LT5581IDDB-PBF [Linear]

6GHz RMS Power Detector with 40dB Dynamic Range; 6GHz的RMS功率检波器与40分贝动态范围
LT5581IDDB-PBF
型号: LT5581IDDB-PBF
厂家: Linear    Linear
描述:

6GHz RMS Power Detector with 40dB Dynamic Range
6GHz的RMS功率检波器与40分贝动态范围

文件: 总16页 (文件大小:495K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT5581  
6GHz RMS Power Detector  
with 40dB Dynamic Range  
FEATURES  
DESCRIPTION  
The LT®5581 is a 10MHz to 6GHz, low power monolithic  
precision RMS power detector. The RMS detector uses  
a proprietary technique to accurately measure the RF  
powerfrom34dBmto+6dBm(at2.14GHz)ofmodulated  
signals with a crest factor as high as 12dB. It outputs a DC  
voltage in linear scale proportional to an RF input signal  
power in dBm. The LT5581 is suitable for precision power  
measurementandcontrolforawidevarietyofRFstandards,  
including GSM/EDGE, CDMA, CDMA2000, W-CDMA, TD-  
SCDMA, UMTS, LTE and WiMAX, etc. The final DC output  
isconnectedinserieswithanon-chip300Ωresistor,which  
enables further filtering of the output modulation ripple  
with just a single off-chip capacitor.  
n
Frequency Range: 10MHz to 6GHz  
n
Accurate Power Measurement of High Crest Factor  
(Up to 12dB) Waveforms  
40dB Log Linear Dynamic Range  
n
n
Exceptional Accuracy Over Temperature  
n
Fast Response Time: 1μs Rise, 8μs Fall  
n
Low Power: 1.4mA at 3.3V  
n
Log-Linear DC Output vs Input RF Power in dBm  
n
Small 3mm × 2mm 8-Pin DFN Package  
Single-Ended RF Input  
n
APPLICATIONS  
n
GSM/EDGE, CMDA, CDMA2000, W-CDMA, LTE,  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners. Protected by U.S. Patents,  
including 7342431.  
WiMAX RF Power Control  
n
Pico-Cells, Femto-Cells RF Power Control  
Wireless Repeaters  
CATV/DVB Transmitters  
MIMO Wireless Access Points  
Portable RMS Power Measurement Instrumentation  
n
n
n
n
TYPICAL APPLICATION  
10MHz to 6GHz Infrastructure Power  
Amplifier Level Control  
Linearity Error vs RF Input Power,  
2140MHz Modulated Waveforms  
DIRECTIONAL  
COUPLER  
3
2
POWER  
AMP  
T
= 25°C  
A
RF  
IN  
RF  
OUT  
C
V
MATCH  
CC  
2.7V TO 5.25V  
DC  
DC  
1
0
0.1μF  
0.01μF  
DIGITAL  
50ꢀ  
1
8
L
MATCH  
C
V
POWER  
SQ  
CC  
1000pF  
CONTROL  
2
7
RF  
EN  
IN  
CW  
WCDMA, UL  
–1  
LT5581  
3
4
6
5
ADC  
GND  
WCDMA DL 1C  
WCDMA DL 4C  
LTE DL 1C  
V
OUT  
68ꢀ  
–2  
–3  
GND GND GND  
9
C
FILT  
LTE DL 4C  
0.01μF  
–30 –25 –20 –15 –10 –5  
RF INPUT POWER (dBm)  
0
5
10  
–35  
5581 TA01a  
5581 TA01b  
5581f  
1
LT5581  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
Supply Voltage.........................................................5.5V  
Maximum Input Signal Power—Average.............15dBm  
Maximum Input Signal Power—Peak (Note 7) ....25dBm  
TOP VIEW  
V
1
2
3
4
8
7
6
5
C
SQ  
CC  
EN  
RF  
IN  
DC Voltage at RF ....................................... –0.3V to 2V  
9
IN  
V
GND  
GND  
OUT  
V
Voltage....................................–0.3V to V + 0.3V  
OUT  
CC  
GND  
Maximum Junction Temperature, T  
............... 150°C  
JMAX  
Operating Temperature Range.................. –40°C to 85°C  
DDB PACKAGE  
8-LEAD (3mm s 2mm) PLASTIC DFN  
= 150°C, θ = 76°C/W  
Storage Temperature Range................... –65°C to 150°C  
T
JMAX  
JA  
EXPOSED PAD (PIN 9) IS GND, MUST BE SOLDERED TO PCB  
CAUTION:Thispartissensitivetoelectrostaticdischarge.It  
isveryimportantthatproperESDprecautionsbeobserved  
when handling the LT5581.  
ORDER INFORMATION  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING  
PACKAGE DESCRIPTION  
8-Lead (3mm × 2mm) Plastic DFN  
TEMPERATURE RANGE  
–40°C to 85°C  
LT5581IDDB#PBF  
LT5581IDDB#TRPBF  
LDKM  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C, VCC = 3.3V, EN = 3.3V, unless otherwise noted (Note 2). Test circuit is shown in Figure 1.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
AC Input  
Input Frequency Range (Note 4)  
Input Impedance  
10-6000  
205||1.6  
MHz  
ꢀ||pF  
f
= 450MHz  
RF  
RF Input Power Range  
Externally Matched to 50ꢀ Source  
1dB Linearity Error  
–34 to 6  
40  
dBm  
dB  
Linear Dynamic Range, CW (Note 3)  
Linear Dynamic Range, CDMA (Note 3)  
Output Slope  
1dB Linearity Errorꢁ CDMA 4-Carrier  
40  
dB  
31  
mV/dB  
dBm  
dB  
Logarithmic Intercept (Note 5)  
Output Variation vs Temperature  
–42  
1
Normalized to Output at 25˚C, –40°C < T < 85°Cꢁ  
A
P
IN  
= –34 to +6dBm  
Output Variation vs Temperature  
Deviation from CW Responseꢁ  
Normalized to Output at 25°C, –40°C < T < 85°Cꢁ  
IN  
0.5  
dB  
A
P
= –27 to –10dBm  
TETRA π/4 DQPSK  
CDMA 4-Carrier 64-Channel Fwd 1.23Mcps  
0.1  
0.5  
dB  
dB  
P
= –34dBm to 0dBm  
IN  
5581f  
2
LT5581  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C, VCC = 3.3V, EN = 3.3V, unless otherwise noted (Note 2). Test circuit is shown in Figure 1.  
PARAMETER  
CONDITIONS  
At RF Inputꢁ CW Inputꢁ P = 0dBm  
MIN  
TYP  
–57  
–52  
MAX  
UNITS  
dBc  
2nd Order Harmonic Distortion  
3rd Order Harmonic Distortion  
IN  
At RF Inputꢁ CW Inputꢁ P = 0dBm  
dBc  
IN  
f
RF  
= 880MHz  
RF Input Power Range  
