LT6200CS8 [Linear]

165MHz, Rail-to-Rail Input and Output, 0.95nV Low Noise, Op Amp Family; 165MHz的轨至轨输入和输出, 0.95nV低噪声,运算放大器系列
LT6200CS8
型号: LT6200CS8
厂家: Linear    Linear
描述:

165MHz, Rail-to-Rail Input and Output, 0.95nV Low Noise, Op Amp Family
165MHz的轨至轨输入和输出, 0.95nV低噪声,运算放大器系列

运算放大器
文件: 总24页 (文件大小:550K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT6200/LT6200-5  
LT6200-10/LT6201  
165MHz, Rail-to-Rail Input  
and Output, 0.95nV/Hz  
Low Noise, Op Amp Family  
U
FEATURES  
DESCRIPTIO  
The LT®6200/LT6201 are single and dual ultralow noise,  
rail-to-rail input and output unity gain stable op amps that  
feature 0.95nV/Hz noise voltage. These amplifiers com-  
bine very low noise with a 165MHz gain bandwidth,  
50V/µs slew rate and are optimized for low voltage signal  
conditioning systems. A shutdown pin reduces supply  
current during standby conditions and thermal shutdown  
protects the part from overload conditions.  
Low Noise Voltage: 0.95nV/Hz (100kHz)  
Gain Bandwidth Product:  
LT6200/LT6201 165MHz AV = 1  
LT6200-5  
LT6200-10  
800MHz AV 5  
1.6GHz AV 10  
Low Distortion: –80dB at 1MHz, RL = 100Ω  
Dual LT6201 in Tiny DFN Package  
Input Common Mode Range Includes Both Rails  
Output Swings Rail-to-Rail  
The LT6200-5/LT6200-10 are single amplifiers optimized  
for higher gain applications resulting in higher gain band-  
width and slew rate. The LT6200 family maintains its  
performance for supplies from 2.5V to 12.6V and are  
specified at 3V, 5V and ±5V.  
Low Offset Voltage: 1mV Max  
Wide Supply Range: 2.5V to 12.6V  
Output Current: 60mA Min  
SOT-23 and SO-8 Packages  
Operating Temperature Range –40°C to 85°C  
Power Shutdown, Thermal Shutdown  
ForcompactlayoutstheLT6200/LT6200-5/LT6200-10are  
available in the 6-lead ThinSOTTM and the 8-pin SO pack-  
age. The dual LT6201 is available in an 8-pin SO package  
with standard pinouts as well as a tiny, dual fine pitch  
leadless package (DFN). These amplifiers can be used as  
plug-in replacements for many high speed op amps to  
improve input/output range and noise performance.  
U
APPLICATIO S  
Transimpedance Amplifiers  
Low Noise Signal Processing  
Active Filters  
Rail-to-Rail Buffer Amplifiers  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
ThinSOT is a trademark of Linear Technology Corporation.  
Driving A/D Converters  
U
TYPICAL APPLICATIO  
Distortion vs Frequency  
Single Supply, 1.5nV/Hz, Photodiode Amplifier  
–50  
A
V
V
= 1  
V
O
S
= 2V  
P-P  
C
5V  
F
–60  
–70  
= ±2.5V  
R
F
I
HD2, R = 1k  
PD  
L
PHILIPS  
BF862  
10k  
–80  
+
HD2, R = 100Ω  
L
HD3, R = 1k  
L
–90  
V
2V  
F
PHOTO  
DIODE  
OUT  
PD  
1k  
LT6200  
+I • R  
HD3, R = 100Ω  
L
–100  
–110  
100k  
1M  
10M  
10k  
0.1µF  
FREQUENCY (Hz)  
6200 TA01  
6200 G35  
62001fa  
1
LT6200/LT6200-5  
LT6200-10/LT6201  
W W U W  
ABSOLUTE AXI U RATI GS  
(Note 1)  
Total Supply Voltage (V+ to V) ............................ 12.6V  
Total Supply Voltage (V+ to V) (LT6201DD) ............. 7V  
Input Current (Note 2) ........................................ ±40mA  
Output Short-Circuit Duration (Note 3)............ Indefinite  
Pin Current While Exceeding Supplies  
Specified Temperature Range (Note 5)....–40°C to 85°C  
Junction Temperature........................................... 150°C  
Junction Temperature (DD Package) ................... 125°C  
Storage Temperature Range ..................–65°C to 150°C  
Storage Temperature Range  
(DD Package) ...................................... 65°C to 125°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
(Note 12) ............................................................ ±30mA  
Operating Temperature Range (Note 4) ...–40°C to 85°C  
U
W
U
PACKAGE/ORDER I FOR ATIO  
ORDER PART  
NUMBER  
ORDER PART  
NUMBER  
LT6200CS8  
LT6200IS8  
LT6200CS6  
LT6200IS6  
TOP VIEW  
LT6200CS8-5  
LT6200CS6-5  
LT6200IS6-5  
LT6200CS6-10  
LT6200IS6-10  
TOP VIEW  
NC  
SHDN  
–IN  
1
2
3
4
8
7
6
5
LT6200IS8-5  
LT6200CS8-10  
LT6200IS8-10  
+
+
V
OUT 1  
6 V  
+
5 SHDN  
4 –IN  
V
2
OUT  
NC  
+IN  
+IN 3  
V
S6 PART  
S8 PART  
S6 PACKAGE  
S8 PACKAGE  
MARKING*  
MARKING  
6-LEAD PLASTIC SOT-23  
8-LEAD PLASTIC SO  
TJMAX = 150°C, θJA = 160°C/W (Note 10)  
TJMAX = 150°C, θJA = 100°C/W  
LTJZ  
LTACB  
LTACC  
6200  
6200I  
62005  
6200I5  
620010  
200I10  
ORDER PART  
NUMBER  
ORDER PART  
NUMBER  
TOP VIEW  
TOP VIEW  
+
+
OUT A  
–IN A  
+IN A  
1
2
3
4
8
7
6
5
V
V
OUT A  
–IN A  
+IN A  
1
2
3
4
8
7
6
5
LT6201CDD  
LT6201CS8  
LT6201IS8  
OUT B  
–IN B  
+IN B  
OUT B  
–IN B  
+IN B  
+
A
B
+
V
V
DD PART  
MARKING*  
S8 PART  
MARKING  
S8 PACKAGE  
8-LEAD PLASTIC SO  
DD PACKAGE  
8-LEAD (3mm × 3mm) PLASTIC DFN  
LADG  
6201  
6201I  
TJMAX = 150°C, θJA = 100°C/W  
TJMAX = 125°C, θJA = 160°C/W (NOTE 3)  
UNDERSIDE METAL CONNECTED TO V–  
*The temperature grade is identified by a label on the shipping container. Consult LTC Marketing for parts specified with wider operating temperature ranges.  
62001fa  
2
LT6200/LT6200-5  
LT6200-10/LT6201  
ELECTRICAL CHARACTERISTICS  
TA = 25°C, VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply,  
VSHDN = OPEN, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
V = 5V, V =Half Supply  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
0.1  
0.9  
1
2.5  
mV  
mV  
OS  
S
CM  
V = 3V, V = Half Supply  
S
CM  
+
V = 5V, V = V to V  
0.6  
1.8  
2
4
mV  
mV  
S
S
CM  
CM  
+
V = 3V, V = V to V  
Input Offset Voltage Match  
(Channel-to-Channel) (Note 11)  
V
V
= Half Supply  
0.2  
0.5  
1.1  
2.2  
mV  
mV  
CM  
CM  
+
= V to V  
I
Input Bias Current  
V
V
V
= Half Supply  
40  
50  
–10  
8
µA  
µA  
µA  
B
CM  
CM  
CM  
+
= V  
18  
= V  
–23  
+
+
I  
I Shift  
B
V
V
= V to V  
31  
68  
5
µA  
µA  
B
CM  
CM  
I Match (Channel-to-Channel) (Note 11)  
B
= V to V  
0.3  
I
Input Offset Current  
V
V
V
= Half Supply  
0.1  
0.02  
0.4  
4
4
5
µA  
µA  
µA  
OS  
CM  
CM  
CM  
+
= V  
= V  
Input Noise Voltage  
0.1Hz to 10Hz  
600  
nV  
P-P  
e
Input Noise Voltage Density  
f = 100kHz, V = 5V  
1.1  
1.5  
nV/Hz  
nV/Hz  
n
S
f = 10kHz, V = 5V  
2.4  
S
i
Input Noise Current Density, Balanced Source  
f = 10kHz, V = 5V  
2.2  
3.5  
pA/Hz  
pA/Hz  
n
S
Unbalanced Source f = 10kHz, V = 5V  
S
Input Resistance  
Input Capacitance  
Large-Signal Gain  
Common Mode  
0.57  
2.1  
MΩ  
kΩ  
Differential Mode  
C
A
Common Mode  
Differential Mode  
3.1  
4.2  
pF  
pF  
IN  
V = 5V, V = 0.5V to 4.5V, R = 1k to V /2  
70  
11  
17  
120  
18  
70  
V/mV  
V/mV  
V/mV  
VOL  
S
O
L
S
S
S
V = 5V, V = 1V to 4V, R = 100to V /2  
S
O
L
V = 3V, V = 0.5V to 2.5V, R = 1k to V /2  
S
O
L
+
CMRR  
PSRR  
Common Mode Rejection Ratio  
V = 5V, V = V to V  
65  
85  
60  
90  
112  
85  
dB  
dB  
dB  
S
CM  
V = 5V, V = 1.5V to 3.5V  
S
CM  
+
V = 3V, V = V to V  
S
CM  
CMRR Match (Channel-to-Channel) (Note 11)  
Power Supply Rejection Ratio  
V = 5V, V = 1.5V to 3.5V  
80  
60  
65  
2.5  
105  
68  
dB  
dB  
dB  
V
S
CM  
V = 2.5V to 10V, LT6201DD V = 2.5V to 7V  
S
S
PSRR Match (Channel-to-Channel) (Note 11)  
Minimum Supply Voltage (Note 6)  
V = 2.5V to 10V, LT6201DD V = 2.5V to 7V  
100  
S
S
V
V
Output Voltage Swing LOW (Note 7)  
No Load  
SINK  
9
50  
mV  
mV  
mV  
mV  
OL  
OH  
I
= 5mA  
50  
100  
290  
300  
V = 5V, I  
= 20mA  
= 20mA  
150  
160  
S
SINK  
SINK  
V = 3V, I  
S
Output Voltage Swing HIGH (Note 7)  
No Load  
SOURCE  
55  
95  
220  
240  
110  
190  
400  
450  
mV  
mV  
mV  
mV  
I
= 5mA  
V = 5V, I  
= 20mA  
= 20mA  
S
SOURCE  
SOURCE  
V = 3V, I  
S
I
I
Short-Circuit Current  
V = 5V  
S
±60  
±50  
±90  
±80  
mA  
mA  
SC  
S
V = 3V  
Supply Current per Amplifier  
V = 5V  
16.5  
15  
1.3  
20  
18  
mA  
mA  
mA  
S
S
V = 3V  
S
Disabled Supply Current per Amplifier  
SHDN Pin Current  
V
= 0.3V  
1.8  
