
–12  
mA  
Power Good  
Power Good Window Threshold  
(PGIN1-GNDS1, PGIN2-GNDS2)  
–100mV < GNDS1, GNDS2 < 100mV  
0V < PGIN1, PGIN2 < 1V  
0.85  
100  
1.15  
0.35  
300  
300  
V
REF  
Input Current (PGIN1,PGIN2)  
Delay Time for Power Bad  
Output Low (PGOOD)  
0.2  
200  
150  
µA  
25mV Overdrive on PGIN1,PGIN2  
2mA into the Pin  
µs  
mV  
Current Limit Amplifier CA1, CA2  
Current Limit Threshold (CL1P-CL1N, CL2P-CL2N)  
Common Mode Voltage from 0V to V – 2.5V  
CC  
V
= 1.2V, V  
= 2.5V,  
40  
0
50  
8
60  
15  
mV  
mV  
V
AOUT1  
AOUT2  
BGATE Off Threshold at (V  
-V  
), BGS Pin Float Commond Mode Voltage from 0V to V – 2.5V  
CL2P CL2N CC  
Switching Off Threshold at I  
V
V
0.15  
LCOMP2  
ILCOMP2  
Input Current (CL1P, CL1N, CL2P, CL2N)  
Oscillator  
= V  
, V  
= V  
CL2N  
100  
µA  
CL2P  
CL1N CL2P  
Switching Frequency  
C = 500pF (NO SYNC)  
S
C = 200pF (NO SYNC)  
S
170  
240  
400  
200  
280  
470  
240  
340  
570  
kHz  
kHz  
kHz  
S
C = 333pF (NO SYNC)  
Synchronization Frequency Range  
C = 500pF  
S
C = 200pF  
S
245  
345  
575  
400  
500  
800  
kHz  
kHz  
kHz  
S
C = 333pF  
CSET Ramp Valley Voltage  
C = 1000pF (NO SYNC)  
0.90  
1.15  
2.4  
2.5  
80  
1.4  
V
V
S
CSET Peak-to-Peak Voltage  
C = 1000pF (NO SYNC)  
S
Synchronization Pulse Threshold on SYNC Pin  
Maximum Duty Cycle  
Falling Edge V  
V
SYNC  
V
= V  
– 5mV, C > 333pF  
75  
%
FB2  
REF2  
S
Gate Drivers (TGATE, BGATE)  
V
V
V
V
V
I
I
I
I
I
< 25mA  
7.5  
5
8
6
6
8.5  
7.5  
7.5  
0.5  
0.5  
V
V
GBIAS  
TGATE  
BGATE  
TGATE  
BGATE  
GBIAS  
TGATE  
BGATE  
TGATE  
BGATE  
High (V  
High  
– V  
)
< 50mA, V  
< 50mA  
= V  
– 0.5V  
TGATE  
SW  
BOOST  
GBIAS  
5
V
Low (V  
Low  
-V  
)
< –50mA  
< 50mA  
V
TGATE SW  
V
Peak Gate Drive Current  
Gate Drive Rise and Fall Time  
10nF Load  
1nF Load  
1
A
25  
ns  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 3: The LT3804E is guaranteed to meet performance specifications  
from 0°C to 70°C. Specifications over the 40°C to 85°C operating  
temperature range are assured by design, characterization and correlation  
with statistical process controls.  
Note 2: If highter than 30V on SYNC pin is needed, add a 10kresistor in  
series with the pin.  
3804i  
3
LT3804  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Voltage Amplifier VA1, VA2 Gain  
and Phase  
VGBIAS vs IGBIAS Over Junction  
Temperature  
ICC vs VCC (Switching Off)  
120  
80  
–0  
8.1  
8.0  
7.9  
7.8  
7.7  
13  
12  
11  
10  
9
T
= 25°C  
T
A
= 25°C  
A
–40°C  
25°C  
GAIN  
–50  
(–111°)  
PHASE  
40  
–100  
8
7
0
–150  
–180  
125°C  
6
0dB, 10MHz  
–20  
5
10 100 1k 10k 100k 1M 10M 100M  
FREQUENCY (Hz)  
0
10  
I
20  
26  
8
10 12 14 16 18 20 22 24  
(mA)  
V
CC  
(V)  
GBIAS  
3804 G03  
3804 G01  
3804 G02  
VREF vs Temperature  
VREF vs VCC, FREQ vs VCC  
CSET vs Switching Frequency  
0.602  
T
= 25°C  
A
CSET = 500pF  
A
3
2
800  
600  
400  
200  
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
T
= 25°C  
0.601  
0.600  
0.599  
0.598  
0.587  
0.596  
CSET  
MAXIMUM DUTY CYCLE  
1
V  
REF  
0
–1  
1
FREQ  
0
–1  
10  
15  
20  
25  
200  
100 300 400 500 600 700 800 900 1000  
50  
100 125  
–40 –20  
0
25  
75  
V
CC  
(V)  
CSET (pF)  
JUNCTION TEMPERATURE (°C)  
3804 G04  
3804 G05  
3804 G06  
Current Limit Amplifier CA1 Gain  
at VCC = 11V, VCL2N = 5V  
Switching Frequency vs  
Temperature  
GBIAS vs IGBIAS (Charging 2.2µF)  
8
7
6
5
4
3
2
1
0
CSET = 500pF  
V
V
A
= 11V  
= 5V  
C
T
= 2.2µF  
CC  
CL2N  
= 25°C  
GBIAS  
A
300  
250  
200  
150  
100  
50  
12  
10  
8
= 25°C  
215  
210  
205  
200  
195  
T
V
GBIAS  
6
CSET PEAK  
4
I
GBIAS  
2
CSET VALLEY  
0
0
30  
40  
50  
– V  
60  
70  
0
500µs  
TIME  
1ms  
50  
100 125  
–40 –20  
0
25  
75  
V
(mV)  
CL2P  
CL2N  
JUNCTION TEMPERATURE (°C)  
3804 G09  
3804 G08  
3804 G07  
3804i  
4
LT3804  
U
U
U
