LT6016MPMS8#PBF [Linear]

LT6016 - Dual 3.2MHz, 0.8V/µs Low Power, Over-The-Top Precision Op Amp; Package: MSOP; Pins: 8; Temperature Range: -55°C to 125°C;
LT6016MPMS8#PBF
型号: LT6016MPMS8#PBF
厂家: Linear    Linear
描述:

LT6016 - Dual 3.2MHz, 0.8V/µs Low Power, Over-The-Top Precision Op Amp; Package: MSOP; Pins: 8; Temperature Range: -55°C to 125°C

放大器 光电二极管
文件: 总22页 (文件大小:1001K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT6015/LT6016/LT6017  
3.2MHz, 0.8V/µs  
Low Power, Over-The-Top  
Precision Op Amps  
FeaTures  
DescripTion  
TheLT®6015/LT6016/LT6017aresingle/dual/quadrail-to-  
rail input operational amplifiers with input offset voltage  
trimmed to less than 50µV. These amplifiers operate on  
single and split supplies with a total voltage of 3V to 50V  
and draw only 315µA per amplifier. They are reverse  
battery protected, drawing very little current for reverse  
supplies up to 50V.  
n
Input Common Mode Range: V to V + 76V  
n
n
n
n
n
n
n
n
n
n
n
n
n
n
Rail-to-Rail Input and Output  
Low Power: 315μA/Amplifier  
Operating Temperature Range: –55°C to 150°C  
V : ±50μV ꢀMaꢁimumꢂ  
OS  
CMRR, PSRR: 126dB  
Reverse Battery Protection to 50V  
Gain Bandwidth Product: 3.2MHz  
Specified on 5V and 15V Supplies  
High Voltage Gain: 1000V/mV  
No Phase Reversal  
The Over-The-Top® input stage of the LT6015/LT6016/  
LT6017 is designed to provide added protection in tough  
environments. The input common mode range extends  
+
from V to V and beyond: these amplifiers operate with  
No Supply Sequencing Problems  
Single 5-Lead SOT-23 (ThinSOT™) Package  
Dual 8-Lead MSOP  
+
inputs up to 76V above V independent of V . Internal  
resistors protect the inputs against transient faults up  
to 25V below the negative supply. The LT6015/LT6016/  
LT6017 can drive loads up to 25mA and are unity-gain  
stable with capacitive loads as large as 200pF. Optional  
external compensation can be added to extend the capaci-  
tive drive capability beyond 200pF.  
Quad 22-Lead DFN (6mm × 3mm)  
applicaTions  
n
High Side or Low Side Current Sensing  
n
Battery/Power Supply Monitoring  
TheLT6015isofferedina5-leadSOTpackage.TheLT6016  
dual op amp is available in an 8-lead MSOP package. The  
LT6017 is offered in a 22-pin leadless DFN package.  
L, LT, LTC, LTM, Linear Technology, Over-The-Top and the Linear logo are registered  
trademarks and ThinSOT is a trademark of Linear Technology Corporation. All other trademarks  
are the property of their respective owners.  
n
4mA to 20mA Transmitters  
n
High Voltage Data Acquisition  
n
Battery/Portable Instrumentation  
Typical applicaTion  
Output Error vs Load Current  
Precision High Voltage High Side Load Current Monitor  
0.2  
0
–0.2  
–0.4  
–0.6  
5V  
V
BAT  
= 1.5V TO 76V  
0.1µF  
200Ω  
100Ω  
1%  
+
0.1Ω  
10W  
LT6015  
BSP89  
2k  
200Ω  
1V/A  
0V TO 1V OUT  
V
V
V
V
= 1.5V  
= 5V  
= 20V  
= 75V  
BAT  
BAT  
BAT  
BAT  
LOAD  
–0.8  
–1.0  
601567 TA01a  
0.01  
0.1  
1
LOAD CURRENT (A)  
601567 TA01b  
601567ff  
1
For more information www.linear.com/LT6015  
LT6015/LT6016/LT6017  
absoluTe MaxiMuM raTings ꢀNote 1ꢂ  
+
Supply Voltage (V to V )................................60V, –50V  
Input Differential Voltage ........................................ 80V  
Input Voltage (Note 2).....................................80V, –25V  
Input Current (Note 2).......................................... 10mA  
Output Short-Circuit Duration  
Temperature Range (Notes 4, 5)  
LT6015I/LT6016I/LT6017I....................–40°C to 85°C  
LT6015H/LT6016H/LT6017H.............. –40°C to 125°C  
LT6015MP/LT6016MP/LT6017MP  
(T  
)........................................ –55°C to 150°C  
JUNCTION  
Storage Temperature Range .................. –65°C to 150°C  
Maximum Junction Temperature .......................... 150°C  
Lead Temperature (Soldering, 10sec)....................300°C  
(Note 3).........................................................Continuous  
pin conFiguraTion  
TOP VIEW  
OUTA  
–INA  
+INA  
N/C  
1
2
3
4
5
6
7
8
9
22 OUTD  
21 –IND  
20 +IND  
A
D
TOP VIEW  
+
19 N/C  
TOP VIEW  
+
+
OUT 1  
5 V  
V
18 V  
OUTA 1  
–INA 2  
8 V  
7 OUTB  
6 –INB  
5 +INB  
V
2
23  
N/C  
17 N/C  
A
+INA 3  
+
B
+IN 3  
4 –IN  
V
16 V  
V
4
N/C  
15 N/C  
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
S5 PACKAGE  
5-LEAD PLASTIC TSOT-23  
+INB  
14 +INC  
13 –INC  
12 OUTC  
B
C
–INB 10  
OUTB 11  
T
= 150°C, = 273°C/W, = 45°C/W  
JA JC  
JMAX  
T
JMAX  
= 150°C, = 250°C/W  
JA  
DJC PACKAGE  
22-LEAD (6mm × 3mm) PLASTIC DFN  
T
= 150°C, = 31.8°C/W, = 4.3°C/W  
JA JC  
JMAX  
CONNECT UNDERSIDE METAL TO V  
orDer inForMaTion  
Lead Free Finish  
TAPE AND REEL ꢀMINIꢂ  
LT6015IS5#TRMPBF  
LT6015HS5#TRMPBF  
LT6015MPS5#TRMPBF  
TAPE AND REEL  
PART MARKING*  
LTGJD  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
–40°C to 85°C  
LT6015IS5#TRPBF  
LT6015HS5#TRPBF  
LT6015MPS5#TRPBF  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
LTGJD  
–40°C to 125°C  
LTGJD  
–55°C to 150°C  
TRM = 500 pieces. Consult LTC Marketing for information on lead based finish parts.  
LEAD FREE FINISH  
LT6016IMS8#PBF  
LT6016HMS8#PBF  
LT6016MPMS8#PBF  
LT6017IDJC#PBF  
LT6017HDJC#PBF  
LT6017MPDJC#PBF  
TAPE AND REEL  
PART MARKING*  
LTGFK  
PACKAGE DESCRIPTION  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
22-Lead Plastic DFN  
22-Lead Plastic DFN  
22-Lead Plastic DFN  
TEMPERATURE RANGE  
–40°C to 85°C  
LT6016IMS8#TRPBF  
LT6016HMS8#TRPBF  
LT6016MPMS8#TRPBF  
LT6017IDJC#TRPBF  
LT6017HDJC#TRPBF  
LT6017MPDJC#TRPBF  
LTGFK  
–40°C to 125°C  
–55°C to 150°C  
–40°C to 85°C  
LTGFK  
6017  
6017  
–40°C to 125°C  
–55°C to 150°C  
6017  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
601567ff  
2
For more information www.linear.com/LT6015  
LT6015/LT6016/LT6017  
The l denotes the specifications which apply over the specified  
elecTrical characTerisTics  
temperature range, –40°C < TA < 85°C for I-grade parts, –40°C < TA < 125°C for H–grade parts, otherwise specifications are at  
TA = 25°C, VS = 5V, VCM = VOUT = mid-supply.  
I-, H-GRADE  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
V
OS  
Input Offset Voltage  
0 < V < V – 1.75V  
CM  
MS8 Package  
–50  
25  
50  
µV  
+
0 < V < V – 1.75V  
CM  
SOT-23, DJC22 Packages  
–80  
45  
50  
50  
45  
50  
80  
µV  
µV  
µV  
µV  
µV  
V
V
= 5V  
=76V  
–125  
–135  
–250  
–350  
125  
135  
250  
350  
CM  
CM  
+
l
l
0 < V < V – 1.75V  
CM  
V
CM  
= 5V to V = 76V  
CM  
∆V  
Input Offset Voltage Drift  
Long Term Voltage Offset Stability  
Input Bias Current  
0.75  
µV/°C  
OS  
∆TEMP  
∆V  
∆TIME  
0.75  
µV/Mo  
OS  
+
I
I
0.25V < V < V – 1.75V  
CM  
CM  
–5  
–60  
11  
–15  
–150  
7
2
–16.5  
14  
5
0
nA  
nA  
µA  
nA  
nA  
µA  
µA  
B
CM  
V
V
= 0V  
= 5V to 76V  
17.5  
15  
0
+
l
l
l
l
0.25V < V < V – 1.75V  
2
CM  
V
CM  
= 0V  
–16.5  
14  
CM  
V
= 5V to 76V  
V = 0V, V = 0V to 76V  
23  
1
0.001  
S
CM  
+
Input Offset Current  
0.25V < V < V – 1.75V  
–5  
–5  
–500  
–15  
–15  
