LT4180IGN-TRPBF [Linear]

Virtual Remote Sense Controller; 虚拟远端采样器
LT4180IGN-TRPBF
型号: LT4180IGN-TRPBF
厂家: Linear    Linear
描述:

Virtual Remote Sense Controller
虚拟远端采样器

文件: 总16页 (文件大小:341K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Electrical Specifications Subject to Change  
LT4180  
Virtual Remote Sense  
Controller  
FEATURES  
DESCRIPTION  
The LT®4180 solves the problem of providing tight load  
regulation over long, highly resistive cables without  
requiring an additional pair of remote sense wires. This  
Virtual Remote Sense™ device continuously interrogates  
the line impedance and corrects the power supply output  
voltage via its feedback loop to maintain a steady voltage  
at the load regardless of current changes.  
n
Tight Load Regulation with Highly Resistive Cables  
without Requiring Remote Sense Wiring  
n
Compatible with Isolated and Nonisolated Power  
Supplies  
n
1ꢀ Internal Voltage Reference  
n
5mA Sink Current Capability  
n
Soft-Correct Reduces Turn-On Transients  
n
Undervoltage and Overvoltage Protection  
The LT4180 is a full-featured controller with 5mA opto-  
isolator sink capability, under/overvoltage lockout,  
soft-start and a 1ꢀ internal voltage reference. The  
Virtual Remote Sense feature set includes user-program-  
mable dither frequency and optional spread spectrum  
dither.  
n
Pin-Programmable Dither Frequency  
n
Optional Spread Spectrum Dither  
n
Wide V Range: 3.1V to 50V  
IN  
n
24-Pin SSOP Package  
APPLICATIONS  
The LT4180 works with any topology and type of isolated  
or nonisolated power supply, including DC/DC converters  
and adjustable linear regulators.  
n
12V High Intensity Lamps  
n
28V Industrial Systems  
n
High Power (>40 Watts) CAT5 Cable Systems  
Wiring Drop Cancellation for Notebook Computer  
Battery Charging  
AC and DC Adaptors  
Well-Logging and Other Remote Instrumentation  
Surveillance Equipment  
n
The LT4180 is available in a 24-pin, SSOP package.  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and  
Virtual Remote Sense is a trademark of Linear Technology Corporation. All other trademarks  
are the property of their respective owners.  
n
n
n
TYPICAL APPLICATION  
Isolated Power Supply with Virtual Remote Sense  
VLOAD vs VWIRE  
5.00  
4.99  
4.98  
4.97  
4.96  
4.95  
CAT5E CABLE  
R
SENSE  
LINE  
LINE  
+
C
L
R
L
SWITCHING  
REGULATOR  
V
C
V
SENSE DIV0 DIV1 DIV2 SPREAD CHOLD1 CHOLD2 CHOLD3 CHOLD4  
LT4180  
IN  
4.94  
4.93  
4.92  
4.91  
DRAIN  
COMP  
R
OSC  
C
OSC  
VIRTUAL REMOTE SENSE  
OV  
RUN FB  
4180 TA01a  
0
0.5  
1
1.5  
2
2.5  
3
V
(V)  
WIRING  
4180 TAO1b  
4180fp  
1
LT4180  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
V ............................................................. –0.3V to 52V  
IN  
SENSE.......................................................V – 0.3V to V  
1
2
V
V
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
INTV  
CC  
IN  
IN  
IN  
DRAIN  
COMP  
INTVCC, RUN, FB, OV, ROSC, OSC,  
DIV0, DIV1, DIV2, SPREAD, CHOLD1,  
PP  
3
SENSE  
RUN  
4
CHOLD1  
GUARD2  
CHOLD2  
GUARD3  
CHOLD3  
GUARD4  
CHOLD4  
FB  
CHOLD2, CHOLD3, CHOLD4, DRAIN, COMP,  
5
OV  
GUARD2, GUARD3, GUARD4, V ............ –0.3V to 5.5V  
PP  
6
SPREAD  
DIV0  
DIV1  
DIV2  
OSC  
V Pin Current.......................................................10mA  
IN  
7
INTVCC Pin Current .............................................–10mA  
COSC Pin Current..................................................3.3mA  
Maximum Junction Temperature .......................... 125°C  
Operating Junction Temperature Range (Note 2)  
E-, I-Grades ....................................... –40°C to 125°C  
MP-Grade .......................................... –55°C to 125°C  
Storage Temperature Range .................. –65°C to 125°C  
8
9
10  
11  
12  
ROSC  
COSC  
GND  
GN PACKAGE  
24-LEAD NARROW PLASTIC SSOP  
T
= 150°C, θ = 85°C/W  
JA  
JMAX  
ORDER INFORMATION  
LEAD FREE FINISH  
LT4180EGN#PBF  
LT4180IGN#PBF  
LT4180MPGN#PBF  
TAPE AND REEL  
PART MARKING*  
LT4180GN  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
–40°C to 125°C  
LT4180EGN#TRPBF  
LT4180IGN#TRPBF  
LT4180MPGN#TRPBF  
24-Lead Narrow Plastic SSOP  
24-Lead Narrow Plastic SSOP  
24-Lead Narrow Plastic SSOP  
LT4180GN  
–40°C to 125°C  
LT4180GN  
–55°C to 125°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C, VIN = SENSE = 5V, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
50  
UNITS  
V
l
l
V
Operating Supply Voltage  
Input Quiescent Current  
Reference Voltage  
3.10  
IN  
IV  
ROSC Open, COSC Open, SENSE = V  
1
2
mA  
IN  
IN  
V
V
= V  
= 1.2V, Measured at C  
HOLD4  
1.209  
1.197  
1.221  
1.221  
1.233  
1.245  
V
V
REF  