PI FU CTIO S  
CL1P (Pin 1): Current Limit Amplifier CA1 Positive Input. BGS (Pin 16): Bottom Gate Switching Control. CA2 moni-  
CA1 drives optocoupler when the first output is in current tors the inductor current and prohibits BGATE from turn-  
limit.The threshold is set at 50mV.  
ingonwhentheinductorcurrentislow(below8mVacross  
the current sense resistor RS2) allowing discontinous  
mode operation and avoiding reverse inductor current.  
Grounding BGS disables this function, so that the PWM is  
always in continuous mode except during start-up.  
CL1N (Pin 2): Current Limit Amplifier CA1 Negative Input.  
When used, CL1N is connected to the output, and CL1P is  
connected to the other end of the output current sense  
resistor.  
SS1(Pin17):Soft-StartfortheFirstOutput.Acapacitoron  
this pin sets the output ramp-up rate. The typical time for  
SS1 to reach the programmed level is: (C • 0.6V)/10µA.  
ILCOMP2 (Pin 3): Current Limit Amplifier CA2 Compensa-  
tion Node. At second output current limit, CA2 pulls down  
on this pin to regulate output current.  
VFB1 (Pin 18): Voltage Amplifier VA1 Inverting Input. A  
resistor divider to this pin sets the first output voltage. The  
reference voltage at this pin is VREF1 (0.6V referred to  
remote sensing ground GNDS1).  
BOOST (Pin 4): Topside (Boosted) Driver Supply.This pin  
is used to bootstrap and supply the topside power switch  
gatedrivecircuitry.InnormaloperationVBOOST ispowered  
fromtheinternallygenerated8VGBIAS;VBOOST=VSW+8V  
when TGATE is on.  
PGOOD (Pin 19): Power Good. PGOOD goes high to  
indicate power good only when both PGIN1 and PGIN2  
sensepowergood. Apullupresistorisrequiredonthispin  
if the power good function is used.  
TGATE (Pin 5): Topside (Boosted) N-Channel MOSFET  
Driver. WhenTGATEison, thevoltageisequaltoVSW+6V.  
SW (Pin 6): Switch Node Connection to Inductor.  
CL2P (Pin 20): Second 0utput Current Limit Amplifier  
CA2 Positive Input.The threshold is set at 50mV.  
CSET(Pin7): OscillatorFrequencySettingPin.Thecapaci-  
tor from this pin to ground sets the PWM switching  
frequency.  
CL2N (Pin 21): Current Limit Amplifier CA2 Negative  
Input. When used, CL2N is connected to the output  
capacitor, and CL2P is connected to the other end of the  
output current sense resistor.  
SYNC (Pin 8): Synchronization Input. This pin should be  
connected to the secondary side output of the power  
transformer with a series resistor. A filtering capacitor of  
10pf is recommended.  
VAOUT1 (Pin 22): Voltage Amplifier VA1 Output.  
OPTO (Pin 23): Optocoupler Driver. A resistor to the opto  
diode is required to set the optocoupler bias current.  
Maximum sourcing current is 10mA at 5V.  
SS2 (Pin 9): Soft-Start for the Second Output. A capacitor  
on this pin sets the output ramp-up rate. The typical time  
forSS2to reachthe programmedlevelis: (C0.6V)/10µA.  
PGND (Pin 24): Ground of the Bottom Side N-Channel  
MOSFET Driver.  
PGIN1 (Pin 10): First Output Power Good Input.The volt-  
age setting resistor divider should be connected to GNDS1  
if remote sensing is used.  
VCC (Pin 25): Supply of the Chip. A low ESR capacitor is  
required to bypass the supply.  
PGIN2 (Pin 11): Second Output Power Good Input. The  
voltage setting resistor divider should be connected to BGATE (Pin 26): Bottom Side N-Channel MOSFET Driver.  
GNDS2 if remote sensing is used.  
GBIAS (Pin 27): 8V Regulator Output for Boostrapping  
GNDS2 (Pin 12): Second Output Remote Ground Sensing. VBOOST. A bypass capacitor of at least 2µF is needed.  
GNDS1 (Pin 13): First Output Remote Ground Sensing.  
ILCOMP1 (Pin 28): Current Limit Amplifier CA1 Compensa-  
tion Node . When the first output is in current limit, CA1  
pulls down VAOUT1 pin to regulate the first output current.  
VFB2 (Pin 14): Voltage Amplifier VA2 Inverting Input. A  
resistor divider to this pin sets the second output voltage.  
