LT6206CMS8 [Linear]

Single/Dual/Quad Single Supply 3V, 100MHz Video Op Amps; 单/双/四路,单3V电源, 100MHz的视频运算放大器
LT6206CMS8
型号: LT6206CMS8
厂家: Linear    Linear
描述:

Single/Dual/Quad Single Supply 3V, 100MHz Video Op Amps
单/双/四路,单3V电源, 100MHz的视频运算放大器

运算放大器 光电二极管
文件: 总16页 (文件大小:431K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT6205/LT6206/LT6207  
Single/Dual/Quad  
Single Supply 3V,  
100MHz Video Op Amps  
U
DESCRIPTIO  
FEATURES  
The LT®6205/LT6206/LT6207 are low cost single/dual/  
quad voltage feedback amplifiers that feature 100MHz  
gain-bandwidth product, 450V/µs slew rate and 50mA  
output current. These amplifiers have an input range that  
includesgroundandanoutputthatswingswithin60mVof  
either supply rail, making them well suited for single  
supply operation.  
450V/µs Slew Rate  
100MHz Gain Bandwidth Product  
Wide Supply Range 2.7V to 12.6V  
Output Swings Rail-to-Rail  
Input Common Mode Range Includes Ground  
High Output Drive: 50mA  
Channel Separation: 90dB at 10MHz  
Specified on 3V, 5V, and ±5V Supplies  
These amplifiers maintain their performance for supplies  
from 2.7V to 12.6V and are specified at 3V, 5V and ±5V.  
The inputs can be driven beyond the supplies without  
damage or phase reversal of the output. Isolation between  
channels is high, over 90dB at 10MHz.  
Input Offset Voltage: 1mV  
Low Power Dissipation: 20mW Per Amplifier on  
Single 5V  
Operating Temperature Range: –40°C to 85°C  
Single in SOT-23, Dual in MSOP,  
Quad in SSOP Package  
The LT6205 is available in the 5-pin SOT-23, and the  
LT6206 is available in an 8-lead MSOP package with  
standard op amp pin-outs. For compact layouts the quad  
LT6207 is available in the 16-pin SSOP package. These  
devices are specified over the commercial and industrial  
temperature ranges.  
U
APPLICATIO S  
Video Line Driver  
Automotive Displays  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
RGB Amplifiers  
Coaxial Cable Drivers  
Low Voltage High Speed Signal Processing  
U
TYPICAL APPLICATIO  
Baseband Video Splitter/Cable Driver  
Output Step Response  
3.3V  
V
1µF  
OUT  
75Ω  
499Ω  
499Ω  
V
OUT1  
8
0V  
LT6206  
75Ω  
2
3
1
7
+
V
IN  
V
IN  
75Ω  
0V  
5
6
+
75Ω  
V
OUT2  
20ns/DIV  
V
V
= 3.3V  
S
75Ω  
= 0.1V TO 1.1V  
IN  
f = 10MHz  
620567 TA01b  
4
F
50MHz  
3dB  
25mA  
499Ω  
499Ω  
I
S
620567 TA01a  
620567f  
1
LT6205/LT6206/LT6207  
W W U W  
ABSOLUTE AXI U RATI GS  
(Note 1)  
Operating Temperature Range .................–40°C to 85°C  
Specified Temperature Range (Note 4)....–40°C to 85°C  
Storage Temperature Range ..................–65°C to 150°C  
Maximum Junction Temperature .......................... 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
Total Supply Voltage (V+ to V)............................ 12.6V  
Input Current ...................................................... ±10mA  
Input Voltage Range (Note 2) ...................................±VS  
Output Short-Circuit Duration (Note 3)............ Indefinite  
Pin Current While Exceeding Supplies (Note 9) .. ±25mA  
U
W
U
PACKAGE/ORDER I FOR ATIO  
TOP VIEW  
OUT A  
–IN A  
+IN A  
1
2
3
4
5
6
7
8
16 OUT D  
15 –IN D  
+
+
A
B
D
C
TOP VIEW  