Externally Matched to 50ꢀ Source  
1dB Linearity Error  
–34 to 6  
40  
dBm  
dB  
Linear Dynamic Range, CW (Note 3)  
Linear Dynamic Range, EDGE (Note 3)  
Output Slope  
1dB Linearity Errorꢁ EDGE 3π/8-Shifted 8PSK  
40  
dB  
31  
mV/dB  
dBm  
dB  
Logarithmic Intercept (Note 5)  
Output Variation vs Temperature  
–42  
1
Normalized to Output at 25°C, –40°C < T < 85°Cꢁ  
A
P
= –34 to +6dBm  
IN  
Output Variation vs Temperature  
Normalized to Output at 25°C, –40°C < T < 85°Cꢁ  
IN  
0.5  
0.1  
dB  
dB  
A
P
= –27 to –10dBm  
Deviation from CW Response, Pin = –34 to +6dBm EDGE 3π/8 Shifted 8PSK  
= 2140MHz  
f
RF  
RF Input Power Range  
Externally Matched to 50ꢀ Source  
1dB Linearity Error  
–34 to 6  
43  
dBm  
dB  
Linear Dynamic Range, CW (Note 3)  
Linear Dynamic Range, WCDMA (Note 3)  
Output Slope  
1dB Linearity Errorꢁ 4-Carrier WCDMA  
37  
dB  
31  
mV/dB  
dBm  
dB  
Logarithmic Intercept (Note 5)  
Output Variation vs Temperature  
–42  
1
Normalized to Output at 25°C, –40°C < T < 85°Cꢁ  
A
P
= –34 to 6dBm  
IN  
Output Variation vs Temperature  
Normalized to Output at 25°C, –40°C < T < 85°Cꢁ  
IN  
0.5  
dB  
A
P
= –27 to –10dBm  
Maximum Deviation from CW Response  
IN  
WCDMA 1-Carrier Uplink  
WCDMA 64-Channel 4-Carrier Downlink  
0.1  
0.5  
dB  
dB  
P
= –34 to –4dBm  
f
= 2600MHz  
RF  
RF Input Power Range  
Externally Matched to 50ꢀ Source  
1dB Linearity Error  
–34 to 6  
dBm  
dB  
Linear Dynamic Range, CW (Note 3)  
Output Slope  
40  
31  
–42  
1
mV/dB  
dBm  
dB  
Logarithmic Intercept (Note 5)  
Output Variation vs Temperature  
Normalized to Output at 25°C, –40°C < T < 85°Cꢁ  
A
P
= –34 to +6dBm  
IN  
Output Variation vs Temperature  
Normalized to Output at 25°C, –40°C < T < 85°Cꢁ  
IN  
0.5  
dB  
A
P
= –27 to –10dBm  
Maximum Deviation from CW Response  
IN  
WiMAX OFDMA Preamble  
WiMAX OFDM Burst  
0.1  
0.5  
dB  
dB  
P
= –34 to 2dBm  
f
= 3500MHz  
RF  
RF Input Power Range  
Externally Matched to 50ꢀ Source  
1dB Linearity Error  
–30 to 6  
dBm  
dB  
Linear Dynamic Range, CW (Note 3)  
Output Slope  
36  
31  
–41  
1
mV/dB  
dBm  
dB  
Logarithmic Intercept (Note 5)  
Output Variation vs Temperature  
Normalized to Output at 25°C, –40°C < T < 85°Cꢁ  
A
P
= –30 to +6dBm  
IN  
5581f  
3
LT5581  
The l denotes the specifications which apply over the full operating temperature  
ELECTRICAL CHARACTERISTICS  
range, otherwise specifications are at TA = 25°C, VCC = 3.3V, EN = 3.3V, unless otherwise noted (Note 2). Test circuit is shown in Figure 1.  
PARAMETER  
CONDITIONS  
Normalized to Output at 25°C, –40°C < T < 85°Cꢁ  
MIN  
TYP  
MAX  
UNITS  
Output Variation vs Temperature  
0.5  
dB  
A
P
= –27 to –10dBm  
IN  
Deviation from CW Response  
IN  
WiMAX OFDMA Preamble  
WiMAX OFDM Burst  
0.1  
0.5  
dB  
dB  
P
= –34 to –4dBm  
f
= 5800MHz  
RF  
RF Input Power Range  
Externally Matched to 50ꢀ Source  
1dB Linearity Error  
–25 to 6  
dBm  
dB  
Linear Dynamic Range, CW (Note 3)  
Output Slope  
31  
31  
–33  
1
mV/dB  
dBm  
dB  
Logarithmic Intercept (Note 5)  
Output Variation vs Temperature  
Normalized to Output at 25°C, –40°C < T < 85°Cꢁ  
A
P
= –25 to +6dBm  
IN  
Output Variation vs Temperature  
Normalized to Output at 25°C, –40°C < T < 85°Cꢁ  
IN  
0.5  
0.2  
dB  
dB  
A
P
= –20 to +6dBm  
Deviation from CW Response  
Output  
WiMAX OFDM Burstꢁ P = –25 to 6dBm  
IN  
Output DC Voltage  
No Signal Applied to RF Input  
180  
300  
5/5  
1
mV  
Output Impedance  
Internal Series Resistor Allows for Off-Chip Filter Cap  
Output Current Sourcing/Sinking  
Rise Time  
mA  
μs  
0.2V to 1.6V, 10% to 90%, f = 2140MHz  
RF  
Fall Time  
1.6V to 0.2V, 10% to 90%, f = 2140MHz  
8
μs  
RF  
Power Supply Rejection Ratio (Note 6)  
Integrated Output Voltage Noise  
Enable (EN) Low = Off, High = On  
EN Input High Voltage (On)  
EN Input Low Voltage (Off)  
Enable Pin Input Current  
Turn-On Timeꢁ CW RF input  
Settling Timeꢁ RF Pulse  
Power Supply  
For Over Operating Input Power Range  
49  
dB  
1kHz to 6.5kHz Integration BW, P = 0dBm CW  
150  
μV  
RMS  
IN  
l
l
2
V
V
0.3  
EN = 3.3V  
20  
1
μA  
μs  
μs  
V
Within 10% of Final Valueꢁ P = 0dBm  
IN  
OUT  
OUT  
V
Within 10% of Final Valueꢁ P = 0dBm  
1
IN  
l
Supply Voltage  
2.7  
3.3  
1.4  
0.2  
5.25  
6
V
mA  
μA  
Supply Current  
No RF Input Signal  
EN = 0.3V, V = 3.3V  
Shutdown Current  
CC  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 4: An external capacitor at the C pin should be used for input  
frequencies below 250MHz. Lower frequency operation results in  
excessive RF ripple in the output voltage.  
SQ  
Note 5: Logarithmic intercept is an extrapolated input power level from the  
Note 2: The LT5581 is guaranteed to meet specified performance from  
best fitted log-linear straight line, where the output voltage is 0V.  
–40°C to 85°C.  
Note 6: PSRR is determined as the dB value of the change in V  
voltage  
OUT  
Note 3: The linearity error is calculated by the difference between the  
incremental slope of the output and the average output slope from  