–500  
2
2
5
5
500  
15  
15  
500  
nA  
nA  
nA  
nA  
nA  
nA  
OS  
CM  
V
V
= 0V  
CM  
CM  
= 5V to 76V (Note 6)  
50  
2
+
l
l
l
0.25V < V < V – 1.75V  
CM  
V
V
= 0V  
2
CM  
CM  
= 5V to 76V (Note 6)  
50  
l
VCMR  
Common Mode Input Range  
Differential Input Capacitance  
Differential Input Resistance  
0
76  
V
C
IN  
5
pF  
+
R
0 < V < V – 1.75V  
CM  
1
3.7  
MΩ  
kΩ  
IN  
CM  
+
V
> V  
+
R
Common Mode Input Resistance  
0 < V < V – 1.75V  
CM  
>1  
>100  
GΩ  
MΩ  
INCM  
CM  
+
V
> V  
e
Input Referred Noise Voltage Density  
f = 1kHz  
n
+
V
V
< V – 1.75V  
18  
25  
nV/√Hz  
nV/√Hz  
CM  
+
> V  
CM  
Input Referred Noise Voltage  
f = 0.1Hz to 10Hz  
CM  
0.5  
µV  
P-P  
+
V
< V – 1.75V  
i
n
Input Referred Noise Current Density  
f = 1kHz  
+
V
V
< V – 1.75V  
0.1  
11.5  
pA/√Hz  
pA/√Hz  
CM  
+
> V  
CM  
l
l
A
Open Loop Gain  
R = 10kΩ  
OUT  
300  
110  
3000  
126  
V/mV  
VOL  
L
∆V  
= 3V  
PSRR  
CMRR  
Supply Rejection Ratio  
V = 1.65V to 15V  
dB  
S
CM  
V
= V  
= Mid-Supply  
OUT  
l
l
Input Common Mode Rejection Ratio  
Output Voltage Swing Low  
Output Voltage Swing High  
Short-Circuit Current  
V
CM  
V
CM  
= 0V to 3.25V  
= 5V to 76V  
100  
126  
126  
140  
dB  
dB  
l
l
V
V = 5V, No Load  
3
280  
55  
mV  
mV  
OL  
OH  
S
S
V = 5V, I  
= 5mA  
SINK  
500  
l
l
V
V = 5V, No Load  
450  
1000  
700  
1250  
mV  
mV  
S
V = 5V, I  
S
= 5mA  
+
SOURCE  
l
l
I
V = 5V, 50Ω to V  
10  
10  
25  
25  
mA  
mA  
SC  
S
V = 5V, 50Ω to V  
S
601567ff  
3
For more information www.linear.com/LT6015  
LT6015/LT6016/LT6017  
elecTrical characTerisTics The l denotes the specifications which apply over the specified  
temperature range, –40°C < TA < 85°C for I-grade parts, –40°C < TA < 125°C for H–grade parts, otherwise specifications are at  
TA = 25°C, VS = 5V, VCM = VOUT = mid-supply.  
I-, H-GRADE  
SYMBOL PARAMETER  
CONDITIONS  
= 100kHz  
MIN  
TYP  
MAX  
UNITS  
GBW  
Gain Bandwidth Product  
f
2.85  
2.5  
3.2  
3.2  
MHz  
MHz  
TEST  
l
l
SR  
Slew Rate  
∆V  
= 3V  
0.55  
0.45  
0.75  
0.75  
V/µs  
V/µs  
OUT  
t
S
Settling Time Due to Input Step  
OUT  
0.1% Settling  
3.5  
µs  
∆V  
= 2V  
V
Supply Voltage  
3
3.3  
50  
50  
–50  
V
V
V
S
l
l
Reverse Supply (Note 7)  
I < –25µA/Amplifier  
S
–65  
I
S
Supply Current Per Amplifier  
SOT-23 Package  
MS8, DJC22 Packages  
315  
315  
315  
345  
335  
500  
µA  
µA  
µA  
l
R
Output Impedance  
∆I = 5mA  
O
0.15  
Ω
O
The l denotes the specifications which apply over the specified temperature range, –40°C < TA < 85°C for I-grade parts, –40°C < TA <  
125°C for H–grade parts, otherwise specifications are at TA = 25°C, VS = ±15V, VCM = VOUT = mid-supply.  
I-, H-GRADE  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
OSI  
Input Offset Voltage  
–80  
55  
55  
75  
75  
80  
µV  
µV  
µV  
µV  
l
l
–250  
–110  
–250  
250  
110  
250  
V = 25V  
S
S
V = 25V  
∆V  
Input Offset Voltage Drift  
Input Bias Current  
0.75  
µV/°C  
OSI  
∆TEMP  
I
–5  
–15  
2
2
5
15  
nA  
nA  
B
l
I
Input Offset Current  
–5  
2
2
5
nA  
nA  
OS  
l
l
–15  
15  
VCMR  
Common Mode Input Range  
Differential Input Capacitance  
Differential Input Resistance  
–15  
61  
V
C
5
pF  
IN  
+
R
0 < V < V – 1.75V  
CM  
1
3.7  
MΩ  
kΩ  
IN  
CM  
+
V
> V  
+
R
Common Mode Input Resistance  
0 < V < V – 1.75V  
>1  
>100  
GΩ  
MΩ  
INCM  
CM  
> V  
+
V
CM  
e
n
Input Referred Noise Voltage Density  
f = 1kHz  
+
V
V
< V – 1.75V  
18  
25  
nV/√Hz  
nV/√Hz  
CM  
+
> V  
CM  
Input Referred Noise Voltage  
f = 0.1Hz to 10Hz  
CM  
0.5  
µV  
P-P  
+
V
< V – 1.25V  
i
n
Input Referred Noise Current Density  
f = 1kHz  
+
V
V
< V – 1.75V  
0.1  
11.5  
pA/√Hz  
pA/√Hz  
CM  
+
> V  
CM  
l
l
l
A
Open Loop Gain  
R = 10kΩ  
OUT  
200  
114  
110  
1000  
126  
V/mV  
VOL  
L
∆V  
= 27V  
PSRR  
Supply Rejection Ratio  
V = 2.5V to 25V  
dB  
S
CM  
V
V
= V  
= 0V  
OUT  
CMRR  
Input Common Mode Rejection Ratio  
Output Voltage Swing Low  
= –15V to 13.25V  
126  
dB  
CM  
l
l
V
V
V = 15V, No Load  
3
280  
55  
mV  
mV  
OL  
S
V = 15V, I  
= 5mA  
500  
S
SINK  
l
l
Output Voltage Swing High  
V = 15V, No Load  
450  
1000  
700  
1250  
mV  
mV  
OH  
S
V = 15V, I  
= 5mA  
S
SOURCE  
601567ff  
4
For more information www.linear.com/LT6015  
LT6015/LT6016/LT6017  
elecTrical characTerisTics The l denotes the specifications which apply over the specified  
temperature range, –40°C < TA < 85°C for I-grade parts, –40°C < TA < 125°C for H–grade parts, otherwise specifications are at  
TA = 25°C, VS = ±15V, VCM = VOUT = mid-supply.  
I-, H-GRADE  
SYMBOL PARAMETER  
CONDITIONS  
V = 15V, 50Ω to GND  
MIN  
TYP  
MAX  
UNITS  
l
l
I
SC  
Short-Circuit Current  
Gain Bandwidth Product  
Slew Rate  
10  
10  
30  
32  
mA  
mA  
S
V = 15V, 50Ω to GND  
S
GBW  
SR  
f
= 100kHz  
2.9  
2.55  
3.3  
3.3  
MHz  
MHz  
TEST  
l
l
∆V  
= 3V  
0.6  
0.5  
0.8  
0.8  
V/µs  
V/µs  
OUT  
t
Settling Time Due to Input Step  
Supply Voltage  
0.1% Settling  
∆V 2V  
3.5  
µs  
S
=
OUT  
V
3
3.3  
50  
50  
–30  
V
V
V
S
l
l
Reverse Supply  
I = –25µA/Amplifier  
S
–65  
I
S
Supply Current Per Amplifier  
SOT-23 Package  
325  
325  
325  
340  
340  
340  
360  
350  
525  
370  
360  
550  
µA  
µA  
µA  
µA  
µA  
µA  
MS8, DJC22 Packages  
l
l
V = 25V, SOT-23 Package  
S
V = 25V, MS8, DJC22 Package  
S
V = 25V  
S
R
O
Output Impedance  
∆I = 5mA  
O
0.15  
Ω
The l denotes the specifications which apply over the specified temperature range, –55°C < TJUNCTION < 150°C for MP-grade parts,  
otherwise specifications are at TA = 25°C, VS = 5V, VCM = VOUT = mid-supply.  
MP-GRADE  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
V
OS  
Input Offset Voltage  
0 < V < V – 1.75V  
µV  
µV  
CM  
MS8 Package  
–50  
25  
50  
+
0 < V < V – 1.75V  
CM  
DJC22 Package  
–80  
45  
50  
50  
45  
50  
80  
µV  
µV  
µV  
µV  
µV  
V
V
= 5V  
= 76V  
–125  
–135  
–500  
–600  
125  
135  
500  
600  
CM  
CM  
+
l
l
0 < V < V –1.75V  
CM  
V
CM  
= 5V to V = 76V  
CM  
∆V  
Input Offset Voltage Drift  
Long Term Voltage Offset Stability  
Input Bias Current  
0.75  
µV/°C  
OS  
∆TEMP  
∆V  
0.75  
µV/Mo  
OS  
∆TIME  
+
I
0.25V < V < V – 1.75V  
CM  
CM  
–5  
–60  
11  
–100  
–500  
6.5  
2
–16.5  
14  
5
0
nA  
nA  
µA  
nA  
nA  
µA  
µA  
B
CM  
V
V
= 0V  
= 5V to 76V  
17.5  
100  
0
+
l
l
l
l
0.25V < V < V – 1.75V  
2
CM  
V
CM  
= 0V  
–16.5  
14  
CM  
V
= 5V to 76V  
24  
4
V = 0V, V = 0V to 76V  
0.001  
S
CM  
+
I
Input Offset Current  
0.25V < V < V – 1.75V  
–5  
–5  
2
2
5
5
nA  
nA  
nA  
nA  
nA  
nA  
OS  
CM  
V
V
= 0V  
CM  
CM  
= 5V to 76V (Note 6)  
–500  
–50  
50  
2
500  
50  
+
l
l
l
0.25V < V < V – 1.75V  
CM  
V
V
= 0V  
–200  
–500  
2
200  
500  
CM  
CM  
= 5V to 76V (Note 6)  
150  
l
VCMR  
Common Mode Input Range  
Differential Input Capacitance  
Differential Input Resistance  
0
76  
V
C
IN  
5
pF  
+
R
0 < V < V – 1.75V  
CM  
1
3.7  
MΩ  
kΩ  
IN  
CM  
+
V
> V  
+
R
Common Mode Input Resistance  
0 < V < V – 1.75V  
