LT6100CMS8 [Linear]

Precision, Gain Selectable High Side Current Sense Amplifier; 精密,增益可选高压侧电流检测放大器
LT6100CMS8
型号: LT6100CMS8
厂家: Linear    Linear
描述:

Precision, Gain Selectable High Side Current Sense Amplifier
精密,增益可选高压侧电流检测放大器

模拟IC 信号电路 放大器 光电二极管 高压
文件: 总16页 (文件大小:258K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT6100  
Precision, Gain Selectable  
High Side Current Sense  
Amplifier  
U
FEATURES  
DESCRIPTIO  
The LT®6100 is a complete micropower, precision, high  
side current sense amplifier. The LT6100 monitors unidi-  
rectional currents via the voltage across an external sense  
resistor. Fixed gains of 10, 12.5, 20, 25, 40, 50V/V are  
obtained by simply strapping or floating two gain select  
pins. Gain accuracy is better than 0.5% for all gains.  
Input Offset Voltage: 300µV (Max)  
Sense Inputs Up to 48V  
0.5% Gain Accuracy  
Pin Selectable Gain: 10, 12.5, 20, 25, 40, 50V/V  
Separate Power Supply: 2.7V to 36V  
Operating Current: 60µA  
Sense Input Current (VCC Powered Down): 1nA  
Reverse Battery Protected to 48V  
Buffered Output  
The LT6100 sense inputs have a voltage range that ex-  
tends from 4.1V to 48V, and can withstand a differential  
voltageofthefullsupply.Thismakesitpossibletomonitor  
thevoltageacrossaMOSFETswitchorafuse.Thepartcan  
also withstand a reverse battery condition on the inputs.  
Noise Filtering Input  
–40°C to 125°C Operating Temperature Range  
Available in 8-Lead DFN and MSOP Packages  
U
Inputoffsetisalow300µV. CMRRandPSRRareinexcess  
of 105dB, resulting in a wide dynamic range. A filter pin is  
provided to easily implement signal filtering with a single  
capacitor.  
APPLICATIO S  
Battery Monitoring  
Fuse Monitoring  
Portable and Cellular Phones  
Portable Test/Measurement Systems  
The LT6100 has a separate supply input, which operates  
from 2.7V to 36V and draws only 60µA. When VCC is  
powered down, the sense pins are biased off. This pre-  
vents loading of the monitored circuit, irrespective of the  
sense voltage. The LT6100 is available in an 8-lead DFN  
and MSOP package.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
U
TYPICAL APPLICATIO  
Input Offset Voltage  
vs VS Sense Input Voltage  
0A to 33A High Side Current Monitor with 12kHz Frequency Rolloff  
1.5  
4.4V TO 48V  
SUPPLY  
3V  
V
V
A
= 100mV  
SENSE  
CC  
= 3V  
2
7
6
1.0  
T
= 25°C  
V
A4  
A2  
LT6100  
+
CC  
0.5  
0
V
S
8
1
V
OUT  
5
R
V
= 2.5V  
SENSE  
OUT  
3m  
I
= 33A  
SENSE  
–0.5  
–1.0  
–1.5  
V
S
V
4
EE  
FIL  
3
220pF  
LOAD  
6100 TA01a  
0
5
10 15 20 25 30 35 40 45 50  
CONFIGURED FOR GAIN = 25V/V  
V
SENSE INPUT VOLTAGE (V)  
S
6100 TA01b  
6100f  
1
LT6100  
ABSOLUTE AXI U RATI GS (Notes 1, 2)  
W W U W  
Differential Sense Voltage..................................... ±48V  
Specified Temperature Range (Note 5)  
+
Total VS , VSto VEE ............................................... 48V  
LT6100C............................................. 40°C to 85°C  
LT6100I .............................................. 40°C to 85°C  
LT6100H .......................................... 40°C to 125°C  
Storage Temperature Range ...........................................  
DFN .................................................. 65°C to 125°C  
MSOP ............................................... 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)  
Total VCC Supply Voltage from VEE ......................... 36V  
Output Voltage............................... (VEE) to (VEE + 36V)  
Output Short-Circuit Duration (Note 3)........ Continuous  
Operating Temperature Range (Note 4)  
LT6100C............................................. 40°C to 85°C  
LT6100I .............................................. 40°C to 85°C  
LT6100H .......................................... 40°C to 125°C  
MSOP .............................................................. 300°C  
U W  
U
PACKAGE/ORDER I FOR ATIO  
ORDER PART  
NUMBER  
ORDER PART  
TOP VIEW  
NUMBER  
+
TOP VIEW  
V
V
1
2
3
4
8
7
6
5
V
S
S
+
LT6100CDD  
LT6100IDD  
LT6100HDD  
LT6100CMS8  
LT6100IMS8  
LT6100HMS8  
V
V
1
2
3
4
8 V  
S
A4  
A2  
V
S
CC  
9
7 A4  
6 A2  
5 V  
CC  
FIL  
EE  
FIL  
V
V
EE  
OUT  
OUT  
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
DD PART MARKING*  
LBMW  
MS PART MARKING*  
LTBMV  
DD PACKAGE  
8-LEAD (3mm × 3mm) PLASTIC DFN  
TJMAX = 150°C, θJA = 250°C/ W  
TJMAX = 125°C, θJA = 43°C/ W  
EXPOSED PAD (PIN 9) IS VEE  
MUST BE SOLDERED TO PCB  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grades are identified by a label on the shipping container.  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the temperature range 0°C TA 70°C (LT6100C), otherwise specifications are  
TA = 25°C. VCC = 5V, VEE = 0V, VS+ = VCC + 1.4V unless otherwise specified. (Note 5)  
SYMBOL  
PARAMETER  
CONDITIONS  
Single Supply Operation (V = 2.7V)  