SHDN  
I
V
= 0.3V  
200  
280  
0.3  
µA  
V
SHDN  
SHDN  
V
V
V
V
Pin Input Voltage LOW  
Pin Input Voltage HIGH  
L
SHDN  
SHDN  
+
V – 0.5  
V
H
62001fa  
3
LT6200/LT6200-5  
LT6200-10/LT6201  
ELECTRICAL CHARACTERISTICS  
TA = 25°C, VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply,  
VSHDN = OPEN, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
0.1  
MAX  
UNITS  
µA  
Shutdown Output Leakage Current  
Turn-On Time  
V
V
V
= 0.3V  
75  
SHDN  
SHDN  
SHDN  
t
t
= 0.3V to 4.5V, R = 100, V = 5V  
130  
180  
ns  
ON  
L
S
Turn-Off Time  
= 4.5V to 0.3V, R = 100, V = 5V  
ns  
OFF  
L
S
GBW  
Gain Bandwidth Product  
Frequency = 1MHz, V = 5V  
145  
750  
1450  
MHz  
MHz  
MHz  
S
LT6200-5  
LT6200-10  
SR  
Slew Rate  
V = 5V, A = –1, R = 1k, V = 4V  
31  
44  
V/µs  
S
V
L
O
V = 5V, A = –10, R = 1k, V = 4V  
S
V
L
O
LT6200-5  
210  
340  
V/µs  
V/µs  
LT6200-10  
FPBW  
Full Power Bandwidth (Note 9)  
Settling Time (LT6200, LT6201)  
V = 5V, V  
= 3V (LT6200)  
3.28  
4.66  
165  
MHz  
ns  
S
OUT  
P-P  
t
0.1%, V = 5V, V  
= 2V, A = –1, R = 1k  
STEP V L  
S
S
The denotes the specifications which apply over 0°C < TA < 70°C temperature range. VS = 5V, 0V; VS = 3V, 0V;  
VCM = VOUT = half supply, VSHDN = OPEN, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
V = 5V, V = Half Supply  
MIN  
TYP  
MAX  
UNITS  
V
OS  
Input Offset Voltage  
0.2  
1.0  
1.2  
2.7  
mV  
mV  
S
CM  
V = 3V, V = Half Supply  
S
CM  
+
+
V = 5V, V = V to V  
0.3  
1.5  
3
4
mV  
mV  
S
CM  
V = 3V, V = V to V  
S
CM  
Input Offset Voltage Match  
(Channel-to-Channel) (Note 11)  
V
V
= Half Supply  
0.2  
0.4  
1.8  
2.8  
mV  
mV  
CM  
CM  
+
= V to V  
V
TC  
Input Offset Voltage Drift (Note 8)  
Input Bias Current  
V
= Half Supply  
= Half Supply  
2.5  
8
µV/°C  
OS  
CM  
I
V
V
V
40  
50  
–10  
8
23  
µA  
µA  
µA  
B
CM  
CM  
CM  
+
= V  
18  
= V  
+
+
I Match (Channel-to-Channel) (Note 11)  
B
V
V
= V to V  
0.5  
31  
6
µA  
µA  
CM  
CM  
I  
I Shift  
B
= V to V  
68  
B
I
Input Offset Current  
V
V
V
= Half Supply  
0.1  
0.02  
0.4  
4
4
5
µA  
µA  
µA  
OS  
CM  
CM  
CM  
+
= V  
= V  
A
Large-Signal Gain  
V = 5V, V = 0.5V to 4.5V,R = 1k to V /2  
46  
7.5  
13  
80  
13  
22  
V/mV  
V/mV  
V/mV  
VOL  
S
O
L
S
V = 5V, V = 1.5V to 3.5V,R = 100to V /2  
S
O
L
S
V = 3V, V = 0.5V to 2.5V,R = 1k to V /2  
S
O
L
S
+
CMRR  
PSRR  
Common Mode Rejection Ratio  
V = 5V, V = V to V  
64  
80  
60  
88  
105  
83  
dB  
dB  
dB  
S
CM  
CM  
CM  
V = 5V, V = 1.5V to 3.5V  
S
+
V = 3V, V = V to V  
S
CMRR Match (Channel-to-Channel) (Note 11) V = 5V, V = 1.5V to 3.5V  
80  
60  
60  
3
105  
65  
dB  
dB  
dB  
V
S
CM  
Power Supply Rejection Ratio  
V = 3V to 10V, LT6201DD V = 3V to 7V  
S S  
PSRR Match (Channel-to-Channel) (Note 11) V = 3V to 10V, LT6201DD V = 3V to 7V  
100  
S
S
Minimum Supply Voltage (Note 6)  
Output Voltage Swing LOW (Note 7)  
V
No Load  
12  
55  
170  
170  
60  
mV  
mV  
mV  
mV  
OL  
OH  
I
= 5mA  
110  
310  
310  
SINK  
V = 5V, I  
= 20mA  
= 20mA  
S
SINK  
SINK  
V = 3V, I  
S
V
Output Voltage Swing HIGH (Note 7)  
No Load  
SOURCE  
65  
120  
210  
440  
490  
mV  
mV  
mV  
mV  
I
= 5mA  
SOURCE  
SOURCE  
115  
260  
270  
V = 5V, I  
= 20mA  
= 20mA  
S
V = 3V, I  
S
62001fa  
4
LT6200/LT6200-5  
LT6200-10/LT6201  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over 0°C < TA < 70°C  
temperature range. VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply, VSHDN = OPEN, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
V = 5V  
MIN  
TYP  
MAX  
UNITS  
I
I
Short-Circuit Current  
±60  
±45  
±90  
±75  
mA  
mA  
SC  
S
S
V = 3V  
S
Supply Current per Amplifier  
V = 5V  
20  
19  
1.35  
23  
22  
1.8  
mA  
mA  
mA  
S
V = 3V  
S
Disabled Supply Current per Amplifier  
SHDN Pin Current  
V
= 0.3V  
SHDN  
I
V
= 0.3V  
215  
295  
0.3  
µA  
V
SHDN  
SHDN  
V
V
V
SHDN  
V
SHDN  
Pin Input Voltage LOW  
Pin Input Voltage HIGH  
L
+
V – 0.5  
V
H
Shutdown Output Leakage Current  
Turn-On Time  
V
V
V
= 0.3V  
0.1  
130  
180  
42  
75  
µA  
ns  
SHDN  
SHDN  
SHDN  
t
t
= 0.3V to 4.5V, R = 100, V = 5V  
L S  
ON  
Turn-Off Time  
= 4.5V to 0.3V, R = 100, V = 5V  
ns  
OFF  
L
S
SR  
Slew Rate  
V = 5V, A = –1, R = 1k, V = 4V  
29  
V/µs  
S
V
L
O
A = –10, R = 1k, V = 4V  
V
L
O
LT6200-5  
190  
310  
V/µs  
V/µs  
LT6200-10  
FPBW  
Full Power Bandwidth (Note 9)  
V = 5V, V  
= 3V (LT6200)  
3.07  
4.45  
MHz  
S
OUT  
P-P  
The denotes the specifications which apply over –40°C < TA < 85°C temperature range. Excludes the LT6201 in the DD package  
(Note 3). VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply, VSHDN = OPEN, unless otherwise noted. (Note 5)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
V = 5V, V = Half Supply  
0.2  
1.0  
1.5  
2.8  
mV  
mV  
OS  
S
CM  
V = 3V, V = Half Supply  
S
CM  
+
+
V = 5V, V = V to V  
0.3  
1.5  
3.5  
4.3  
mV  
mV  
S
CM  
V = 3V, V = V to V  
S
CM  
Input Offset Voltage Match  
(Channel-to-Channel) (Note 11)  
V
CM  
V
CM  
= Half Supply  
0.2  
0.4  
2
3
mV  
mV  
+
= V to V  
V
TC  
Input Offset Voltage Drift (Note 8)  
Input Bias Current  
V
= Half Supply  
= Half Supply  
2.5  
8.0  
µV/°C  
OS  
CM  
I
V
CM  
V
CM  
V
CM  
–40  
–50  
–10  
8
–23  
µA  
µA  
µA  
B
+
= V  
18  
= V  
+
+
I  
I Shift  
B
V
CM  
V
CM  
= V to V  
31  
1
68  
9
µA  
µA  
B
I Match (Channel-to-Channel) (Note 11)  
B
= V to V  
I
Input Offset Current  
V
CM  
V
CM  
V
CM  
= Half Supply  
0.1  
0.02  
0.4  
4
4
5
µA  
µA  
µA  
OS  
+
= V  
= V  
A
Large-Signal Gain  
V = 5V, V = 0.5V to 4.5V, R = 1k to V /2  
40  
7.5  
11  
70  
13  
20  
V/mV  
V/mV  
V/mV  
VOL  
S
O
L
S
V = 5V, V = 1.5V to 3.5V, R = 100to V /2  
S
O
L
S
V = 3V, V = 0.5V to 2.5V,R = 1k to V /2  
S
O
L
S
+
CMRR  
PSRR  
Common Mode Rejection Ratio  
V = 5V, V = V to V  
60  
80  
60  
80  
100  
80  
dB  
dB  
dB  
S
CM  
CM  
CM  
V = 5V, V = 1.5V to 3.5V  
S
+
V = 3V, V = V to V  
S
CMRR Match (Channel-to-Channel) (Note 11) V = 5V, V = 1.5V to 3.5V  
75  
60  
60  
3
105  
68  
dB  
dB  
dB  
V
S
CM  
Power Supply Rejection Ratio  
V = 3V to 10V  
S
PSRR Match (Channel-to-Channel) (Note 11) V = 3V to 10V  
100  
S
Minimum Supply Voltage (Note 6)  
V
Output Voltage Swing LOW (Note 7)  
No Load  
= 5mA  
18  
60  
170  
175  
70  
mV  
mV  
mV  
mV  
OL  
I
120  
310  
315  
SINK  
V = 5V, I  
= 20mA  
= 20mA  
S
SINK  
SINK  
V = 3V, I  
S
62001fa  
5
LT6200/LT6200-5  
LT6200-10/LT6201  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over –40°C < TA < 85°C  
temperature range. Excludes the LT6201 in the DD package (Note 3). VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply,  
VSHDN = OPEN, unless otherwise noted. (Note 5)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Output Voltage Swing HIGH (Note 7)  
No Load  
SOURCE  
65  
120  
210  
450  
500  
mV  
mV  
mV  
mV  
OH  
I
= 5mA  
SOURCE  
SOURCE  
115  
270  
280  
V = 5V, I  
= 20mA  
= 20mA  
S
V = 3V, I  
S
I
I
Short-Circuit Current  
V = 5V  
S
±50  
±30  
±80  
±60  
mA  
mA  
SC  
S
V = 3V  
Supply Current per Amplifier  
V = 5V  
22  
20  
1.4  
25.3  
23  
mA  
mA  
mA  
S
S
V = 3V  
S
Disabled Supply Current per Amplifier  
SHDN Pin Current  
V
SHDN  
= 0.3V  
1.9  
I
V
SHDN  
= 0.3V  
220  
300  
0.3  
µA  
V
SHDN  
V
V
V
V
Pin Input Voltage LOW  
Pin Input Voltage HIGH  
L
SHDN  
SHDN  
+
V – 0.5  
V
H
Shutdown Output Leakage Current  
Turn-On Time  
V
SHDN  
V
SHDN  
V
SHDN  
= 0.3V  
0.1  
130  
180  
33  
75  
µA  
ns  
t
t
= 0.3V to 4.5V, R = 100, V = 5V  
L S  
ON  
Turn-Off Time  
= 4.5V to 0.3V, R = 100, V = 5V  
ns  
OFF  
L
S
SR  
Slew Rate  
V = 5V, A = –1, R = 1k, V = 4V  
S
23  
V/µs  
V
L
O
A = –10, R = 1k, V = 4V  
V
L
O
LT6200-5  
160  
260  
V/µs  
V/µs  
LT6200-10  
FPBW  
Full Power Bandwidth (Note 9)  
V = 5V, V  