TOP VIEW  
14  
13  
12  
11  
10  
9
+IN D  
+
+
OUT A  
–IN A  
+IN A  
1
2
3
4
8 V  
+
OUT 1  
5 V  
V
V
7 OUT B  
6 –IN B  
5 +IN B  
+
V
2
+IN B  
–IN B  
OUT B  
NC  
+IN C  
–IN C  
OUT C  
NC  
+
+
+
V
+IN 3  
4 –IN  
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
TJMAX = 150°C, θJA = 250°C/W  
S5 PACKAGE  
5-LEAD PLASTIC SOT-23  
JMAX = 150°C, θJA = 250°C/W  
T
GN PACKAGE  
16-LEAD NARROW PLASTIC SSOP  
TJMAX = 150°C, θJA = 135°C/W  
ORDER PART  
NUMBER  
ORDER PART  
S5 PART  
MARKING*  
GN PART  
MARKING  
ORDER PART  
MS8 PART  
MARKING  
NUMBER  
NUMBER  
LT6205CS5  
LT6205IS5  
LTAEM  
LT6207CGN  
LT6207IGN  
6207  
6207I  
LT6206CMS8  
LT6206IMS8  
LTH3  
LTH4  
*The temperature grades are identified by a label on the shipping container. Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the specified temperature  
range, otherwise specifications are at TA = 25°C. VS = 3V, 0V; VS = 5V, 0V; VCM = VOUT = 1V, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
1
3.5  
5
mV  
mV  
OS  
Input Offset Voltage Match  
(Channel-to-Channel) (Note 5)  
1
3
4
mV  
mV  
Input Offset Voltage Drift (Note 6)  
Input Bias Current  
7
10  
0.6  
2
15  
30  
3
µV/°C  
µA  
I
I
B
Input Offset Current  
µA  
OS  
Input Noise Voltage  
0.1Hz to 10Hz  
f = 10kHz  
µV  
P-P  
e
Input Noise Voltage Density  
Input Noise Current Density  
Input Resistance  
9
nV/Hz  
pA/Hz  
MΩ  
n
i
f = 10kHz  
4
n
+
V
= 0V to V – 2V  
1
CM  
Input Capacitance  
2
pF  
620567f  
2
LT6205/LT6206/LT6207  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the specified temperature  
range, otherwise specifications are at TA = 25°C. VS = 3V, 0V; VS = 5V, 0V; VCM = VOUT = 1V, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
78  
0
TYP  
MAX  
UNITS  
dB  
+
CMRR  
Common Mode Rejection Ratio  
Input Voltage Range  
V
= 0 to V – 2V  
90  
CM  
+
V – 2  
V
PSRR  
Power Supply Rejection Ratio  
V = 3V to 12V  
S
67  
75  
dB  
V
= V  
= 0.5V  
CM  
OUT  
Minimum Supply Voltage  
Large-Signal Voltage Gain  
V
= 0.5V  
2.7  
V
CM  
A
V
V = 5V, V = 0.5V to 4.5V, R = 1k  
V = 5V, V = 1V to 3V, R = 150Ω  
V = 3V, V = 0.5V to 2.5V, R = 1k  
30  
5
20  
100  
20  
60  
V/mV  
V/mV  
V/mV  
VOL  
OL  
S
O
L
S
O
L
S
O
L
Output Voltage Swing Low (Note 7)  
Output Voltage Swing High (Note 7)  
Short-Circuit Current  
No Load, Input Overdrive = 30mV  
= 5mA  
10  
75  
300  
200  
25  
mV  
mV  
mV  
mV  
I
150  
500  
350  
SINK  
V = 5V, I  
V = 3V, I  
= 25mA  
= 15mA  
S
SINK  
SINK  
S
V
No Load, Input Overdrive = 30mV  
= 5mA  
60  
100  
250  
1200  
500  
mV  
mV  
mV  
mV  
OH  
I
140  
650  
300  
SOURCE  
V = 5V, I  
V = 3V, I  
= 25mA  
= 15mA  
S
SOURCE  
SOURCE  
S
I
V = 5V, Output Shorted to GND  
35  
25  
60  
mA  
mA  
SC  
S
V = 3V, Output Shorted to GND  
30  
20  
50  
mA  
mA  
S
I
Supply Current per Amplifier  
3.75  
5
5.75  
mA  
mA  
S
GBW  
SR  
Gain Bandwidth Product  
Slew Rate  
f = 2MHz  
65  
100  
450  
MHz  
V = 5V, A = 2, R = R = 1k  
S
V/µs  
V
F
G
V = 1V to 4V, Measured from 1.5V to 3.5V  
O
Channel Separation  
f = 10MHz  
90  
71  
dB  
FPBW  
Full Power Bandwidth  
V
= 2V (Note 8)  
MHz  
OUT  
P-P  
t
Settling time to 3%  