The reference voltage at this pin is VREF2 (0.6V referred to ExposedPad(Pin29):SignalGround. Mustbeelectrically  
remote sensing ground GNDS2).  
connected on PCB.  
VAOUT2 (Pin 15): Voltage Amplifier VA2 Output.  
3804i  
5
LT3804  
W
BLOCK DIAGRA  
3804i  
6
LT3804  
U
OPERATIO  
To generate isolated multiple outputs, most systems use  
either multiple secondary windings or cascade regulators  
for each additional output. Multiple secondary windings  
sacrifice regulation of the auxiliary outputs. Cascaded  
regulators require a larger inductor for the main output,  
because all of the power is processed in series. By gener-  
ating the auxiliary output(s) from the secondary winding  
ofthemainoutput, theLT3804allowsforparallelprocess-  
ing of the output power. This minimizes the main output  
inductor size and directly regulates the auxiliary output.  
With synchronous rectification, the system efficiency is  
greatly improved.  
During normal operation (see Figure 2), a switching cycle  
begins at the falling edge of the transformer secondary  
voltage VS.  
Theinternaloscillatorisreset,turningoffthetopMOSFET,  
M1, and turning on the bottom MOSFET, M2. During this  
portion of the cycle, the inductor current is discharged by  
the output voltage VOUT2. The transformer secondary  
voltage, VS, will go high during this portion of the cycle.  
Since M1 is off, the switch node voltage, VSW, remains  
zero. The inductor current continues to be discharged by  
the output voltage VOUT2. This condition lasts until the  
ramp signal intersects the feedback error amplifier output  
VAOUT2. The top MOSFET M1 turns on, pulling the switch  
node voltage to VS. The inductor current of the LT3804  
circuitisthenchargedbyVS VOUT2. Theeffectiveontime  
of this buck circuit ends when the secondary voltage  
becomes zero. The next cycle repeats. The ideal equation  
for duty cycle of the LT3804 is:  
The LT3804 regulates both the main and one auxiliary  
output, with true remote sensing to achieve high output  
accuracy.Toregulatethefirstoutput,theLT3804contains  
a high gain error amplifier VA1 and an optocoupler driver  
OA1 with a unique feature that reduces output overshoot  
toaminimum.FordetailsseetheApplicationsInformation  
section. The second output includes a voltage amplifier,  
VA2, (see Block Diagram)a voltage mode PWM with  
trailing edge synchronization and leading edge modula-  
tion, a current limit amplifier, CA2, and high speed syn-  
chronous switch drivers.  
D2 = VOUT2/VSP  
where VOUT2 is the auxiliary output voltage, VSP is the  
amplitude of the secondary voltage and D2 is the duty  
cycle of the switching node voltage VSW, as defined in  
Figure 2.  
V
S
RESET  
T
D T  
1
TRANSFORMER  
SECONDARY VOLTAGE  
V
V
SP  
SYNC SIGNAL V  
RESET  
RAMP V  
CSET  
V
AOUT2  
TGATE  
BGATE  
I
L2  
T
SWITCH NODE V  
SW  
D T  
2
V
SP  
3710 F02  
Figure 2. Leading Edge Modulation, Trailing Edge Synchronization  
3804i  
7
LT3804  
U
W
U U  
APPLICATIO S I FOR ATIO  
Synchronization and Oscillator Frequency Setting  
For accurate sensing results, GNDS1 and GNDS2 should  
stay within –0.1V and 0.1V referred to GND. Note that if  
either GNDS1orGNDS2isnotconnected, theLT3804will  
be shut down.  
The switching is synchronized to the secondary winding  
falling edge and the synchronization threshold is typically  
2.5V. The synchronization falling edge triggers an internal  
inverted ramp (see Figure 2) and starts a new switching  
cycle for the leading edge voltage mode PWM. The reason  
for using leading edge modulation is to leave the trans-  
former primary side peak current sensing undisturbed.  
Forpropersynchronization,theoscillatorfrequencyshould  
be set lower than the system switching frequency with  
tolerances taken into account.  
Power Good  
When both outputs reach between 90% and 110% of the  