MIN  
TYP  
MAX  
UNITS  
+
V
V
, V  
Sense Amplifier Supply Voltage  
Input Sense Voltage Full Scale  
4.1  
48  
V
S
S
CC  
+
V
V
= V – V , V = 3V, A = 10V/V  
110  
300  
mV  
mV  
SENSE  
SENSE  
SENSE  
S
S
CC  
V
+
= V – V , V = 5V, A = 10V/V  
S
S
CC  
V
V
Input Offset Voltage (MS Package)  
Input Offset Voltage (DD Package)  
I
= 0, V = 5V  
–300  
–500  
±80  
±80  
0.5  
300  
500  
µV  
µV  
µV  
µV  
OS  
OUT  
CC  
I
= 0, V = 5V  
–350  
–550  
350  
550  
OUT  
CC  
V
A
TC  
Temperature Coefficient of V  
V
V
= 5V (Note 6)  
3
µV/°C  
OS  
V
OS  
CC  
Gain, V /V  
= 50mV to 80mV, V Supply = 5V, A = 10V/V  
9.95  
9.94  
9.90  
10  
10  
10  
10.05  
10.06  
10.10  
V/V  
V/V  
V/V  
OUT SENSE  
SENSE  
CC  
V
LT6100DD8  
V = 48V  
9.9  
10  
10.10  
0.5  
V/V  
%
S
Output Voltage Gain Error (Note 7)  
V
= 50mV to 80mV, V Supply = 5V,  
–0.5  
SENSE  
CC  
A = 10, 12.5, 20, 25, 40, 50V/V  
V
LT6100DD8  
–0.6  
–1.0  
0.6  
1.0  
%
%
V = 48V  
–1.0  
1.0  
%
S
6100f  
2
LT6100  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the temperature range 0°C TA 70°C (LT6100C), otherwise specifications are  
TA = 25°C. VCC = 5V, VEE = 0V, VS+ = VCC + 1.4V unless otherwise specified. (Note 5)  
SYMBOL  
V CMRR  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V Sense Input Common Mode  
V
= 50mV, V = 2.7V, V = 4.1V to 36V  
105  
100  
120  
120  
dB  
dB  
S
S
SENSE  
CC  
S
Rejection Ratio  
V
V
PSRR  
V
Supply Rejection Ratio  
V
= 50mV, V = 36V, V = 3V to 30V  
105  
100  
120  
120  
dB  
dB  
CC  
CC  
SENSE  
S
CC  
Supply Voltage V  
Bandwidth  
2.7  
36  
V
CC  
CC  
BW  
A = 10V/V, f = –3dB  
100  
20  
150  
50  
kHz  
kHz  
V
O
A = 50V/V, f = –3dB  
V
O
t
I
I
Output Settling to 1% Final Value  
Sense Input Current  
V
V
V
V
= 10mV to 100mV  
15  
4.5  
60  
µs  
µA  
µA  
V/µs  
V/µs  
S
SENSE  
SENSE  
SENSE  
+
, I  
= 0V  
10  
S (O) S (O)  
CC(O)  
V
Supply Current  
= 0V, V = 5V  
130  
CC  
CC  
SR  
Slew Rate  
= 15V, V  
= 50mV to 300mV, A = 50V/V  
0.03  
0.02  
0.05  
0.05  
CC  
SENSE  
V
+
I
Short-Circuit Current  
I
, I  
SC SC  
8
15  
60  
mA  
V
SC  
Reverse V Supply  
I = –100µA  
50  
S
S
V
V
Minimum Output Voltage  
V
V
= 0V, No Load  
15  
15  
30  
25  
mV  
mV  
O(MIN)  
O(MAX)  
SENSE  
SENSE  
+
= V – V = –100mV, A = 50V/V, No Load  
S
S
V
Output High  
V
V
V
V
= 5V, A = 50V/V, V  
= 100mV, I = 0  
75  
85  
125  
175  
125  
150  
250  
400  
mV  
mV  
mV  
mV  
CC  
V
SENSE  
L
= 100mV, I = 100µA  
SENSE  
SENSE  
SENSE  
L
= 100mV, I = 500µA  
L
= 100mV, I = 1mA  
L
+
I
, I (Off) Sense Input Current (Power Down)  
V
= 0V, V = 48V, V = 0V  
SENSE  
0.001  
1
µA  
S
S
CC  
S
The denotes specifications which apply over the temperature range –40°C TA 85°C (LT6100I), otherwise specifications are  
TA = 25°C. VCC = 5V, VEE = 0V, VS+ = VCC + 1.4V unless otherwise specified. (Note 5)  
SYMBOL  
PARAMETER  
CONDITIONS  
Single Supply Operation (V = 2.7V)  
MIN  
TYP  
MAX  
UNITS  
+
V
V
, V  
Sense Amplifier Supply Voltage  
Input Sense Voltage Full Scale  
4.1  
48  
V
S
S
CC  
+
V
V
= V – V , V = 3V, A = 10V/V  
110  
300  
mV  
mV  
SENSE  
SENSE  
SENSE  
S
S
CC  
V
+
= V – V , V = 5V, A = 10V/V  
S
S
CC  
V
V
Input Offset Voltage (MS Package)  
Input Offset Voltage (DD Package)  
I
= 0, V = 5V  
–300  
–550  
±80  
±80  
0.5  
300  
550  
µV  
µV  
µV  
µV  
OS  
OUT  
CC  
I
= 0, V = 5V  
–350  
–600  
350  
600  
OUT  
CC  
V
A
TC  
Temperature Coefficient of V  
V
V
= 5V (Note 6)  
3
µV/°C  
OS  
V
OS  
CC  
Gain, V /V  
= 50mV to 80mV, V = 5V, A = 10V/V  
9.95  
9.94  
9.90  
10  
10  
10  
10.05  
10.06  
10.10  
V/V  
V/V  
V/V  
OUT SENSE  
SENSE  
CC  
V
LT6100DD8  
V = 48V  
9.9  
10  
10.10  
0.5  
V/V  
%
S
Output Voltage Gain Error (Note 7)  
V
= 50mV to 80mV, V = 5V,  
–0.5  
SENSE  
CC  
A = 10, 12.5, 20, 25, 40, 50V/V  
V
LT6100DD8  
–0.6  
–1.0  
0.6  
1.0  
%
%
V = 48V  
S
–1.0  
1.0  
%
6100f  
3
LT6100  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the temperature range –40°C TA 85°C (LT6100I), otherwise specifications are  
TA = 25°C. VCC = 5V, VEE = 0V, VS+ = VCC + 1.4V unless otherwise specified. (Note 5)  
SYMBOL  
V CMRR  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V Sense Input Common Mode  
V
= 50mV, V = 2.7V, V = 4.1V to 36V  
105  
100  
120  
120  
dB  
dB  
S
S
SENSE  
CC  
S
Rejection Ratio  
V
V
PSRR  
V
Supply Rejection Ratio  
V
= 50mV, V = 36V, V = 3V to 30V  
105  
100  
120  
120  
dB  
dB  
CC  
CC  
SENSE  
S
CC  
Supply Voltage V  
Bandwidth  
2.7  
36  
V
CC  
CC  
BW  
A = 10V/V, f = –3dB  
100  
20  
150  
50  
kHz  
kHz  
V
O
A = 50V/V, f = –3dB  
V
O
t
I
I
Output Settling to 1% Final Value  
Sense Input Current  
Supply Current  
V
V
V
V
= 10mV to 100mV  
15  
4.5  
60  
µs  
µA  
µA  
V/µs  
V/µs  
S
SENSE  
SENSE  
SENSE  
+
, I  
= 0V  
10  
S (O) S (O)  