CHOLD2  
CHOLD3  
l
During Track ΔV  
Clock Phase  
OUT  
I
Open-Drain Current Limit  
With FB = V + 200mV, OSC Stopped with Voltage  
5
10  
15  
mA  
LIM  
REF  
Feedback Loop Closed  
V
V
DRAIN Low Voltage  
V
V
= 3V  
= 5V  
0.3  
V
V
OL  
IN  
IN  
LDO Regulator Output Voltage  
3.15  
INTVCC  
4180fp  
2
LT4180  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C, VIN = SENSE = 5V, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
= 2.5V  
MIN  
TYP  
MAX  
UNITS  
V
LDO Regulator Output Voltage in  
Dropout  
V
2.2  
V
INTVCC  
IN  
V
V
V
V
Overvoltage Threshold  
Overvoltage Input Hysteresis  
Run Threshold  
Rising  
1.21  
1.21  
V
mV  
V
OV  
V
– V  
– V  
20  
80  
OHYST  
RUN  
RISING  
FALLING  
FALLING  
Falling  
Run Input Hysteresis  
Input Bias Current  
V
20  
80  
mV  
μA  
RHYST  
RISING  
I
–0.2  
0.2  
FB  
V
Current Amplifier Offset Voltage  
V
IN  
V
IN  
V
IN  
= 3.5V  
= 5V  
= 48V  
–4  
–3  
–4  
4
3
4
mV  
mV  
mV  
OS  
A
Current Amplifier Gain Ratio  
A
/A , A Measured in V/V  
0.891  
–1  
0.9  
0.909  
1
V(RATIO)  
SENSE  
VL VH  
V
I
Current Amplifier Input Bias Current  
Measured at SENSE with SENSE = V  
μA  
V/V  
μA  
IN  
A
ΔV Amplifier Gain  
9.7  
10  
60  
25  
25  
10  
10.3  
V
FB  
I
I
I
I
Track/Hold Charging Current  
Track/Hold Charging Current  
Track/Hold Charging Current  
Track/Hold Charging Current  
Measured at CHOLD1 with V  
Measured at CHOLD2 with V  
Measured at CHOLD3 with V  
Measured at CHOLD4 with V  
= 1.2V  
= 1.2V  
= 1.2V  
= 1.5V,  
CHOLD1  
CHOLD2  
CHOLD3  
CHOLD4  
CHOLD1  
CHOLD2  
CHOLD3  
CHOLD4  
μA  
μA  
μA  
V
= 1V, V  
= 1.2V  
CHOLD3  
CHOLD2  
Measured at CHOLD4 with V  
CHOLD2  
= 1.5V,  
–200  
μA  
CHOLD4  
V
= 1.4V, V  
= 1.2V  
CHOLD3  
I
I
I
I
I
f
Soft-Correct Current  
Measured at CHOLD4  
1.5  
1
μA  
μA  
SC  
Track/Hold Leakage Current  
Track/Hold Leakage Current  
Track/Hold Leakage Current  
Track/Hold Leakage Current  
Oscillator Frequency  
Measured at CHOLD1 with V  
Measured at CHOLD2 with V  
Measured at CHOLD3 with V  
Measured at CHOLD4 with V  
= 1.2V  
= 1.2V  
= 1.2V  
= 1.2V  
LKG1  
LKG2  
LKG3  
LKG4  
OSC  
CHOLD1  
CHOLD2  
CHOLD3  
CHOLD4  
1
μA  
1
μA  
1
μA  
R
= 20k, C  
= 1nF  
170  
200  
110  
230  
kHz  
μmho  
OSC  
OSC  
g
Voltage Error Amplifier  
Transconductance  
Measured from FB to COMP, V  
OSC Stopped with Voltage Feedback Loop Closed  
= 2V,  
mFB  
COMP  
g
Current Amplifier Transconductance  
Measured from SENSE to COMP, V  
= 2V,  
750  
μmho  
mIAMP  
COMP  
OSC Stopped with Current Feedback Loop Closed  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
to 125°C operating junction temperature range are assured by design  
characterization and correlation with statistical process controls. The  
LT4180I is guaranteed over the full –40°C to 125°C operating junction  
temperature range. The LT4180MP is guaranteed over the full –55°C to  
125°C operating junction temperature range.  
Note 2. The LT4180E is guaranteed to meet performance specifications  
from 0°C to 125°C junction temperature. Specifications over the –40°C  
Note 3. Positive current is defined as flowing into a pin.  
4180fp  
3
LT4180  
TYPICAL PERFORMANCE CHARACTERISTICS  
Oscillator Frequency  
vs Temperature  
VREF vs Temperature  
INTVCC vs Temperature  
204.0  
203.5  
203.0  
202.5  
202.0  
201.5  
1.2215  
1.2210  
1.2205  
3.165  
3.160  
3.155  
3.150  
3.145  
3.140  
3.135  
R
= 20k  
= 1nF  
OSC  
OSC  
C
1.2200  
1.2195  
1.2190  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4108 G03  
4108 G01  
4108 G02  
IDRAIN vs VDRAIN  
Normal Timing  
Spread Spectrum Timing  
14  
12  
500mV/DIV  
500mV/DIV  
C
C
HOLD1  
HOLD1  
WITH 15k  
WITH 15k  
10  
PULL-DOWN  
PULL-DOWN  
8
6
4
2
2V/DIV  
OSC  
2V/DIV  
OSC  
4180 G05  
4180 G06  
5μs/DIV  
1μs/DIV  
TRIGGERED ON C  
TRIGGERED ON OSC  
HOLD1  
0
0.2 0.3 0.4 0.5 0.6  
0.7 0.8 0.9  
1
0
0.1  
V
(V)  
DRAIN  
4180 G04  
VLOAD vs VWIRE  
Load Step in Buck Application  
Load Step in 12V Linear Application  
5.00  
4.99  
4.98  
4.97  
4.96  
4.95  
4.94  
4.93  
4.92  
4.91  
R
L
= 4Ω  
WIRE  
C = 100μF  
V
OUT  
V
SENSE  
2V/DIV  
2V/DIV  
V
LOAD  
2V/DIV  
V
LOAD  
2V/DIV  
1.2A  
I
LOAD  
500mA/DIV  
200mA  
I
LOAD  
200mA/DIV  
4180 G09  
4180 G08  
5ms/DIV  
2ms/DIV  
200mA TO 700mA LOAD TRANSIENT  
100μF LOAD CAP  
0
0.5  
1
1.5  
2
2.5  
3
V
(V)  
WIRING  
4180 G07  
4180fp  
4
LT4180  
PIN FUNCTIONS  
INTVCC (Pin 1): The LDO Output. A low ESR ceramic  
capacitor provides decoupling and output compensation.  
1μF or more should be used.  
VirtualRemoteSense.Thisisahighcurrentoutputcapable  
of driving opto-isolators. Other isolation methods may  