programmedlevel, VPGOOD goeshigh(apull-upresistoris  
required if the function is used) to signal power good. If  
either output rises above 110% or drops below 90%,  
V
PGOOD goes low after a 200µs delay. PGIN1 senses the  
first output and PGIN2 senses the second output with a  
resistor divider. PGIN1 and PGIN2 are compared to the  
referencesVREF1 andVREF2 respectively. Resistordividers  
should be connected to GNDS1 and GNDS2 with respect  
to each output.  
f
OSC < (fSL • 0.8)  
fSL is the low limit of the system switching frequency and  
0.8 is the tolerance of fOSC  
.
For example, given a system operating at 200kHz with  
15% tolerance, then fSL = 200kHz • 85% = 170kHz; and  
fOSC <(170kHz0.8), sofOSC shouldbesetbelow136kHz.  
Current Limit CA1  
The first output current limit is set by the 50mV threshold  
across CL1P and CL1N, the inputs of the amplifier CA1. By  
connecting an external resistor RS1(see Block Diagram),  
the current limit is set for 50mV/RS1. C17 on ILCOMP1  
stablizes the current limit loop. If current limit is not used,  
both CL1P and CL1N should be grounded and C17 is not  
needed.  
Once fOSC is determined, CSET can be calculated by  
CSET = (103540pF/fOSC(kHz)) – 18pF.  
For fOSC = 200kHz, CSET = 500pF.  
Output Voltage Programming  
The LT3804 uses true remote sensing (separate ground  
sensing pins, GNDS1 for the first output and GNDS2 for  
the second output) to eliminate output error pickup due to  
parasitic resistance.  
Current Limit CA2  
The second output current limit is set by the 50mV  
threshold across CL2P and CL2N, the inputs of the ampli-  
fierCA2. ByconnectinganexternalresistorRS2 (seeBlock  
Diagram), the current limit is set for 50mV/RS2. R6 and C6  
on ILCOMP2 stablize the current limit loop. If current limit  
is not used, both CL2P and CL2N should be grounded and  
the BGS pin should also be grounded to disable compara-  
tor CA2; R6 and C6 are not needed.  
The feedback reference voltages VREF1 and VREF2 are 0.6V  
referred to GNDS1 and GNDS2 respectively. The output  
voltage can be easily programmed by a resistor divider, as  
shown in the Block Diagram:  
V
OUT1 = 0.6 (1 + R13/R14)  
VOUT2 = 0.6 (1 + R3/R4)  
where R14 connects to GNDS1 and R4 connects to  
GNDS2.  
3804i  
8
LT3804  
U
W U U  
APPLICATIO S I FOR ATIO  
Filtering on the SYNC Input  
Toshutdownthefirstoutput, theSS1pinshouldbepulled  
below 50mV by a small signal VN2222 type N-channel  
MOSFET.  
A small RC filter with RS = 10k and CS = 10pF is necessary  
on the SYNC pin to eliminate fast switching glitches  
caused by coupling from external components and layout  
parasitics.  
Soft-Start and Shutdown Second Output  
During soft-start, VSS2 is the reference voltage that con-  
trols the output voltage, so the output ramps up following  
VSS2. The effective range of VSS2 is from 0V to VREF2. The  
typical time for the output to reach the programmed level  
is:  
Optocoupler Driver  
Optocoupler driver OA1 is an amplifier with a fixed gain of  
6 and can source up to 10mA into the optocoupler. An  
external resistor is needed from the OPTO pin to the  
optocouplerforDCbiasingtheoptocoupler. Withaunique  
0.3V hysteresis on the threshold VTH, OA1 turns into a  
comparatorwhenitdetectsoutputstartuporoutputshort.  
This comparator action jumpstarts the optocoupler to  
reduce the output overshoot drastically (see Figure 3).  
t = (CSS2 • 0.6V)/10µA  
During start up, BGATE will stay off until VSS2 reaches  
1.6V. This prevents the bottom MOSFET from turning on  
if the output is precharged. To shut down the second  
output, the SS2 pin should be pulled below 50mV by a  
small signal VN2222 type N-channel MOSFET. Note that  
during shutdown BGATE will be locked off when VSS2  
dropsbelow0.6V.ThispreventsthebottomMOSFETfrom  
discharging the output, which could cause the output to  