>1  
>100  
GΩ  
MΩ  
INCM  
CM  
> V  
+
V
CM  
601567ff  
5
For more information www.linear.com/LT6015  
LT6015/LT6016/LT6017  
elecTrical characTerisTics  
The l denotes the specifications which apply over the specified temperature  
range, –55°C < TJUNCTION < 150°C for MP-grade parts, otherwise specifications are at TA = 25°C, VS = 5V, VCM = VOUT = mid-supply.  
MP-GRADE  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
e
n
Input Referred Noise Voltage Density  
f = 1kHz  
+
V
V
< V – 1.75V  
18  
25  
nV/√Hz  
nV/√Hz  
CM  
+
> V  
CM  
Input Referred Noise Voltage  
f = 0.1Hz to 10Hz  
CM  
0.5  
µV  
P-P  
+
V
< V – 1.75V  
i
n
Input Referred Noise Current Density  
f = 1kHz  
+
V
V
< V – 1.75V  
0.1  
11.5  
pA/√Hz  
pA/√Hz  
CM  
+
> V  
CM  
l
l
A
Open Loop Gain  
R = 10kΩ  
OUT  
200  
106  
3000  
126  
V/mV  
VOL  
L
∆V  
= 3V  
PSRR  
CMRR  
Supply Rejection Ratio  
Input Common Mode Rejection Ratio  
Output Voltage Swing Low  
Output Voltage Swing High  
Short-Circuit Current  
V = 1.65V to 15V  
dB  
S
CM  
V
= V  
= Mid-Supply  
OUT  
l
l
V
CM  
V
CM  
= 0V to 3.25V  
= 5V to 76V  
90  
120  
126  
140  
dB  
dB  
l
l
V
V
V = 5V, No Load  
3
280  
75  
mV  
mV  
OL  
OH  
S
S
V = 5V, I  
= 5mA  
SINK  
550  
l
l
V = 5V, No Load  
450  
1000  
750  
1300  
mV  
mV  
S
V = 5V, I  
S
= 5mA  
SOURCE  
+
l
l
I
V = 5V, 50Ω to V  
8
8
25  
25  
mA  
mA  
SC  
S
V = 5V, 50Ω to V  
S
GBW  
SR  
Gain Bandwidth Product  
Slew Rate  
f
= 100kHz  
2.85  
2.4  
3.2  
3.2  
MHz  
MHz  
TEST  
l
l
∆V  
= 3V  
0.55  
0.4  
0.75  
0.75  
V/µs  
V/µs  
OUT  
t
Settling Time Due to Input Step  
Supply Voltage  
0.1% Settling  
∆V 2V  
3.5  
µs  
S
=
OUT  
V
3
3.3  
50  
50  
–50  
V
V
V
S
l
l
Reverse Supply (Note 7)  
I < –25VµA/Amplifier  
S
–63  
I
Supply Current Per Amplifier  
SOT-23 Package  
MS8, DJC22 Packages  
315  
315  
315  
345  
335  
540  
µA  
µA  
µA  
S
l
R
Output Impedance  
∆I = 5mA  
O
0.15  
Ω
O
The l denotes the specifications which apply over the specified temperature range, –55°C < TJUNCTION < 150°C for MP-grade parts,  
otherwise specifications are at TA = 25°C, VS = ±15V, VCM = VOUT = mid-supply.  
MP-GRADE  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
–80  
55  
55  
75  
75  
80  
µV  
µV  
µV  
µV  
OSI  
l
l
–500  
–110  
–500  
500  
110  
500  
V = 25V  
S
S
V = 25V  
∆V  
Input Offset Voltage Drift  
Input Bias Current  
0.75  
µV/°C  
OSI  
∆TEMP  
I
–5  
–300  
2
2
5
300  
nA  
nA  
B
l
I
Input Offset Current  
–5  
2
2
5
nA  
nA  
OS  
l
l
–50  
50  
VCMR  
Common Mode Input Range  
Differential Input Capacitance  
Differential Input Resistance  
–15  
61  
V
C
5
pF  
IN  
+
R
0 < V < V – 1.75V  
CM  
1
3.7  
MΩ  
kΩ  
IN  
CM  
+
V
> V  
601567ff  
6
For more information www.linear.com/LT6015  
LT6015/LT6016/LT6017  
elecTrical characTerisTics The l denotes the specifications which apply over the specified temperature  
range, –55°C < TJUNCTION < 150°C for MP-grade parts, otherwise specifications are at TA = 25°C, VS = ±15V, VCM = VOUT = Mid-Supply.  
MP-GRADE  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
R
Common Mode Input Resistance  
0 < V < V – 1.75V  
CM  
>1  
>100  
GΩ  
MΩ  
INCM  
CM  
+
V
> V  
e
Input Referred Noise Voltage Density  
f = 1kHz  
n
+
V
V
< V – 1.75V  
18  
25  
nV/√Hz  
nV/√Hz  
CM  
+
> V  
CM  
Input Referred Noise Voltage  
f = 0.1Hz to 10Hz  
CM  
0.5  
µV  
P-P  
+
V
< V – 1.75V  
i
n
Input Referred Noise Current Density  
f = 1kHz  
+
V
V
< V – 1.75V  
0.1  
11.5  
pA/√Hz  
pA/√Hz  
CM  
+
> V  
CM  
l
l
l
A
Open Loop Gain  
R = 10kΩ  
OUT  
100  
106  
100  
1000  
126  
V/mV  
VOL  
L
∆V  
= 27V  
PSRR  
Supply Rejection Ratio  
V = 2.5V to 25V  
dB  
S
CM  
V
V
= V  
= 0V  
OUT  
CMRR  
Input Common Mode Rejection Ratio  
Output Voltage Swing Low  
= –15V to 13.25V  
126  
dB  
CM  
l
l
V
V
V = 15V, No Load  
3
280  
75  
mV  
mV  
OL  
OH  
S
V = 15V, I  
= 5mA  
550  
S
SINK  
l
l
Output Voltage Swing High  
Short-Circuit Current  
Gain Bandwidth Product  
Slew Rate  
V = 15V, No Load  
450  
1000  
750  
1300  
mV  
mV  
S
V = 15V, I  
= 5mA  
S
SOURCE  
l
l
I
V = 15V, 50Ω to GND  
8
8
30  
32  
mA  
mA  
SC  
S
V = 15V, 50Ω to GND  
S
GBW  
SR  
f
= 100kHz  
2.9  
2.45  
3.3  
3.3  
MHz  
MHz  
TEST  
l
l
∆V  
= 3V  
0.6  
0.45  
0.8  
0.8  
V/µs  
V/µs  
OUT  
t
Settling Time Due to Input Step  
Supply Voltage  
0.1% Settling  
∆V 2V  
3.5  
µs  
S
=
OUT  
V
3
3.3  
50  
50  
–30  
V
V
V
S
l
l
Reverse Supply  
I = –25µA/Amplifier  
S
–65  
I
Supply Current Per Amplifier  
SOT-23 Package  
325  
325  
325  
340  
340  
340  
360  
350  
575  
370  
360  
600  
µA  
µA  
µA  
µA  
µA  
µA  
S
MS8, DJC22 Packages  
l
l
V = 25V, SOT-23 Package  
S
V = 25V, MS8, DJC22 Package  
S
V = 25V  
S
R
Output Impedance  
∆I = 5mA  
O
0.15  
Ω
O
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
The LT6015MP/LT6016MP/LT6017MP are guaranteed functional over the  
junction temperature range of –55°C to 150°C. Junction temperatures greater  
than 125°C will promote accelerated aging. The LT6015/LT6016/LT6017 has a  
demonstrated typical performance beyond 1000 hours at T = 150°C.  
J
Note 2: Voltages applied are with respect to V . The inputs are tested to  
Note 5: The LT6015I/LT6016I/LT6017I are guaranteed to meet specified  
performance from –40°C to 85°C. The LT6015H/LT6016H/LT6017H are  
guaranteed to meet specified performance from –40°C to 125°C. The  
LT6015MP/LT6016MP/LT6017MP are guaranteed to meet specified  
performance with junction temperature ranging from –55°C to 150°C.  
the Absolute Maximum Rating by applying –25V (relative to V ) to each  
input for 10ms. In general, faults capable of sinking current from either  
input should be current limited to under 10mA. See the Applications  
Information section for more details.  
Note 3: A heat sink may be required to keep the junction temperature  
below absolute maximum. This depends on the power supply voltage and  
how many amplifiers are shorted.  
Note 6: Test accuracy is limited by high speed test equipment repeatability. Bench  
measurements indicate the input offset current in the Over-The-Top configuration  
is typically controlled to under 50nA at 25°C and 150nA over temperature.  
Note 4: The LT6015I/LT6016I/LT6017I are guaranteed functional over the oper-  
ating temperature range of –40°C to 85°C. The LT6015H/LT6016H/LT6017H are  
guaranteed functional over the operating temperature range of –40°C to 125°C.  
Note 7: The Reverse Supply voltage is tested by pulling 25μA/Amplifier out  
+
+
of the V pin while measuring the V pin’s voltage with both inputs and V  
+
grounded, verifying V < –50V.  
601567ff  
7
For more information www.linear.com/LT6015  
LT6015/LT6016/LT6017  
Typical perForMance characTerisTics  
Typical Distribution of Input  
Offset Voltage  
Typical Distribution of Input  
Offset Voltage  
Typical Distribution of Over-The-Top  
Input Offset Voltage  
600  
500  
400  
300  
200  
100  
0
350  
300  
250  
200  
150  
100  
400  