also be used with this output.  
DRAIN (Pin 2): Open-Drain of the Output Transistor. This  
pin drives either the LED in an opto-isolator, or pulls down  
on the regulator control pin.  
DIV2 (Pin 16): Dither Division Ratio Programming Pin.  
DIV1 (Pin 17): Dither Division Ratio Programming Pin.  
DIV0 (Pin 18): Dither Division Ratio Programming Pin.  
Use the following table to program the dither division  
COMP(Pin3):GateoftheOutputTransistor.Thispinallows  
additional compensation. It must be left open if unused.  
ratio (f /f  
)
OSC DITHER  
CHOLD1 (Pin 4): Connects to track/hold amplifier hold  
capacitor. The other end of this capacitor should be Kelvin  
connected to GND.  
Table 1. Programming the Dither Division Ratio (fOSC/fDITHER  
)
DIV2  
DIV1  
DIV0  
DIVISION RATIO  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
8
16  
GUARD2 (Pin 5): Guard Ring Drive for CHOLD2.  
CHOLD2 (Pin 6): Connects to track/hold amplifier hold  
capacitor. The other end of this capacitor should be Kelvin  
connected to GND.  
32  
64  
128  
256  
512  
1024  
GUARD3 (Pin 7): Guard Ring Drive for CHOLD3.  
CHOLD3 (Pin 8): Connects to track/hold amplifier hold  
capacitor. The other end of this capacitor should be Kelvin  
connected to GND.  
For example, f  
= DIV0 = 0.  
= f /128 with DIV2 = 1 and DIV1  
OSC  
DITHER  
GUARD4 (Pin 9): Guard Ring Drive for CHOLD4.  
CHOLD4 (Pin 10): Connects to track/hold amplifier hold  
capacitor. The other end of this capacitor should be Kelvin  
connected to GND.  
SPREAD (Pin 19): Spread Spectrum Enable Input. Dither  
phasing is pseudo-randomly adjusted when SPREAD is  
tied high.  
FB (Pin 11): Receives the feedback voltage from an exter-  
nal resistor divider across the main output. An (optional)  
capacitor to ground may be added to eliminate high  
frequency noise. The time constant for this RC network  
should be no greater than 0.1 times the dither frequency.  
OV(Pin20):OvervoltageComparatorInput.Thisprevents  
line drop correction when wiring drops would cause ex-  
cessive switching power supply output voltage. Set OV  
so V  
≤ 1.50V  
.
REG(MAX)  
LOAD  
For example, with f  
= 1kHz, τ = 0.1ms.  
DITHER  
RUN(Pin21):TheRUNpinprovidestheuserwithanaccu-  
ratemeansforsensingtheinputvoltageandprogramming  
the start-up threshold for the line drop corrector.  
GND (Pin 12): Ground.  
COSC (Pin 13): Oscillator Timing Capacitor. Oscillator fre-  
quencyissetbythiscapacitorandROSC.Forbestaccuracy,  
the minimum recommended capacitance is 100pF.  
SENSE (Pin 22): Current Sense Input. This input connects  
to the current sense resistor. Kelvin connect to R  
.
SENSE  
V
(Pin 23): Connect this pin to INTVCC.  
ROSC (Pin 14): Oscillator Timing Resistor. Oscillator  
frequency is set by this resistor and COSC.  
PP  
V (Pin24):MainSupplyPin.V mustbelocallybypassed  
IN  
IN  
to ground. Kelvin connect the current sense resistor to  
this pin and minimize interconnect resistance.  
OSC (Pin 15): Oscillator Output. This output may be  
used to synchronize the switching regulator to the  
4180fp  
5
LT4180  
BLOCK DIAGRAM  
1
22  
SENSE  
23  
V
PP  
V
INTV  
IN  
CC  
24  
12  
4
AMP  
+
HI_GAIN  
I
TRIM  
CIRCUIT  
LDO  
REF_OK  
GND  
BANDGAP  
REF  
TRACK/  
HOLD  
TRACK_HI_I  
CHOLD1  
+
SPREAD  
DIV0  
19  
18  
17  
16  
GM1  
FB  
+
11  
5
SPREAD  
SPECTRUM  
CLOCK  
DIV1  
GM2  
INST  
AMP  
GUARD2  
FB_SELECT  
DIV2  
TRACK/  
HOLD  
GENERATOR  
+
CORRECTED _REF  
TRACK_DELTA_FB  
TRACK/  
HOLD  
CHOLD2  
CHOLD3  
GUARD3  
TRACK/  
HOLD  
6
8
7
REF  
TRACK_LOW_FB  
TRACK_HI_FB  
CHOLD4  
COMP  
10  
3
CLK  
MOD  
GUARD4  
9
OSC  
OSC  
15  
DRAIN  
OV  
2
R
LIM  
20  
+
OVERVOLTAGE  
OV  
RUN  
21  
UNDERVOLTAGE  
UV  
+
COSC  
14 13  
ROSC  
4180 BD  
4180fp  
6
LT4180  
OPERATION  
Voltage drops in wiring can produce considerable load  
pin (VFB) of the power supply maintaining tight regulation  
regulation errors in electrical systems (Figure 1). As  
of load voltage, V .  
L
load current, I , increases the voltage drop in the wiring  
L
Figure3showsthetimingdiagramforvirtualremotesens-  
ing (VRS). A new cycle begins when the power supply and  
(I RW)increasesandthevoltagedeliveredtothesystem  
L
(V )drops.Thetraditionalapproachtosolvingthisproblem,  
L
VRS close the loop around V  
(regulate V  
= H). Both  
OUT  
OUT  
remote sensing, regulates the voltage at the load, increas-  
V
and I  
slew and settle to a new value, and these  
OUT  
OUT  
ing the power supply voltage (V ) to compensate for  
OUT  
values are stored in the Virtual Remote Sense (track V  
OUT  
voltage drops in the wiring. While remote sensing works  
well, it does require an additional pair of wires to measure  