undershoot below ground.  
Soft-Start and Shutdown First Output  
During soft-start, VSS1 is the reference voltage that con-  
trols the output voltage, so the output ramps up following  
VSS1. The effective range of VSS1 is from 0V to VREF1. The  
typical time for the output to reach the programmed level  
is:  
t = (CSS1 • 0.6V)/10µA  
V
OUT1  
5nF  
R13  
2.7k  
STARTUP  
OR SHORT  
RELEASE  
1k  
22nF  
V
OUT1  
SHORT  
470  
3.3V  
V
V
OUT1  
V
V
FB1  
AOUT1  
+
1.5V/  
1.2V V  
1.7V  
1.4V  
TH  
AOUT1  
OPTO  
1k  
OA1  
90k  
15k  
R14  
V
A1  
600Ω  
+
R
OPTO  
1.5V  
1.2V  
V
V
TH  
OPTO  
V
REF1  
0.6V  
2V  
0V  
OPTO  
3804 F03  
LT3804  
GNDS1  
Figure 3. Optocoupler Driver  
3804i  
9
LT3804  
U
W U U  
APPLICATIO S I FOR ATIO  
Output Inductor Selection  
capacitor to the ground plane. A Schottky catch diode is  
required on the switch node.  
The key parameters for choosing the inductor include  
inductance, RMSandsaturationcurrentratings, andDCR.  
The inductance must be selected to achieve a reasonable  
value of ripple current, which is determined by:  
Power MOSFET Selection  
The LT3804 drives two external N-channel MOSFETs to  
deliver high currents at high efficiency. The gate drive  
voltage is typically 6.5V. The key parameters for choosing  
MOSFETs include drain to source voltage rating VDSS and  
RDS(ON) at 6.5V gate drive. Note that the transformer  
secondary voltage waveform will overshoot at its rising  
edge due to the ringing between transformer leakage  
inductance and parasitic capacitance. The VDSS of both  
top and bottom MOSFETs must be sufficiently higher than  
the maximum overshoot. It is recommended that an RC  
snubberorvoltageclampingcircuitrybeplacedacrossthe  
transformer secondary winding to limit the VS overshoot.  
The RDS(ON) of the MOSFETs should be selected to deliver  
the required current at the desired efficiency as well as to  
meet the thermal requirement of the MOSFET package.  
The conduction power losses of the MOSFETs are:  
V
OUT (1– D)  
IL =  
f L  
Where VOUT is the output voltage, D is the duty cycle, f is  
switchingfrequencyandListheinductance. Typically, the  
inductorripplecurrentisdesignedtobe20%to40%ofthe  
maximum output current.  
TheRMScurrentratingmustbehighenoughtodeliverthe  
maximum output current. A sufficient saturation current  
rating should prevent the inductor core from saturating.  
These two current ratings can be determined by:  
2
2
ILMAX  
IRMS IO  
+
PM1 IO2 • RDS(ON)M1 • D  
PM2 IO2 • RDS(ON)M2 • (1 – D)  
12  
ILMAX  
ISAT IO +  
2
whereIO isthemaximumoutputcurrentofLT3804circuit,  
and RDS(ON)M1 and RDS(ON)M2 are the on-resistance for  
the top and bottom MOSFETs, respectively. The RDS(ON)  
must be determined with 6.5V gate drive at the expected  
operatingtemperature.Numeroushighperformancepower  
MOSFETs are available from Siliconix, International Rec-  
tifier and Fairchild. If the VDSS and RDS(ON) ratings are the  
same,theMOSFETswiththelowestgatechargeQG should  
be chosen to minimize the power loss associated with the  
MOSFET gate drives, the switching transitions, and the  
controller bias supply.  
where IO is the maximum DC output current and ILMAX is  
the maximum peak-to-peak inductor ripple current. To  
optimize the efficiency, we usually choose the inductor  
with the minimum DCR if the inductance and current  
ratings are the same.  
Output N-Channel MOSFET Drivers  
The LT3804 employs high speed N-channel MOSFET  
synchronous drivers to achieve high system efficiency.  
GBIAS is the 8V regulator output to bias and supply the  
drivers and should be properly bypassed with a low ESR  
3804i  
10  
LT3804  
U
W U U  
APPLICATIO S I FOR ATIO  
Light Load Operation of Second Output  
Design Example  
IftheBGSpinisgrounded,theLT3804staysincontinuous  
mode independent of load condition except during soft-  