S
= 3V (LT6200)  
2.44  
3.5  
MHz  
OUT  
P-P  
TA = 25°C, VS = ±5V, VCM = VOUT = 0V, VSHDN = OPEN, unless otherwise noted. Excludes the LT6201 in the DD package (Note 3).  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
V
CM  
V
CM  
V
CM  
= Half Supply  
1.4  
2.5  
2.5  
4
6
6
mV  
mV  
mV  
OS  
+
= V  
= V  
Input Offset Voltage Match  
(Channel-to-Channel) (Note 11)  
V
CM  
V
CM  
= 0V  
0.2  
0.4  
1.6  
3.2  
mV  
mV  
+
= V to V  
I
Input Bias Current  
V
V
V
= Half Supply  
40  
50  
–10  
8
µA  
µA  
µA  
B
CM  
CM  
CM  
+
= V  
18  
= V  
–23  
+
+
I  
I Shift  
B
V
CM  
V
CM  
= V to V  
31  
68  
6
µA  
µA  
B
I Match (Channel-to-Channel) (Note 11)  
B
= V to V  
0.2  
I
Input Offset Current  
V
CM  
V
CM  
V
CM  
= Half Supply  
1.3  
1
3
7
7
12  
µA  
µA  
µA  
OS  
+
= V  
= V  
Input Noise Voltage  
0.1Hz to 10Hz  
600  
nV  
P-P  
e
Input Noise Voltage Density  
f = 100kHz  
f = 10kHz  
0.95  
1.4  
nV/Hz  
nV/Hz  
n
2.3  
i
Input Noise Current Density, Balanced Source  
Unbalanced Source  
f = 10kHz  
f = 10kHz  
2.2  
3.5  
pA/Hz  
pA/Hz  
n
Input Resistance  
Input Capacitance  
Large-Signal Gain  
Common Mode  
0.57  
2.1  
MΩ  
kΩ  
Differential Mode  
C
A
Common Mode  
Differential Mode  
3.1  
4.2  
pF  
pF  
IN  
V = ±4.5V, R = 1k  
115  
15  
200  
26  
V/mV  
V/mV  
VOL  
O
L
V = ±2V, R = 100  
O
L
62001fa  
6
LT6200/LT6200-5  
LT6200-10/LT6201  
ELECTRICAL CHARACTERISTICS TA = 25°C, VS = ±5V, VCM = VOUT = 0V, VSHDN = OPEN, unless otherwise  
noted. Excludes the LT6201 in the DD package (Note 3).  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
CMRR  
Common Mode Rejection Ratio  
V
V
= V to V  
= –2V to 2V  
68  
75  
96  
100  
dB  
dB  
CM  
CM  
CMRR Match (Channel-to-Channel) (Note 11)  
Power Supply Rejection Ratio  
V
= –2V to 2V  
80  
60  
65  
105  
68  
dB  
dB  
dB  
CM  
PSRR  
V = ±1.25V to ±5V  
S
PSRR Match (Channel-to-Channel) (Note 6)  
Output Voltage Swing LOW (Note 7)  
V = ±1.25V to ±5V  
100  
S
V
V
No Load  
12  
55  
150  
50  
110  
290  
mV  
mV  
mV  
OL  
OH  
I
I
= 5mA  
= 20mA  
SINK  
SINK  
Output Voltage Swing HIGH (Note 7)  
Short-Circuit Current  
No Load  
70  
110  
225  
130  
210  
420  
mV  
mV  
mV  
I
I
= 5mA  
= 20mA  
SOURCE  
SOURCE  
I
I
±60  
±90  
mA  
SC  
Supply Current per Amplifier  
Disabled Supply Current per Amplifier  
20  
1.6  
23  
2.1  
mA  
mA  
S
V
V
= 0.3V  
= 0.3V  
SHDN  
SHDN  
I
SHDN Pin Current  
200  
280  
0.3  
µA  
V
SHDN  
V
V
V
SHDN  
V
SHDN  
Pin Input Voltage LOW  
Pin Input Voltage HIGH  
L
+
V – 0.5  
V
H
Shutdown Output Leakage Current  
Turn-On Time  
V
V
V
= 0.3V  
0.1  
130  
180  
75  
µA  
ns  
ns  
SHDN  
SHDN  
SHDN  
t
t
= 0.3V to 4.5V, R = 100, V = 5V  
L S  
ON  
Turn-Off Time  
= 4.5V to 0.3V, R = 100, V = 5V  
L S  
OFF  
GBW  
Gain Bandwidth Product  
Frequency = 1MHz  
LT6200-5  
LT6200-10  
110  
530  
1060  
165  
800  
1600  
MHz  
MHz  
MHz  
SR  
Slew Rate  
A = –1, R = 1k, V = 4V  
35  
50  
V/µs  
V
L
O
A = –10, R = 1k, V = 4V  
V
L
O
LT6200-5  
175  
315  
250  
450  
V/µs  
V/µs  
LT6200-10  
FPBW  
Full Power Bandwidth (Note 9)  
Settling Time (LT6200, LT6201)  
V
= 3V (LT6200-10)  
33  
47  
MHz  
ns  
OUT  
P-P  
t
0.1%, V  
= 2V, A = –1, R = 1k  
140  
S
STEP  
V
L
62001fa  
7
LT6200/LT6200-5  
LT6200-10/LT6201  
The denotes the specifications which apply over 0°C < TA < 70°C  
ELECTRICAL CHARACTERISTICS  
otherwise noted.  
temperature range. Excludes the LT6201 in the DD package (Note 3). VS = ±5V, VCM = VOUT = 0V, VSHDN = OPEN, unless  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
V
CM  
V
CM  
V
CM  
= Half Supply  
1.9  
3.5  
3.5  
4.5  
7.5  
7.5  
mV  
mV  
mV  
OS  
+
= V  
= V  
Input Offset Voltage Match  
(Channel-to-Channel) (Note 11)  
V
CM  
V
CM  
= 0V  
0.2  
0.4  
1.8  
3.4  
mV  
mV  
+
= V to V  
V
TC  
Input Offset Voltage Drift (Note 8)  
Input Bias Current  
V
= Half Supply  
8.2  
24  
µV/°C  
OS  
CM  
I
V
CM  
V
CM  
V
CM  
= Half Supply  
–40  
–50  
–10  
8
–23  
µA  
µA  
µA  
B
+
= V  
18  
= V  
+
+
I  
I Shift  
B
V
CM  
V
CM  
= V to V  
31  
1
68  
9
µA  
µA  
B
I Match (Channel-to-Channel) (Note 11)  
B
= V to V  
I
Input Offset Current  
V
CM  
V
CM  
V
CM  
= Half Supply  
1.3  
1.0  
3.5  
10  
10  
15  
µA  
µA  
µA  
OS  
+
= V  
= V  
A
Large-Signal Gain  
V = ±4.5V, R = 1k  
46  
80  
V/mV  
V/mV  
VOL  
O
L
V = ±2V, R = 100  
7.5  
13.5  
O
L
+
CMRR  
PSRR  
Common Mode Rejection Ratio  
V
V
= V to V  
= –2V to 2V  
65  
75  
90  
100  
dB  
dB  
CM  
CM  
CMRR Match (Channel-to-Channel) (Note 11)  
Power Supply Rejection Ratio  
V
CM  
= –2V to 2V  
75  
60  
60  
105  
65  
dB  
dB  
dB  
V = ±1.5V to ±5V  
S
PSRR Match (Channel-to-Channel) (Note 6)  
Output Voltage Swing LOW (Note 7)  
V = ±1.5V to ±5V  
S
100  
V
V
No Load  
16  
60  
170  
70  
120  
310  
mV  
mV  
mV  
OL  
OH  
I
I
= 5mA  
= 20mA  
SINK  
SINK  
Output Voltage Swing HIGH (Note 7)  
Short-Circuit Current  
No Load  
85  
125  
265  
150  
230  
480  
mV  
mV  
mV  
I
I
= 5mA  
SOURCE  
SOURCE  
= 20mA  
I
I
±60  
±90  
mA  
SC  
Supply Current per Amplifier  
Disabled Supply Current per Amplifier  
25  
1.6  
29  
2.1  
mA  
mA  
S
V
V
= 0.3V  
= 0.3V  
SHDN  
I
SHDN Pin Current  
215  
295  
0.3  
µA  
V
SHDN  
SHDN  
V
V
V
V
Pin Input Voltage LOW  
Pin Input Voltage HIGH  
L
SHDN  
SHDN  
+
V – 0.5  
V
H
Shutdown Output Leakage Current  
Turn-On Time  
V
SHDN  
V
SHDN  
V
SHDN  
= 0.3V  
0.1  
130  
180  
44  
75  
µA  
ns  
t
t
= 0.3V to 4.5V, R = 100, V = 5V  
L S  
ON  
Turn-Off Time  
= 4.5V to 0.3V, R = 100, V = 5V  
ns  
OFF  
L
S
SR  
Slew Rate  
A = –1, R = 1k, V = 4V  
31  
V/µs  
V
L
O
A = –10, R = 1k, V = 4V  
V
L
O
LT6200-5  
150  
290  
215  
410  
V/µs  
V/µs  
LT6200-10  
FPBW  
Full Power Bandwidth (Note 9)  
V
= 3V (LT6200-10)  
30  
43  
MHz  
OUT  
P-P  
62001fa  
8
LT6200/LT6200-5  
LT6200-10/LT6201  
The denotes the specifications which apply over –40°C < TA < 85°C  
ELECTRICAL CHARACTERISTICS  
otherwise noted. (Note 5)  
temperature range. Excludes the LT6201 in the DD package (Note 3). VS = ±5V, VCM = VOUT = 0V, VSHDN = OPEN, unless  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
V
V
V
= Half Supply  
1.9  
3.5  
3.5  
4.5  
7.5  
7.5  
mV  
mV  
mV  
OS  
CM  
CM  
CM  
+
= V  
= V  
Input Offset Voltage Match  
(Channel-to-Channel) (Note 11)  
V
V
= 0V  
0.2  
0.4  
2.0  
3.6  
mV  
mV  
CM  
CM  
+
= V to V  
V
TC  
Input Offset Voltage Drift (Note 8)  
Input Bias Current  
V
= Half Supply  
= Half Supply  
8.2  
24  
µV/°C  
OS  
CM  
I
V
V
V
–40  
–50  
–10  
8
–23  
µA  
µA  
µA  
B
CM  
CM  
CM  
+
= V  
18  
= V  
+
I  
I Shift  
B
V
= V to V  
31  
4
68  
12  
µA  
µA  
B
CM  
I Match (Channel-to-Channel) (Note 11)  
B
I
Input Offset Current  
V
V
V
= Half Supply  
1.3  
1.0  
3.5  
10  
10  
15  
µA  
µA  
µA  
OS  
CM  
CM  
CM  
+
= V  
= V  
A
Large-Signal Gain  
V = ±4.5V, R = 1k  
46  
80  
V/mV  
V/mV  
VOL  
O
L
V = ±2V R = 100  
7.5  
13.5  
O
L
+
CMRR  
PSRR  
Common Mode Rejection Ratio  
V
V
= V to V  
= –2V to 2V  
65  
75  
90  
100  
dB  
dB  
CM  
CM  
CMRR Match (Channel-to-Channel) (Note 11)  
Power Supply Rejection Ratio  
V
= –2V to 2V  
75  
60  
60  
105  
65  
dB  
dB  
dB  
CM  
V = ±1.5V to ±5V  
S
PSRR Match (Channel-to-Channel) (Note 6)  
Output Voltage Swing LOW (Note 7)  
V = ±1.5V to ±5V  
S
100  
V
V
No Load  
16  
60  
170  
75  
125  
310  
mV  
mV  
mV  
OL  
OH  
I
I
= 5mA  
= 20mA  
SINK  
SINK  
Output Voltage Swing HIGH (Note 7)  
Short-Circuit Current  
No Load  
85  
125  
265  
150  
230  
480  
mV  
mV  
mV  
I
I
= 5mA  
SOURCE  
SOURCE  
= 20mA  
I
I
±60  
±90  
mA  
SC  
Supply Current  
Disabled Supply Current  
25  
1.6  
29  
2.1  
mA  
mA  
S
V
V
= 0.3V  
= 0.3V  
SHDN  
SHDN  
I
SHDN Pin Current  
215  
295  
0.3  
µA  
V