–20dBm to 0dBm. The dynamic range is defined as the range over which  
the linearity error is within 1dB.  
over the change in V supply voltage.  
Note 7: Not production tested. Guaranteed by design and correlation to  
production tested parameters.  
CC  
5581f  
4
LT5581  
TYPICAL PERFORMANCE CHARACTERISTICS  
Performance characteristics taken at VCC = 3.3V,  
EN = 3.3V and TA = 25°C, unless otherwise noted. (Test circuit shown in Figure 1)  
Output Voltage vs Frequency  
Output Voltage vs Frequency  
Linearity Error vs Frequency  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
3
T
= 25°C  
T
= 25°C  
T = 25°C  
A
A
A
10MHz  
880MHz  
2
450MHz  
880MHz  
2.14GHz  
2.6GHz  
3.5GHz  
5.8GHz  
2.14GHz  
2.6GHz  
3.5GHz  
1
0
10MHz  
450MHz  
880MHz  
2.14GHz  
2.6GHz  
3.5GHz  
5.8GHz  
–1  
–2  
–3  
–40  
–30 –25 –20 –15 –10 –5  
RF INPUT POWER (dBm)  
0
5
10  
–40  
–30 –25 –20 –15 –10 –5  
RF INPUT POWER (dBm)  
0
5
10  
–40  
–35  
–30 –25 –20 –15 –10 –5  
RF INPUT POWER (dBm)  
0
5
10  
–35  
–35  
5581 G01  
5581 G02  
5581 G03  
Output Voltage and Linearity Error  
at 450MHz  
Linearity Error Temperature  
Linearity Error vs RF Input Power,  
450MHz Modulated Waveforms  
Variation from 25°C at 450MHz  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
2.5  
3
2
3
T
= 25°C  
25°C  
A
2.0  
85°C  
CW  
TETRA  
CDMA 4C  
2
40°C  
1.5  
1.0  
85°C  
1
1
0
0.5  
0
0
–40°C  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–1  
–1  
–2  
–3  
–2  
–3  
5
10  
–40  
–30 –25 –20 –15 –10 –5  
RF INPUT POWER (dBm)  
0
5
10  
–30 –25 –20 –15 –10 –5  
RF INPUT POWER (dBm)  
0
5
10  
–40  
–30 –25 –20 –15 –10 –5  
RF INPUT POWER (dBm)  
0
–35  
–35  
–35  
5581 G05  
5581 G06  
5581 G04  
Linearity Error Temperature  
Variation from 25°C at 880MHz  
Linearity Error vs RF Input Power,  
880MHz Modulated Waveforms  
Output Voltage and Linearity Error  
at 880MHz  
3
2
3
2
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
2.5  
T
= 25°C  
25°C  
A
2.0  
85°C  
CW  
EDGE  
40°C  
1.5  
1.0  
85°C  
1
0
1
0
0.5  
0
–40°C  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–1  
–1  
–2  
–3  
–2  
–3  
–40  
–30 –25 –20 –15 –10 –5  
RF INPUT POWER (dBm)  
0
5
10  
–30 –25 –20 –15 –10 –5  
RF INPUT POWER (dBm)  
0
5
10  
–35  
–35  
–40  
–30 –25 –20 –15 –10 –5  
RF INPUT POWER (dBm)  
0
5
10  
–35  
5581 G08  
5581 G09  
5581 G07  
5581f  
5
LT5581  
TYPICAL PERFORMANCE CHARACTERISTICS  
Output Voltage and Linearity Error  
at 2140MHz  
Linearity Error Temperature  
Linearity Error vs RF Input Power,  
2140MHz Modulated Waveforms  
Variation from 25°C at 2140MHz  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
2.5  
3
2
3
2
T
= 25°C  
25°C  
A
2.0  
85°C  
40°C  
1.5  
1.0  
85°C  
1
0
1
0
0.5  
0
–40°C  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
CW  
WCDMA, UL  
–1  
–1  
WCDMA DL 1C  
WCDMA DL 4C  
LTE DL 1C  
–2  
–3  
–2  
–3  
LTE DL 4C  
–40  
–30 –25 –20 –15 –10 –5  
RF INPUT POWER (dBm)  
0
5
10  
–30 –25 –20 –15 –10 –5  
RF INPUT POWER (dBm)  
0
5
10  
–35  
–20  
5
10  
–35  
–40  
–30 –25  
–15 –10 –5  
0
–35  
RF INPUT POWER (dBm)  
5581 G10  
5581 G12  
5581 G11  
Output Voltage and Linearity Error  
at 2600MHz  
Linearity Error Temperature  
Linearity Error vs RF Input Power,  
2.6GHz Modulated Waveforms  
Variation from 25°C at 2600MHz  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
2.5  
3
2
3
2
25°C  
T
= 25°C  
A
2.0  
85°C  
40°C  
1.5  
1.0  
85°C  
1
0
1
0
0.5  
0
–40°C  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–1  
–1  
CW  
–2  
–3  
–2  
–3  
WiMax OFDM PREAMBLE  
WiMax OFDM BURST  
WiMax OFDMA PREAMBLE  
–40  
–30 –25 –20 –15 –10 –5  
RF INPUT POWER (dBm)  
0
5
10  
–40  
–30 –25 –20 –15 –10 –5  
RF INPUT POWER (dBm)  
0
5
10  
–35  
–35  
–20  
5
10  
–30 –25  
–15 –10 –5  
0
–35  
RF INPUT POWER (dBm)  
5581 G13  
5581 G14  
5581 G15  
Linearity Error Temperature  
Variation from 25°C at 3500MHz  
Linearity Error vs RF Input Power,  
3.5GHz Modulated Waveforms  
Output Voltage and Linearity Error  
at 3500MHz  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
2.5  
3
2
3
2
T
= 25°C  
25°C  
A
2.0  
85°C  
40°C  
1.5  
1.0  
85°C  
1
0
1
0
0.5  
0
–40°C  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–1  
–1  
CW  
WiMax OFDMA PREAMBLE  
WiMax OFDM BURST  
–2  
–3  
–2  
–3  
–40  
–30 –25 –20 –15 –10 –5  
RF INPUT POWER (dBm)  
0
5
10  
–30 –25 –20 –15 –10 –5  
RF INPUT POWER (dBm)  
0
5
10  
–35  
–20  
5
10  
–35  
–40  
–30 –25  
–15 –10 –5  
0
–35  
RF INPUT POWER (dBm)  
5581 G16  
5581 G18  
5581 G17  
5581f  
6
LT5581  
TYPICAL PERFORMANCE CHARACTERISTICS  
Output Voltage and Linearity Error  
at 5800MHz  
Linearity Error Temperature  
Linearity Error vs RF Input Power,  
5.8GHz Modulated Waveforms  
Variation from 25°C at 5800MHz  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
2.5  
3
2
3
2
T
= 25°C  
25°C  
A
2.0  
85°C  
40°C  
1.5  
1.0  
1
0
1
0
85°C  
0.5  
0
–40°C  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–1  
–1  
–2  
–3  
–2  
–3  
CW  
WiMax OFDM BURST  
–40  
–30 –25 –20 –15 –10 –5  
RF INPUT POWER (dBm)  
0
5
10  
–40  
–30 –25 –20 –15 –10 –5  
RF INPUT POWER (dBm)  
0
5
10  
–30 –25 –20 –15 –10 –5  
RF INPUT POWER (dBm)  
0
5
10  
–35  
–35  
–35  
5581 G19  
5581 G20  
5581 G21  
Slope vs Frequency  
Supply Current vs Supply Voltage  
Slope Distribution vs Temperature  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
50  
40  
30  
34  
32  
30  
28  
26  
T
T
T
= –40°C  
= 25°C  
= 85°C  
T
= 25°C  
A
A
A
A
85°C  
25°C  
–40°C  
20  
10  
0
3.4 3.8 4.2 4.6  
SUPPLY VOLTAGE (V)  
5
5.4  
2.6  
3
0
1
2
3
4
5
6
28  
29  
30  
31  
32  
33  
34  
FREQUENCY (GHz)  
SLOPE (mV/dB)  
5581 G23  
5581 G24  
5581 G22  
Logarithmic Intercept  
vs Frequency  
Logarithmic Intercept Distribution  
vs Temperature  
50  
40  
30  
–30  
–35  
–40  
–45  
–50  
T
T
T
= –40°C  
= 25°C  
= 85°C  
T
= 25°C  
A
A
A
A
20  
10  
0
–48 –47 –46 –45 –44 –43 –42 –41  
0
1
2
3
4
5
6
FREQUENCY (GHz)  
LOGARITHMIC INTERCEPT (dBm)  
5581 G26  
5581 G25  
5581f  
7
LT5581  
TYPICAL PERFORMANCE CHARACTERISTICS  
Output Voltage and Linearity Error  
vs VCC at 2140MHz  
Supply Current vs RF Input Power  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
2.5  
16  
14  
12  
10  
8
T
= 25°C  
T
= 25°C  
A
A
2.0  
3.3V  
5V  
1.5  
1.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
6
4
2
0
–40  
–35  
–30 –25 –20 –15 –10 –5  
RF INPUT POWER (dBm)  
0
5
10  
–25 –20  
–10 –5  
0
5
10 15  
–15  
RF INPUT POWER (dBm)  
5581 G28  
5581 G27  
Output Transient Response with  
RF and EN Pulse  
Return Loss vs Frequency  
Reference in Figure 1 Test Circuit  
0
–5  
3.0  
2.5  
10  
5
T
= 25°C, V = 5V  
CC  
T
= 25°C  
A
A
RF&EN  
PULSE  
OFF  
RF&EN  
PULSE  
OFF  
RF & EN PULSE ON  
2.0  
0
–10  
–15  
–20  
–25  
–30  
P
= 10dBm  
= 0dBm  
IN  
P
1.5  
1.0  
0.5  
0
–5  
IN  
P
= –10dBm  
IN  
–10  
–15  
–20  
P
P
= –20dBm  
= –30dBm  
IN  
IN  
–0.5  
–25  
0
2
3
4
5
6
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
TIME (ms)  
1
1
FREQUENCY (GHz)  
5581 G30  
L1, C1 = 2.2nH, 1.5pF  
L1, C1 = 1nH, 1.5pF  
L1, C1 = 0nH, 1pF  
L1, C1 = 0nH, 0.5pF  
L1, C1 = 0nH, 0pF  
5581 G29  
Output Transient Response with  
CW RF and EN Pulse  
Output Transient Response  
3.0  
2.5  
4
2
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
10  
5
T
= 25°C  
T
= 25°C, V = 5V  
CC  
A
A
EN PULSE ON  
RF PULSE ON  
EN  
PULSE  
OFF  
EN  
PULSE  
OFF  
RF  
RF  
PULSE  
OFF  
PULSE  
OFF  
2.0  
0
0
P
= 10dBm  
= 0dBm  
IN  
1.5  
1.0  
0.5  
0
–2  
–4  
–6  
–8  
P
= 10dBm  
= 0dBm  
IN  
P
IN  
–5  
–10  
–15  
–20  
P
P
= –10dBm  
= –20dBm  
= –30dBm  
IN  
IN  
IN  
IN  
P
P
P
= –10dBm  
IN  
P
P
= –20dBm  
= –30dBm  
IN  
IN  
–0.5  
–10  
0.2 0.3 0.4 0.5 0.6  
TIME (ms)  
1
0
0.1  
0.7 0.8 0.9  
20 30 40 50 60  
TIME (μs)  
100  
0
10  
70 80 90  
5581 G32  
5581 G31  
5581f  
8
LT5581  
PIN FUNCTIONS  
V
(Pin 1): Power Supply, 2.7V to 5.25V. V  
C (Pin 8): Optional Low Frequency Range Extension  
SQ  
Capacitor. This pin is for frequencies below 250MHz. Use  
0.01μF from pin to ground for 10MHz operation.  
CC  
CC  
should be bypassed with a 0.1μF ceramic capacitor.  
EN (Pin 2): Chip Enable. A logic low or no-connect on the  
enable pin shuts down the part. A logic high enables the  
part.Aninternal500kpull-downresistorensuresthepartis  
off when the enable driver is in a three-state condition.  
Exposed Pad (Pin 9): Ground. The Exposed Pad must  
be soldered to the PCB. For high frequency oper-  
ation, the backside ground connection should have a low  
inductance connection to the PCB ground, using many  
through-hole vias. See the layout information in the Ap-  
plications Information section.  
V
(Pin 3): Detector Output.  
OUT  
GND (Pins 4, 5, 6): Ground.  
RF (Pin7):RFInput.ShouldbeDC-blockedwithcoupling  
IN  
capacitorꢁ 1000pF recommended. This pin has an internal  
200ꢀ termination.  
BLOCK DIAGRAM  
9
LT5581  
EXPOSED  
PAD  
OUTPUT  
BUFFER  
150kHz LPF  
300ꢀ  
RF  
V
OUT  
IN  
RMS  
DETECTOR  
7
3
BIAS  
EN  
GND  
C
V
CC  
SQ  
8
2
1
4
5
6
5581 BD  
5581f  
9
LT5581  
TEST CIRCUIT  
C7  
0.1μF  
V
CC  
C6  
100pF  
C3  
0.01μF  
1
8
7
6
5
EN  
C
V
SQ  
CC  
C5  
OPT  
C2  
1000pF  
L1  
2.2nH  
RF  
IN  
2
3
4
RF  
EN  
IN  
LT5581  
R3  
0ꢀ  
C1  
1.5pF  
R2  
68ꢀ  
V
OUT  
NC  
NC  
GND  
V
OUT  
C4  
OPT  
NC  
GND GND GND  
9
PINS 4, 5, 6: OPTIONAL GROUND  
5581 F01  
RF  
GND  
0.018" EE = 4.4  
0.018"  
0.062"  
DC  
GND  
REF DES  
C6  
VALUE  
SIZE  
0603  
0603  
0603  
0603  
0603  
PART NUMBER  
RF MATCH  
IN  
FREQUENCY  
RANGE  
L1  
C1  
1.5pF  
1.5pF  
1pF  
100pF  
0.1μF  
AVX 06033A101KAT2A  
AVX 06033C104KAT2A  
AVX 06033C103KAT2A  
AVX 06033C102KAT2A  
1GHz to 2.2GHz  
2GHz to 2.6GHz  
2.6GHz to 3.4GHz  
3.8GHz to 5.5GHz  
4.6GHz to 6GHz  
2.2nH  
C7  
1.2nH  
C3  
0.01μF  
1000pF  
68ꢀ  
0
0
0
C2  
0.5pF  
0
R2  
Figure 1. Evaluation Circuit Schematic  
5581f  
10  
LT5581  
APPLICATIONS INFORMATION  
OPERATION  
Table 1. RF Input Impedance  
INPUT  
S11  
To achieve an accurate average power measurement of  
the high crest factor modulated RF signals, the LT5581  
combines a proprietary high speed power measurement  
subsystem with an internal 150kHz low pass averag-  
ing filter and an output voltage buffer in a completely  
integrated solution with minimal off-chip components.  
The resulting output voltage is directly proportional to  
the average RF input power in dBm. Figure 1 shows the  
evaluation circuit schematic, and Figures 2 and 3 show  
the associated board artwork. For best high frequency  
performance, it is important to place many ground vias  
directly under the package.  
FREQUENCY  
(MHz)  
IMPEDANCE  
(Ω)  
MAG  
0.606  
0.603  
0.601  
0.601  
0.608  
0.613  
0.631  
0.638  
0.645  
0.679  
0.710  
0.716  
0.737  
0.759  
0.774  
0.783  
0.709  
0.774  
ANGLE (°)  
–0.8  
10  
203.6-j5.5  
199.5-j22.4  
191.7-j40.3  
171.1-j68.5  
121.8-j95.4  
100.2-j97.5  
56.8-j86.5  
48-j81.2  
50  
–3.4  
100  
–6.4  
200  
–12.3  
–24  
400  
500  
–29.8  
–46.5  
–51.8  
–56.8  
–79.5  
–97.9  
–101.2  
–112.9  
–125.7  
–136.9  
–147.1  
–157.6  
–179.9  
800  
900  
1000  
1500  
2000  
2100  
2500  
3000  
3500  
4000  
5000  
6000  
41.1-j76  
22.2-j55  
RF Input Matching  
14.6-j41.4  
13.6-j39.2  
10.8-j32.1  
8.6-j25  
The input resistance is about 205ꢀ. Input capacitance  
is 1.6pF. The impedance vs frequency of the RF input is  
detailed in Table 1.  
7.3-j19.4  
6.6-j14.5  
8.8-j9.6  
6.4-j0  
5581 F02  
5581 F03  
Figure 2. Top Side of Evaluation Board  
Figure 3. Bottom Side of Evaluation Board  
5581f  
11  
LT5581  
APPLICATIONS INFORMATION  
A shunt 68ꢀ resistor can be used to provide a broadband  
impedance match at low frequencies up to 1.3GHz, and  
from 4.5GHz to 6GHz. As shown in Figure 4, a nominal  
broadband input match can be achieved up to 2.2GHz by  
using an LC matching circuit consisting of a series 2.2nH  
inductor (L1) and a shunt 1.5pF capacitor (C1). This  
match will maintain a return loss of about 10dB across  
the band. For matching at higher frequencies, values for  
L1 and C1 are listed in the table of Figure 1. The input  
reflection coefficient referenced to the RF input pin (with  
no external components) is shown on the Smith Chart  
in Figure 5. Alternatively, it is possible to match using  
an impedance transformation network by omitting R1  
and transforming the 205ꢀ load to 50ꢀ. The resulting  
match, over a narrow band of frequencies, will improve  
sensitivity up to about 6dB maximumꢁ the dynamic range  
remains the same. For example, by omitting R1 and set-  
ting L1 = 1.8nH and C1 = 3pF, a 2:1 VSWR match can  
be obtained from 1.95GHz to 2.36GHz, with a sensitivity  
improvement of 5dB.  
frequencyoperation.Forinputfrequenciesdownto10MHz,  
0.01μF is needed at C . For frequencies above 250MHz,  
SQ  
the on-chip 20pF decoupling capacitor is sufficient, and  
C
SQ  
may be eliminated as desired. The DC-blocking ca-  
pacitor can be as large as 2200pF for 10MHz operation, or  
100pF for 2GHz operation. A DC-blocking capacitor larger  
than 2200pF results in an undesirable RF pulse response  
on the falling edge. Therefore, for general applications,  
the recommended value for C2, is conservatively set at  
1000pF.  
Output Interface  
The output buffer of the LT5581 is shown in Figure 6. It  
includes a push-pull stage with a series 300ꢀ resistor.  
The output stage is capable of sourcing and sinking 5mA  
of current. The output pin can be shorted to GND or V  
CC  
without damage, but going beyond V + 0.5V or GND  
CC  
0.5Vmayresultindamage,astheinternalESDprotection  
diodes will start to conduct excessive current.  
The residual ripple, due to RF modulation, can be reduced  
The RF input DC blocking capacitor (C2) and the C  
by adding external components R and C  
(R3 and  
IN  
SQ  
SS  
LOAD  
bias decoupling capacitor (C3), can be adjusted for low  
C4 on the Evaluation Circuit Schematic in Figure 1) to  
V
LT5581  
CC  
C3  
0.01μF  
C
SQ  
8
7
20pF  
205ꢀ  
RF  
C2  
1000pF  
IN  
(MATCHED)  
L1  
RF  
IN  
R1  
68ꢀ  
C1  
5581 F04  
Figure 4. Simplified Circuit Schematic of the RF Input Interface  
Figure 5. Input Reflection Coefficient  
5581f  
12  
LT5581  
APPLICATIONS INFORMATION  
the output pin, to form an RC lowpass filter. The internal  
of 3, using a 0.047μF external filter capacitor. The aver-  
age power in the preamble section is –10dBm, while the  
burst section has a 3dB lower average power. With the  
capacitor, therippleinthepreamblesectionisabout0.5dB  
peak-to-peak. The modulation used was OFDM (WiMAX  
802.16-2004) MMDS band, 1.5MHz BW, with 256 size FFT  
300ꢀ resistor in series with the output pin enables filter-  
ing of the output signal with just the addition of C  
.
LOAD  
Figure 7 shows the effect of the external filter capacitor  
on the residual ripple level for a 4-carrier WCDMA signal  
at 2.14GHz with –10dBm. Adding a 10nF capacitor to the  
output decreases the peak-to-peak output ripple from  
3
and 1 burst at QPSK /4.  
135mV to 50mV . The filter –3dB corner frequency  
P-P  
P-P  
Figure9showshowthepeak-to-peakrippledecreaseswith  
increasing external filter capacitance value. Also shown is  
how the RF pulse response will have longer rise and fall  
times with the addition of this lowpass filter cap.  
can be calculated with the following equation:  
1
fC =  
2π CLOAD(300 + RSS)  
Figure8showsthetransientresponsefora2.6GHzWiMAX  
signal, with preamble and burst ripple reduced by a factor  
1.4  
1.2  
1.25  
1.20  
T
= 25°C  
A
LT5581  
INPUT  
V
CC  
NO CAP  
0.01μF  
1.0  
1.15  
40μA  
0.8  
0.6  
0.4  
0.2  
1.10  
1.05  
1.00  
0.95  
V
OUT  
300ꢀ  
R
SS  
V
3
OUT  
(FILTERED)  
C
LOAD  
0
0.90  
20 30 40 50 60  
TIME (μs)  
100  
70 80 90  
0
10  
5581 F07  
Figure 6. Simplified Circuit Schematic of the Output Interface  
Figure 7. Residual Ripple, Output Transient Response  
for RF Pulse with WCDMA 4-Carrier Modulation  
9
8
7
6
5
4
3
2
1
1000  
100  
10  
1.4  
RIPPLE  
RISE  
FALL  
T
= 25°C  
T
= 25°C  
A
NO CAP  
0.047μF  
A
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1
0
0.01  
0.1  
1
0.001  
0.4 0.6 0.8  
1
1.2  
2
0
0.2  
1.4 1.6 1.8  
EXTERNAL CAPACITOR (μF)  
TIME (ms)  
5581 F09  
5581 F08  
Figure 8. Residual Ripple for 2.6GHz WiMAX OFDM 802.16-2004  
Figure 9. Residual Ripple, Output Transient Times for RF Pulse  
with WCDMA 4-Carrier Modulation vs External Filter Capacitor C4  
5581f  
13  
LT5581  
APPLICATIONS INFORMATION  
Figure 10 shows that rise time and fall time are strong  
functions of RF input power. Data is taken without the  
output filter capacitor.  
peak envelope, divided by the total number of periodic  
measurements in the measurement period). It is impor-  
tant to note that the CF refers to the 150kHz low pass  
filtered envelope of the signal. The error will depend on  
the statistics and bandwidth of the modulation signal in  
relation to the internal 150kHz filter. For example, in the  
case of WCDMA, simulations prove that it is possible to  
set the external filter capacitor corner frequency at 15kHz  
and only introduce an error less than 0.1dB.  
For a given RF modulation type—WCDMA, for exam-  
ple—the internal 150kHz filter provides nominal filtering  
of the residual ripple level. Additional external filtering  
occurs in the log domain, which introduces a systematic  
log error in relation to the signal’s crest factor, as shown  
1
in the following equation in dB.  
Figure 11 depicts the output AM modulation ripple as a  
function of modulation difference frequency for a 2-tone  
input signal at 2140MHz with –10dBm input power. The  
–CF/10  
Error|dB = 10 • log (r + (1 – r)10  
) – CF • (r-1)  
10  
Where CF is the crest factor and r is the duty cycle of the  
measurement (or number of measurements made at the  
1
Steve Murray, “Beware of Spectrum Analyzer Power Averaging Techniques,” Microwaves  
& RF, Dec. 2006.  
9
30  
25  
20  
15  
10  
5
0
T
= 25°C  
A
T
= 25°C  
A
8
7
6
5
4
3
2
1
0
FALL TIME  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
RISE TIME  
0
–20 –15 –10 –5  
INPUT POWER (dBm)  
0
5
–30 –25  
0.01  
0.1  
10  
0.001  
1
2-TONE FREQUENCY SEPARATION (MHz)  
5581 F10  
5581 F11  
Figure 10. RF Pulse Response Rise Time  
and Fall Time vs RF Input Power  
Figure 11. Output DC Voltage Deviation and Residual  
Ripple vs 2-Tone Separation Frequency  
2.0  
4.0  
T
= 25°C  
T
= 25°C  
A
A
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0dBm  
–10dBm  
–20dBm  
–30dBm  
NO RF INPUT  
0dBm  
–10dBm  
–20dBm  
–30dBm  
NO RF INPUT  
0.1  
10  
FREQUENCY (kHz)  
100  
1000  
1
0.1  
10  
FREQUENCY (kHz)  
100  
1000  
1
5581 F13  
5581 F12  
Figure 12. Output Voltage Noise Density  
Figure 13. Integrated Output Voltage Noise  
5581f  
14  
LT5581  
APPLICATIONS INFORMATION  
resulting deviation in the output voltage of the detector  
shows the effect of the internal 150kHz filter.  
It is important that the voltage applied to the EN pin never  
exceeds V by more than 0.5V, otherwise, the supply  
CC  
current may be sourced through the upper ESD protection  
diode connected at the EN pin.  
The output voltage noise density and integrated noise are  
showninFigures12and13, respectively, forvariousinput  
powerlevels.Noiseisastrongfunctionofinputlevel.There  
is roughly a 10dB reduction in the output noise level for  
an input level of 0dBm versus no input.  
V
LT5581  
EN  
CC  
2
Enable Pin  
500k  
300k  
300k  
A simplified schematic of the EN pin is shown in Figure  
14. To enable the LT5581, it is necessary to put greater  
than 1V on this pin. To disable or turn off the chip, this  
voltage should be below 0.3V. At an enable voltage of  
3.3V, the pin draws roughly 20μA. If the EN pin is not  
connected, the chip is disabled through an internal 500k  
pull-down resistor.  
5581 F14  
Figure 14. Enable Pin Simplified Schematic  
PACKAGE DESCRIPTION  
DDB Package  
8-Lead Plastic DFN (3mm × 2mm)  
(Reference LTC DWG # 05-08-1702 Rev B)  
0.61 ±0.05  
(2 SIDES)  
R = 0.115  
0.40 ± 0.10  