Settling time to 1%  
V = 5V, V  
S
= 2V, A = –1, R = 150Ω  
15  
25  
ns  
ns  
S
OUT  
V
L
Differential Gain  
Differential Phase  
V = 5V, A = 2, R = 150, Output Black Level =1V  
0.05  
0.08  
%
Deg  
S
V
L
V = 5V, A = 2, R = 150, Output Black Level =1V  
S
V
L
The denotes specifications which apply over the specified temperature range, otherwise specifications are at TA = 25°C. VS = ±5V;  
VCM = VOUT = 0V, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
1.3  
4.5  
6
mV  
mV  
OS  
Input Offset Voltage Match  
(Channel-to-Channel) (Note 5)  
1
3
4
mV  
mV  
Input Offset Voltage Drift (Note 6)  
Input Bias Current  
10  
18  
0.6  
2
18  
30  
3
µV/°C  
µA  
I
I
B
Input Offset Current  
µA  
OS  
Input Noise Voltage  
0.1Hz to 10Hz  
µV  
P-P  
620567f  
3
LT6205/LT6206/LT6207  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the specified temperature  
range, otherwise specifications are at TA = 25°C. VS = ±5V; VCM = VOUT = 0V, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
f = 10kHz  
MIN  
TYP  
9
MAX  
UNITS  
nV/Hz  
pA/Hz  
MΩ  
e
Input Noise Voltage Density  
Input Noise Current Density  
Input Resistance  
n
i
f = 10kHz  
4
n
V
V
= –5V to 3V  
= –5V to 3V  
1
CM  
CM  
Input Capacitance  
2
pF  
CMRR  
PSRR  
Common Mode Rejection Ratio  
Input Voltage Range  
78  
–5  
67  
50  
7.5  
90  
dB  
3
V
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V = ±2V to ±6V  
S
75  
133  
20  
dB  
A
V = –4V to 4V, R = 1k  
O
V/mV  
V/mV  
VOL  
L
V = –3V to 3V, R = 150Ω  
O
L
Output Voltage Swing  
No Load, Input Overdrive = 30mV  
±4.88  
±4.75  
±3.8  
±4.92  
±4.85  
±4.35  
V
V
V
I
I
= ±5mA  
= ±25mA  
OUT  
OUT  
I
I
Short-Circuit Current  
Short to Ground  
±40  
±30  
±60  
mA  
mA  
SC  
Supply Current per Amplifier  
4
5.6  
6.5  
mA  
mA  
S
GBW  
SR  
Gain Bandwidth Product  
Slew Rate  
f = 2MHz  
65  
100  
600  
MHz  
A = –1, R = 1k  
350  
V/µs  
V
L
V = –4V to 4V, Measured from –3V to 3V  
O
Channel Separation  
f = 10MHz  
90  
24  
dB  
FPBW  
Full Power Bandwidth  
V
= 8V (Note 8)  
14  
MHz  
OUT  
P-P  
t
Settling Time to 3%  
Settling Time to 1%  
V  
OUT  
= 2V, A = –1, R = 150Ω  
15  
25  
ns  
ns  
S
V
L
Differential Gain  
Differential Phase  
A = 2, R = 150, Output Black Level = 1V  
0.05  
0.08  
%
Deg  
V
L
A = 2, R = 150, Output Black Level = 1V  
V
L
Note 1: Absolute Maximum ratings are those values beyond which the life  
of a device may be impaired.  
Note 2: The inputs are protected by back-to-back diodes. If the differential  
input voltage exceeds 1.4V, the input current should be limited to less than  
10mA.  
Note 5: Matching parameters are the difference between the two amplifiers  
A and D and between B and C of the LT6207; between the two amplifiers  
of the LT6206.  
Note 6: This parameter is not 100% tested.  
Note 7: Output voltage swings are measured between the output and  
Note 3: A heat sink may be required to keep the junction temperature  
below absolute maximum. This depends on the power supply voltage and  
how many amplifiers are shorted.  
power supply rails.  
Note 8: Full power bandwidth is calculated from the slew rate  
measurement: FPBW = SR/2πV  
.
PEAK  
Note 4: The LT6205C/LT6206C/LT6207C are guaranteed to meet specified  
performance from 0°C to 70°C and are designed, characterized and  
expected to meet specified performance from –40°C to 85°C but are not  
tested or QA sampled at these temperatures. The LT6205I/LT6206I/  
LT6207I are guaranteed to meet specified performance from  
–40°C to 85°C.  
Note 9: There are reverse biased ESD diodes on all inputs and outputs.  
If these pins are forced beyond either supply, unlimited current will flow  
through these diodes. If the current is transient in nature and limited to  
less than 25mA, no damage to the device will occur.  
620567f  
4
LT6205/LT6206/LT6207  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Supply Current per Amplifier vs  
Supply Voltage  
VOS Distribution  
Minimum Supply Voltage  
100  
40  
35  
30  
25  
20  
15  
10  
5
5
4
3
2
1
0
V
V
= 5V, 0V  
CM  
S
= 1V  
T
= 125°C  
0
A
–100  
T
= 25°C  
A
T
= –55°C  
T
= –55°C  
A
–200  
–300  
–400  
–500  
–600  
A
T
=125°C  
A
T
= 25°C  
A
0
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
TOTAL SUPPLY VOLTAGE (V)  
–3  
–2  
–1  
0
1
2
3
0
1
2
3
4
5
6
7
8
9
10 11 12  
INPUT OFFSET VOLTAGE (mV)  
TOTAL SUPPLY VOLTAGE (V)  
620567 G03  
620567 G01  
620567 G02  
Change in Offset Voltage vs Input  
Common Mode Voltage  
Input Bias Current vs Input  
Common Mode Voltage  
Input Bias Current vs  
Temperature  
1000  
800  
600  
400  
200  
0
–4  
–5  
–2  
–3  
V
= 5V, 0V  
V
V
= 5V, 0V  
CM  
V
= 5V, 0V  
S
S
S
= 1V  
–4  
–6  
–5  
–7  
–6  
T
= 125°C  
A
–8  
–7  
–8  
–9  
T
= 25°C  
T
= 25°C  
A
–9  
A
–10  
–11  
–12  
–10  
–11  
–12  
T
=125°C  
A
T
= –55°C  
A
T
= –55°C  
A
0
1
2
3
4
5
–50 –25  
0
25  
50  
75 100 125  
0
1
2
3
4
5
INPUT COMMON MODE VOLTAGE (V)  
TEMPERATURE (°C)  
INPUT COMMON MODE VOLTAGE (V)  
620567 G04  
620567 G06  
620567 G05  
Output Saturation Voltage vs  
Load Current (Output High)  
Output Saturation Voltage vs  
Load Current (Output Low)  
Short-Circuit Current vs  
Temperature  
75  
70  
65  
60  
55  
50  
45  
40  
35  
10  
1
10  
1
V
V
= 5V, 0V  
= 30mV  
V
V
= 5V, 0V  
= 30mV  
OD  
S
OD  
S
SINKING  
T
= 125°C  
SOURCING  
A
T
= 125°C  
V
V
= 5V, 0V  
CM  
A
S
= 1V  
SINKING  
T
= 25°C  
T
= 25°C  
A
A
SOURCING  
0.1  
0.01  
0.1  
0.01  
T
= –55°C  
T
= –55°C  
A
A
V
V
= 3V, 0V  
CM  
S
= 1V  
–50 –25  
0
25  
50  
75 100 125  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
TEMPERATURE (°C)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
620567 G07  
620567 G08  
620567 G09  
620567f  
5
LT6205/LT6206/LT6207  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Short-Circuit Current vs  
Open-Loop Gain  
Open-Loop Gain  
Temperature  
500  
400  
500  
400  
90  
80  
70  
60  
50  
40  
3O  
V
V
T
= 5V, 0V  
CM  
= 25°C  
V
= ±5V  
V
= ±5V  
S
S
A
S
= 1V  
T
= 25°C  
A
300  
300  
SINKING  
200  
200  
100  
100  
R
= 1k  
R
= 1k  
L
L
SOURCING  
0
0
–100  