at the load, which may not always be practical.  
high = L and track I  
= L). The V  
feedback loop is  
OUT  
OUT  
openedandanewfeedbackloopissetupcommandingthe  
power supply to deliver 90ꢀ of the previously measured  
The LT4180 eliminates the need for a pair of remote sense  
wires by creating a Virtual Remote Sense. Virtual remote  
sensing is achieved by measuring the incremental change  
involtagethatoccurswithanincrementalchangeincurrent  
in the wiring (Figure 2). This measurement can then be  
used to infer the total DC voltage drop in the wiring, which  
can then be compensated for. The Virtual Remote Sense  
takes over control of the power supply via the feedback  
current (0.9I ). V  
drops to a new value as the power  
OUT  
OUT  
supply reaches a new steady state, and this information  
is also stored in the Virtual Remote Sense. At this point,  
the change in output voltage (ΔV ) for a –10ꢀ change  
OUT  
in output current has been measured and is stored in the  
Virtual Remote Sense. This voltage is used during the  
next VRS cycle to compensate for voltage drops due to  
wiring resistance.  
I
L
I
L
RW  
RW  
POWER SUPPLY  
V
SYSTEM  
POWER SUPPLY  
V
SYSTEM  
+
OUT  
+
L
+
OUT  
+
L
V
V
POWER WIRING  
POWER WIRING  
V
FB  
4180 F01  
REMOTE SENSE WIRING  
VIRTUAL REMOTE  
SENSE  
4180 F02  
Figure 1. Traditional Remote Sensing  
Figure 2. Virtual Remote Sensing  
V
OUT  
OUT  
REGULATE V  
TRACK V  
HIGH  
OUT  
TRACK I  
OUT  
REGULATE I  
TRACK V  
LOW  
LOW  
OUT  
OUT  
TRACK ΔV  
OUT  
4180 F03  
Figure 3. Simplified Timing Diagram, Virtual Remote Sense  
4180fp  
7
LT4180  
APPLICATIONS INFORMATION  
INTRODUCTION  
DESIGN PROCEDURE  
TheLT4180isdesignedtointerfacewithavarietyofpower  
suppliesandregulatorshavingeitheranexternalfeedback  
or control pin. In Figure 4, the regulator error amplifier  
The first step in the design procedure is to determine  
whether the LT4180 will control a linear or switching sup-  
ply/regulator.Ifusingaswitchingpowersupplyorregulator,  
it is recommended that the supply be synchronized to the  
LT4180 by connecting the OSC pin to the SYNC pin (or  
equivalent) of the supply.  
(which is a g amplifier) is disabled by tying its inverting  
m
input to ground. This converts the error amplifier into a  
constant-current source which is then controlled by the  
drain pin of the LT4180. This is the preferred method of  
interfacingbecauseiteliminatestheregulatorerrorampli-  
fier from the control loop which simplifies compensation  
and provides best control loop response.  
If the power supply is synchronized to the LT4180, the  
power supply switching frequency is determined by:  
4
fOSC  
=
R
OSC • COSC  
REGULATOR  
LT4180  
Recommended values for R  
are between 20k and 100k  
OSC  
I
OR  
TH  
V
C
+
(with 30.1k the optimum for best accuracy) and greater  
than 100pF for C . C may be reduced to as low as  
DRAIN  
OSC OSC  
50pF, but oscillator frequency accuracy will be somewhat  
degraded.  
4180 F04  
Figure 4. Nonisolated Regulator Interface  
The following example synchronizes a 250kHz switching  
power supply to the LT4180. In this example, start with  
OSC  
For proper operation, increasing control voltage should  
correspond to increasing regulator output. For example,  
in the case of a current mode switching power supply, the  
control pin ITH should produce higher peak currents as  
the ITH pin voltage is made more positive.  
R
= 30.1k:  
4
COSC  
=
= 531pF  
250kHz • 30.1k  
This example uses 470pF. For 250kHz:  
Isolated power supplies and regulators may also be used  
by adding an opto-coupler (Figure 5). LT4180 output volt-  
4
ROSC  
=
= 34.04k  
250kHz • 470pF  
age INTV supplies power to the opto-coupler LED. In  
CC  
situations where the control pin V of the regulator may  
C
The closest standard 1ꢀ value is 34k.  
exceed 5V, a cascode may be added to keep the DRAIN  
pin of the LT4180 below 5V (Figure 6). Use a Low VT  
MOSFET for the cascode transistor.  
The next step is to determine the highest practical dither  
frequency. This may be limited either by the response  
time of the power supply or regulator, or by the propaga-  
tion time of the wiring connecting the load to the power  
supply or regulator.  
INTV  
REGULATOR  
CC  
OPTO-COUPLER  
+
V
C
LT4180  
TO V > 5V  
C
DRAIN  
COMP  
LT4180  
INTV  
4180 F05  
CC  
Figure 5. Isolated Power Supply Interface  
DRAIN  
4180 F06  
Figure 6. Cascoded DRAIN Pin for Isolated Supplies  
4180fp  
8
LT4180  
APPLICATIONS INFORMATION  
First determine the settling time (to 1ꢀ of final value)  
Continuing this example, the dither frequency should be  
less than 500Hz (limited by the power supply).  