CC(O)  
+
= 0V, V Supply = 5V  
145  
SR  
Slew Rate  
= 15V, V  
= 50mV to 300mV, A = 50V/V  
0.03  
0.02  
0.05  
0.05  
CC  
SENSE  
V
+
I
Short-Circuit Current  
I
, I  
SC SC  
8
15  
60  
mA  
V
SC  
Reverse V Supply  
I = –100µA  
50  
S
S
V
V
Minimum Output Voltage  
V
V
= 0V, No Load  
15  
15  
30  
25  
mV  
mV  
O(MIN)  
O(MAX)  
SENSE  
SENSE  
+
= V – V = –100mV, A = 50V/V, No Load  
S
S
V
Output High  
V
V
V
V
= 5V, A = 50V/V, V  
= 100mV, I = 0  
75  
85  
125  
175  
125  
150  
250  
400  
mV  
mV  
mV  
mV  
CC  
V
SENSE  
L
= 100mV, I = 100µA  
SENSE  
SENSE  
SENSE  
L
= 100mV, I = 500µA  
L
= 100mV, I = 1mA  
L
+
I
, I (Off) Sense Input Current (Power Down)  
V
= 0V, V = 48V, V = 0V  
SENSE  
0.001  
1
µA  
S
S
CC  
S
The denotes specifications which apply over the temperature range –40°C TA 125°C (LT6100H), otherwise specifications are  
TA = 25°C. VCC = 5V, VEE = 0V, VS+ = VCC + 1.4V unless otherwise specified. (Note 5)  
SYMBOL  
PARAMETER  
CONDITIONS  
Single Supply Operation (V = 2.7V)  
MIN  
TYP  
MAX  
UNITS  
+
V
V
, V  
Sense Amplifier Supply Voltage  
Input Sense Voltage Full Scale  
4.1  
48  
V
S
S
CC  
+
V
V
= V – V , V = 3V, A = 10V/V  
110  
300  
mV  
mV  
SENSE  
SENSE  
SENSE  
S
S
CC  
V
+
= V – V , V = 5V, A = 10V/V  
S
S
CC  
V
V
Input Offset Voltage (MS Package)  
Input Offset Voltage (DD Package)  
I
= 0, V = 5V  
–300  
–600  
±80  
±80  
0.5  
300  
600  
µV  
µV  
µV  
µV  
OS  
OUT  
CC  
I
= 0, V = 5V  
–350  
–650  
350  
650  
OUT  
CC  
V
A
TC  
Temperature Coefficient of V  
V
V
= 5V (Note 6)  
5
µV/°C  
OS  
V
OS  
CC  
Gain, V /V  
= 50mV to 80mV, V = 5V, A = 10V/V  
9.95  
9.94  
9.90  
10  
10  
10  
10.05  
10.06  
10.10  
V/V  
V/V  
V/V  
OUT SENSE  
SENSE  
CC  
V
LT6100DD8  
V = 48V  
9.9  
10  
10.10  
0.5  
V/V  
%
S
Output Voltage Gain Error (Note 7)  
V
= 50mV to 80mV, V = 5V,  
–0.5  
SENSE  
CC  
A = 10, 12.5, 20, 25, 40, 50V/V  
V
LT6100DD8  
–0.6  
–1.0  
0.6  
1.0  
%
%
V = 48V  
S
–1.0  
1.0  
%
6100f  
4
LT6100  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the temperature range –40°C TA 125°C (LT6100H), otherwise specifications are  
TA = 25°C. VCC = 5V, VEE = 0V, VS+ = VCC + 1.4V unless otherwise specified. (Note 5)  
SYMBOL  
V CMRR  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V Sense Input Common Mode  
V
= 50mV, V = 2.7V, V = 4.1V to 36V  
105  
100  
120  
120  
dB  
dB  
S
S
SENSE  
CC  
S
Rejection Ratio  
V
V
PSRR  
V
Supply Rejection Ratio  
V
= 50mV, V = 36V, V = 3V to 30V  
105  
95  
120  
120  
dB  
dB  
CC  
CC  
SENSE  
S
CC  
Supply Voltage V  
Bandwidth  
2.7  
36  
V
CC  
CC  
BW  
A = 10V/V, f = –3dB  
100  
20  
150  
50  
kHz  
kHz  
V
O
A = 50V/V, f = –3dB  
V
O
t
I
I
Output Settling to 1% Final Value  
Sense Input Current  
Supply Current  
V
V
V
V
= 10mV to 100mV  
15  
4.5  
60  
µs  
µA  
µA  
V/µs  
V/µs  
S
SENSE  
SENSE  
SENSE  
+
, I  
= 0V  
10  
S (O) S (O)  
CC(O)  
= 0V, V = 5V  
170  
CC  
SR  
Slew Rate  
= 15V, V  
= 50mV to 300mV, A = 50V/V  
0.03  
0.02  
0.05  
0.05  
CC  
SENSE  
V
+
I
Short-Circuit Current  
I
, I  
SC SC  
8
15  
60  
mA  
V
SC  
Reverse V Supply  
I = –100µA  
50  
S
S
V
V
Minimum Output Voltage  
V
V
= 0V, No Load  
15  
15  
35  
25  
mV  
mV  
O(MIN)  
O(MAX)  
SENSE  
SENSE  
+
= V – V = –100mV, A = 50V/V, No Load  
S
S
V
Output High  
V
V
V
V
= 5V, A = 50V/V, V  
= 100mV, I = 0  
75  
85  
125  
175  
140  
160  
250  
400  
mV  
mV  
mV  
mV  
CC  
V
SENSE  
L
= 100mV, I = 100µA  
SENSE  
SENSE  
SENSE  
L
= 100mV, I = 500µA  
L
= 100mV, I = 1mA  
L
+
I
, I (Off) Sense Input Current (Power Down)  
V
= 0V, V = 48V, V = 0V  
SENSE  
0.001  
1
µA  
S
S
CC  
S
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 2: ESD (Electrostatic Discharge) sensitive devices. Extensive use of  
ESD protection devices are used internal to the LT6100, however, high  
electrostatic discharge can damage or degrade the device. Use proper ESD  
handling precautions.  
Note 5: The LT6100C is guaranteed to meet specified performance from  
0°C to 70°C. The LT6100C is designed, characterized and expected to  
meet specified performance from –40°C to 85°C but is not tested or QA  
sampled at these temperatures. The LT6100I is guaranteed to meet  
specified performance from –40°C to 85°C. The LT6100H is guaranteed to  
meet specified performance from –40°C to 125°C.  
Note 6: This parameter is not 100% tested.  
Note 3: A heat sink may be required to keep the junction temperature  
below absolute maximum ratings.  
Note 7: Gain error for A = 12.5, 25V/V is guaranteed by other gain  
error test.  
V
Note 4: The LT6100C/LT6100I are guaranteed functional over the  
operating temperature range of –40°C to 85°C. The LT6100H is  
guaranteed functional over the operating temperature range of –40°C to  
125°C.  
6100f  
5