3.00 ±0.10  
(2 SIDES)  
TYP  
5
R = 0.05  
TYP  
8
0.70 ±0.05  
2.55 ±0.05  
1.15 ±0.05  
2.00 ±0.10  
PIN 1 BAR  
TOP MARK  
PIN 1  
(2 SIDES)  
R = 0.20 OR  
(SEE NOTE 6)  
0.25 × 45°  
PACKAGE  
OUTLINE  
0.56 ± 0.05  
(2 SIDES)  
CHAMFER  
4
1
(DDB8) DFN 0905 REV B  
0.25 ± 0.05  
0.25 ± 0.05  
0.75 ±0.05  
0.200 REF  
0.50 BSC  
2.20 ±0.05  
(2 SIDES)  
0.50 BSC  
2.15 ±0.05  
(2 SIDES)  
0 – 0.05  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING CONFORMS TO VERSION (WECD-1) IN JEDEC PACKAGE OUTLINE M0-229  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE  
5581f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
15  
LT5581  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
RF Power Detectors  
LTC®5505  
LTC5507  
LTC5508  
LTC5509  
RF Power Detectors with >40dB Dynamic Range 300MHz to 3GHz, Temperature Compensated, 2.7V to 6V Supply  
100kHz to 1000MHz RF Power Detector  
300MHz to 7GHz RF Power Detector  
300MHz to 3GHz RF Power Detector  
100kHz to 1GHz, Temperature Compensated, 2.7V to 6V Supply  
44dB Dynamic Range, Temperature Compensated, SC70 Package  
36dB Dynamic Range, Low Power Consumption, SC70 Package  
LTC5530  
LTC5531  
LTC5532  
300MHz to 7GHz Precision RF Power Detector Precision V  
300MHz to 7GHz Precision RF Power Detector Precision V  
300MHz to 7GHz Precision RF Power Detector Precision V  
Offset Control, Shutdown, Adjustable Gain  
Offset Control, Shutdown, Adjustable Offset  
Offset Control, Adjustable Gain and Offset  
OUT  
OUT  
OUT  
LT5534  
50MHz to 3GHz Log RF Power Detector with  
60dB Dynamic Range  
1dB Output Variation over Temperature, 38ns Response Time, Log Linear  
Response  
LTC5536  
Precision 600MHz to 7GHz RF Power Detector 25ns Response Time, Comparator Reference Input, Latch Enable Input,  
with Fast Comparator Output  
–26dBm to +12dBm Input Range  
LT5537  
LT5538  
Wide Dynamic Range Log RF/IF Detector  
75dB Dynamic Range 3.8GHz Log RF Power  
Detector  
Low Frequency to 1GHz, 83dB Log Linear Dynamic Range  
0.8dB Accuracy Over Temperature  
LT5570  
60dB Dynamic Range RMS Detector  
40MHz to 2.7GHz, 0.5dB Accuracy Over Temperature  
Infrastructure  
LT5514  
Ultralow Distortion, IF Amplifier/ADC Driver  
with Digitally Controlled Gain  
40MHz to 900MHz Quadrature Demodulator  
1.5GHz to 2.4GHz High Linearity Direct  
Quadrature Modulator  
850MHz Bandwidth, 47dBm OIP3 at 100MHz, 10.5dB to 33dB Gain Control Range  
21dBm IIP3, Integrated LO Quadrature Generator  
LT5517  
LT5518  
22.8dBm OIP3 at 2GHz, –158.2dBm/Hz Noise Floor, 50Ω Single-Ended RF and LO  
Ports, 4-Channel W-CDMA ACPR = 64dBc at 2.14GHz  
LT5519  
LT5520  
LT5521  
LT5522  
LT5525  
LT5526  
LT5527  
LT5528  
LT5557  
0.7GHz to 1.4GHz High Linearity Upconverting  
Mixer  
17.1dBm IIP3 at 1GHz, Integrated RF Output Transformer with 50Ω Matching,  
Single-Ended LO and RF Ports Operation  
1.3GHz to 2.3GHz High Linearity Upconverting  
Mixer  
15.9dBm IIP3 at 1.9GHz, Integrated RF Output Transformer with 50Ω Matching,  
Single-Ended LO and RF Ports Operation  
24.2dBm IIP3 at 1.95GHz, NF = 12.5dB, 3.15V to 5.25V Supply, Single-Ended LO  
Port Operation  
10MHz to 3700MHz High Linearity  
Upconverting Mixer  
600MHz to 2.7GHz High Signal Level  
Downconverting Mixer  
4.5V to 5.25V Supply, 25dBm IIP3 at 900MHz, NF = 12.5dB, 50Ω Single-Ended RF  
and LO Ports  
High Linearity, Low Power Downconverting  
Mixer  
High Linearity, Low Power Downconverting  
Mixer  
400MHz to 3.7GHz High Signal Level  
Downconverting Mixer  
1.5GHz to 2.4GHz High Linearity Direct  
Quadrature Modulator  
Single-Ended 50Ω RF and LO Ports, 17.6dBm IIP3 at 1900MHz, I = 28mA  
CC  
3V to 5.3V Supply, 16.5dBm IIP3, 100kHz to 2GHz RF, NF = 11dB, I = 28mA,  
CC  
–65dBm LO-RF Leakage  
IIP3 = 23.5dBm and NF = 12.5dBm at 1900MHz, 4.5V to 5.25V Supply, I = 78mA,  
CC  
Conversion Gain = 2dB  
21.8dBm OIP3 at 2GHz, –159.3dBm/Hz Noise Floor, 50Ω, 0.5V Baseband  
DC  
Interface, 4-Channel W-CDMA ACPR = 66dBc at 2.14GHz  
400MHz to 3.8GHz, 3.3V High Signal Level  
Downconverting Mixer  
IIP3 = 23.7dBm at 2600MHz, 23.5dBm at 3600MHz, I = 82mA at 3.3V  
CC  
LT5560  
LT5568  
Ultralow Power Active Mixer  
700MHz to 1050MHz High Linearity Direct  
Quadrature Modulator  
10mA Supply Current, 10dBm IIP3, 10dB NF, Usable as Up- or Down-Converter.  
22.9dBm OIP3 at 850MHz, –160.3dBm/Hz Noise Floor, 50Ω, 0.5V Baseband  
DC  
Interface, 3-Ch CDMA2000 ACPR = –71.4dBc at 850MHz  
LT5572  
LT5575  
1.5GHz to 2.5GHz High Linearity Direct  
Quadrature Modulator  
800MHz to 2.7GHz High Linearity Direct  
Conversion I/Q Demodulator  
21.6dBm OIP3 at 2GHz, –158.6dBm/Hz Noise Floor, High-Ohmic 0.5V Baseband  
DC  
Interface, 4-Ch W-CDMA ACPR = –67.7dBc at 2.14GHz  
50ꢀ, Single-Ended RF and LO Inputs. 28dBm IIP3 at 900MHz, 13.2dBm P1dB,  
0.04dB I/Q Gain Mismatch, 0.4° I/Q Phase Mismatch  
5581f  
LT 0708 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
© LINEAR TECHNOLOGY CORPORATION 2008  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT5581IDDB-TRPBF