of the power supply. The settling time should be the  
worst-case value (over the whole operating envelope: V ,  
IN  
With the dither frequency known, the division ratio can  
be determined:  
I
, etc.).  
LOAD  
1
fOSC  
fDITHER  
250,000  
500  
F1 =  
Hz  
DRATIO  
=
=
= 500  
2 • tSETTLING  
For example, if the power supply takes 1ms to settle  
(worst-case) to within 1ꢀ of final value:  
The nearest division ratio is 512 (set DIV0 = L, DIV1 =  
DIV2 = H). Based on this division ratio, nominal dither  
frequency will be:  
1
F1 =  
= 500Hz  
2 • 1e 3  
fOSC  
DRATIO  
250,000  
512  
fDITHER  
=
=
= 488Hz  
Next, determine the propagation time of the wiring. In  
order to ignore transmission line effects, the dither period  
should be approximately twenty times longer than this.  
This will limit dither frequency to:  
After the dither frequency is determined, the minimum  
load decoupling capacitor can be determined. This load  
capacitor must be sufficiently large to filter out the dither  
signal at the load.  
VF  
F2 =  
Hz  
2.2  
20 • 1.017ns/ft • L  
CLOAD  
=
RWIRE • 2 • fDITHER  
WhereV isthevelocityfactor(orvelocityofpropagation),  
F
and L is the length of the wiring (in feet).  
WhereC  
WIRE  
tor of the wiring pair, and f  
frequency.  
istheminimumloaddecouplingcapacitance,  
LOAD  
For example, assume the load is connected to a power  
supply with 1000ft of CAT5 cable. Nominal velocity of  
propagation is approximately 70ꢀ.  
R
is the minimum wiring resistance of one conduc-  
is the minimum dither  
DITHER  
0.7  
Continuing the example, our CAT5 cable has a maximum  
9.38ꢁ/100m conductor resistance.  
F2 =  
= 34.4kHz  
20 • 1.017e9 • 1000  
Maximum wiring resistance is:  
The maximum dither frequency should not exceed F1 or  
F2 (whichever is less):  
R
WIRE  
= 2 • 1000ft • 0.305m/ft • 0.0938ꢁ/m  
= 57.2ꢁ  
f
< min (F1, F2).  
R
WIRE  
DITHER  
4180fp  
9
LT4180  
APPLICATIONS INFORMATION  
With an oscillator tolerance of 15ꢀ, the minimum  
dither frequency is 414.8Hz, so the minimum decoupling  
capacitance is:  
is observed, decrease the value of the resistor until it  
just disappears. If overshoot or ringing is not observed,  
increase the value of the resistor until it is observed, then  
slightlydecreasethevalueoftheresistorsothatovershoot  
and ringing disappear. Check for proper voltage drop cor-  
rection and converter behavior (start-up, regulation etc.),  
overtheloadrange, andrepeattheaboveprocedurewitha  
smaller value of the compensation capacitor, if necessary.  
2.2  
CLOAD  
=
= 46.36µF  
57.2Ω • 2 • 414.8Hz  
This is the minimum value. Select a nominal value to ac-  
count for all factors which could reduce the nominal, such  
as initial tolerance, voltage and temperature coefficients  
and aging.  
Decrease C  
capacitance until V  
exhibits slight  
HOLD4  
OUT  
low frequency instability, then increase C  
from this value.  
slightly  
HOLD4  
CHOLD Capacitor Selection and Compensation  
Setting Output Voltage, Undervoltage and Overvoltage  
Thresholds  
Withditherfrequencydetermined, usethefollowingequa-  
tions to determine CHOLD values:  
The RUN pin has accurate rising and falling thresholds  
whichmaybeusedtodeterminewhenVirtualRemoteSense  
operation begins. Undervoltage threshold should never  
be set lower than the minimum operating voltage of the  
LT4180 (3.1V).  
11.9nF  
DITHER(kHz)  
CHOLD1  
=
f
and  
CHOLD2 = CHOLD3  
2.5nF  
DITHER(kHz)  
=
The overvoltage threshold should be set slightly greater  
than the highest voltage which will be produced by the  
power supply or regulator:  
f
So, with a dither frequency of 488Hz:  
V
= V  
+ V  
LOAD(MAX) WIRE(MAX)  
OUT(MAX)  
11.9nF  
0.488kHz  
CHOLD1  
=
= 24.4nF  
V
should never exceed 1.5 • V  
LOAD  
OUT(MAX)  
Since the RUN and OV pins connect to MOSFET input  
comparators,inputbiascurrentsarenegligibleandacom-  
mon voltage divider can be used to set both thresholds  
(Figure 7).  
and  
CHOLD2 = CHOLD3  
2.5nF  
0.488(kHz)  
=
= 5.12nF  
NPO ceramic or other capacitors with low leakage and  
dielectric absorption should be used for all hold capa-  
citors.  
V
IN  
R1  
R2  
R3  
R4  
LT4180  
RUN  
Set C  
to 1μF.  
HOLD4  
FB  
Start with a 47pF capacitor between the COMP and DRAIN  
pins of the LT4180. Add an RC network in parallel with the  
47pF capacitor. 10k and 10nF are good starting values.  
Connect a DC load corresponding to full-scale load cur-  
OV  
4180 F07  
rent and verify that V  
produces a rounded squarewave  
OUT  
Figure 7. Voltage Divider for Output Voltage, UVL and OVL  
without any noticeable overshoot or ringing (similar to  
the V waveform in Figure 3). If overshoot or ringing  
OUT  