LT6100  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Input Offset Voltage  
vs Temperature  
Input Offset Voltage  
vs VS+ Input Voltage  
Input Offset Voltage  
vs VCC Supply Voltage  
1.5  
1.0  
400  
300  
350  
300  
V
V
= 100mV  
SENSE  
= 3V  
9 TYPICAL UNITS  
T
= 85°C  
= 25°C  
A
CC  
V
V
= 6.4V  
= 5V  
S
CC  
T
= –40°C  
= 125°C  
A
A
T
= 25°C  
0.5  
A
A
200  
T
A
250  
0
100  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
T
T
= 85°C  
T
= –40°C  
200  
150  
100  
50  
A
0
V
V
= 100mV  
SENSE  
S
+
= 48V  
–100  
–200  
–300  
– 400  
T
= 125°C  
A
0
10 15 20 25  
SUPPLY VOLTAGE (V)  
40  
0
40  
0
5
30 35  
10  
20  
30  
50  
–40 –25 –10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
6100 G21  
+
V
S
INPUT VOLTAGE (V)  
V
CC  
6100 G01  
6100 G02  
Output Voltage vs Sense Voltage  
Output Voltage vs Sense Voltage  
Gain vs Temperature  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
50.06  
50.04  
50.02  
50.00  
49.98  
49.96  
49.94  
49.92  
49.90  
49.88  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
+
+
V
V
A
= 4.4V TO 48V  
= 3V  
7 TYPICAL UNITS  
V
V
T
= 6.4V TO 48V  
= 5V  
S
S
T
= –40°C  
V
= 50mV TO 80mV  
A
V
CC  
= 10V/V  
= –40°C TO 125°C  
SENSE  
CC  
+
> 6.6V  
S
V
V
A
= 6.4V TO 48V  
= 5V  
= –40°C TO 125°C  
V
A
S
CC  
V
A
T
T
= –40°C  
S
A
V
= 50V/V  
> 4.6V  
T
A
V
= –40°C  
S
T
= –40°C  
A
V
= 6.4V  
= 4.4V  
S
0
180  
240  
300  
–150  
–90  
–30  
150  
60  
120  
–40 –25 –10  
5
20 35  
125  
30  
+
90  
50 65 80 95 110  
+
SENSE VOLTAGE (V – V ) (mV)  
SENSE VOLTAGE (V – V )(mV)  
TEMPERATURE (°C)  
S
S
S
S
6100 G04  
6100 G03  
6100 G05  
Positive Sense Input Current  
vs Sense Voltage  
Negative Sense Input Current  
vs Sense Voltage  
Output Positive Swing  
vs Load Current  
35  
30  
25  
20  
15  
10  
5
12  
10  
8
350  
300  
+
+
+
V
V
= 4.4V TO 48V  
= 3V  
V
V
= 4.4V TO 48V  
= 3V  
V
V
V
A
= 6.4V  
= 5V  
S
S
S
CC  
CC  
CC  
= 150mV  
SENSE  
= 50V/V  
T
A
= 125°C  
T
= 125°C  
A
V
250  
T
A
= 85°C  
T
A
= 85°C  
T
A
= 25°C  
200  
150  
100  
50  
T
= 125°C  
A
6
T
A
= –40°C  
T
= 85°C  
= 25°C  
= –40°C  
A
A
T
= 25°C  
A
4
T
T
= –40°C  
T
A
A
2
0
–5  
0
0
–30  
–110 –70  
30  
+
70  
110  
30  
70  
0
0.3  
0.4 0.5 0.6 0.7 0.8 0.9  
1.0  
–110 –70 –30  
110  
0.1 0.2  
+
SENSE VOLTAGE (V – V ) (mV)  
LOAD CURRENT (mA)  
SENSE VOLTAGE (V – V ) (mV)  
S
S
S
S
6100 G07  
6100 G08  
6100 G06  
6100f  
6
LT6100  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
VCC Supply Current vs  
VS Input Voltage  
Op Amp Output Impedance  
vs Frequency  
Gain vs Frequency  
200  
180  
160  
140  
120  
100  
80  
10k  
1k  
50  
40  
30  
20  
+
V
V
= 0V  
SENSE  
CC  
V
V
= 12.1V  
= 10V  
V
V
V
, V = 6.5V  
S
S
CC  
S
= 3V  
= 5V  
= –5V  
A
A
= 50  
= 10  
CC  
EE  
FIL = 0V  
V
V
T
= 125°C  
A
T
= 85°C  
A
100  
10  
10  
0
T
= 25°C  
A
G2 = 5V/V  
G2 = 2V/V  
T
= –40°C  
A
–10  
–20  
–30  
–40  
–50  
60  
G2 = 1V/V  
100k  
40  
1
20  
0
0.1  
0
10  
20  
30  
40  
50  
1k  
10k  
1M  
100  
1k  
10k  
100k  
1M  
10M  
TOTAL V INPUT VOLTAGE (V)  
S
FREQUENCY (Hz)  
FREQUENCY (Hz)  
6100 G09  
6100 G10  
6100 G23  
CMRR vs Frequency  
VCC PSRR vs Frequency  
Gain Error vs VSENSE  
150  
130  
110  
90  
1
0
V
S
= 10V  
= 100mV  
V
V
= 6.4V  
= 5V  
S
CC  
140  
120  
100  
80  
V
SENSE  
V
= 5V  
CC  
70  
–1  
–2  
60  
50  
40  
+
30  
V
= 6.4V  
= 5V  
S
V
CC  
= 10V/V  
= 25°C  
20  
10  
A
V
A
T
–10  
–3  
0
0
50  
100  
V
150 200  
(mV)  
SENSE  
250  
300  
0.1  
1
10 100 1k 10k 100k 1M  
FREQUENCY (Hz)  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
6100 G12  
6100 G11  
6100 G24  
Sense Input +Current (VCC Powered  
Down) vs VS  
Step Response at VSENSE = 0V to  
130mV  
Step Response at VSENSE = 0V to  
130mV  
10  
1
+
V
S
= V  
S
130mV  
130mV  
SENSE  
0V  
T
= 125°C  
A
V
V
SENSE  
0V  
6.5V  
T
= 85°C  
A
1.3V  
0.1  
0.01  
V
OUT  
V
OUT  
0V  
T
T
= 25°C  
0V  
A
6100 G13  
6100 G14  
V
S
A
V
C
L
= 10V  
= 10V/V  
= 0pF  
50µs/DIV  
V
S
A
V
C
L
= 10V  
= 50V/V  
= 0pF  
0.2ms/DIV  
= –40°C  
40  
A
0.001  
0
10  
20  
V
30  
50  
+
(V)  
S
6100 G25  
6100f  
7
LT6100  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Step Response at VSENSE = 0V to  
10mV  
Step Response at VSENSE = 0V to  
10mV  
Step Response at VSENSE = 0V to  
130mV  
130mV  
20mV  
20mV  
V
V
SENSE  
V
SENSE  
SENSE  
0V  
0V  
0V  
500mV  
1.3V  
100mV  
V
V
OUT  
OUT  
V
OUT  
0V  
0V  
0V  
6100 G15  
6100 G16  
6100 G17  
V
A
C
= 10V  
50µs/DIV  
V
A
C
= 10V  
= 50V/V  
= 0pF  
50µs/DIV  
V
A
C
= 10V  
50µs/DIV  
S
V
S
V
L
S
V
= 10V/V  
= 0pF  
= 10V/V  
= 1000pF  
OUT  
OUT  
Step Response at VSENSE = 0V to  
130mV  
Step Response at VSENSE = 0V to  
10mV  
130mV  
20mV  
V
SENSE  
V
SENSE  
0V  
0V  
6.5V  
100mV  
V
OUT  
V
OUT  
0V  
0V  
6100 G18  
6100 G19  
V
S
A
V
C
L
= 10V  
= 50V/V  
= 1000pF  
0.2ms/DIV  
V
A
C
= 10V  
= 10V/V  
= 1000pF  
50µs/DIV  
S
V
L
Step Response at VSENSE = 0V to  
10mV  
Start-Up Delay  
20mV  
V
SENSE  
10V  
0V  
+
0V  
V
S
500mV  
1V  
0V  
V
OUT  
V
OUT  
0V  
6100 G22  
6100 G20  
V
V
A
V
= 5V  
20µs/DIV  
CC  
SENSE  
V
V
S
A
V
C
L
= 10V  
= 50V/V  
= 1000pF  
50µs/DIV  
= 100mV  
= 10V/V  
= 0V  
EE  
6100f  
8
LT6100  
U
U
U
PI FU CTIO S  
VS (Pin 1): Negative Sense Input Terminal. Negative  
sense voltage input will remain functional for voltages up  
to 48V. VSis connected to an internal gain-setting resis-  
tor RG2 = 5k.  
A2 (Pin 6): Gain Select Pin. Refer to Table 1.  
A4 (Pin 7): Gain Select Pin. When Pin 7 is shorted to VEE,  
the total gain is 40V/V. When both Pin 6 and Pin 7 are  
shortedtoVEE,thetotalgainis50V/V.WhenbothPin6and  
Pin 7 are opened, the total gain is 10V/V.  
V
CC (Pin 2): Supply Voltage Input. This power supply pin  
supplies current to both current sense amplifier and op  
amp.  
VS+ (Pin 8): Positive Sense Input Terminal. Connecting a  
supply to VS+ and a load to VSwill allow the LT6100 to  
+
FIL (Pin 3): Filter Pin. Connects to an external capacitor to  
monitor the current through RSENSE, refer to Figure 1. VS  
roll off differential noise of the system. Pole frequency  
is connected to an internal gain setting resistor RG1 = 5k.  
VS+ remains functional for voltages up to 48V.  
f
3dB = 1/(2πRFILC), RFIL = RE + RO = 60k.  
VEE (Pin 4): Negative Supply or Ground for Single Supply  
Operation.  
VOUT (Pin 5): Voltage Output Proportional to the Magni-  
tude of the Current Flowing Through RSENSE  
:
VOUT = AV • (VSENSE ± VOS)  
VOS is the input offset voltage. AV is the total gain of the  
LT6100.  
U
U
W
FU CTIO AL DIAGRA  
R
SENSE  
V
IN  
LOAD  
(V + 1.4V) TO 48V  
CC  
1
8
+
V
V
S
S
R
R
G2  
5k  
G1  
5k  
+
R
25k  
A1  
V
CC  
2
+
2.7V TO 36V  
V
OUT  
R
E
Q1  
A2  
5
10k  
V
O1  
R
O
R
R/3  
A4  
50k  
V
EE  
FIL  
A2  
4
3
6
7
6100 F01  
Figure 1. Functional Diagram  
6100f  
9
LT6100  
W U U  
U
APPLICATIO S I FOR ATIO  
Table 1. Gain Set with Pin 6 and Pin 7  
The LT6100 high side current sense amplifier (Figure 1)  
provides accurate unidirectional monitoring of current  
through a user-selected sense resistor. The LT6100 fea-  
tures a fully specified 4.1V to 48V input common mode  
range. A high PSRR VCC supply (2.7V to 36V) powers the  
current sense amplifier and the internal op amp circuitry.  
The input sense voltage is level shifted from the positive  
sense power supply to the ground reference and amplified  
by a user-selected gain to the output. The buffered output  
voltage is directly proportional to the current flowing  
through the sense resistor.  
A2 (PIN 6)  
A4 (PIN 7)  
Open  
G2  
1
A
V
Open  
10  
12.5  
20  
V
V
Out  
1.25  
2
EE  
EE  
Open  
Out  
V
EE  
V
EE  
V
EE  
2.5  
4
25  
Open  
40  
V
5
50  
EE  
Selection of External Current Sense Resistor  
External RSENSE resistor selection is a delicate trade-off  
between power dissipation in the resistor and current  
measurementaccuracy.Themaximumsensevoltagemay  
be as large as ± 300mV to get maximum dynamic range.  
For high current applications, the user may want to mini-  
mize the sense voltage to minimize the power dissipation  
in the sense resistor. The LT6100’s low input offset  
voltage of 80µV allows for high resolution of low sense  
voltages. This allows limiting the maximum sense voltage  
while still providing high resolution current monitoring.  
Kelvin connection of the LT6100’s VS+ and VSinputs to  
the sense resistor should be used to provide the highest  
accuracy in high current applications. Solder connections  
and PC board interconnect resistance (approximately  
0.5mper square) can be a large error in high current  
systems. A 5A application might choose a 20msense  
resistor to give a 100mV full-scale input to the LT6100.  
Input offset voltage will limit resolution to 4mA. Neglect-  
ing contact resistance at solder joints, even one square of  
PC board copper at each resistor end will cause an error of  
5%. This error will grow proportionately higher as moni-  
tored current levels rise.  
Theory of Operation (Refer to Figure 1)  
+
CurrentfromthesourceatVS flowsthroughRSENSE tothe  
+
load at VS , creating a sense voltage, VSENSE. Inputs VS  
and VSapply the sense voltage to RG2. The opposite ends  
of resistors RG1 and RG2 are forced to be at equal poten-  
tials by the voltage gain of amplifier A1. The current  
through RG2 is forced to flow through transistor Q1 and is  
sourced to node VO1. The current from RG2 flowing  
throughresistorRO givesavoltagegainoften,VO1/VSENSE  
= RO/RG2 = 10V/V. The sense amplifier output at VO1 is  
amplified again by amplifier A2. The inputs of amplifier A2  
can operate to ground which ensures that small sense  