350  
300  
250  
200  
150  
100  
50  
965 UNITS  
1930 CHANNELS  
FROM TWO RUNS  
V
=
15V  
V
= 5V  
V
= 5V  
S
S
S
V
T
= 0V  
V
T
= 5V  
V
T
= MID-SUPPLY  
CM  
A
CM  
A
CM  
A
= 25°C  
= 25°C  
= 25°C  
MS8 PACKAGE  
MS8 PACKAGE  
MS8 PACKAGE  
1285 UNITS  
2570 CHANNELS  
FROM TWO RUNS  
1285 UNITS  
2570 CHANNELS  
FROM TWO RUNS  
50  
0
0
–50 –40 –30 –20 –10  
0
10 20 30 40 50  
–50 –40 –30 –20 –10  
0
10 20 30 40 50  
–3025201510 –5  
0
5
10 15 20 25 30  
INPUT OFFSET VOLTAGE (µV)  
INPUT OFFSET VOLTAGE (µV)  
INPUT OFFSET VOLTAGE (µV)  
601567 G02  
601567 G03  
601567 G01  
Typical Distribution of Over-The-Top  
Input Offset Voltage  
Typical Distribution of Input  
Offset Voltage  
Typical Distribution of Over-The-Top  
Input Offset Voltage  
350  
300  
250  
200  
150  
100  
350  
300  
250  
200  
150  
100  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
965 UNITS  
1930 CHANNELS  
FROM TWO RUNS  
510 UNITS  
2040 CHANNELS  
FROM TWO RUNS  
V
= 5V  
V
= 5V  
V = 5V  
S
510 UNITS  
2040 CHANNELS  
FROM TWO RUNS  
S
S
V
= 76V  
V
= MID-SUPPLY  
V
= 5V  
CM  
A
CM  
A
CM  
T
= 25°C  
T
= 25°C  
T = 25°C  
A
MS8 PACKAGE  
DJC22 PACKAGE  
DJC22 PACKAGE  
50  
0
50  
0
0
–50 –40 –30 –20 –10  
0
10 20 30 40 50  
–50 –40 –30 –20 –10  
0
10 20 30 40 50  
–100 –80 –60 –40 –20  
0
20 40 60 80 100  
INPUT OFFSET VOLTAGE (µV)  
INPUT OFFSET VOLTAGE (µV)  
INPUT OFFSET VOLTAGE (µV)  
601567 G04  
601567 G05  
601567 G06  
Voltage Offset Shift vs Lead Free  
IR Reflow  
Over-The-Top Voltage Offset Shift  
vs Lead Free IR Reflow  
Voltage Offset Shift vs Lead Free  
IR Reflow  
12  
10  
8
18  
16  
14  
12  
10  
8
24 DEVICES  
48 CHANNELS  
MS8 PACKAGE  
10 DEVICES  
V = 5V  
S
24 DEVICES  
40 CHANNELS  
DJC22 PACKAGE  
V
= MID-SUPPLY  
48 CHANNELS  
MS8 PACKAGE  
CM  
V
CM  
= 5V  
14  
12  
10  
8
V = 5V  
S
S
CM  
V
= 5V  
V
= MID-SUPPLY  
6
6
4
6
4
4
2
2
2
0
0
0
–20 –15 –10 –5  
0
5
10 15 20 25  
–25 –20 –15 –10 –5  
0
5 10 15 20 25  
–20 –15 –10 –5  
0
5
10 15 20 25  
VOLTAGE OFFSET SHIFT (µV)  
VOLTAGE OFFSET SHIFT (µV)  
VOLTAGE OFFSET SHIFT (µV)  
601567 G08  
601567 G09  
601567 G07  
601567ff  
8
For more information www.linear.com/LT6015  
LT6015/LT6016/LT6017  
Typical perForMance characTerisTics  
Voltage Offset Shift vs Thermal  
Warm-Up Drift  
Over-The-Top Warm-Up Drift  
Cycling  
2.5  
2.0  
18  
2.5  
2.0  
V
=
15V  
= 0V  
5 UNITS, 10 CHANNELS  
MS8 PACKAGE  
V
= 5V  
= 50V  
5 UNITS, 10 CHANNELS  
MS8 PACKAGE  
FOUR THERMAL CYCLES –55°C TO 130°C  
S
CM  
S
CM  
V
V
T
= 25°C  
16  
14  
12  
10  
8
A
20 DEVICES  
1.5  
1.5  
40 CHANNELS  
MS8 PACKAGE  
1.0  
1.0  
V = 5V  
S
CM  
0.5  
0.5  
V
= MID-SUPPLY  
0.0  
0.0  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
6
4
CHANNEL A  
CHANNEL B  
2
CHANNEL A  
CHANNEL B  
0
0
1
2
3
4
5
–25 –20 –15 –10 –5  
0
5 10 15 20 25  
0
1
2
3
4 5  
TIME AFTER POWER ON (MIN)  
VOLTAGE OFFSET SHIFT (µV)  
TIME AFTER POWER ON (MIN)  
601567 G10  
601567 G12  
601567 G11  
Voltage Offset Shift  
vs Temperature Cycling  
Over-The-Top Voltage Offset  
vs Temperature  
Voltage Offset vs Temperature  
100  
75  
150  
100  
50  
150  
100  
50  
FOUR CYCLES –55°C TO 130°C  
V
CM  
= 5V  
5 UNITS, 10 CHANNELS  
V
CM  
= 5V  
5 UNITS, 10 CHANNELS  
MS8 PACKAGE  
S
S
V
= 5V, V = MID-SUPPLY  
V
= MID-SUPPLY MS8 PACKAGE  
V
= 50V  
S
CM  
40 CHANNELS MEASURED  
MS8 PACKAGE  
CHANNEL A  
CHANNEL B  
CHANNEL A  
CHANNEL B  
MAXIMUM SHIFT  
MEASURED  
50  
25  
TYPICAL  
CHANNEL  
0
0
0
–25  
–50  
–75  
–100  
–50  
–100  
–150  
–50  
–100  
–150  
MINIMUM SHIFT  
MEASURED  
WORST-CASE  
CHANNEL  
–75 –50 –25  
0
25 50 75 100 125 150  
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
601567 G13  
601567 G14  
601567 G15  
Voltage Offset vs Input Common  
Mode Voltage  
Voltage Offset vs Supply Voltage  
Minimum Supply Voltage  
50  
40  
100  
75  
20  
15  
V
S
= 5V  
T
= –45°C  
A
30  
50  
10  
T
A
= 125°C  
20  
25  
5
10  
T = 25°C  
A
T
= 25°C  
A
0
0
T
= 25°C  
0
A
T
= –45°C  
A
T
A
= –45°C  
–10  
–20  
–30  
–40  
–50  
–25  
–50  
–75  
–100  
–5  
T
= 125°C  
A
T
A
= 125°C  
–10  
–15  
–20  
0.01  
0.1  
1
10  
100  
5
10 15 20 25 30 35 40 45 50  
TOTAL SUPPLY VOLTAGE (V)  
0
1
2
3
4
5
V
CM  
(V)  
TOTAL SUPPLY VOLTAGE (V)  
601567 G16  
601567 G17  
601567 G18  
601567ff  
9
For more information www.linear.com/LT6015  
LT6015/LT6016/LT6017  
Typical perForMance characTerisTics  
Long Term Stability of Five  
Representative Units  
Input Bias Current vs Input  
Common Mode Voltage  
Input Bias Current vs Input  
Common Mode Voltage  
20  
15  
10  
5
25  
0
5
4
V
S
= 5V  
V
S
= 5V  
5 UNITS, 10 CHANNELS  
MS8 PACKAGE  
3
2
1
0
–1  
–2  
–3  
–4  
–5  
–25  
T
T
T
T
T
= 125°C  
= 85°C  
T
T
T
T
T
= 125°C  
= 85°C  
= 25°C  
= –45°C  
= –55°C  
A
A
A
A
A
A
A
A
A
A
0
= 25°C  
= –45°C  
= –55°C  
CHANNEL A  
CHANNEL B  
–5  
–50  
0.1  
1
10  
100  
0.001  
0.01  
0.1  
1
10  
0
1
2
3
4
INPUT COMMON MODE VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
TIME (MONTHS)  
601567 G20  
601567 G21  
601567 G19  
Input Bias Current vs Supply  
Voltage  
Reverse Supply Current  
Supply Current vs Supply Voltage  
vs Reverse Supply Voltage  
12.5  
10.0  
7.5  
600  
500  
400  
300  
200  
100  
0
10  
T
T
T
T
T
= 125°C  
= 85°C  
A
A
A
A
A
NON-INVERTING OP AMP CONFIGURATION  
T
= 150°C  
A
+INA, +INB TIED TO V  
= 25°C  
5
0
= –45°C  
= –55°C  
T
= –55°C  
T
= 130°C  
A
A
5.0  
T
= 150°C  
A
–5  
2.5  
T
= –55°C  
A
T
= 25°C  
–10  
–15  
A
0.0  
PARAMETRIC SWEEP IN ~25°C  
INCREMENTS  
–2.5  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
–60  
–50  
–40  
–30  
–20  
–10  
0
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
601567 G22  
601567 G23  
601567 G24  
Over-The-Top Noise Density  
vs Frequency  
Noise Density vs Frequency  
0.1Hz to 10Hz Noise  
40  
35  
30  
25  
20  
15  
10  
5
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
V
T
=
2ꢀ5V TO 25V  
V
V
= 5V  
CM  
S
A
S
= 25°C  
= 5V  
VOLTAGE NOISE  
VOLTAGE NOISE  
CURRENT NOISE  
CURRENT NOISE  
0
0
2
4
6
8
10  
1
10  
100  
1000  
10k  
100k  
1
10  
100  
1000  
TIME (SEC)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
601567 G27  
601567 G25  
601567 G26  
601567ff  
10  
For more information www.linear.com/LT6015  
LT6015/LT6016/LT6017  
Typical perForMance characTerisTics  
Output Impedance vs Frequency  
PSRR vs Frequency  
CMRR vs Frequency  
100  
1000  
100  
10  
120  
V
S
= 2.5V  
V
=
2.5V  
S
100  
80  
60  
40  
20  
0
80  
60  
40  
20  
0
POSITIVE SUPPLY  
A
= 100  
V
A
= +1  
V
1
NEGATIVE SUPPLY  
A
= 10  
0.10  
0.01  
V
0.1  
1
10  
100  
1000  
0
1
10  
100  
1000  
10k  
0.1  
1
10  
100  
1000  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
601567 G30  
601567 G28  
601567 G29  
Closed-Loop Small Signal  
Frequency Response  
Gain and Phase Shift  
vs Frequency  
Gain Bandwidth Product and  
Phase Margin vs Supply Voltage  
60  
40  
90.00  
3.5  
3.4  
3.3  
3.2  
3.1  
3.0  
60  
56  
52  
48  
44  
40  
50  
40  
C
LOAD  