4180fp  
10  
LT4180  
APPLICATIONS INFORMATION  
The voltage divider resistors can be calculated from the  
following equations:  
R
SELECTION  
SENSE  
SelectthevalueofR  
sothatitproducesa100mVvolt-  
SENSE  
VOV  
200μA  
1.22V  
200μA  
age drop at maximum load current. For best accuracy, V  
IN  
RT =  
, R4 =  
and SENSE should be Kelvin connected to this resistor.  
Soft-Correct Operation  
Where R is the total divider resistance and V is the  
T
OV  
overvoltage set point.  
The LT4180 has a soft-correct function which insures  
orderly start-up. When the RUN pin rising threshold is  
firstexceeded(indicatingV hascrosseditsundervoltage  
lockout threshold), power supply output voltage is set to a  
value corresponding to zero wiring voltage drop (no cor-  
rection for wiring). Over a period of time (determined by  
CHOLD4), the power supply output voltage ramps up to  
account for wiring voltage drops, providing best load-end  
voltageregulation.Anewsoft-correctcycleisalsoinitiated  
whenever an overvoltage condition occurs.  
FindtheequivalentseriesresistanceforR2andR3(R  
).  
SERIES  
IN  
This resistance will determine the RUN voltage level.  
1.22 • RT  
VUVL  
RSERIES  
=
R4  
R1= RT RSERIES R4  
R4  
RT  
1.22V VOUT(NOM)  
R3 =  
VOUT(NOM)  
RT  
5V  
POWER SUPPLY  
OUTPUT VOLTAGE  
R2 = RSERIES R3  
Where V is the RUN voltage and V  
10Vw  
POWER SUPPLY  
INPUT VOLTAGE  
is the  
OUT(NOM)  
UVL  
nominal output voltage desired.  
4180 F08  
200ms/DIV  
For example, with V = 4V, V = 7.5V and V  
= 5V,  
UVL  
OV  
OUT(NOM)  
7.5V  
200μA  
RT =  
= 37.5k  
Figure 8. Soft-Correct Operation, CHOLD4 = 1μF  
1.22V  
200μA  
R4 =  
= 6.1k  
1.22V • 37.5k  
4V  
RSERIES  
=
6.1k = 5.34k  
R1 = 37.5k 5.34k 6.1k = 26.06k  
5V • 6.1k  
37.5k  
1.22V −  
R3 =  
= 3.05k  
5V  
37.5k  
R2 = RSERIES R3 = 2.29k  
4180fp  
11  
LT4180  
APPLICATIONS INFORMATION  
Using Guard Rings  
switching supplies may be synchronized to the LT4180  
(Figure 10). The OSC pin was designed so that it may  
directlyconnecttomostregulators,ordriveopto-isolators  
(for isolated power supplies).  
The LT4180 includes a total of four track/holds in the  
Virtual Remote Sense path. For best accuracy, all leakage  
sources on the CHOLD pins should be minimized.  
At very low dither frequencies, the circuit board layout  
may include guard rings which should be tied to their  
respective guard ring drivers.  
Spread Spectrum Operation  
Virtual remote sensing relies on sampling techniques.  
Because switching power supplies are commonly used,  
the LT4180 uses a variety of techniques to minimize  
potential interference (in the form of beat notes which  
may occur between the dither frequency and power  
supply switching frequency). Besides several types of  
internal filtering, and the option for VRS/power sup-  
ply synchronization, the LT4180 also provides spread  
spectrum operation.  
To better understand the purpose of guard rings, a sim-  
plified model of hold capacitor leakage (with and without  
guard rings) is shown in Figure 9. Without guard rings,  
a large difference voltage may exist between the hold  
capacitor (Pin 1) node and adjacent conductors (Pin 2)  
producing substantial leakage current through the leak-  
age resistance (R ). By adding a guard ring driver with  
LKG  
approximately the same voltage as the voltage on the  
By enabling spread spectrum operation, low modu-  
lation index pseudo-random phasing is applied to  
Virtual Remote Sense timing. This has the effect of  
converting any remaining narrow-band interference into  
broadband noise, reducing its effect.  
hold capacitor node, the difference voltage across R  
LKG1  
is reduced substantially thereby reducing leakage current  
on the hold capacitor.  
Synchronization  
Linear and switching power supplies and regulators may  
be used with the LT4180. In most applications regulator  
interference should be negligible. For those applications  
where accurate control of interference spectrum is de-  
sirable, an oscillator output has been provided so that  
Increasing Voltage Correction Range  
Correction range may be slightly improved by regulating  
INTV to5V.ThismaybedonebyplacinganLDObetween  
CC  
V and INTV . Contact Linear Technology Applications  
IN  
CC  
for more information.  
R
R
R
LKG2  
LKG  
LKG1  
1
2
1
2
WITHOUT  
GUARD RING  
WITH  
GUARD RING  
4180 F09  
Figure 9. Simplified Leakage Models (with and without Guard Rings)  
REGULATOR  
SYNC  
LT4180  
OSC  
4180 F10  
Figure 10. Clock Interface for Synchronization  
4180fp  
12  
LT4180  
TYPICAL APPLICATIONS  
12V, 500mA Linear Regulator  
R1  
0.1Ω  
1ꢀ  
Q1  
IRLZ440  
OUTPUT TO WIRING AND LOAD  