SHDN  
V
V
V
V
Pin Input Voltage LOW  
Pin Input Voltage HIGH  
L
SHDN  
SHDN  
+
V – 0.5  
V
H
Shutdown Output Leakage Current  
Turn-On Time  
V
V
V
= 0.3V  
0.1  
130  
180  
44  
75  
µA  
ns  
SHDN  
SHDN  
SHDN  
t
t
= 0.3V to 4.5V, R = 100, V = 5V  
L S  
ON  
Turn-Off Time  
= 4.5V to 0.3V, R = 100, V = 5V  
ns  
OFF  
L
S
SR  
Slew Rate  
A = –1, R = 1k, V = 4V  
31  
V/µs  
V
L
O
A = –10, R = 1k, V = 4V  
V
L
O
LT6200-5  
125  
260  
180  
370  
V/µs  
V/µs  
LT6200-10  
FPBW  
Full Power Bandwidth (Note 9)  
V
= 3V (LT6200-10)  
27  
39  
MHz  
OUT  
P-P  
Note 1: Absolute maximum ratings are those values beyond which the life  
of the device may be impaired.  
indefinitely. The LT6201 in the DD package is limited by power dissipation  
to V 5V, 0V over the commercial temperature range only.  
S
Note 2: Inputs are protected by back-to-back diodes. If the differential  
input voltage exceeds 0.7V, the input current must be limited to less than  
40mA.  
Note 4: The LT6200C/LT6200I and LT6201C/LT6201I are guaranteed  
functional over the temperature range of –40°C and 85°C (LT6201DD  
excluded).  
Note 3: A heat sink may be required to keep the junction temperature  
below the absolute maximum rating when the output is shorted  
62001fa  
9
LT6200/LT6200-5  
LT6200-10/LT6201  
ELECTRICAL CHARACTERISTICS  
Note 5: The LT6200C/LT6201C are guaranteed to meet specified  
performance from 0°C to 70°C. The LT6200C/LT6201C are designed,  
characterized and expected to meet specified performance from – 40°C to  
85°C, but are not tested or QA sampled at these temperatures. The  
LT6200I is guaranteed to meet specified performance from –40°C to 85°C.  
Note 10: Thermal resistance varies depending upon the amount of PC  
board metal attached to the V pin of the device. θ is specified for a  
JA  
certain amount of 2oz copper metal trace connecting to the V pin as  
described in the thermal resistance tables in the Application Information  
section.  
Note 6: Minimum supply voltage is guaranteed by power supply rejection  
ratio test.  
Note 7: Output voltage swings are measured between the output and  
power supply rails.  
Note 11: Matching parameters on the LT6201 are the difference between  
the two amplifiers. CMRR and PSRR match are defined as follows: CMRR  
and PSRR are measured in µV/V on the identical amplifiers. The difference  
is calculated in µV/V. The result is converted to dB.  
Note 12: There are reverse biased ESD diodes on all inputs and outputs as  
shown in Figure 1. If these pins are forced beyond either supply, unlimited  
current will flow through these diodes. If the current is transient in nature  
and limited to less than 30mA, no damage to the device will occur.  
Note 8: This parameter is not 100% tested.  
Note 9: Full-power bandwidth is calculated from the slew rate:  
FPBW = SR/2πV  
P
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
VOS Distribution, VCM = V+/2  
VOS Distribution, VCM = V+  
VOS Distribution, VCM = V–  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 5V, 0V  
V
= 5V, 0V  
V = 5V, 0V  
S
SO-8  
S
S
SO-8  
SO-8  
0
400  
0
400  
800 1200 1600  
–1000  
–600  
–200  
200  
600  
1000  
–1600–1200 –800 –400  
800 1200 1600  
–1600–1200 –800 –400  
INPUT OFFSET VOLTAGE (µV)  
INPUT OFFSET VOLTAGE (µV)  
INPUT OFFSET VOLTAGE (µV)  
6200 G01  
6200 G02  
6200 G03  
Offset Voltage  
vs Input Common Mode Voltage  
Input Bias Current  
vs Common Mode Voltage  
Supply Current vs Supply Voltage  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
20  
10  
30  
25  
20  
15  
V
= 5V, 0V  
V
S
= 5V, 0V  
S
T
= 125°C  
TYPICAL PART  
A
0
T
= 25°C  
A
T
= 125°C  
= 25°C  
A
–10  
T
A
T
A
= –55°C  
T
= –55°C  
–20  
–30  
–40  
10  
5
A
T
= –55°C  
–0.5  
–1.0  
A
T
= 25°C  
A
T
= 125°C  
A
0
–1.5  
3
5
6
8
12  
14  
0
5
–1  
0
1
2
4
0
2
4
6
10  
4
1
2
3
INPUT COMMON MODE VOLTAGE (V)  
COMMON MODE VOLTAGE (V)  
TOTAL SUPPLY VOLTAGE (V)  
6200 G04  
6200 G05  
6200 G06  
62001fa  
10  
LT6200/LT6200-5  
LT6200-10/LT6201  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Input Bias Current  
vs Temperature  
Output Saturation Voltage  
Output Saturation Voltage  
vs Load Current (Output High)  
10  
vs Load Current (Output Low)  
20  
15  
10  
1
V
= 5V, 0V  
V
S
= 5V, 0V  
V
S
= 5V, 0V  
S
V
CM  
= 5V  
10  
5
1
0.1  
0
–5  
0.1  
T
A
= 125°C  
–10  
–15  
–20  
–25  
–30  
T
= 125°C  
A
T
A
= –55°C  
0.01  
V
CM  
= 0V  
T
= 25°C  
T = 25°C  
A
A
T
= –55°C  
A
0.01  
0.001  
–50 –35 –20 5 10 25 40 55 70 85  
0.1  
1
10  
100  
0.1  
1
10  
100  
LOAD CURRENT (mA)  
TEMPERATURE (°C)  
LOAD CURRENT (mA)  
6200 G09  
6200 G07  
6200 G08  
Output Short-Circuit Current  
vs Power Supply Voltage  
Minimum Supply Voltage  
Open-Loop Gain  
1.0  
0.5  
120  
100  
80  
2.5  
2.0  
SOURCING  
V
= V /2  
S
T
= –55°C  
V
= 3V, 0V  
= 25°C  
CM  
A
S
A
T
T
= 25°C  
A
1.5  
T
= 125°C  
A
60  
1.0  
40  
0
0.5  
20  
T
= –55°C  
A
R
L
= 1k  
L
0
–0.5  
0
–20  
–40  
–60  
–80  
–100  
–120  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
T
= 25°C  
A
R
= 100Ω  
–1.0  
–1.5  
–2.0  
SINKING  
T
= 25°C  
T
= 125°C  
A
A
T
= –55°C  
A
T
= 125°C  
A
1.5  
2.5  
3
3.5  
4
4.5  
5
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
2
0
0.5  
1.5  
2
2.5  
3
1
TOTAL SUPPLY VOLTAGE (V)  
POWER SUPPLY VOLTAGE (±V)  
OUTPUT VOLTAGE (V)  
6200 G11  
6200 G10  
6200 G12  
Open-Loop Gain  
Open-Loop Gain  
Offset Voltage vs Output Current  
15  
10  
2.5  
2.0  
2.5  
2.0  
V
= ±5V  
V
T
= ±5V  
= 25°C  
V
T
= 5V, 0V  
= 25°C  
S
S
A
S
A
1.5  
1.5  
1.0  
T
= 125°C  
= –55°C  
1.0  
A
5
0
0.5  
0.5  
T
T = 25°C  
A
R
L
= 1k  
A
L
0
0
R
= 1k  
L
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
0.5  
–1.0  
–1.5  
–2.0  
–2.5  
R
= 100Ω  
R
2
= 100Ω  
L
–5  
–10  
–15  
–100  
–60  
–20  
20  
60  
100  
0
1
3
4
5
–5 –4 –3 –2 –1  
0
1
3
4
5
2
OUTPUT CURRENT (mA)  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
6200 G15  
6200 G13  
6200 G14  
62001fa  
11  
LT6200/LT6200-5  
LT6200-10/LT6201  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Warm-Up Drift  
vs Time (LT6200S8)  
Total Noise vs Source Resistance  
Input Noise Voltage vs Frequency  
100  
10  
1
300  
250  
200  
150  
100  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
T
= 25°C  
V
V
= ±5V  
S
CM  
V
T
= 5V, 0V  
= 25°C  
A
S
A
LT6200  
= 0V  
TOTAL NOISE  
f = 100kHz  
UNBALANCED  
SOURCE  
V
S
= ±5V  
PNP ACTIVE  
= 0.5V  
V
CM  
RESISTORS  
RESISTOR  
NOISE  
NPN ACTIVE  
V
CM  
= 4.5V  
BOTH ACTIVE  
LT6200 AMPLIFIER  
NOISE VOLTAGE  
V
= ±1.5V  
S
V
CM  
= 2.5V  
V
S
= ±2.5V  
0
0.1  
0
100 120  
TIME AFTER POWER-UP (SEC)  
0
20 40 60 80  
140 160  
1k  
10  
100  
10k  
100k  
10  
100  
1k  
10k  
100k  
SOURCE RESISTANCE ()  
FREQUENCY (Hz)  
6200 G17  
6200 G16  
6200 G18  
Balanced Noise Current  
vs Frequency  
Unbalanced Noise Current  
vs Frequency  
0.1Hz to 10Hz Output Noise  
Voltage  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
5
800  
600  
V
T
= 5V, 0V  
= 25°C  
V
T
= 5V, 0V  
S
A
S
A
V
V
= 5V, 0V  
S
= 25°C  
= V /2  
CM  
S
UNBALANCED  
SOURCE  
RESISTANCE  
BALANCED  
SOURCE  
RESISTANCE  
PNP ACTIVE  
V = 0.5V  
PNP ACTIVE  
400  
CM  
V
= 0.5V  
CM  
200  
BOTH ACTIVE  
= 2.5V  
BOTH ACTIVE  
= 2.5V  
V
CM  
0
V
CM  
NPN ACTIVE  
= 4.5V  
–200  
–400  
–600  
–800  
V
CM  
NPN ACTIVE  
V
= 4.5V  
CM  
0
0
10  
100  
1k  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
TIME (5SEC/DIV)  
FREQUENCY (Hz)  
6200 G19  
6200 G20  
6200 G21  
Supply Current  
vs SHDN Pin Voltage  
SHDN Pin Current  
vs SHDN Pin Voltage  
22  
20  
18  
16  
14  
12  
10  
8
50  
V
= 5V, 0V  
V
= 5V, 0V  
S
S
0
T
= 125°C  
A
T
= 25°C  
A
A
–50  
–100  
–150  
–200  
–250  
–300  
T
A
= –55°C  
T
= 25°C  
A
T
= 125°C  
6
T
A
= –55°C  
4
2
0
0
1
2
3
4
5
1
2
3
5
0
4