= 30pF  
PHASE  
100V/V  
10V/V  
1V/V  
112.5  
135.0  
157.5  
180.0  
30  
GBW  
20  
20  
PM  
GAIN  
10  
0
0
–10  
–20  
V
C
=
LOAD  
2.5V  
= 20pF  
S
–20  
0.01  
0.1  
1
10  
0
10  
20  
30  
40  
50  
1
10  
100  
1000  
10k  
FREQUENCY (MHz)  
TOTAL SUPPLY VOLTAGE (V)  
FREQUENCY (kHz)  
601567 G32  
601567 G33  
601567 G31  
Phase Margin vs Capacitive Load  
Gain-Bandwidth vs Temperature  
Channel Separation vs Frequency  
4.0  
3.5  
3.0  
2.5  
2.0  
45.0  
42.5  
40.0  
37.5  
35.0  
32.5  
30.0  
140  
130  
120  
110  
100  
90  
V
S
= 2.5V  
R
LOAD  
= OPEN  
R
LOAD  
= 1kΩ  
V
= 15V  
S
I
= 150µA  
SRC  
V
= 5V  
S
I
= 0  
SRC  
80  
70  
V
S
= 15V  
60  
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
0
50  
100  
150  
200  
250  
300  
0.1  
1
10  
FREQUENCY (kHz)  
100  
1000  
CAPACITIVE LOAD (pF)  
601567 G35  
601567 G34  
601567 G36  
601567ff  
11  
For more information www.linear.com/LT6015  
LT6015/LT6016/LT6017  
Typical perForMance characTerisTics  
Settling Time to 0.1%  
vs Output Step  
Slew Rate vs Temperature  
Short-Circuit vs Temperature  
5
4
2.0  
1.5  
1.0  
0.5  
0
40  
30  
V
V
=
CM  
15V  
V
= 5V  
S
V
S
= 2ꢀ5V  
S
= 0V  
SINKING  
RISING EDGE  
3
A
V
= +1  
20  
2
A
V
= –1  
10  
1
0
0
FALLING EDGE  
–1  
–2  
–3  
–10  
–20  
–30  
–40  
A
V
= –1  
SOURCING  
A
= +1  
4
V
–4  
–5  
2
3
5
6
7
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
SETTLING TIME (µs)  
601567 G37  
601567 G38  
601567 G39  
Output Saturation Voltage  
vs Input Overdrive  
Small Signal Transient Response  
Large Signal Transient Response  
1000  
100  
10  
A
V
C
= 1V/V  
A
V
= 1V/V  
V
S
V
S
OUTPUT HIGH  
=
2ꢀ5V  
=
15  
= 20pF  
LOAD  
25mV/DIV  
5V/DIV  
OUTPUT LOW  
V
=
2ꢀ5V  
S
A
T
= 25°C  
NO LOAD  
1
601567 G40  
601567 G41  
1µs/DIV  
10µs/DIV  
1
10  
100  
1000  
INPUT OVERDRIVE (mV)  
601567 G42  
Output Saturation Voltage ꢀVOL  
Output Saturation Voltage ꢀVOH  
vs Load Current  
vs Load Current  
Open-Loop Gain  
200  
150  
100  
50  
10k  
1000  
100  
10  
10k  
1000  
100  
10  
V
= 15V  
S
R
= 2kΩ  
LOAD  
R
LOAD  
= 10kΩ  
0
R
= 1MΩ  
LOAD  
–50  
–100  
T
T
T
= 125°C  
= 25°C  
T
T
T
= 125°C  
= 25°C  
A
A
A
A
A
A
–150  
–200  
= –45°C  
= –45°C  
1
1
–20 –15 –10 –5  
0
5
10 15 20  
601567 G45  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
OUTPUT VOLTAGE (V)  
SINKING LOAD CURRENT (mA)  
SOURCING LOAD CURRENT (mA)  
601567 G43  
601567 G44  
601567ff  
12  
For more information www.linear.com/LT6015  
LT6015/LT6016/LT6017  
applicaTions inForMaTion  
Supply Voltage  
Inputs  
The positive supply pin of the LT6015/LT6016/LT6017  
shouldbebypassedwithasmallcapacitor(typically0.1μF)  
as close to the supply pins as possible. When driving  
heavy loads an additional 4.7μF electrolytic capacitor  
should be added. When using split supplies, the same is  
ReferringtotheSimplifiedSchematic,theLT6015/LT6016/  
LT6017hastwoinputstages:acommonemitterdifferential  
inputstageconsistingofPNPtransistorsQ1andQ2which  
operate when the inputs are biased between V and 1.5V  
+
below V , and a common base input stage consisting of  
true for the V supply pin.  
PNPtransistorsQ3toQ6whichoperatewhenthecommon  
+
mode input is biased greater than V –1.5V. This results  
The LT6017 consists of two dual amplifier dice assembled  
in a single DFN package which share a common substrate  
in two distinct operating regions as shown in Figure 2.  
(V ). While the V pins of the quad (pins 16 and 18) must  
alwaysbetiedtogetherandtotheexposedpadunderneath,  
For common mode input voltages approximately 1.5V or  
+
more below the V supply (Q1 and Q2 active), the com-  
+
the V power supply pins (pins 5 and 7) may be supplied  
mon emitter PNP input stage is active and the input bias  
current is typically under 2nA. When the common mode  
independently.TheBandCchannelamplifiersaresupplied  
+
+
throughV bypin7, andtheAandDchannelamplifiersare  
input is within approximately 1V of the V supply or higher  
supplied by pin 5. If pin 5 and pin 7 are not tied together  
+
and are biased independently, each V pin should have  
–50V  
5V  
OK!  
OK!  
their own dedicated supply bypass to ground.  
+
+
Shutdown  
WhiletherearenodedicatedshutdownpinsfortheLT6015/  
LT6016/LT6017,theamplifierscaneffectivelybeshutdown  
+
80V  
REVERSE BATTERY  
TOLERANT  
+
into a low power state by removing V . In this condition  
INPUTS DRIVEN ABOVE  
SUPPLY TOLERANT  
the input bias current is typically less than 1nA with the  
inputs biased between V and 76V above V , and if the  
5V  
5V  
OK!  
OK!  
inputs are taken below V , they appear as a diode in series  
+
+
with 1k of resistance. The output may be pulled up to 50V  
+
+
80V  
abovetheV powersupplyinthiscondition(SeeFigure1).  
Pulling the output pin below V will produce unlimited  
current and can damage the part.  
25V  
TRANSIENT  
LARGE DIFFERENTIAL  
INPUT VOLTAGE  
TOLERANT  
+
Reverse Battery  
INPUTS DRIVEN BELOW  
GROUND TOLERANT  
TheLT6015/LT6016/LT6017areprotectedagainstreverse  
battery voltages up to 50V. In the event a reverse battery  
condition occurs, the supply current is typically less  
than 5µA (assuming the inputs are biased within a diode  
0V  
OK!  
+
+
drop from V ). For typical single supply applications with  
50V  
ground referred loads and feedback networks, no other  
precautions are required. If the reverse battery condition  
results in a negative voltage at the input pins, the current  
into the pin should be limited by an external resistor to  
less than 10mA.  
601567 F01  
OUTPUT DRIVEN ABOVE THE  
+
V
SUPPLY (IN SHUTDOWN)  
TOLERANT  
Figure 1. LT6015/LT6016/LT6017 Fault Tolerant Conditions  
601567ff  
13  
For more information www.linear.com/LT6015  
LT6015/LT6016/LT6017  
applicaTions inForMaTion  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
(Over-The-Top operation), Q9 begins to turn on diverting  
bias current away from the common emitter differential  
input pair to the current mirror consisting of Q11 and Q12.  
ThecurrentfromQ12willbiasthecommonbasedifferential  
inputpairconsistingofQ3toQ6.BecausetheOver-The-Top  
input pair is operating in a common base configuration,  
the input bias current will increase to about 14μA. Both  
input stages have their voltage offsets trimmed tightly and  
are specified in the Electrical Characteristics table.  
V
= 5V  
S
TYPICAL COMMON MODE VOLTAGE  
FOR ONSET OF OVER-THE-TOP  
OPERATION  
TYPICAL COMMON MODE VOLTAGE  
WHERE OVER-THE-TOP OPERATION  
FULLY ON  
TRANSISTION REGION  
The inputs are protected against temporary excursions to  
–50  
–25  
0
25  
50  
75  
100  
125  
150  
TEMPERATURE (°C)  
as much as 25V below V by internal 1k resistor in series  
601567 F02  
with each input and a diode from the input to the negative  
supply. Adding additional external series resistance will  
Figure 2. LT6016/LT6017 Over-The-Top Transition Region vs  
Temperature  
extend the protection beyond 25V below V . The input  
stage of the LT6015/LT6016/LT6017 incorporates phase  