500mA  
V
IN  
INTV  
CC  
20V  
R2  
63.4k  
1ꢀ  
C1  
4.7μF  
25V  
8Ω MAX R  
WIRE  
330μF LOAD CAPACITANCE  
C3  
1μF  
C2  
1μF  
R3  
27k  
R4  
3.74k  
1ꢀ  
FB  
RUN  
V
SENSE  
DIV2 DIV1 DIV0  
V
INTV  
PP  
CC  
IN  
R5  
5.36k  
1ꢀ  
R6  
C4  
10μF  
25V  
2.2k  
1ꢀ  
U2  
LT4180EGN  
SPREAD  
OSC  
OV  
R7  
10k  
INTV  
CC  
GND  
DRAIN  
Q2  
VN2222  
C5  
22pF  
COMP GND CHOLD1GUARD2 CHOLD2 GUARD3 CHOLD3 GUARD4 CHOLD4  
C
R
OSC  
OSC  
C10  
10nF  
R9  
C7  
4.7nF  
C8  
C9  
470pF  
41.7k  
1ꢀ  
C6  
1nF  
C11  
470pF  
470pF  
R8  
20k  
4180 TA02  
12V, 600mA Boost Regulator  
R1  
0.05  
1ꢀ  
D1  
DFLS220  
L1  
OUTPUT TO WIRING AND LOAD  
(100mA MINIMUM)  
WIRE  
470μF LOAD CAPACITANCE  
4.7μH  
V
IN  
5V  
600mA, 6Ω MAX R  
INTV  
CC  
VISHAY  
IHLP2525CZ-11  
C2  
10μF  
25V  
R13  
1.5k  
R3  
61.9k  
1ꢀ  
C1  
4.7μF  
16V  
R2  
191k  
C4  
1μF  
C3  
1μF  
R5  
3.65k  
1ꢀ  
R4  
100k  
GATE SW1 SW1 SW1 SW2 SW2 SW2  
V
SENSE  
INTV  
C
FB RUN  
DIV2 DIV1 DIV0  
V
IN  
PP  
CC  
R6  
24.3k  
R7  
2k  
1ꢀ  
V
CC  
SPREAD  
U2  
U1  
SHDN  
FB  
LT4180EGN  
LT3581EMSE  
OV  
DRAIN  
FAULT  
VC  
R9  
5.36k  
1ꢀ  
OSC  
R
COMP GND CHOLD1 GUARD2 CHOLD2 GUARD3 CHOLD3 GUARD4 CHOLD4  
R8  
10k  
SYNC RT  
SS CLKOUT GND  
OSC OSC  
C7  
47pF  
C12  
R12  
41.7k  
1ꢀ  
C6  
0.1μF  
R10  
84.5k  
10nF  
C9  
C10  
470pF  
C11  
GND  
C13  
470pF  
4.7nF  
470pF  
4180 TA03  
C8  
1nF  
R11  
10k 1ꢀ  
4180fp  
13  
LT4180  
TYPICAL APPLICATIONS  
4180fp  
14  
LT4180  
PACKAGE DESCRIPTION  
GN Package  
24-Lead Plastic SSOP (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1641)  
.337 – .344*  
(8.560 – 8.738)  
.033  
(0.838)  
REF  
24 23 22 21 20 19 18 17 16 15 14 13  
.045 ±.005  
.229 – .244  
.150 – .157**  
(5.817 – 6.198)  
(3.810 – 3.988)  
.254 MIN  
.150 – .165  
1
2
3
4
5
6
7
8
9 10 11 12  
.0165 ± .0015  
.0250 BSC  
RECOMMENDED SOLDER PAD LAYOUT  
.015 ± .004  
(0.38 ± 0.10)  
.0532 – .0688  
(1.35 – 1.75)  
× 45°  
.004 – .0098  
(0.102 – 0.249)  
.0075 – .0098  
(0.19 – 0.25)  
0° – 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.008 – .012  
.0250  
(0.635)  
BSC  
GN24 (SSOP) 0204  
(0.203 – 0.305)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: INCHES  
INCHES  
2. DIMENSIONS ARE IN  
(MILLIMETERS)  
3. DRAWING NOT TO SCALE  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
4180fp  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
15  
LT4180  
TYPICAL APPLICATION  
12V 1.5A Buck Regulator  
E1  
V
IN  
C2  
1μF  
50V  
+
C1  
22μF  
50V  
22V TO 36V  
R1  
0.033 1ꢀ  
E3  
OUTPUT TO WIRING AND LOAD  
12V, 1.5A  
GND  
C6  
C4  
1μF  
R4  
61.9k  
1ꢀ  
VISHAY  
1HLP2020CZ-11  
L1, 10μH  
2.5Ω MAX R  
WIRE  
INTV  
0.47μF  
CC  
R3  
100k  
470μF LOAD CAPACITANCE  
V
BD BOOST  
IN  
C8  
1μF  
RUN/SD  
SW  
INTV  
CC  
R6  
3.65k  
1ꢀ  
C5  
0.1μF  
50V  
C7  
R5  
30.1k  
22μF  
UI  
PG  
25V  
D1  
DFLS240  
FB  
RUN  
V
SENSE  
DIV2 DIV1 DIV0  
LT4180EGN  
V
INTV  
IN  
PP  
CC  
LT3685EDD  
R9  
2.01k  
1ꢀ  
FB  
RT  
SPREAD  
INTV  
CC  
R8  
68.1k  
1ꢀ  
R7  
10k  
OV  
DRAIN  
SYNC  
VC  
R10  
5.36k  
1ꢀ  
OSC  
R
D2  
CMDSH-3  
COMP GND CHOLD1 GUARD2 CHOLD2 GUARD3 CHOLD3 GUARD4 CHOLD4  
C
OSC  
OSC  
C9  
47pF  
C13  
R11  
1k  
R12  
22.1k  
1ꢀ  
10nF  
C10  
C11  
470pF  
C12  
C14  
330pF  
4.7nF  
470pF  
R13  
17.4k  
1ꢀ  
4180 TA05  
C15  
1.5nF  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT3581  
Boost/Inverting DC/DC Converter with 3.3A Switch,  
Soft-Start and Synchronization  
2.5V ≤ V ≤ 22V, Current Mode Control, 200kHz to 2.5MHz, MSOP-16E and  
IN  
3mm × 4mm DFN-14 Packages  
LT3685  
LT3573  
LT3757  
LT3758  
36V, 2A, 2.4MHz Step-Down Switching Regulator  
3.6V≤ V ≤ 36V (60V ), Integrated Boost Diode, MSOP-10E and  
IN PK  
3mm × 3mm DFN Packages  
Isolated Flyback Switching Regulator with 60V  
Integrated Switch  
3V ≤ V ≤ 40V, Up to 7W, No Opto-Isolator or Third Winding Required,  
IN  
MSOP-16E Package  
Boost, Flyback, SEPIC and Inverting Controller  
2.9V ≤ V ≤ 40V, Current Mode Control, 100kHz to 1MHz Programmable  
IN  
Operation Frequency, MSOP-10E and 3mm × 3mm DFN-10 Packages  
Boost, Flyback, SEPIC and Inverting Controller  
5.5V ≤ V ≤ 100V, Current Mode Control, 100kHz to 1MHz Programmable  
IN  
Operation Frequency, MSOP-10E and 3mm × 3mm DFN-10 Packages  
LTC3805/  
LTC3805-5  
Adjustable Fixed 70kHz to 700kHz Operating  
Frequency Flyback Controller  
V
and V  
Limited Only by External Components, MSOP-10E and  
OUT  
IN  
3mm × 3mm DFN-10 Packages  
4180fp  
LT 0310 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
© LINEAR TECHNOLOGY CORPORATION 2010  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT4180MPGN#PBF