voltage signals are detected. Amplifier A2 can be pro-  
grammed to different gains via Pin 6 and Pin 7. Thus, the  
total gain of the system becomes AV = 10 • A2 and VOUT  
VSENSE • AV.  
=
Gain Setting  
The LT6100 gain is set by strapping (or floating) the two  
gain pins (see Table 1). This feature allows the user to  
“zoom in” by increasing the gain for accurate measure-  
ment of low currents.  
AV = 10V/V • G2, G2 is the gain of op amp A2.  
6100f  
10  
LT6100  
W U U  
APPLICATIO S I FOR ATIO  
U
these constraints, an amplified, level shifted representa-  
tionoftheRSENSE voltageisdevelopedatVOUT. Theoutput  
is well behaved driving capacitive loads to 1000pF.  
Noise Filtering  
The LT6100 provides signal filtering via pin FIL that is  
internally connected to the resistors RE and RO. This pin  
maybeusedtofiltertheinputsignalenteringtheLT6100’s  
internal op amp, and should be used when fast ripple  
current or transients flow through the sense resistor. High  
frequency signals above the 300kHz bandwidth of the  
LT6100’s internal amplifier will cause errors. A capacitor  
connected between FIL and VEE creates a single pole low  
pass filter with corner frequency:  
Sense Input Signal Range  
The LT6100 has high CMRR over the wide input voltage  
range of 4.1V to 48V. The minimum operation voltage of  
the sense amplifier input is 1.4V above VCC. The output  
remainsaccurateevenwhenthesenseinputsaredrivento  
48V. Figure 2 shows that VOS changes very slightly over  
a wide input range. Furthermore, the sense inputs VS+ and  
f
–3dB = 1/(2πRFILC)  
VS can collapse to zero volts without incurring any  
damage to the device. The LT6100 can handle differential  
sense voltages up to the voltage of the sense inputs  
supplies. For example, VS+ = 48V and VS= 0V can be a  
valid condition in a current monitoring application (Figure  
where RFIL = 60k. A 220pF capacitor creates a pole at  
12kHz, a good choice for many applications.  
Output Signal Range  
3) when an overload protection fuse is blown and VS  
TheLT6100’soutputsignalisdevelopedbycurrentthrough  
RG2 into output resistor RO. The current is VSENSE/RG2.  
The sense amplifier output, VO1, is buffered by the internal  
op amp so that connecting the output pins to other  
voltage collapses to ground. Under this condition, the  
output of the LT6100 goes to the positive rail, VOH. There  
is no phase inversion to cause an erroneous output signal.  
For the opposite case when VS+ collapse to ground with  
VSheld up at some higher voltage potential, the output  
will sit at VOL. If both inputs fall below the minimum CM  
voltage, VCC + 1.4V, the output is indeterminate but the  
LT6100 will not be damaged.  
systems will preserve signal accuracy. For zero VSENSE  
,
internal circuit saturation with loss of accuracy occurs at  
the minimum VOUT swing, 15mV above VEE. VOUT may  
swing positive to within 0.75V of VCC or a maximum of  
36V, a limit set by internal junction breakdown. Within  
1.5  
TO LOAD  
R
FUSE  
SENSE  
V
V
T
= 100mV  
SENSE  
CC  
A
DC  
1.0  
0.5  
= 3V  
SOURCE  
= 25°C  
C1  
0.1µF  
1
8
+
0
V
S
V
S
2
7
6
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
V
A4  
A2  
CC  
+
C2  
+
5V  
0.1µF  
3
FIL  
OUT  
4
5
OUTPUT  
V
EE  
LT6100  
0
40  
10  
20  
30  
50  
6100 F03  
V
INPUT VOLTAGE (V)  
S
6100 F02  
Figure 2. VOS vs VS Input Voltage  
Figure 3. Current Monitoring of a Fuse Protected Circuit  
6100f  
11  
LT6100  
W U U  
U
APPLICATIO S I FOR ATIO  
as VOL = 15mV. The accuracy at small sense voltages can  
be improved by selecting higher gain. When gain of 50V/  
V is selected, as shown in Figure 7, VOUT leaves the clipped  
regionforapositiveVSENSE greaterthan1mVcomparedto  
2.5mV for gain of 10V/V (see Figure 6).  
Low Sense Voltage Operation  
Figure 4 shows the simplest circuit configuration in  
which the LT6100 may be used. While VOUT (output  
voltage) increases with positive sense current, at VSENSE  
=0V,theLT6100’sbufferedoutputcanonlyswingaslow  
1.6  
V
V
A
= 4.4V TO 48V  
S
TO LOAD  
R
SENSE  
= 3V  
CC  
= 10V/V  
= 25°C  
1.4  
1.2  
1.0  
V
A
+
T
C1  
0.1µF  
5V  
1
8
+
V
V
S
S
2
7
6
V
A4  
A2  
0.8  
0.6  
CC  
+
C2  
+
3V  
0.1µF  
3
0.4  
0.2  
0
FIL  
OUT  
4
5
OUTPUT  
V
EE  
30  
60  
120  
0
150  
90  
+
LT6100  
SENSE VOLTAGE (V – V ) (mV)  
S
S
6100 F04  
6100 F05  
Figure 5. Output Voltage vs VSENSE  
Figure 4. LT6100 Load Current Monitor  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.40  
0.35  
0.30  
0.25  
V
V
A
T
= 4.4V TO 48V  
= 3V  
V
V
A
T
= 4.4V TO 48V  
= 3V  
S
CC  
V
A
S
CC  
V
A
= 10V/V  
= 50V/V  
= 25°C  
= 25°C  
0.20  
0.15  
0.10  
0.05  
0
0
5
10  
20  
0
25  
30  
15  
0
5
10  
15  
30  
20  
25  
+
+
SENSE VOLTAGE (V – V ) (mV)  
SENSE VOLTAGE (V – V ) (mV)  
S
S
S
S
6100 F06  
6100 F07  
Figure 6. Expanded View of Output Voltage vs VSENSE, AV = 10V/V  