SHDN PIN VOLTAGE (V)  
SHDN PIN VOLTAGE (V)  
6200 G43  
6200 G44  
62001fa  
12  
LT6200/LT6200-5  
LT6200-10/LT6201  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS LT6200, LT6201  
Gain Bandwidth and Phase  
Margin vs Temperature  
Open-Loop Gain vs Frequency  
80  
70  
120  
100  
80  
70  
60  
50  
V
= ±5V  
S
PHASE  
V
= 3V, 0V  
S
60  
V
CM  
= 0.5V  
PHASE MARGIN  
50  
60  
40  
GAIN  
V
CM  
= 4.5V  
40  
40  
30  
20  
V
= ±5V  
S
180  
160  
140  
120  
20  
0
V
= 0.5V  
V
= 4.5V  
CM  
CM  
10  
–20  
–40  
–60  
–80  
V
= 3V, 0V  
S
0
V
C
= 5V, 0V  
= 5pF  
S
L
L
GAIN BANDWIDTH  
–10  
–20  
R
= 1k  
100  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
–50 –25  
0
25  
125  
50  
75 100  
TEMPERATURE (°C)  
6200 G23  
6200 G22  
Gain Bandwidth and Phase  
Margin vs Supply Voltage  
Open-Loop Gain vs Frequency  
80  
70  
120  
100  
80  
80  
70  
60  
50  
40  
30  
T
= 25°C  
= 1k  
= 5pF  
A
L
L
PHASE  
R
PHASE MARGIN  
C
V
= ±5V  
60  
S
50  
60  
GAIN  
V
= ±1.5V  
= ±5V  
40  
S
40  
30  
20  
180  
160  
140  
120  
100  
80  
V
S
20  
0
V
= ±1.5V  
S
GAIN BANDWIDTH  
10  
–20  
–40  
–60  
–80  
0
V
C
= 0V  
= 5pF  
= 1k  
CM  
L
–10  
R
L
–20  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
0
4
6
8
10  
12  
14  
2
TOTAL SUPPLY VOLTAGE (V)  
6200 G24  
6200 G25  
Common Mode Rejection Ratio  
vs Frequency  
Slew Rate vs Temperature  
Output Impedance vs Frequency  
120  
140  
120  
100  
80  
1000  
100  
10  
V
V
= 5V, 0V  
= V /2  
A
= –1  
G
= 1k  
V = 5V, 0V  
S
S
CM  
V
F
L
R = R = 1k  
S
R
100  
80  
V
= ±5V RISING  
S
V
= ±5V FALLING  
S
A
= 10  
V
60  
40  
A
= 2  
V
60  
1
A
= 1  
V
V
= ±2.5V RISING  
40  
S
V
= ±2.5V FALLING  
S
0.1  
20  
0
20  
0
0.01  
–55 –35 –15  
5
25 45 65 85 105 125  
10k  
100k  
1M  
10M  
100M  
1G  
0.1  
1
10  
100  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
FREQUENCY (MHz)  
6200 G28  
6200 G27  
6200 G26  
62001fa  
13  
LT6200/LT6200-5  
LT6200-10/LT6201  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LT6200, LT6201  
Power Supply Rejection Ratio  
vs Frequency  
Overshoot vs Capacitive Load  
Overshoot vs Capacitive Load  
80  
70  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
40  
35  
30  
25  
20  
15  
10  
5
V
V
A
= 5V, 0V  
= V /2  
V
A
= 5V, 0V  
= 2  
S
CM  
V
A
= 5V, 0V  
= 1  
S
V
S
V
S
T
= 25°C  
R
= 10Ω  
S
R
= 10Ω  
S
R
= 20Ω  
S
R
= 20Ω  
S
POSITIVE  
SUPPLY  
NEGATIVE  
SUPPLY  
R
R
= 50Ω  
= 50Ω  
S
L
R
= 50Ω  
= 50Ω  
S
L
R
0
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
100M  
10  
100  
CAPACITIVE LOAD (pF)  
1000  
10  
100  
1000  
CAPACITIVE LOAD (pF)  
6200 G29  
6200 G31  
6200 G30  
Settling Time vs Output Step  
(Noninverting)  
Settling Time vs Output Step  
(Inverting)  
Maximum Undistorted Output  
Signal vs Frequency  
200  
150  
100  
50  
200  
150  
100  
50  
10  
9
500  
V
A
= ±5V  
= 1  
= 25°C  
V
A
= ±5V  
= –1  
= 25°C  
S
V
A
S
V
A
+
A
= –1  
V
500Ω  
+
T
T
A
= 2  
V
IN  
V
V
OUT  
500Ω  
V
OUT  
8
V
IN  
7
6
1mV  
1mV  
1mV  
1mV  
5
4
10mV  
10mV  
3
10mV  
10mV  
3
V
= ±5V  
S
A
3
T
= 25°C  
HD2, HD3 < –40dBc  
0
0
2
–4 –3 –2 –1  
0
1
2
4
–4 –3 –2 –1  
0
1
2
4
10k  
100k  
1M  
10M  
OUTPUT STEP (V)  
OUTPUT STEP (V)  
FREQUENCY (Hz)  
6200 G34  
6200 G32  
6200 G33  
Distortion vs Frequency, AV = 1  
Distortion vs Frequency, AV = 1  
Distortion vs Frequency, AV = 2  
–50  
–60  
–50  
–60  
–40  
–50  
A
V
V
O
V
S
= 1  
A
V
V
= 1  
A
V
V
= 2  
V
O
S
V
O
S
= 2V  
= 2V  
= 2V  
P-P  
P-P  
P-P  
= ±5V  
= ±2.5V  
= ±2.5V  
–60  
–70  
–70  
HD2, R = 100Ω  
L
HD2, R = 1k  
HD2, R = 1k  
L
HD3, R = 100Ω  
L
–70  
L
–80  
–80  
HD2, R = 1k  
L
HD2, R = 100Ω  
L
–80  
HD2, R = 100Ω  
L
HD3, R = 1k  
L
HD3, R = 1k  
L
–90  
–90  
–90  
HD3, R = 1k  
L
HD3, R = 100Ω  
L
–100  
–100  
–100  
HD3, R = 100Ω  
L
–110  
–110  
–110  
100k  
1M  
FREQUENCY (Hz)  
10M  
100k  
1M  
10M  
100k  
10M  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
6200 G36  
6200 G35  
6200 G37  
62001fa  
14  
LT6200/LT6200-5  
LT6200-10/LT6201  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LT6200, LT6201  
Distortion vs Frequency, AV = 2  
Channel Separation vs Frequency  
–40  
0
–10  
A
V
V
= 2  
T
= 25°C  
= 1  
V
O
S
A
= 2V  
A
V
P-P  
V
S
–50  
–60  
–20  
–30  
–40  
–50  
–60  
–70  
= ±5V  
= ±5V  
HD2, R = 100Ω  
–70  
L
HD2, R = 1k  
L
–80  
HD3, R = 1k  
L
–80  
–90  
–100  
–110  
–120  
–90  
–100  
HD3, R = 100Ω  
L
–110  
100k  
10M  
1M  
FREQUENCY (Hz)  
0.1  
1
10  
100  
FREQUENCY (MHz)  
6200 G77  
6200 G38  
5V Large-Signal Response  
±5V Large-Signal Response  
5V  
2V/DIV  
0V  
1V/DIV  
0V  
V
S = 5V, 0V  
200ns/DIV  
6200 G39  
V
S = ±5V  
AV = 1  
L = 1k  
200ns/DIV  
6200 G41  
AV = 1  
RL = 1k  
R
5V Small-Signal Response  
Output Overdrive Recovery  
50mV/DIV  
0V  
VIN  
1V/DIV  
VOUT  
2V/DIV  
0V  
VS = 5V, 0V  
AV = 1  
RL = 1k  
200ns/DIV  
6200 G40  
VS = 5V, 0V  
AV = 2  
200ns/DIV  
6200 G42  
62001fa  
15  
LT6200/LT6200-5  
LT6200-10/LT6201  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LT6200-5  
Gain Bandwidth and Phase Margin  
vs Temperature  
Slew Rate vs Temperature  
Overshoot vs Capacitive Load  
450  
400  
350  
300  
250  
200  
150  
100  
0
90  
80  
70  
60  
50  
60  
50  
40  
30  
20  
10  
0
A
= –5  
V
A
= 5V, 0V  
= 5  
V
F
G
S
V
R = R = 1k  
L
V
= ±5V  
S
PHASE MARGIN  
R
= 200Ω  
V = ±5V RISING  
S
R = 0Ω  
S
V
= ±5V FALLING  
S
V
= 3V, 0V  
S
1000  
900  
800  
700  
600  
GAIN BANDWIDTH  
V
= ±5V  
R
= 10Ω  
S
S
V
= ±2.5V FALLING  
S
V
= ±2.5V RISING  
S
R
= 20Ω  
V
= 3V, 0V  
R
= 50Ω  
S
S
S
500  
–55 –25  
0
25  
50  
75 100 125  
10  
100  
CAPACITIVE LOAD (pF)  
1000  
–50 –25  
0
25  
125  
50  
75 100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
6200 G47  
6200 G46  
6200 G45  
Power Supply Rejection Ratio  
vs Frequency  
Output Impedance vs Frequency  
Open-Loop Gain vs Frequency  
80  
70  
60  
50  
40  
30  
20  
10  
0
1000  
100  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
120  
100  
80  
60  
40  
20  
0
POSITIVE  
SUPPLY  
V
= 5V, 0V  
V = 5V, 0V  
S
S
A
PHASE  
T
= 25°C  
V
S
= ±5V  
V
= V /2  
CM  
S
NEGATIVE  
SUPPLY  
V
S
= ±1.5V  
A
V
= 50  
GAIN  
A
V
= 5  
1
V
S
= ±5V  
0.1  
0.01  
V
S
= ±1.5V  
V
C
= 0V  
= 5pF  
= 1k  
CM  
L
R
L
–10  
1k  
10k  
100k  
1M  
10M  
100M  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
6200 G48  
6200 G49  
6200 G50  
Gain Bandwidth and Phase Margin  
vs Supply Voltage  
Open-Loop Gain vs Frequency  
Gain Bandwidth vs Resistor Load  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
120  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
90  
80  
70  
60  
T
R
C
= 25°C  
= 1k  
= 5pF  
A
L
L
PHASE  
100  
80  
V
= 0.5V  
PHASE MARGIN  
CM  
60  
V
= 4.5V  
CM  
40  
20  
GAIN  
50  
0
1000  
800  
600  
400  
–20  
–40  
–60  
–80  
–100  
V
= 0.5V  
GAIN BANDWIDTH  
CM  
V
= ±5V  
= 10k  
= 1k  
S
F
G
V
= 4.5V  
10M  
CM  
R
R
T
V
C
= 5V, 0V  
= 5pF  
S
L
L
= 25°C  
R
= 1k  
A
–10  
100k  
1M  
100M  
1G  
0
2
4
8
10  
12  
0
100 200 300 400 500  
1000  
6
600 700 800 900  
FREQUENCY (Hz)  
RESISTOR LOAD ()  
TOTAL SUPPLY VOLTAGE (V)  
6200 G51  
6200 G52  
G200 G53  
62001fa  
16  
LT6200/LT6200-5  
LT6200-10/LT6201  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LT6200-5  
Common Mode Rejection Ratio  
vs Frequency  
Maximum Undistorted Output  
Signal vs Frequency  
2nd and 3rd Harmonic Distortion  
vs Frequency  
120  
100  
80  
60  
40  
20  
0
10  
9
8
7
6
5
4
3
2
1
0
–40  
V
V
= 5V, 0V  
= V /2  
A
V
V
O
V
S
= 5  
S
CM  
= 2V  
S
P-P  
–50  
–60  
–70  
= ±2.5V  
R
L
= 100, 3RD  
R
L
= 100, 2ND  
R
L
= 1k, 2ND  
R
L
= 1k, 3RD  
–80  
–90  
–100  
V
A
= ±5V  
= 5  
= 25°C  
S
V
A
T
10k  
100k  
1M  
10M  
100M  
1G  
10k  
100k  
1M  
10M  
100M  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