–200  
–300  
–400  
–500  
–100  
–200  
–300  
–400  
–500  
R
= 150Ω  
R
1
= 150Ω  
L
L
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
OUTPUT VOLTAGE (V)  
–5 –4 –3 –2 –1  
0
2
3
4
5
–50 –25  
0
25  
50  
75 100 125  
OUTPUT VOLTAGE (V)  
TEMPERATURE (°C)  
620567 G11  
620567 G12  
620567 G10  
Input Noise Voltage Density vs  
Frequency  
Input Noise Current Density vs  
Frequency  
Warm Up Drift vs Time (LT6206)  
30  
25  
20  
15  
10  
5
120  
100  
80  
60  
40  
20  
0
16  
14  
12  
10  
8
V
V
T
= 5V, 0V  
= 1V  
V
V
T
= 5V, 0V  
= 1V  
T
= 25°C  
S
CM  
A
S
CM  
A
A
= 25°C  
= 25°C  
V
= ±5V  
S
V
= 5V, 0V  
S
6
4
2
0
0
100  
1k  
10k  
100k  
100  
1k  
10k  
100k  
0
10 20 30 40 50 60 70 80 90 100  
TIME AFTER POWER-UP (s)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
620567 G14  
620567 G15  
620567 G13  
Gain Bandwidth and Phase  
Margin vs Supply Voltage  
Gain and Phase vs Frequency  
0.1Hz to 10Hz Noise Voltage  
50  
45  
40  
35  
70  
60  
50  
40  
30  
20  
10  
0
140  
T
= 25°C  
V
V
T
= 5V, 0V  
= 1V  
A
F
L
S
CM  
A
PHASE  
R = R = 1k  
G
120  
100  
80  
C
= 5pF  
= 25°C  
PHASE MARGIN  
V
= 3V, 0V  
S
V
= ±5V  
S
60  
110  
105  
100  
95  
40  
GAIN BANDWIDTH  
20  
V
= 3V, 0V  
S
0
T
= 25°C  
= 1k  
= 5pF  
A
L
L
GAIN  
R
V = ±5V  
S
–10  
-20  
C
–20  
-40  
0
2
4
6
8
10  
12  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M 500M  
TIME (2 SEC/DIV)  
TOTAL SUPPLY VOLTAGE (V)  
620567 G16  
620567 G17  
620567 G18  
620567f  
6
LT6205/LT6206/LT6207  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Gain Bandwidth and Phase  
Margin vs Temperature  
Slew Rate vs Temperature  
Slew Rate vs Closed-Loop Gain  
750  
700  
650  
600  
550  
500  
450  
400  
350  
750  
55  
50  
45  
40  
35  
A
V
= –1  
V
V
= ±5V  
R
C
= 1k  
= 5pF  
S
O
L
L
L
V
= ±5V  
R
R
= R = 1k  
= –4V to 4V  
= 1k  
S
G
L
F
700  
650  
600  
550  
500  
450  
400  
RISING V = ±5V  
= 1k  
R
S
T
= 25°C  
A
PHASE MARGIN  
FALLING V = ±5V  
S
RISING  
V
= 3V, 0V  
S
RISING V = 5V, 0V  
S
V
= ±5V  
120  
110  
100  
90  
S
FALLING  
V
= 3V, 0V  
S
FALLING V = 5V, 0V  
S
GAIN BANDWIDTH  
80  
–50 –25  
0
25  
50  
75 100 125  
2
3
4
5
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
GAIN (A )  
V
TEMPERATURE (°C)  
620567 G20  
620567 G21  
620567 G19  
Power Supply Rejection Ratio vs  
Frequency  
Closed-Loop Gain vs Frequency  
Output Impedance vs Frequency  
1000  
100  
10  
15  
12  
9
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
T
C
A
= 25°C  
= 5pF  
= +1  
V
T
= 5V, 0V  
= 25°C  
V
T
= 5V, 0V  
S
A
A
L
V
S
A
= 25°C  
V
V
= ±5V  
CM  
S
= 0V  
6
A
= 10  
V
–PSRR  
+PSRR  
3
A
= 1  
V
A
= 2  
V
0
–3  
–6  
–9  
–12  
–15  
V
V
= 3V  
CM  
S
= 1V  
1
0.1  
100k  
1M  
10M  
100M 500M  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M 500M  
10k  
100k  
1M  
FREQUENCY (Hz)  
10M  
100M  
FREQUENCY (Hz)  
620567 G22  
620567 G24  
620567 G23  