reversal protection to prevent the output from phase  
Some implications should be understood about Over-  
The-Top operation. The first, and most obvious is the  
input bias currents change from under 2nA in normal  
operation to 14µA in Over-The-Top operation as the input  
stage transitions from common emitter to common base.  
Even though the Over-The-Top input bias currents run  
around 14 µA, they are very well matched and their offset  
is typically under 100nA.  
reversing for inputs below V .  
There are no clamping diodes between the inputs. The  
inputs may be over-driven differentially to 80V without  
damage, or without drawing appreciable input current.  
Figure 1 summarizes the kind of faults that may be applied  
to the LT6015/LT6016/LT6017 without damage.  
Over-The-Top Operation Considerations  
Thesecondandmoresubtlechangetoamplifieroperation  
is the differential input impedance which decreases from  
1MΩ in normal operation, to approximately 3.7kΩ in  
When the input common mode of the LT6015/LT6016/  
+
LT6017isbiasednearorabovetheV supply,theamplifier  
Over-The-Top operation (specified as R in the Electrical  
IN  
is said to be operating in the Over-The-Top configuration.  
Thedifferentialinputpairwhichcontrolamplifieroperation  
is common base pair Q3 to Q6 (refer to the Simplified  
Schematic). If the input common mode is biased between  
Characteristics table). This resistance appears across the  
summing nodes in Over-The-Top operation and is due to  
the common base input stage configuration. Its value is  
easilyderivedfromthespecifiedinputbiascurrentflowing  
into the op amp inputs and is equal to 2 k T/(q Ib)  
(k-Boltzmann’s constant, T – operating temperature,  
Ib-operating input bias current of the amplifier in the  
Over-The-Top region). And because the inputs are biased  
proportional to absolute temperature, it is relatively  
constant with temperature. The user may think this  
effective resistance is relatively harmless because it  
appears across the summing nodes which are forced  
+
V and approximately 1.5V below V , the amplifier is said  
tobeoperatinginthenormalconfiguration. Thedifferential  
input pair which control amplifier operation is common  
emitter pair Q1 and Q2.  
AplotoftheOver-The-TopTransitionregionvsTemperature  
(the region between normal operation and Over-The-Top  
operation) on a 5V single supply is shown in Figure 2.  
601567ff  
14  
For more information www.linear.com/LT6015  
LT6015/LT6016/LT6017  
applicaTions inForMaTion  
to 0V differential by feedback action of the amplifier.  
However, depending on the configuration of the feedback  
around the amplifier, this input resistance can boost noise  
gain, lower overall amplifier loop gain and closed loop  
bandwidth, raise output noise, with one benevolent effect  
in increasing amplifier stability.  
Likewise the closed loop bandwidth of the amplifier will  
change going from normal mode operation to Over-The-  
Top operation:  
GBW  
Normal mode:  
BW  
CLOSED LOOP  
R
F
1+  
R
I
+
In the normal mode of operation (where V < V < V  
CM  
Over-The-Top mode:  
BW  
–1.5V), R is typically large compared to the value of the  
IN  
inputresistorused,andR canbeignored(refertoFigure3).  
GBW  
IN  
CLOSED LOOP  
In this case the noise gain is defined by the equation:  
R
F
1+  
R || R + R ||R  
(
)
I
IN  
I
F
R
R
F
NOISE GAIN 1+  
I
Andoutputnoiseisnegativelyimpactedgoingfromnormal  
mode to Over-The-Top:  
However,whentheamplifiertransitionsintoOver-The-Top  
mode with the input common mode biased near or above  
Normal mode: (neglecting resistor noise)  
+
the the V supply, R should be considered. The noise  
IN  
gain of the amplifier changes to:  
R
R
F
e
e 1+  
ni  
no  
R
I
F
NOISE GAIN = 1+  
R || R + R ||R  
(
)
I
IN  
I
F
Over-The-Top mode: (neglecting resistor noise)  
R
F
5V  
R
R
R
F
I
I
e
e 1+  
no  
ni  
+
R || R + R ||R  
(
)
I
IN  
I
F
V
R
IN  
IN  
V
OUT  
LT6015  
Output  
V
INCM  
R
F
601567 F03  
TheoutputoftheLT6015/LT6016/LT6017canswingwithin  
+
a Schottky diode drop (~0.4V) of the V supply, and within  
Figure 3. Difference Amplifier Configured for Both  
Normal and Over-The-Top Operation  
5mV of the negative supply with no load. The output is  
capable of sourcing and sinking approximately 25mA.  
The LT6015/LT6016/LT6017 are internally compensated  
to drive at least 200pF of capacitance under any output  
loading conditions. For larger capacitive loads, a 0.22μF  
capacitor in series with a 150Ω resistor between the out-  
put and ground will compensate these amplifiers to drive  
capacitive loads greater than 200pF.  
While it is true that the DC closed loop gain will remain  
R
F
mostly unaffected (=  
), the loop gain of the amplifier  
R
I
A
A
OL  
OL  
R
R
has decreased from  
to  
F
F
1+  
1+  
R || R + R ||R  
R
(
)
I
IN  
I
F
I
601567ff  
15  
For more information www.linear.com/LT6015  
LT6015/LT6016/LT6017  
applicaTions inForMaTion  
Distortion  
In general, the die junction temperature (T ) can be esti-  
J
mated from the ambient temperature T , and the device  
A
There are two main contributors of distortion in op amps:  
output crossover distortion as the output transitions  
from sourcing to sinking current and distortion caused  
by nonlinear common mode rejection. If the op amp is  
operating in an inverting configuration there is no com-  
mon mode induced distortion. If the op amp is operating  
in the noninverting configuration within the normal input  
power dissipation P :  
D
T = T + P   
JA  
J
A
D
The power dissipation in the IC is a function of supply  
voltage and load resistance. For a given supply voltage,  
the worst-case power dissipation P  
occurs at the  
D(MAX)  
maximum supply current with the output voltage at half  
of either supply voltage (or the maximum swing is less  
+
common mode range (V to V –1.5V) the CMRR is very  
good, typically over 120dB. When the LT6015/LT6016/  
LT6017 transitions input stages going from the normal  
input stage to the Over-The-Top input stage or vice-versa,  
there will be a significant degradation in linearity due to  
the change in input circuitry.  
than one-half the supply voltage). P  
is given by:  
D(MAX)  
2
P
= (V I  
) + (V /2) /R  
D(MAX)  
S
S(MAX) S LOAD  
Example: AnLT6016inaMSOPpackagemountedonaPC  
board has a thermal resistance of 273°C/W. Operating on  
25Vsupplieswithbothamplifierssimultaneouslydriving  
2.5kΩ loads, the worst-case IC power dissipation for the  
Lower load resistance increases distortion due to a net  
decrease in loop gain, and greater voltage swings internal  
totheampnecessarytodrivetheload, buthasnoeffecton  
the input stage transition distortion. The lowest distortion  
canbeachievedwiththeLT6015/LT6016/LT6017sourcing  
in class-A operation in an inverting configuration, with the  
inputcommonmodebiasedmid-waybetweenthesupplies.  
given load occurs when driving 12.5V  
and is given by:  
PEAK  
2
P
= 2 50 0.6mA + 2 (12.5) /2500 = 0.185W  