LT4180 - Virtual Remote Sense Controller; Package: SSOP; Pins: 24; Temperature Range: -55&deg;C to 125&deg;C
Linear

LT4180MPGN#TRPBF

LT4180 - Virtual Remote Sense Controller; Package: SSOP; Pins: 24; Temperature Range: -55&deg;C to 125&deg;C
Linear

LT4180MPGN-PBF

Virtual Remote Sense Controller
Linear

LT4180MPGN-TRPBF

Virtual Remote Sense Controller
Linear

LT42001/4S132JT26

RESISTOR, TEMPERATURE DEPENDENT, PTC, 1300ohm, THROUGH HOLE MOUNT, AXIAL LEADED
KOA

LT42001/6S102JT26

RESISTOR, TEMPERATURE DEPENDENT, PTC, 1000ohm, THROUGH HOLE MOUNT, AXIAL LEADED
KOA

LT42001/6SR51JT26

RESISTOR, TEMPERATURE DEPENDENT, PTC, 0.51ohm, THROUGH HOLE MOUNT, AXIAL LEADED
KOA

LT4217

TRANSISTOR | BJT | NPN | TO-129
ETC

LT421AW

Ceramic Filter
LGE

LT4220

Dual Supply Hot Swap Controller
Linear

LT4220CGN

Dual Supply Hot Swap Controller
Linear

LT4220CGN#TRPBF

LT4220 - Dual Supply Hot Swap Controller; Package: SSOP; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear