LT5502 [Linear]

400MHz Quadrature IF Demodulator with RSSI; 400MHz的中频正交解调器,带有RSSI
LT5502
型号: LT5502
厂家: Linear    Linear
描述:

400MHz Quadrature IF Demodulator with RSSI
400MHz的中频正交解调器,带有RSSI

文件: 总12页 (文件大小:239K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Final Electrical Specifications  
LT5502  
400MHz Quadrature  
IF Demodulator with RSSI  
January 2001  
U
DESCRIPTIO  
FEATURES  
TheLT®5502isa70MHzto400MHzmonolithicintegrated  
quadrature IF demodulator. It consists of an IF limiter,  
quadrature down mixers, integrated lowpass filters, and  
divide-by-two LO buffers. The demodulator provides all  
building blocks for demodulation of I and Q baseband  
signals with a single supply voltage of 1.8V to 5.25V. The  
IFlimiterhas84dBsmall-signalgain, andabuilt-inreceive  
signal strength indicator (RSSI) with over 90dB linear  
range. The input referred noise-spectral-density is  
1.45nV/Hz, which is equivalent to a 4dB noise figure  
when the input is terminated with a 50source. The  
integrated lowpass output filters act as antialiasing and  
pulse-shaping filters for demodulated I/Q-baseband sig-  
nals. The 3dB cutoff frequency of the filters is about  
7.7MHz. The VCO frequency is required to be twice the  
desired operating frequency to provide quadrature local  
oscillator (LO) signals to the mixers. The standby mode  
provides fast transient response to the receive mode with  
reduced supply current when the I/Q outputs are  
Single 1.8V to 5.25V Supply  
IF Frequency Range: 70MHz to 400MHz  
84dB Limiting IF Gain  
90dB Linear RSSI Range  
7.7MHz Lowpass Output Filter  
Baseband I/Q Amplitude Imbalance: <0.7dB  
4dB Noise Figure  
Low Supply Current: 25mA  
Outputs Biased Up While in Standby  
Shutdown Current: 1µA  
24-Lead Narrow SSOP Package  
U
APPLICATIO S  
IEEE802.11  
High Speed Wireless LAN  
Wireless Local Loop  
AC-coupled to a baseband chip.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
I/Q Output Swing, RSSI Output vs IF Input Power  
2V  
C2  
C1  
1200  
1000  
800  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
1µF  
1nF  
C3  
22nF  
+
IF  
V
CC  
+
I
OUT  
IF  
INPUT  
R1  
240Ω  
IF  
BASEBAND  
DIFFERENTIAL  
I/Q OUTPUTS  
I
OUT  
90°  
0°  
+
2XLO  
+
Q
OUT  
600  
2XLO  
INPUT  
÷2  
Q
OUT  
2XLO  
EN  
400  
RSSI  
LT5502  
GND  
ENABLE  
C4  
1.8pF  
200  
–85  
–55  
–40  
–25  
–10  
5
–70  
5502 TA01a  
IF INPUT POWER (dBm)  
5502 TA01b  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
1
LT5502  
W W  
U W  
U
W
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
TOP VIEW  
ORDER PART  
NUMBER  
Power Supply Voltage ............................................ 5.5V  
LO Input Power .................................................. 10dBm  
IF Input Power .................................................... 10dBm  
Operating Ambient  
Temperature (Note 2) ..............................–40°C to 85°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
Voltage on any Pin not to Exceed ............................. VCC  
+
+
I
I
1
2
3
4
5
6
7
8
9
Q
Q
V
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
OUT  
OUT  
OUT  
OUT  
LT5502EGN  
GND  
CC  
V
GND  
CC  
GND  
GND  
+
+
IF  
2XLO  
2XLO  
IF  
GND  
GND  
V
CC  
V
CC  
EN 10  
RSSI  
GND  
STBY 11  
+
IFt 12  
IFt  
GN PACKAGE  
24-LEAD NARROW PLASTIC SSOP  
TJMAX = 150°C, θJA = 85°C/W  
Consult factory for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
VCC = 3V, f2XLO = 570MHz, P2XLO = –10dBm, fIF = 280MHz,  
PIF = –50dBm, TA = 25°C, unless otherwise noted. (Note 3)  
SYMBOL  
IF Input  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
f
Frequency Range  
70 to 400  
MHz  
dBm  
dB  
IF  
3dB Limiting Sensitivity  
Noise Figure  
–79  
4
Terminated 50Source  
DC Common Mode Voltage  
2.6  
V
Demodulator I/Q Output  
I/Q Output Voltage Swing  
Differential  
850  
0.1  
0.6  
mV  
P-P  
I/Q Amplitude Mismatch  
I/Q Phase Mismatch  
0.7  
dB  
DEG  
kΩ  
V
Output Driving Capability  
DC Common Mode Voltage  
Differential; C  
= 10pF  
1.5  
MAX  
1.84  
RSSI  
Linear Dynamic Range (Note 4)  
Output Impedance  
Output Voltage  
±3dB Linearity Error  
90  
3.8  
0.41  
1.01  
8.7  
1
dB  
kΩ  
Input = 70dBm  
0.27  
0.8  
0.54  
1.2  
V
Output Voltage  
Input = 0dBm  
V
Output Voltage Slope  
Linearity Error  
Input from –70dBm to 0dBm  
Input from –70dBm to 0dBm  
mV/dB  
dB  
Baseband Lowpass Filter  
3dB Cutoff Frequency  
Group Delay Ripple  
7.7  
MHz  
ns  
16.4  
2
LT5502  
ELECTRICAL CHARACTERISTICS  
VCC = 3V, f2XLO = 570MHz, P2XLO = –10dBm, fIF = 280MHz,  
P
IF = –50dBm, TA = 25°C, unless otherwise noted. (Note 3)  
SYMBOL  
2XLO  
PARAMETER  
CONDITIONS  
MIN  
–20  
1.8  
TYP  
140 to 800  
2.6  
MAX  
UNITS  
f
Frequency Range  
Input Power  
MHz  
dBm  
V
2XLO  
P
–5  
2XLO  
DC Common Mode Voltage  
Power Supply  
V
Supply Voltage  
5.25  
32  
V
mA  
µA  
CC  
I
I
Supply Current  
EN = High  
25  
1
CC  
OFF  
Shutdown Current  
Standby Mode Current  
EN = Low; Standby = Low  
EN = Low; Standby = High  
100  
3.5  
2.6  
mA  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
Note 3: Tests are performed as shown in the configuration of Figure 3.  
a device may be impaired.  
Note 4: Tests are performed as shown in the configuration of Figure 1 for  
Note 2: Specifications over the –40°C to 85°C temperature range are  
assured by design, characterization and correlation with statistical process  
controls.  
IF input.  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
(Note 3)  
Power Supply Current  
vs Temperature  
I/Q Output Swing vs Temperature  
I/Q Output Swing vs IF Input Power  
1200  
1000  
800  
36  
32  
28  
24  
20  
16  
1200  
1000  
800  
V
IF  
= 3V  
f
= 280MHz  
CC  
IF  
f
= 280MHz  
T
= 85°C  
= 25°C  
A
T
= 85°C  
= 25°C  
A
T
= 85°C  
A
T
T
A
= 25°C  
A
T
A
600  
T
= –40°C  
T
= –40°C  
A
A
600  
T
= –40°C  
400  
A
400  
200  
1.8  
2.5  
3.5  
4.5  
3.5  
–70  
–55 –40  
–25  
–10  
5.5  
1.8  
4.5  
5.5  
–85  
2.5  
5
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
IF INPUT POWER (dBm)  
5502 G01  
5502 G02  
5502 G03  
3
LT5502  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS (Note 3)  
I/Q Output Swing vs IF Input Power  
RSSI Output vs Temperature  
RSSI Output Voltage vs IF Frequency  
1200  
1000  
800  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
V
T
= 3V  
V
T
= 3V  
CC  
A
V
f
= 3V  
CC  
A
CC  
IF  
= 25°C  
= 25°C  
= 280MHz  
f
= 280MHz  
IF  
f
= 70MHz  
IF  
T
= 85°C  
f
= 70MHz  
A
IF  
f
= 280MHz  
IF  
T
= –40°C  
A
600  
T
= 25°C  
A
f
= 400MHz  
IF  
400  
f
= 400MHz  
–40  
IF  
200  
–70  
–55 –40  
–25  
–10  
–85  
–70  
–55  
–25  
–10  
–85  
5
–55  
5
–85  
–70  
–40  
–25  
–10  
5
IF INPUT POWER (dBm)  
IF INPUT POWER (dBm)  
IF INPUT POWER (dBm)  
5502 G04  
5502 G06  
5502 G05  
IF Input Sensitivity  
vs Temperature  
RSSI Output Voltage vs VCC  
IF Input Sensitivity vs IF Frequency  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
–73  
–75  
–77  
–79  
–81  
–83  
–73  
–76  
–79  
–82  
–85  
f
= 280MHz  
= 25°C  
f
= 280MHz  
IF  
A
V
= 3V  
CC  
IF  
T
T
= 85°C  
A
T
= 85°C  
A
T
A
= 25°C  
V
= 3V  
CC  
T
= –40°C  
A
T
= 25°C  
A
V
= 5.5V  
–70  
CC  
T
= –40°C  
A
V
= 1.8V  
CC  
–55 –40  
–25  
–10  
–85  
5
1.8  
2.5  
3.5  
4.5  
70  
100 150 200 250 300 350 400  
5.5  
IF INPUT POWER (dBm)  
SUPPLY VOLTAGE (V)  
IF FREQUENCY (MHz)  
5502 G07  
5502 G09  
5502 G08  
LPF Frequency Response  
vs Baseband Frequency  
LPF Group Delay  
LPF Frequency Response vs VCC  
vs Baseband Frequency  
110  
95  
80  
65  
50  
35  
20  
5
0
5
0
110  
90  
V
CC  
= 3V  
V
= 3V  
V
A
= 1.8V, 3V, 5.5V  
CC  
CC  
T
A
= –40°C  
T
= 25°C  
T
= 85°C  
A
–5  
–5  
T
A
= 85°C  
T
= 25°C  
–10  
–15  
–20  
–25  
–30  
–35  
–10  
–15  
–20  
–25  
–30  
–35  
A
70  
T = 25°C  
A
T
= –40°C  
A
50  
30  
4
8
16  
0
4
8
12  
16  
20  
0
20  
12  
4
8
16  
0
20  
12  
BASEBAND FREQUENCY (MHz)  
BASEBAND FREQUENCY (MHz)  
BASEBAND FREQUENCY (MHz)  
5502 G11  
5502 G10  
5502 G12  
4
LT5502  
U
U
U
PI FU CTIO S  
IOUT+ (Pin 1): Positive Baseband Output Pin of I-Channel.  
The DC bias voltage is VCC – 1.16V. This pin should not be  
shorted to ground.  
IOUT(Pin 2): Negative Baseband Input Pin of I-Channel.  
The DC bias voltage is VCC – 1.16V. This pin should not be  
shorted to ground.  
voltage. When the input voltage is less than 0.7V or down  
to ground, it is turned off.  
IFt+ (Pin 12): Interstage IF Positive Pin. The DC bias  
voltage is VCC – 0.25V.  
IFt(Pin 13): Interstage IF Negative Pin. The DC bias  
voltage is VCC – 0.25V.  
GND (Pins 3, 5, 8, 9, 14, 20, 21): Ground Pin.  
RSSI (Pin 15): RSSI Output Pin.  
VCC (Pins 4, 16, 17, 22): Power Supply Pin. This pin  
should be decoupled using 1000pF and 0.1µF capacitors.  
IF+ (Pin 6): Positive IF Input Pin. The DC bias voltage is  
VCC – 0.4V.  
2XLO(Pin 18): Negative Carrier Input Pin. The input-  
signal’s frequency must be twice that of the desired  
demodulator LO frequency. The DC bias voltage is VCC  
0.4V.  
IF(Pin 7): Negative IF Input Pin. The DC bias voltage is  
2XLO+ (Pin 19): Positive Carrier Input Pin. The input-  
VCC – 0.4V.  
signal’s frequency must be twice that of the desired  
demodulator LO frequency. The DC bias voltage is VCC  
0.4V.  
EN (Pin 10): Enable Pin. When the input voltage is higher  
than 0.9V or up to VCC, the circuit is completely turned on.  
When the input voltage is less than 0.7V or down to  
ground, the circuit is turned off except the part of the  
circuit associated with standby mode.  
QOUT (Pin 23): Negative Baseband Output Pin of the  
Q-Channel. The DC bias voltage is VCC – 1.16V. This pin  
should not be shorted to ground.  
+
STBY (Pin 11): Standby Pin. When the input voltage is  
higher than 0.9V or up to VCC, the circuit of standby mode  
is turned on to bias the I/Q buffers to desired quiescent  
QOUT (Pin 24): Positive Baseband Output Pin of the  
Q-Channel. The DC bias voltage is VCC – 1.16V. This pin  
should not be shorted to ground.  
W
BLOCK DIAGRA  
+
IFt  
12  
IFt  
13  
I-MIXER  
LPF  
LPF  
+
1
2
I
I
OUT  
1
1
LIMITER  
2
LIMITER  
1
+
OUT  
IF  
6
7
LO  
BUFFERS  
DIVIDE 2  
0°/90°  
IF  
+
24  
Q
OUT  
OUT  
23 Q  
Q-MIXER  
RSSI  
BIAS  
15  
10  
EN  
19  
18  
+
2XLO  
5502 BD  
RSSI  
2XLO  
5
LT5502  
U
W U U  
APPLICATIO S I FOR ATIO  
The LT5502 consists of the following sections: IF limiter, The 1:4 IF input transformer can also be replaced with a  
I/Q demodulators, quadrature LO carrier generator, inte- narrow band single-to-differential conversion circuit  
grated lowpass filters (LPFs), and bias circuitry.  
using three discreet elements as shown in Figure 1. Their  
nominal values are listed in Table 1. Due to the parasitics  
of the PCB, their values need to be compensated. The  
receiver’s input sensitivity in this case is improved to  
–85dBm even without interstage filtering. The matching  
circuitisessentiallyasecondorderbandpassfilter. There-  
fore, the requirement for the front-end channel-select  
filter can be eased too.  
An IF signal is fed to the inputs of the IF limiter. The limited  
IF signal is then demodulated into I/Q baseband signals  
using the quadrature LO carriers that are generated from  
the divide-by-two circuit. The demodulated I/Q signals are  
passed through 5th order LPFs and buffered with an  
output driver.  
IF Limiter  
MATCHING NETWORK  
The IF limiter has 84dB small-signal gain with a frequency  
range of 70MHz to 400MHz. It consists of two cascaded  
stages of IF amplifiers/limiters. The differential outputs of  
the first stage are connected internally to the differential  
inputs of the second stage. An interstage filtering is  
possibleinbetween(Pin12andPin13)withminimumoff-  
chipcomponents.ItcanbeasimpleparallelLCtankcircuit  
L1 and C8 as shown in Figure 3. The 22nF blocking  
capacitor, C19, is used for the proper operation of the  
internal DC offset canceling circuit. To achieve the best  
receiver sensitivity, a differential configuration at the IF  
input is recommended due to its better immunity to 2XLO  
signal coupling to the IF limiter. Otherwise, the 2XLO  
interference, presented at the IF inputs, may saturate the  
IF limiter and reduce the gain of the wanted IF signal. The  
receiver’s 3dB input-limiting sensitivity will be affected  
correspondingly. The interstage bandpass filter will mini-  
mize both 2XLO feedthrough and the receiver’s noise  
bandwidth. Therefore, the receiver’s input sensitivity can  
be improved. Without the interstage filter, the second  
stage will be limited by the broadband noise amplified by  
the first stage. The noise bandwidth in this case can be as  
highas500MHz.The3dBinputlimitingsensitivityisabout  
–79dBm at an IF frequency of 280MHz when terminated  
with 200at the input. The differential IF input impedance  
is 2.2k. Therefore, a 240resistor is used for R3 as  
shown in Figure 3. Using a bandpass filter with 50MHz  
bandwidth, the input sensitivity is improved to –86dBm.  
C
C5  
S1  
3.3pF  
22nF  
IF  
+
TO IF  
INPUT  
L
SH  
120nH  
C
3.3pF  
S2  
TO IF  
5502 F01  
Figure 1. IF Input Matching Network at 280MHz  
Table 1. The Component Values of Matching Network  
LSH, CS1 and CS2  
f
(MHz)  
70  
L
(nH)  
C /C (pF)  
S1 S2  
IF  
SH  
642  
13.7  
9.6  
6.4  
4.8  
3.8  
3.2  
2.7  
2.4  
100  
150  
200  
250  
300  
350  
400  
422  
256  
176  
130  
101  
80.4  
66.0  
Inanapplicationwherealowerinputsensitivityissatisfac-  
tory, oneoftheIFinputscanbesimplyAC-terminatedwith  
a 50resistor and the other AC-grounded. The input  
receiver’s sensitivity is about – 76dBm at 280MHz in this  
case.  
6
LT5502  
U
W U U  
APPLICATIO S I FOR ATIO  
The receive signal strength indicator (RSSI) is built into  
the IF limiter. The input IF signal is detected in a current  
output proportional to the IF input power. The current  
outputsfromtwocascadedstagesofIFamplifiers/limiters  
are summed and converted into the RSSI voltage. The  
RSSI output has an excellent linear range of 90dB. The  
characteristic of RSSI output voltage versus input IF  
power is independent of temperature and process varia-  
tion. The nominal output impedance is 3.8k. An off-chip  
capacitor C7 is needed to reduce the RSSI voltage ripple.  
Its value can be determined using the following formula:  
matched in gain response and group delay. The 3dB  
corner frequency is 7.7MHz and the group delay ripple is  
16.4ns. The I/Q differential outputs have output driving  
capability of 1.5kwith maximum capacitive loading of  
10pF. The outputs are internally biased at VCC –1.16V.  
Figure 2 shows the simplified output circuit schematic of  
I-channel or Q-channnel.  
V
CC  
I-CHANNEL  
(OR Q-CHANNEL):  
DIFFERENTIAL  
1
+
SIGNALS FROM LPF  
I
OUT  
C7 ≥  
F
+
(OR Q  
)
OUT  
760π • f  
IF  
I
OUT  
(OR Q  
)
OUT  
I/Q Demodulators  
+
+
200µA  
200µA  
The quadrature demodulators are double balanced mix-  
ers, down converting the limited IF signals from the IF  
Limiter into I/Q baseband signals. The quadrature LO  
carriers are obtained from the internal quadrature LO  
carrier generator. The nominal output voltage of differen-  
tial I/Q baseband signals is about 850mVP-P. These mag-  
nitudes are well matched, and their phases are 90° apart.  
5502 F02  
Figure 2. Simplified Circuit Schematic  
of I-Channel (or Q-Channel) Outputs  
The I/Q baseband outputs can be directly DC-coupled to  
the inputs of a baseband chip. For AC-coupled applica-  
tions with large coupling capacitors, the STBY pin can be  
used to prebias the outputs to the desired quiescent  
voltage at much reduced current. This mode only draws  
2.6mA. When the EN pin is then turned on, the chip is  
quickly switched to normal operating mode without long  
time constants due to charging or discharging the large  
coupling capacitors. Table 2 shows the logic of the EN pin  
andSTBYpin.Inbothnormaloperatingmodeandstandby  
mode, the maximum discharging current is about 200µA,  
and the maximum charging current is more than 10mA.  
Quadrature LO Carrier Generator  
The quadrature LO carrier generator consists of a divide-  
by-two circuit and LO buffers. An input signal (2XLO) with  
twice the desired LO carrier frequency is used as the clock  
for the divide-by-two circuit, producing the quadrature LO  
carriers for the demodulators. The outputs are buffered  
and then drive the down converting mixers. With a full  
differential approach, the quadrature LO carriers are well  
matched.  
Integrated Low Pass Filters  
Table 2. The logic of different operating modes  
EN  
STBY  
Low  
Comments  