D(MAX)  
Withathermalresistanceof273°C/W,thedietemperature  
will experience approximately a 50°C rise above ambient.  
This implies the maximum ambient temperate the LT6016  
should ever operate under the assumed conditions:  
Power Dissipation Considerations  
T = 150°C – 50°C = 100°C  
Because of the ability of the LT6015/LT6016/LT6017 to  
operate on power supplies up to 25V and to drive heavy  
loads, there is a need to ensure the die junction tempera-  
ture does not exceed 150°C. The LT6015 is housed in a  
A
Tooperatetohigherambienttemperatures, usetwo chan-  
nelsoftheLT6017quadwhichhaslowerthermalresistance  
=31.8°C/W,andanexposedpadwhichmaybesoldered  
JA  
5-lead TSOT-23 package (= 250°C/W). The LT6016  
JA  
down to a copper plane (connected to V ) to further lower  
is housed in an 8-lead MSOP package (= 273°C/W).  
JA  
the thermal resistance below = 31.8°C/W.  
JA  
The LT6017 is housed in a 22 pin leadless DFN package  
(DJC22, = 31.8°C/W).  
JA  
601567ff  
16  
For more information www.linear.com/LT6015  
LT6015/LT6016/LT6017  
siMpliFieD scheMaTic  
+
V
I1  
I3  
I4  
D3  
Q10  
PNP  
16µA  
8µA  
8µA  
M2  
M1  
R5  
PMOS  
PMOS  
40k  
R1, 1k  
R2, 1k  
Q9  
–IN  
PNP  
I2  
P
N
CLASS AB  
ADJUST  
Q1  
PNP  
Q2  
PNP  
OUT  
+IN  
5µA  
Q3  
Q4  
PNP  
PNP  
Q6  
Q5  
PNP  
PNP  
Q7  
NPN  
Q8  
NPN  
Q13  
NPN  
Q11  
NPN  
Q12  
NPN  
R3  
6k  
R4  
6k  
D1  
D2  
D4  
V
601567 SS  
Typical applicaTions  
Gain of 100 High Voltage Difference Amplifier with –5V/75V Common Mode Range  
CMRR  
ADJUST  
97.6k  
5k  
5V  
1k  
+
+
V
= 100 • V  
IN  
V
LT6015  
OUT  
IN  
1k  
+
–5V  
V
CM  
100k  
601567 TA02  
Wide Input Range Current Sense Amp Goes Hi-Z When VSUPPLY Removed  
V
SUPPLY  
V
= 0.2V TO 76V  
SOURCE  
0.1µF  
R1  
R6  
100Ω  
1%  
200Ω  
+
0.1Ω  
R2  
200Ω  
I
SENSE  
LT6016  
BSP89  
R
SENSE  
+
R3  
200Ω  
LT6016  
LOAD  
1N4148*  
R5  
10k  
V
= 3V TO 60V  
SUPPLY  
V
OUT  
R4  
200Ω  
R5  
R4  
VOUT =RSENSE ISENSE 1+  
*DIODE IMPROVES OUTPUT SWING LOW  
601567 TA04  
601567ff  
17  
For more information www.linear.com/LT6015  
LT6015/LT6016/LT6017  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
DJC Package  
22-Lead Plastic DFN (6mm × 3mm)  
(Reference LTC DWG # 05-08-ꢀ7ꢀ4 Rev Ø)  
0.889  
0.70 0.05  
R = 0.ꢀ0  
0.889  
3.60 0.05  
ꢀ.65 0.05  
(2 SIDES)  
2.20 0.05  
PACKAGE  
OUTLINE  
0.25 0.05  
0.50 BSC  
5.35 0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
NOTE:  
ꢀ. DIMENSIONS ARE IN MILLIMETERS  
2. APPLY SOLDER MASK TO AREAS THAT  
ARE NOT SOLDERED  
3. DRAWING IS NOT TO SCALE  
R = 0.ꢀꢀ5  
TYP  
0.40 0.05  
6.00 0.ꢀ0  
(2 SIDES)  
0.889  
ꢀ2  
22  
R = 0.ꢀ0  
TYP  
0.889  
3.00 0.ꢀ0  
(2 SIDES)  
ꢀ.65 0.ꢀ0  
(2 SIDES)  
PIN ꢀ  
TOP MARK  
(NOTE 6)  
PIN #ꢀ NOTCH  
R0.30 TYP OR  
0.25mm × 45°  
CHAMFER  
ꢀꢀ  
0.25 0.05  
0.50 BSC  
0.75 0.05  
0.200 REF  
5.35 0.ꢀ0  
(2 SIDES)  
(DJC) DFN 0605  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
ꢀ. DRAWING PROPOSED TO BE MADE VARIATION OF VERSION (WXXX)  
IN JEDEC PACKAGE OUTLINE M0-229  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.ꢀ5mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN ꢀ LOCATION  
ON TOP AND BOTTOM OF PACKAGE  
601567ff  
18  
For more information www.linear.com/LT6015  
LT6015/LT6016/LT6017  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
MS8 Package  
8-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1ꢀꢀ0 Rev G)  
0.889 0.127  
(.035 .005)  
5.10  
3.20 – 3.45  
(.201)  
(.12ꢀ – .13ꢀ)  
MIN  
3.00 0.102  
(.118 .004)  
(NOTE 3)  
0.52  
(.0205)  
REF  
0.ꢀ5  
(.025ꢀ)  
BSC  
0.42 0.038  
(.01ꢀ5 .0015)  
TYP  
8
7 ꢀ 5  
RECOMMENDED SOLDER PAD LAYOUT  
3.00 0.102  
(.118 .004)  
(NOTE 4)  
4.90 0.152  
(.193 .00ꢀ)  
DETAIL “A”  
0.254  
(.010)  
0° – ꢀ° TYP  
GAUGE PLANE  
1
2
3
4
0.53 0.152  
(.021 .00ꢀ)  
1.10  
(.043)  
MAX  
0.8ꢀ  
(.034)  
REF  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.22 – 0.38  
0.101ꢀ 0.0508  
(.009 – .015)  
(.004 .002)  
0.ꢀ5  
(.025ꢀ)  
BSC  
TYP  
MSOP (MS8) 0213 REV G  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.00ꢀ") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.00ꢀ") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
601567ff  
19  
For more information www.linear.com/LT6015  
LT6015/LT6016/LT6017  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
S5 Package  
5-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1635)  
0.62  
MAX  
0.95  
REF  
2.90 BSC  
(NOTE 4)  
1.22 REF  
1.4 MIN  
1.50 – 1.75  
(NOTE 4)  
2.80 BSC  
3.85 MAX 2.62 REF  
PIN ONE  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.30 – 0.45 TYP  
5 PLCS (NOTE 3)  
0.95 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
NOTE:  
S5 TSOT-23 0302  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
601567ff  
20  
For more information www.linear.com/LT6015  
LT6015/LT6016/LT6017  
revision hisTory  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
01/13 Corrected Block Diagram Q7 and Q8  
06/13 Added LT6015 Single Amplifier  
17  
All  
B
Changed MIN I at V = 0V to –60nA, changed GBW test condition to f = 100kHz  
TEST  
3-7  
17  
B
CM  
Added Wide Input Range Current Sense Amp circuit  
C
D
E
F
11/13 Revised Order Information table to include mini tape and reel for LT6015  
12/13 Corrected quad pinout  
2
2, 13  
2
09/14 Corrected TSOT-23 part marking and package description  
08/15 Corrected axis label on graph G32  
11  
601567ff  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
21  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
LT6015/LT6016/LT6017  
Typical applicaTion  
Extended Supply Current Boosted Gain of Three Amplifier Drives 100Ω Load to ±±0Vꢀ with ꢁ00mA Current Limit  
47nF  
1k  
0.1µF  
35V  
330pF  
820pF  
35V  
Q1  
1k  
20k  
24V *  
Z
+
604Ω  
1Ω  
10k  
1k  
1/2  
LT6016  
V
= 30V  
OUT  
330Ω  
1/2W  
1/2  
LT6016**  
Q2  
24V *  
Z
V
+
IN  
–35V  
1k  
–35V  
100k  
10nF  
47nF  
2 × 1N4148  
OR EQUIVALENT  
60167 TA03  
*ZENER DIODES: CENTRAL SEMI CMZ5934  
Q1, Q2: ON-SEMI D44VH10 NPN, D45VH10 PNP WITH HEAT SINK  
**BOTH HALVES OF LT6016 ON SAME SUPPLY  
relaTeD parTs  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1490A/LT1491A  
Dual and Quad Micropower Rail-to-Rail Input and  
Output Op Amp  
Over-The-Top Inputs, 50μA/Amplifier, Reverse Battery Protection to 18V  
LT1638/LT1639  
1.2MHz, 0.4V/µs Over-The-Top Rail-to-Rail Input and Over-The-Top Inputs, 230μA/Amplifier, 1.2MHz GBW, 0.4V/µs Slew Rate  
Output Op Amp  
LT1494/LT1495/LT1496 1.5μA Max, Single, Dual, and Quad, Over-The-Top  
Precision Rail-to-Rail Input and Output Op Amps  
Over-The-Top Inputs, 1.5μA/Amplifier, 375μV Voltage Offset  
LT1112/LT1114  
LT1013/LT1014  
Dual/Quad Low Power Precision, pA Input Op Amp  
Dual/Quad Precision Op Amp  
60μV Offset Voltage, 400μA/Amplifier  
150μV Offset Voltage, 500μA/Amplifier  
601567ff  
LT 0915 REV F • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
22  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LT6015  
© LINEAR TECHNOLOGY CORPORATION 2012  