6200 G54  
6200 G55  
6200 G56  
2nd and 3rd Harmonic Distortion  
vs Frequency  
±5V Large-Signal Response  
Output-Overdrive Recovery  
–40  
–50  
A
V
V
O
V
S
= 5  
= 2V  
P-P  
5V  
= ±5V  
VIN  
1V/DIV  
–60  
0V  
0V  
R
L
= 100, 2ND  
2V/DIV 0V  
5V  
–70  
VOUT  
2V/DIV  
R
L
= 100, 3RD  
R
L
= 1k, 2ND  
–80  
–90  
R
L
= 1k, 3RD  
–100  
VS = ±5V  
50ns/DIV  
6200 G58  
VS = 5V, 0V  
AV = 5  
50ns/DIV  
6200 G59  
AV = 5  
R
L = 1k  
CL = 10.8pF SCOPE PROBE  
–110  
CL = 10.8pF SCOPE PROBE  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
6200 G57  
Input Referred High Frequency  
Noise Spectrum  
5V Small-Signal Response  
10nV  
1nV/Hz/DIV  
0nV  
50mV/DIV 0V  
V
S = 5V, 0V  
50ns/DIV  
6200 G61  
100kHz  
15MHz/DIV  
150MHz  
AV = 5  
6200 G60  
RL = 1k  
CL = 10.8pF SCOPE PROBE  
NOISE LIMITED BY INSTRUMENT NOISE FLOOR  
62001fa  
17  
LT6200/LT6200-5  
LT6200-10/LT6201  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LT6200-10  
Gain Bandwidth and Phase Margin  
vs Temperature  
Slew Rate vs Temperature  
Overshoot vs Capacitive Load  
750  
700  
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
80  
70  
60  
50  
60  
50  
40  
30  
20  
10  
0
A
= –10  
V
A
= 5V, 0V  
= 10  
V
F
G
S
V
R = R = 1k  
L
V
= ±5V  
S
PHASE MARGIN  
R
= 100Ω  
V = ±5V RISING  
S
R
S
= 0Ω  
S
V
S
= ±5V FALLING  
V
S
= 3V, 0V  
R
= 10Ω  
2000  
1800  
1600  
1400  
1200  
1000  
GAIN BANDWIDTH  
V
S
= ±5V  
V
S
= ±2.5V FALLING  
R
= 20Ω  
S
V
S
= ±2.5V RISING  
V
S
= 3V, 0V  
R
= 50Ω  
S
–50  
0
25  
50  
75 100 125  
–25  
10  
100  
CAPACITIVE LOAD (pF)  
1000  
–50 –25  
0
25  
125  
50  
75 100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
6200 G64  
6200 G63  
6200 G62  
Power Supply Rejection Ratio  
vs Frequency  
Output Impedance vs Frequency  
Open-Loop Gain vs Frequency  
80  
70  
60  
50  
40  
30  
20  
10  
0
1000  
100  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
120  
100  
80  
60  
40  
20  
0
POSITIVE  
SUPPLY  
V
= 5V, 0V  
V = 5V, 0V  
S
S
A
PHASE  
T
= 25°C  
V
= V /2  
V
S
= ±5V  
CM  
S
NEGATIVE  
SUPPLY  
V
S
= ±1.5V  
A
V
= 100  
GAIN  
A
V
= 10  
V
S
= ±1.5V  
V = ±5V  
S
1
0.1  
0.01  
V
C
= 0V  
= 5pF  
= 1k  
CM  
L
R
L
–10  
1k  
10k  
100k  
1M  
10M  
100M  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
6200 G65  
6200 G66  
6200 G67  
Gain Bandwidth and Phase Margin  
vs Supply Voltage  
Open-Loop Gain vs Frequency  
Gain Bandwidth vs Resistor Load  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
120  
1800  
1600  
1400  
1200  
1000  
800  
90  
80  
70  
60  
T
R
C
= 25°C  
= 1k  
= 5pF  
A
L
L
PHASE  
100  
80  
V
= 0.5V  
CM  
60  
PHASE MARGIN  
V
= 4.5V  
CM  
40  
20  
GAIN  
1800  
1600  
1400  
1200  
1000  
50  
0
V
= 0.5V  
100M  
V
= 4.5V  
CM  
CM  
–20  
–40  
–60  
–80  
–100  
600  
GAIN BANDWIDTH  
V
= ±5V  
S
F
G
400  
R = 10k  
V
C
= 5V, 0V  
= 5pF  
S
L
L
R
T
= 1k  
= 25°C  
200  
R
= 1k  
A
–10  
0
100k  
1M  
10M  
FREQUENCY (Hz)  
1G  
0
100 200 300 400 500  
1000  
600 700 800 900  
2
4
8
0
10  
12  
6
RESISTOR LOAD ()  
TOTAL SUPPLY VOLTAGE (V)  
6200 G68  
G200 G70  
6200 G69  
62001fa  
18  
LT6200/LT6200-5  
LT6200-10/LT6201  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LT6200-10  
Common Mode Rejection Ratio  
vs Frequency  
Maximum Undistorted Output  
Signal vs Frequency  
2nd and 3rd Harmonic Distortion  
vs Frequency  
120  
100  
80  
60  
40  
20  
0
–40  
10  
9
8
7
6
5
4
3
2
1
0
V
V
= 5V, 0V  
= V /2  
A
V
V
O
V
S
= 10  
= 2V  
S
CM  
S
P-P  
–50  
–60  
–70  
–80  
–90  
= ±2.5V  
R
= 100, 2ND  
L
R
L
= 100, 3RD  
R
= 1k, 3RD  
L
V
A
= ±5V  
= 10  
= 25°C  
S
V
A
R
= 1k, 2ND  
1M  
L
T
–100  
10k  
100k  
1M  
10M  
100M  
1G  
10k  
100k  
10M  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
6200 G71  
6200 G72  
6200 G73  
2nd and 3rd Harmonic Distortion  
vs Frequency  
±5V Large-Signal Response  
Output-Overdrive Recovery  
–40  
–50  
A
V
V
= 10  
= 2V  
V
O
S
P-P  
5V  
2V/DIV 0V  
–5V  
= ±5V  
VIN  
R
L
= 100, 2ND  
1V/DIV  
–60  
0V  
0V  
R
L
= 100, 3RD  
–70  
VOUT  
2V/DIV  
R
L
= 1k, 3RD  
–80  
–90  
–100  
R
L
= 1k, 2ND  
1M  
VS = ±5V  
50ns/DIV  
6200 G75  
V
S = 5V, 0V  
50ns/DIV  
6200 G76  
AV = 10  
AV = 10  
R
L = 1k  
CL = 10.8pF SCOPE PROBE  
–110  
CL = 10.8pF SCOPE PROBE  
10k  
100k  
10M  
FREQUENCY (Hz)  
6200 G74  
Input Referred High Frequency  
Noise Spectrum  
5V Small-Signal Response  
10nV  
1nV/Hz/DIV  
0nV  
50mV/DIV 0V  
VS = 5V, 0V  
AV = 10  
50ns/DIV  
6200 G78  
100kHz  
15MHz/DIV  
150MHz  
6200 G77  
R
L = 1k  
CL = 10.8pF SCOPE PROBE  
62001fa  
19  
LT6200/LT6200-5  
LT6200-10/LT6201  
U
W
U U  
APPLICATIO S I FOR ATIO  
Amplifier Characteristics  
TheLT6200-5/LT6200-10aredecompensatedopampsfor  
higher gain applications. These amplifiers maintain iden-  
ticalDCspecificationswiththeLT6200,buthaveareduced  
MillercompensationcapacitorCM.Thisresultsinasignifi-  
cantly higher slew rate and gain bandwidth product.  
Figure 1 shows a simplified schematic of the LT6200  
family, which has two input differential amplifiers in par-  
allel that are biased on simultaneously when the common  
modevoltageisatleast1.5Vfromeitherrail.Thistopology  
allows the input stage to swing from the positive supply  
voltage to the negative supply voltage. As the common  
mode voltage swings beyond VCC – 1.5V, current source  
I1 saturates and current in Q1/Q4 is zero. Feedback is  
maintained through the Q2/Q3 differential amplifier, but  
with an input gm reduction of 1/2. A similar effect occurs  
with I2 when the common mode voltage swings within  
1.5V of the negative rail. The effect of the gm reduction is  
a shift in the VOS as I1 or I2 saturate.  
Input Protection  
There are back-to-back diodes, D1 and D2, across the  
+ and – inputs of these amplifiers to limit the differential  
input voltage to ±0.7V. The inputs of the LT6200 family do  
not have internal resistors in series with the input transis-  
tors. This technique is often used to protect the input  
devices from overvoltage that causes excessive currents  
to flow. The addition of these resistors would significantly  
degrade the low noise voltage of these amplifiers. For  
instance, a 100resistor in series with each input would  
generate 1.8nV/Hz of noise, and the total amplifier noise  
voltage would rise from 0.95nV/Hz to 2.03nV/Hz. Once  
the input differential voltage exceeds ±0.7V, steady-state  
currentconductedthoughtheprotectiondiodesshouldbe  
limited to ±40mA. This implies 25of protection resis-  
tance per volt of continuous overdrive beyond ±0.7V. The  
input diodes are rugged enough to handle transient cur-  
rents due to amplifier slew rate overdrive or momentary  
clipping without these resistors.  
Inputbiascurrentnormallyflowsoutofthe+andinputs.  
The magnitude of this current increases when the input  
common mode voltage is within 1.5V of the negative rail,  
and only Q1/Q4 are active. The polarity of this current  
reverses when the input common mode voltage is within  
1.5V of the positive rail and only Q2/Q3 are active.  
The second stage is a folded cascode and current mirror  
that converts the input stage differential signals to a single  
ended output. Capacitor C1 reduces the unity cross  
frequency and improves the frequency stability without  
degrading the gain bandwidth of the amplifier. The  
differential drive generator supplies current to the output  
transistors that swing from rail-to-rail.  
Figure 2 shows the input and output waveforms of the  
LT6200 driven into clipping while connected in a gain of  
+
V
R1  
R2  
DESD7  
V
I
BIAS  
SHDN  
1
DESD8  
Q11  
+V  
–V  
Q6  
–V  
+V  
Q5  
Q8  
C
M
DESD1  
DESD2  
Q1  
Q4  
Q2  
Q3  
+
C1  
+V  
Q9  
D1  
D2  
DESD5  
DIFFERENTIAL  
DRIVE  
GENERATOR  
DESD3  