Figure 7. Expanded View of Output Voltage vs VSENSE  
,
AV = 50V/V  
6100f  
12  
LT6100  
W U U  
APPLICATIO S I FOR ATIO  
U
Power Down While Connected to a Battery  
This is due to the implementation of Linear Technology’s  
Over-The-Top® input topology at its front end. When  
powered down, the LT6100 inputs draw less than 1µA of  
current.  
Another unique benefit of the LT6100 is that you can leave  
it connected to a battery even when it is denied power.  
When the LT6100 loses power or is intentionally powered  
down, its inputs remain high impedance (see Figure 8).  
Over-The-Top is a registered trademark of Linear Technology Corporation.  
I
SENSE  
R
SENSE  
TO LOAD  
+
BATTERY  
4.1V TO 48V  
+
V
V
LT6100  
S
S
POWER  
+
DOWN OK  
V
CC  
3V  
0V  
V
CC  
INPUTS  
REMAIN  
Hi-Z  
FIL  
V
OUT  
V
A2  
A4  
EE  
6100 F08  
Figure 8. Input Remains Hi-Z when LT6100 is Powered Down  
U
TYPICAL APPLICATIO  
Adjust Gain Dynamically for Enhanced Range  
Micro-Hotplate Voltage and Current Monitor  
+
V
DR  
I
SENSE  
R
SENSE  
TO LOAD  
FROM SOURCE  
+
10Ω  
1%  
V
V
LT6100  
S
S
+
V
V
V
S
S
I
HOTPLATE  
+
+
5V  
V
5V  
CURRENT  
MONITOR  
OUT  
CC  
CC  
LT6100  
EE A2 A4  
V
= 500mV/mA  
FIL  
V
MICRO-HOTPLATE  
BOSTON  
MICROSYSTEMS  
MHP100S-005  
V
OUT  
V
A2  
A4  
EE  
6100 TA05  
5V  
5V  
5V  
2N7002  
M9  
M3  
M1  
(GAIN = 50)  
0V  
VOLTAGE  
MONITOR  
(GAIN = 10)  
LT1991  
+
P1  
P3  
P9  
V
– V  
10  
DR  
DR  
V
OUT  
=
6100 TA06  
V
DR  
www.bostonmicrosystems.com  
6100f  
13  
LT6100  
U
PACKAGE DESCRIPTIO  
DD Package  
8-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1698)  
0.675 ±0.05  
3.5 ±0.05  
2.15 ±0.05 (2 SIDES)  
1.65 ±0.05  
PACKAGE  
OUTLINE  
0.25 ± 0.05  
0.50  
BSC  
2.38 ±0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
R = 0.115  
0.38 ± 0.10  
TYP  
5
8
3.00 ±0.10  
(4 SIDES)  
1.65 ± 0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(NOTE 6)  
(DD8) DFN 1203  
4
1
0.25 ± 0.05  
0.75 ±0.05  
0.200 REF  
0.50 BSC  
2.38 ±0.10  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-1)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON TOP AND BOTTOM OF PACKAGE  
6100f  
14  
LT6100  
U
PACKAGE DESCRIPTIO  
MS8 Package  
8-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1660)  
0.889 ± 0.127  
(.035 ± .005)  
5.23  
(.206)  
MIN  
3.20 – 3.45  
(.126 – .136)  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 3)  
0.52  
(.0205)  
REF  
0.65  
(.0256)  
BSC  
0.42 ± 0.038  
(.0165 ± .0015)  
TYP  
8
7 6  
5
RECOMMENDED SOLDER PAD LAYOUT  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 4)  
4.90 ± 0.152  
(.193 ± .006)  
DETAIL “A”  
0.254  
(.010)  
0° – 6° TYP  
GAUGE PLANE  
1
2
3
4
0.53 ± 0.152  
(.021 ± .006)  
1.10  
(.043)  
MAX  
0.86  
(.034)  
REF  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.22 – 0.38  
0.127 ± 0.076  
(.009 – .015)  
(.005 ± .003)  
0.65  
(.0256)  
BSC  
TYP  
MSOP (MS8) 0204  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
6100f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LT6100  
U
TYPICAL APPLICATIO  
800mA/1A White LED Current Regulator  
D2  
LED  
WARNING! VERY BRIGHT  
DO NOT OBSERVE DIRECTLY  
L1  
3µH  
LED  
CURRENT  
D1  
B130  
0.030  
LT6100  
+
V
V
S
S
V
IN  
V
V
SW  
3.3V TO 4.2V  
SINGLE Li-Ion  
IN  
V
CC  
LT3436  
+
22µF  
16V  
CER  
1210  
SHDN  
GND  
FB  
C
LED  
ON  
124k  
V
V
OUT  
V
EE A4 A2  
MMBT2222  
4.99k  
4.7µF  
6.3V  
CER  
8.2k  
0.1µF  
OPEN: 1A  
CLOSED: 800mA  
6100 TA02  
D1: DIODES INC.  
D2: LUMILEDS LXML-PW09 WHITE EMITTER  
L1: SUMIDA CDRH6D28-3R0  
Filtered Gain of 20 Current Sense  
Gain of 50 Current Sense  
I
I
SENSE  
SENSE  
R
R
SENSE  
SENSE  
V
V
SUPPLY  
6.4V TO 48V  
SUPPLY  
4.4V TO 48V  
+
+
V
V
LOAD  
V
V
S
LOAD  
LT6100  
LT6100  
S
S
S
+
+
V
V
3V  
5V  
CC  
CC  
FIL  
FIL  
V
V
OUT  
1000pF  
OUT  
20 • R  
• I  
50 • R  
• I  
SENSE SENSE  
SENSE SENSE  
V
A2  
A4  
V
A2  
A4  
EE  
EE  
6100 TA03  
6100 TA04  
–3dB AT 2.6kHz  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
120dB CMRR, 3V to 18V Operation  
LTC1043  
Dual Precision Instrumentation Switched Capacitor Building Block  
Dual and Quad Micropower Rail-to-Rail Input and Output Op Amps  
LT1490/LT1491  
50µA Amplifier, 2.7V to 40V Operation,  
Over-The-TopTM Inputs  
LT1620/LT1621  
Rail-to-Rail Current Sense Amplifiers  
Accurate Output Current Programming, Battery Charging  
to 32V  
LT1787  
Precision Bidirectional, High Side Current Sense Amplifier  
High Voltage, High Side, Precision Current Sense Amplifier  
75µV V , 60V, 60µA Operation  
OS  
LTC6101  
4V to 60V, Gain Configurable, SOT-23  
Over-The-Top is a trademark of Linear Technology Corporation.  
6100f  
LT/TP 0405 500 • PRINTED IN THE USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
© LINEAR TECHNOLOGY CORPORATION 2005  