Shutdown Mode  
Standby Mode  
The 5th order integrated lowpass filters are used for  
filtering the down converted baseband outputs for both  
the I-channel and the Q-channel. They serve as anti-  
aliasing and pulse-shaping filters. The I/Q filters are well  
Low  
Low  
High  
High  
Low or High  
Normal Operation Mode  
7
LT5502  
U
TYPICAL APPLICATIO S  
+
+
V
CC2  
I
I
Q
Q
OUT  
OUT  
OUT  
OUT  
C9  
1µF  
C24  
10µF  
C20  
1µF  
C25  
10µF  
R15  
51.1k  
R8  
51.1k  
R9  
51.1k  
R14  
51.1k  
C10  
1µF  
C14  
1µF  
V
CC1  
7
7
C13  
1µF  
C17  
1µF  
3
3
2
R7  
49.9  
R16  
49.9  
+
+
J2  
J3  
U2  
LT1809CS  
U3  
LT1809CS  
6
6
C1  
1µF  
C2  
1nF  
Q
I
OUT  
OUT  
2
4
4
R6  
2.55k  
R12  
2.55k  
C11  
1µF  
C15  
1µF  
U1  
C12  
1.8pF  
C16  
1.8pF  
R10  
5.11k  
R13  
5.11k  
LT5502  
24  
1
2
3
4
5
6
7
8
9
C3  
1nF  
+
+
I
I
Q
OUT  
OUT  
OUT  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
Q
OUT  
V
T1  
JTX-4-10T  
T2  
GND  
J1  
J4  
CC  
JTX-4-10T  
V
GND  
GND  
2XLO  
2XLO  
CC  
IF  
IN  
÷2  
2XLO  
6
1
GND  
+
+
C5  
IF  
IF  
R3  
R4  
22nF  
240Ω  
240Ω  
6
1
4:1  
MINI-CIRCUIT  
GND  
GND  
EN  
V
V
CC  
CC  
1:4  
10  
11  
12  
MINI-CIRCUIT  
RSSI  
RSSI  
GND  
IFt  
STBY  
C18  
1µF  
R2  
20k  
+
IFt  
V
C4  
1nF  
C7  
1.8pF  
CC2  
C23  
1µF  
1 = EN  
R1  
20k  
L1  
C8  
2 = STBY  
C19  
22nF  
SW1  
R17  
IF INTERSTAGE  
OPTIONAL CIRCUIT  
5502 F02  
Figure 3. Evaluation Circuit Schematic With I/Q Output Buffers  
8
LT5502  
U
TYPICAL APPLICATIO S  
Figure 4.Component Side Silkscreen of Evaluation Board  
Figure 5. Component Side Layout of Evaluation Board  
9
LT5502  
U
TYPICAL APPLICATIO S  
Figure 6.Bottom Side Silkscreen of Evaluation Board  
Figure 7. Bottom Side Layout of Evaluation Board  
10  
LT5502  
U
PACKAGE DESCRIPTIO  
Dimensions in inches (millimeters) unless otherwise noted.  
GN Package  
24-Lead Plastic SSOP (Narrow 0.150)  
(LTC DWG # 05-08-1641)  
0.337 – 0.344*  
(8.560 – 8.738)  
0.033  
(0.838)  
REF  
24 23 22 21 20 19 18 17 16 15 14 13  
0.229 – 0.244  
(5.817 – 6.198)  
0.150 – 0.157**  
(3.810 – 3.988)  
1
2
3
4
5
6
7
8
9 10 11 12  
0.015 ± 0.004  
(0.38 ± 0.10)  
0.053 – 0.068  
(1.351 – 1.727)  
0.004 – 0.0098  
(0.102 – 0.249)  
× 45°  
0.007 – 0.0098  
(0.178 – 0.249)  
0° – 8° TYP  
0.016 – 0.050  
(0.406 – 1.270)  
0.008 – 0.012  
(0.203 – 0.305)  
0.0250  
(0.635)  
BSC  
* DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
** DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
GN24 (SSOP) 1098  
11  
LT5502  
U
TYPICAL APPLICATIO  
Example: 2.4GHz to 2.5GHz Receiver Application (RX IF = 280MHz)  
2V  
0.1µF  
100pF  
V
BASEBAND  
4,16,17,22  
LPF  
13  
CC  
12  
RX INPUT:  
2.4GHz TO  
2.5GHz  
I
PROCESSOR  
280MHz IF  
SAW BP  
FILTER  
I MIXER  
0°  
LO  
BUFFER  
OUTPUTS  
1
2
A/D  
LIMITER  
1
LIMITER  
2
3.3pF 22nF  
120nH  
6
7
RX  
BUFFER  
BUFFER  
FRONT END  
Q
1st LO,  
2.12GHz  
TO 2.22GHz  
OUTPUTS  
24  
23  
90°  
A/D  
Q MIXER  
MAIN  
SYNTHESIZER  
LPF  
11  
10  
f/2  
STBY  
EN  
3.3pF  
LT5502  
19  
15  
18  
RSSI  
3,5,8,9,  
14,20,21  
1nF  
1nF  
1.8pF  
2.7pF  
30nH  
30nH  
2nd LO,  
560MHz  
200Ω  
IF  
SYNTHESIZER  
2.7pF  
5502 TA02  
5502i LT/TP 0101 2K • PRINTED IN USA  
12 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  
LINEAR TECHNOLOGY CORPORATION 2001  