start operation (see the Soft-Start section). If the BGS pin  
is left open under light load, VRS2 will drop below 8mV,  
BGATE will be turned off(see comparator CA2 of Block  
Diagram), and the LT3804 will enter discontinous mode  
operation.  
Figure 4 shows an application example of LT3804. It is a  
dual output high efficiency isolated DC/DC power supply  
with 36V to 72V input range, 3.3V/15A and 1.8V/15A  
outputs. The basic power stage topology is a two-switch  
forward converter with synchronous rectification. The  
primary side controller uses an LT3781, a current mode  
two-switch forward controller with built-in MOSFET driv-  
ers. On the secondary side, the LT3804 is used to provide  
the voltage feedback for the 3.3V output. The output from  
the built-in optocoupler driver is fed into an optocoupler  
(MOC207) and then transferred to LT3781 on the primary  
side to complete the 3.3V regulation. An LTC1693-1 high  
speed dual N-channel MOSFET driver provides the gate  
drive for the synchronous MOSFETs at the 3.3V output  
stage. The LTC1693-1 driver’s input signals come from  
SG and BG outputs of the LT3781 through two small gate  
drive transformers (T2 and T3).  
Second Output Capacitor Selection  
The selection of the output capacitor is determined by the  
output ripple and load transient requirements. In low  
output voltage applications, always choose capacitors  
with low ESR. The output ripple voltage is approximated  
by:  
1
VOUT ≈ ∆IL ESR +  
8fCOUT  
The LT3804 also precisely regulates the 1.8V output by  
further reducing and controlling the duty cycle of the  
switching waveform from the power transformer (T1)  
secondary winding. In fact, the 1.8V circuit is a special  
synchronous buck converter whose input is a pulsed  
waveform instead of a DC voltage.  
where IL is the inductor peak-to-peak ripple current. A  
partial list of low ESR high performance capacitor types  
includesSPcapacitorsfromPanasonicandCornellDubilier,  
POSCAPs and OS-CON capacitors from Sanyo, T510 and  
T520 surface mount capacitors from Kemet.  
True differential remote sensing is provided for both  
outputs to achieve high regulation accuracies. Power  
good indicator PGOOD will be high only if both outputs are  
within ±10% of their nominal values.  
Layout Considerations  
For maximum efficiency, the switching rise and fall times  
should be less than 20ns. To prevent radiation, the power  
MOSFETs,SWpinandinputbypasscapacitorleadsshould  
be kept as short as possible. A ground plane should be  
used under the switching circuitry to prevent interplane  
coupling and to act as a thermal spreading path. Note that  
the bottom metal of the package is the heat sink as well as  
the IC signal ground, and must be soldered to the ground  
plane.  
The LT3804 provides current limit function for both 1.8V  
and 3.3V outputs. The current limits for 3.3V and 1.8V  
outputs are estimated to be 50mV/R55 and 50mV/R49,  
respectively.  
3804i  
11  
LT3804  
U
W U U  
APPLICATIO S I FOR ATIO  
A planar transformer PA0191 by Pulse Engineering is  
employed as the power transformer in this design. This  
transformer is constructed on a PQ20 core with nine turns  
ofprimarywindings, twoturnsofsecondarywindingsand  
seven turns of auxiliary windings for the LT3781 bias  
supply. Si7892DP MOSFETs are selected for the second-  
ary side due to their low RDS (ON), 30V VDSS rating and  
compact, thermally enhanced PowerPak SO-8 package.  
The switching frequency of the circuit is about 230kHz.  
1500V input to output isolation is provided. Additional  
features of this design include primary side on/off control,  
input over voltage protection, under voltage lockout, soft  
startandboardovertemperatureshutdown.Thecomplete  
design is mounted within a standard half brick PC board  
with about half inch height.  
3804i  
12  
LT3804  
U
W U U  
APPLICATIO S I FOR ATIO  