相关型号:

LT6100CMS8#TR

暂无描述
Linear

LT6100CMS8#TRPBF

LT6100 - Precision, Gain Selectable High Side Current Sense Amplifier; Package: MSOP; Pins: 8; Temperature Range: 0°C to 70°C
Linear

LT6100HDD

Precision, Gain Selectable High Side Current Sense Amplifier
Linear

LT6100HDD#TR

LT6100 - Precision, Gain Selectable High Side Current Sense Amplifier; Package: DFN; Pins: 8; Temperature Range: -40°C to 125°C
Linear

LT6100HMS8

Precision, Gain Selectable High Side Current Sense Amplifier
Linear

LT6100IDD

Precision, Gain Selectable High Side Current Sense Amplifier
Linear

LT6100IMS8

Precision, Gain Selectable High Side Current Sense Amplifier
Linear

LT6100IMS8#PBF

LT6100 - Precision, Gain Selectable High Side Current Sense Amplifier; Package: MSOP; Pins: 8; Temperature Range: -40°C to 85°C
Linear

LT6100IMS8#TR

LT6100 - Precision, Gain Selectable High Side Current Sense Amplifier; Package: MSOP; Pins: 8; Temperature Range: -40°C to 85°C
Linear

LT6100IMS8#TRPBF

暂无描述
Linear

LT6105

Precision, Extended Input Range Current Sense Amplifi er
Linear

LT6105CDCB#PBF

LT6105 - Precision, Rail-to-Rail Input Current Sense Amplifier; Package: DFN; Pins: 6; Temperature Range: 0°C to 70°C
ADI