相关型号:

LT5502EGN

400MHz Quadrature IF Demodulator with RSSI
Linear

LT5502EGN#TR

LT5502 - 400MHz Quadrature IF Demodulator with RSSI; Package: SSOP; Pins: 24; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5503

1.2GHz to 2.7GHz Direct IQ Modulator and Mixer
Linear

LT5503EFE

1.2GHz to 2.7GHz Direct IQ Modulator and Mixer
Linear

LT5503EFE#PBF

LT5503 - 1.2GHz to 2.7GHz Direct IQ Modulator and Mixer; Package: TSSOP; Pins: 20; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5503EFE#TR

LT5503 - 1.2GHz to 2.7GHz Direct IQ Modulator and Mixer; Package: TSSOP; Pins: 20; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5503EFE#TRPBF

LT5503 - 1.2GHz to 2.7GHz Direct IQ Modulator and Mixer; Package: TSSOP; Pins: 20; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5503EFE-PBF

1.2GHz to 2.7GHz Direct IQ Modulator and Mixer
Linear

LT5503EFE-TRPBF

1.2GHz to 2.7GHz Direct IQ Modulator and Mixer
Linear

LT5503_09

1.2GHz to 2.7GHz Direct IQ Modulator and Mixer
Linear

LT5504

800MHz to 2.7GHz RF Measuring Receiver
Linear

LT5504EMS8

800MHz to 2.7GHz RF Measuring Receiver
Linear