6GHz RMS Power Detector with 40dB Dynamic Range
Linear

LT560Z

GREEN OVAL LAMP LED
SEOUL

LT561

INFRARED LAMP LED
SEOUL

LT569S-BC

Single Color LED, Blue, Water Clear Tinted, T-1 3/4, 5mm,
SENSITRON

LT569S-GC-1

Single Color LED, Green, Water Clear Tinted, T-1 3/4, 5mm,
SENSITRON

LT569S-GC-2

Single Color LED, Green, Water Clear Tinted, T-1 3/4, 5mm,
SENSITRON

LT569S-OTC-1

Single Color LED, Orange, Water Clear Tinted, T-1 3/4, 5mm,
SENSITRON

LT569S-OTC-2

Single Color LED, Orange, Water Clear Tinted, T-1 3/4, 5mm,
SENSITRON

LT569S-OTC-2-D1

Single Color LED, Red, Water Clear, T-1 3/4, 5mm,
SENSITRON

LT569S-RD

Single Color LED, Red, Tinted Diffused, T-1 3/4, 5mm,
SENSITRON

LT569S-RSC-1

Dual Color LED, Red, Water Clear, T-1 3/4, 5mm,
SENSITRON

LT569S-RSC-3

Single Color LED, Red, Water Clear Tinted, T-1 3/4, 5mm,
SENSITRON