DESD4  
DESD6  
Q7  
–V +V  
–V  
Q10  
R3  
R4  
R5  
D3  
I
2
V
6203/04 F01  
Figure 1. Simplified Schematic  
62001fa  
20  
LT6200/LT6200-5  
LT6200-10/LT6201  
U
W
U U  
APPLICATIO S I FOR ATIO  
AV = 1. In this photo, the input signal generator is clipping  
at ±35mA, and the output transistors supply this genera-  
tor current through the protection diodes.  
Power Dissipation  
The LT6200 combines high speed with large output cur-  
rent in a small package, so there is a need to ensure that  
thedie’sjunctiontemperaturedoesnotexceed150°C.The  
LT6200 is housed in a 6-lead TSOT-23 package. The  
package has the Vsupply pin fused to the lead frame to  
enhance the thermal conductance when connecting to a  
ground plane or a large metal trace. Metal trace and plated  
through-holescanbeusedtospreadtheheatgeneratedby  
thedevicetothebacksideofthePCboard.Forexample,on  
a 3/32" FR-4 board with 2oz copper, a total of 270 square  
millimetersconnectstoPin 2 oftheLT6200inanTSOT-23  
package will bring the thermal resistance, θJA, to about  
135°C/W. Without extra metal trace beside the power line  
connectingtotheVpintoprovideaheatsink, thethermal  
resistance will be around 200°C/W. More information on  
thermal resistance with various metal areas connecting to  
the Vpin is provided in Table 1.  
VCC  
2.5V  
0V  
VEE  
–2.5V  
Figure 2. VS = ±2.5V, AV = 1 with Large Overdrive  
ESD  
Table 1. LT6200 6-Lead TSOT-23 Package  
COPPER AREA  
TOPSIDE (mm )  
BOARD AREA  
THERMAL RESISTANCE  
(JUNCTION-TO-AMBIENT)  
The LT6200 has reverse-biased ESD protection diodes on  
all inputs and outputs as shown in Figure 1. If these pins  
are forced beyond either supply, unlimited current will  
flow through these diodes. If the current is transient and  
limited to 30mA or less, no damage to the device will  
occur.  
2
2
(mm )  
270  
100  
20  
2500  
2500  
2500  
2500  
135°C/W  
145°C/W  
160°C/W  
200°C/W  
0
Device is mounted on topside.  
Noise  
Junction temperature TJ is calculated from the ambient  
temperature TA and power dissipation PD as follows:  
The noise voltage of the LT6200 is equivalent to that of a  
56resistor, and for the lowest possible noise it is  
desirable to keep the source and feedback resistance  
at or below this value, i.e., RS + RG//RFB 56. With  
RS + RG//RFB = 56the total noise of the amplifier is:  
en = (0.95nV)2 + (0.95nV)2 = 1.35nV. Below this resis-  
tance value, the amplifier dominates the noise, but in the  
resistance region between 56and approximately 6k,  
the noise is dominated by the resistor thermal noise. As  
the total resistance is further increased, beyond 6k, the  
noise current multiplied by the total resistance eventually  
dominates the noise.  
TJ = TA + (PD θJA)  
ThepowerdissipationintheICisthefunctionofthesupply  
voltage,outputvoltageandtheloadresistance.Foragiven  
supply voltage, the worst-case power dissipation PD(MAX)  
occurs at the maximum quiescent supply current and at  
theoutputvoltagewhichishalfofeithersupplyvoltage(or  
the maximum swing if it is less than 1/2 the supply  
voltage). PD(MAX) is given by:  
PD(MAX) = (VS • IS(MAX)) + (VS/2)2/RL  
Example:AnLT6200inTSOT-23mountedona2500mm2  
area of PC board without any extra heat spreading plane  
connected to its Vpin has a thermal resistance of  
For a complete discussion of amplifier noise, see the  
LT1028 data sheet.  
62001fa  
21  
LT6200/LT6200-5  
LT6200-10/LT6201  
U
W
U U  
APPLICATIO S I FOR ATIO  
200°C/W, θJA. Operating on ±5V supplies driving 50Ω  
PCB. Table 2 summarizes the thermal resistance from the  
diejunction-to-ambientthatcanbeobtainedusingvarious  
amountsoftopsidemetal(2ozcopper)area. Onmulitlayer  
boards, further reductions can be obtained using addi-  
tional metal on inner PCB layers connected through vias  
beneath the package.  
loads, the worst-case power dissipation is given by:  
PD(MAX) = (10 • 23mA) + (2.5)2/50  
= 0.23 + 0.125 = 0.355W  
The maximum ambient temperature that the part is  
allowed to operate is:  
Table 2. LT6200 8-Lead DD Package  
COPPER AREA  
TOPSIDE (mm )  
THERMAL RESISTANCE  
(JUNCTION-TO-AMBIENT)  
TA = TJ – (PD(MAX) • 200°C/W)  
2
= 150°C – (0.355W • 200°C/W) = 79°C  
4
16  
160°C/W  
135°C/W  
110°C/W  
95°C/W  
70°C/W  
To operate the device at higher ambient temperature,  
connect more metal area to the Vpin to reduce the  
thermal resistance of the package as indicated in Table 1.  
32  
64  
130  
DD Package Heat Sinking  
The LT6200 amplifier family has thermal shutdown to  
protect the part from excessive junction temperature. The  
amplifier will shut down to approximately 1.2mA supply  
current per amplifier if the maximum temperature is  
exceeded. The LT6200 will remain off until the junction  
temperature reduces to about 135°C, at which point the  
amplifier will return to normal operation.  
The underside of the DD package has exposed metal  
(4mm2)fromtheleadframewherethedieisattached.This  
provides for the direct transfer of heat from the die  
junction to printed circuit board metal to help control the  
maximum operating junction temperature. The dual-in-  
linepinarrangementallowsforextendedmetalbeyondthe  
ends of the package on the topside (component side) of a  
U
PACKAGE DESCRIPTIO  
DD Package  
8-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1698)  
R = 0.115  
0.38 ± 0.10  
TYP  
5
8
0.675 ±0.05  
3.5 ±0.05  
2.15 ±0.05 (2 SIDES)  
1.65 ±0.05  
3.00 ±0.10  
(4 SIDES)  
1.65 ± 0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
PACKAGE  
OUTLINE  
(DD8) DFN 0203  
4
1
0.28 ± 0.05  
0.75 ±0.05  
0.200 REF  
0.28 ± 0.05  
0.50 BSC  
0.50  
BSC  
2.38 ±0.05  
(2 SIDES)  
2.38 ±0.10  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-1)  
2. ALL DIMENSIONS ARE IN MILLIMETERS  
3. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
4. EXPOSED PAD SHALL BE SOLDER PLATED  
62001fa  
22  
LT6200/LT6200-5  
LT6200-10/LT6201  
U
PACKAGE DESCRIPTIO  
S6 Package  
6-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1636)  
0.62  
MAX  
0.95  
REF  
2.90 BSC  
(NOTE 4)  
1.22 REF  
1.4 MIN  
1.50 – 1.75  
2.80 BSC  
3.85 MAX 2.62 REF  
(NOTE 4)  
PIN ONE ID  
0.30 – 0.45  
6 PLCS (NOTE 3)  
0.95 BSC  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
S6 TSOT-23 0302  
NOTE:  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.189 – .197  
(4.801 – 5.004)  
.045 ±.005  
NOTE 3  
.050 BSC  
7
5
8
6
.245  
MIN  
.160 ±.005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.030 ±.005  
TYP  
1
3
4
2
RECOMMENDED SOLDER PAD LAYOUT  
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
SO8 0303  
62001fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
23  
LT6200/LT6200-5  
LT6200-10/LT6201  
U
TYPICAL APPLICATIO  
Rail-to-Rail High Speed Low Noise Instrumentation Amplifier  
+
100Ω  
LT6200-10  
1k  
604Ω  
49.9Ω  
+
49.9Ω  
LT6200-10  
V
OUT  
150pF  
49.9Ω  
604Ω  
1k  
A
= 10  
V
100Ω  
LT6200-10  
+
A
= 13  
V
6200 TA03  
Instrumentation Amplifier Frequency Response  
42.3dB  
10  
AV = 130  
100  
FREQUENCY (MHz)  
6200 TA04  
BW–3dB = 85MHz  
SLEW RATE = 500V/µs  
CMRR = 55dB at 10MHz  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1028  
Single, Ultra Low Noise 50MHz Op Amp  
1.1nV/Hz  
LT1677  
Single, Low Noise Rail-to-Rail Amplifier  
3V Operation, 2.5mA, 4.5nV/Hz, 60µV Max V  
0S  
LT1722/LT1723/LT1724  
LT1806/LT1807  
LT6203  
Single/Dual/Quad Low Noise Precision Op Amp  
Single/Dual, Low Noise 325MHz Rail-to-Rail Amplifier  
Dual, Low Noise, Low Current Rail-to-Rail Amplifier  
70V/µs Slew Rate, 400µV Max V , 3.8nV/Hz, 3.7mA  
OS  
2.5V Operation, 550µV Max V , 3.5nV/Hz  
OS  
1.9nV/Hz, 3mA Max, 100MHz Gain Bandwidth  
62001fa  
LT/TP 1103 1K REV A • PRINTED IN USA  
24 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
LINEAR TECHNOLOGY CORPORATION 2002  