C
V
S G N D  
P G N D  
S E N S E  
S S  
B G  
S Y N C  
T H E R M  
B S T R E F  
T G  
F S E T  
R E F  
5 V  
V B S T  
3804i  
13  
LT3804  
U
W
U U  
APPLICATIO S I FOR ATIO  
FROM TRANSFORMER  
+V  
1.8V  
15A  
O2  
SECONDARY WINDING  
SEC  
V
CCS  
C12  
680µF  
2.5V  
POSCAP  
×3  
+
C45  
R57  
10k  
10pF  
C47  
1µF  
D14  
C44  
C36  
4.7µF  
16V  
D15  
8
25  
V
4
CMDSH-3  
0.1µF  
(2R5TPD680M ×3)  
V
OPTO  
CMDSH-3  
CCS  
R5  
16V  
SYNC  
BOOST  
GBAIS  
CC  
23  
19  
16  
7
27  
5
OPTO  
PGOOD  
BGS  
Q13  
100k  
LT3804  
Si7892DP  
L4  
R49  
0.003Ω  
1%  
PGOOD  
TGATE  
SW  
1.8µH  
CEP125-1R8  
6
R64  
26  
20  
21  
15  
14  
12  
11  
3
CSET  
CLIP  
BGATE  
CL2P  
CL2N  
10Ω  
C37, 680pF  
1
CLIP  
CLIN  
Q14  
Si7892DP  
×2  
C49, 1000pF  
R13  
2
CLIN  
22  
18  
13  
10  
28  
C46  
1000pF  
V
V
V
V
AOUT1  
FB1  
AOUT2  
FB2  
C50  
C39  
330pF  
R50  
3.3k  
C38  
1000pF  
1.5k  
0.033µF  
GNDS1  
PGIN1  
GNDS2  
PGIN2  
C51  
6.8nF  
R65  
10Ω  
R19  
1k  
VO1  
+
V
O2S  
C42  
4700pF R54  
I
I
C24  
LCOMP1  
LCOMP2  
R62  
R53  
4.7nF  
3.01k 3.01k  
1%  
SS1 PGND SS2  
220Ω  
R58  
10k  
C35  
180pF  
R12  
10k  
+
VO1S  
1%  
17 24  
9
R14  
3.01k  
1%  
R15  
3.01k  
1%  
1.8V OUTPUT  
REMOTE SENSE  
C48  
180pF  
R60  
1.5k  
1%  
R61  
1.5k  
1%  
3.3V OUTPUT  
REMOTE SENSE  
C43  
0.1µF  
R66  
R67  
665665Ω  
1%  
1%  
V
O2S  
VO1S  
R63  
10Ω  
R68  
10Ω  
3804 TA01  
Figure 4. 36V – 72VDC to 3.3V/15A and 1.8V/15A Dual Output Isolated Power Supply (Page 2 of 2)  
3804i  
14  
LT3804  
U
PACKAGE DESCRIPTIO  
FE Package  
28-Lead Plastic TSSOP (4.4mm)  
(Reference LTC DWG # 05-08-1663)  
Exposed Pad Variation EB  
9.60 – 9.80*  
(.378 – .386)  
4.75  
(.187)  
4.75  
(.187)  
28 2726 25 24 23 22 21 20 19 18 1716 15  
6.60 ±0.10  
2.74  
(.108)  
EXPOSED  
PAD HEAT SINK  
ON BOTTOM OF  
PACKAGE  
4.50 ±0.10  
SEE NOTE 4  
6.40  
BSC  
2.74  
(.108)  
0.45 ±0.05  
1.05 ±0.10  
0.65 BSC  
RECOMMENDED SOLDER PAD LAYOUT  
5
7
1
2
3
4
6
8
9 10 12 13 14  
11  
1.20  
(.047)  
MAX  
4.30 – 4.50*  
(.169 – .177)  
0° – 8°  
0.65  
(.0256)  
BSC  
0.45 – 0.75  
(.018 – .030)  
0.09 – 0.20  
(.0036 – .0079)  
0.05 – 0.15  
(.002 – .006)  
FE28 (EB) TSSOP 0203  
0.195 – 0.30  
(.0077 – .0118)  
NOTE:  
1. CONTROLLING DIMENSION: MILLIMETERS 4. RECOMMENDED MINIMUM PCB METAL SIZE  
FOR EXPOSED PAD ATTACHMENT  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.150mm (.006") PER SIDE  
MILLIMETERS  
(INCHES)  
2. DIMENSIONS ARE IN  
3. DRAWING NOT TO SCALE  
3804i  
15  
LT3804  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1339  
High Power Synchronous DC/DC Controller  
Isolated Flyback Switching Regulator  
Programmable Reference  
Operation Up to 60V Maximum  
General Purpose with External Application Resistor  
0.4% Initial Voltage Tolerance  
Operation Up to 60V Maximum  
LT1425  
LT1431  
LT1680  
High Power DC/DC Step-Up Controller  
General Purpose Isolated Flyback Controller  
High Power Isolated Flyback Controller  
LT1725  
Drives External Power MOSFET with External I  
Resistor  
SENSE  
LT1737  
Sense Output Voltage Directly from Primary-Side Winding  
LT1950  
PWM Controller for Forward, Flyback,  
Boost and SEPIC  
3V V 25V, Volt-Second Clamp, Leading-Edge Blanking,  
Slope Compensation  
IN  
LT3710  
LTC3722  
LT3781  
Secondary Side Synchronous Post Regulator  
Synchronous Phase Modulated Full-Bridge Controller  
Dual Transistor Synchronous Forward Controller  
Generates Regulated Auxiliary Output in Isolated DC/DC Converters,  
Dual N-Channel MOSFET Synchronous Drivers  
Adaptive or Manual Delay Control for Zero Voltage Switching,  
Adjustable Maximum ZVS Delay, Current Mode and Voltage Mode.  
Operation Up to 72V Maximum  
3804i  
LT/TP 0603 1K • PRINTED IN USA  
16 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
LINEAR TECHNOLOGY CORPORATION 2003  