相关型号:

LT6016MPMS8#TRPBF

LT6016 - Dual 3.2MHz, 0.8V/&#181;s Low Power, Over-The-Top Precision Op Amp; Package: MSOP; Pins: 8; Temperature Range: -55&deg;C to 125&deg;C
Linear

LT6016_15

3.2MHz, 0.8V/s Low Power, Over-The-Top Precision Op Amps
Linear

LT6017

3.2MHz, 0.8V/μs Low Power, Over-The-Top Precision Op Amps
Linear

LT6017HDJC#PBF

LT6017 - Quad 3.2MHz, 0.8V/&#181;s Low Power, Over-The-Top Precision Op Amp; Package: DFN; Pins: 22; Temperature Range: -40&deg;C to 125&deg;C
Linear

LT6017HDJC#TRPBF

LT6017 - Quad 3.2MHz, 0.8V/&#181;s Low Power, Over-The-Top Precision Op Amp; Package: DFN; Pins: 22; Temperature Range: -40&deg;C to 125&deg;C
Linear

LT6017IDJC#PBF

LT6017 - Quad 3.2MHz, 0.8V/&#181;s Low Power, Over-The-Top Precision Op Amp; Package: DFN; Pins: 22; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT6017IDJC#TRPBF

LT6017 - Quad 3.2MHz, 0.8V/&#181;s Low Power, Over-The-Top Precision Op Amp; Package: DFN; Pins: 22; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT6017MPDJC#PBF

LT6017 - Quad 3.2MHz, 0.8V/&#181;s Low Power, Over-The-Top Precision Op Amp; Package: DFN; Pins: 22; Temperature Range: -55&deg;C to 125&deg;C
Linear

LT6017MPDJC#TRPBF

LT6017 - Quad 3.2MHz, 0.8V/&#181;s Low Power, Over-The-Top Precision Op Amp; Package: DFN; Pins: 22; Temperature Range: -55&deg;C to 125&deg;C
Linear

LT6017_15

3.2MHz, 0.8V/s Low Power, Over-The-Top Precision Op Amps
Linear

LT601F0275

CCIR REC.601 FILTERS
FARADAY

LT601F0575

CCIR REC.601 FILTERS
FARADAY