相关型号:

LT6200CS8#PBF

165MHz, Rail-to-Rail Input and Output, 0.95nV/&#8730;Hz Low Noise, Op Amp Family
ADI

LT6200CS8#TR

LT6200 - 165MHz, Rail-to-Rail Input and Output, 0.95nV/&#8730;Hz Low Noise, Op Amp Family; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
ADI

LT6200CS8#TRPBF

LT6200 - 165MHz, Rail-to-Rail Input and Output, 0.95nV/&#8730;Hz Low Noise, Op Amp Family; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
ADI

LT6200CS8-10

165MHz, Rail-to-Rail Input and Output, 0.95nV Low Noise, Op Amp Family
Linear

LT6200CS8-10#TRPBF

165MHz, Rail-to-Rail Input and Output, 0.95nV/&#8730;Hz Low Noise, Op Amp Family
ADI

LT6200CS8-10PBF

165MHz, Rail-to-Rail Input and Output, 0.95nV/√Hz Low Noise, Op Amp Family
Linear

LT6200CS8-10TRPBF

165MHz, Rail-to-Rail Input and Output, 0.95nV/√Hz Low Noise, Op Amp Family
Linear

LT6200CS8-5

165MHz, Rail-to-Rail Input and Output, 0.95nV Low Noise, Op Amp Family
Linear

LT6200CS8-5#PBF

165MHz, Rail-to-Rail Input and Output, 0.95nV/&#8730;Hz Low Noise, Op Amp Family
ADI

LT6200CS8-5#TR

暂无描述
Linear

LT6200CS8-5#TRPBF

165MHz, Rail-to-Rail Input and Output, 0.95nV/&#8730;Hz Low Noise, Op Amp Family
ADI

LT6200CS8-5PBF

165MHz, Rail-to-Rail Input and Output, 0.95nV/√Hz Low Noise, Op Amp Family
Linear