相关型号:

LT3804EFE#TR

LT3804 - Secondary Side Dual Output Controller with Opto Driver; Package: TSSOP; Pins: 28; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3804EFE#TRPBF

LT3804 - Secondary Side Dual Output Controller with Opto Driver; Package: TSSOP; Pins: 28; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT380Z

GREEN OVAL LAMP LED
SEOUL

LT381

INFRARED LAMP LED
SEOUL

LT3825

Isolated No-Opto Synchronous Flyback Controller with Wide Input Supply Range
Linear

LT3825EFE

Isolated No-Opto Synchronous Flyback Controller with Wide Input Supply Range
Linear

LT3825EFE#PBF

LT3825 - Isolated No-Opto Synchronous Flyback Controller with Wide Input Supply Range; Package: TSSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3825EFE#TRPBF

LT3825 - Isolated No-Opto Synchronous Flyback Controller with Wide Input Supply Range; Package: TSSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3825EFE-PBF

Isolated No-Opto Synchronous Flyback Controller with Wide Input Supply Range
Linear

LT3825EFE-TR

Isolated No-Opto Synchronous Flyback Controller with Wide Input Supply Range
Linear

LT3825EFE-TRPBF

Isolated No-Opto Synchronous Flyback Controller with Wide Input Supply Range
Linear

LT3837

Isolated No-Opto Synchronous Flyback Controller
Linear