Common Mode Rejection Ratio  
vs Frequency  
Series Output Resistor vs  
Capacitive Load  
Channel Separation vs Frequency  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
120  
110  
100  
90  
40  
35  
30  
25  
20  
15  
10  
5
V
= ±5V  
V
A
T
= 5V, 0V  
= 1  
= 25°C  
V
= ±5V  
= 25°C  
S
S
V
A
S
A
LT6206 CH A-B  
T
LT6207 CH A-D, CH B-C  
R
= 10, R = ∞  
S
L
T
= 25°C  
A
80  
R
S
= 20, R = ∞  
L
70  
60  
R
= R = 50Ω  
S
L
50  
40  
0
10k  
100k  
1M  
10M  
100M  
1G  
1M  
10M  
100M  
10  
100  
1000  
FREQUENCY (Hz)  
CAPACITIVE LOAD (pF)  
FREQUENCY (Hz)  
620567 G25  
620567 G26  
620567 G27  
620567f  
7
LT6205/LT6206/LT6207  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Maximum Undistorted Output  
Signal vs Frequency  
Series Output Resistor vs  
Capacitive Load  
Distortion vs Frequency  
10  
9
8
7
6
5
4
3
2
1
0
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
40  
35  
30  
25  
20  
15  
10  
5
V
A
T
= 5V, 0V  
= 2  
= 25°C  
A
V
= +1  
= 2V  
S
V
A
V
O
P–P  
AV = –1  
R
= 10, R = ∞  
L
S
V
= 5V, 0V  
S
AV = 2  
R
= 1k, 2ND  
L
R
= 150, 3RD  
L
R
= 20, R = ∞  
L
S
R
= 150, 2ND  
L
R
= R = 50Ω  
S
V
T
= ±5V  
= 25°C  
L
S
A
R
= 1k, 3RD  
L
HD , HD < –30dBc  
2
3
0
0.1  
1
10  
100  
0.01  
0.1  
1
10  
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
CAPACITIVE LOAD (pF)  
620567 G30  
620567 G31  
620567 G28  
Distortion vs Frequency  
Distortion vs Frequency  
Distortion vs Frequency  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
A
V
V
= +2  
= 2V  
= 5V, 0V  
A
V
V
= +1  
= 2V  
= ±5V  
A
V
V
= +2  
= 2V  
= ±5V  
V
O
V
O
V
O
P–P  
P–P  
P–P  
R
= 150, 3RD  
L
S
S
S
R
= 150, 3RD  
R
= 1k, 2ND  
L
L
R
= 150, 2ND  
L
R
= 150, 2ND  
L
R
= 150, 2ND  
L
R
= 150, 3RD  
L
R
= 1k, 3RD  
1
R
= 1k, 3RD  
L
R
= 1k, 2ND  
0.1  
L
R
1
= 1k, 3RD  
L
L
R
= 1k, 2ND  
L
0.01  
0.1  
1
10  
0.01  
0.1  
10  
0.01  
10  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
620567 G32  
620567 G33  
620567 G34  
Large Signal Response  
VS = 5V, 0V  
Small Signal Response  
VS = 5V, 0V  
2.5V  
0V  
VS = 5V, 0V  
AV = 1  
50ns/DIV  
VS = 5V, 0V  
AV = 1  
50ns/DIV  
R
L = 150Ω  
620567 G35  
R
L = 150Ω  
620567 G36  
620567f  
8
LT6205/LT6206/LT6207  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Large Signal Response VS = ±5V  
Small Signal Response VS = ±5V  
Output-Overdrive Recovery  
0V  
0V  
0V  
0V  
VS = ±5V  
50ns/DIV  
VS = ±5V  
50ns/DIV  
VS = 5V, 0V  
AV = 2  
100ns/DIV  
AV = 1  
AV = 1  
R
L = 150Ω  
620567 G37  
R
L = 150Ω  
620567 G38  
620567 G39  
W U U  
U
APPLICATIO S I FOR ATIO  
+
V
R2  
R3  
I1  
I2  
I3  
Q13  
Q9  
Q10  
C
M
+
Q2  
Q7  
Q8  
V
Q3  
Q5  
Q6  
+
V
R1  
DESD5  
DESD6  
R
IN  
150  
COMPLEMENTARY  
DRIVE  
OUT  
DESD1  
DESD2  
Q1  
+IN  
–IN  
Q4  
GENERATOR  
D1  
D2  
D3  
D4  
Q12  
Q11  
V
+
V
V
Q14  
R
IN  
150Ω  
DESD3  
DESD4  
R4  
R5  
I4  
V
620567 F01  
V
Figure 1. Simplified Schematic  
620567f  
9
LT6205/LT6206/LT6207  
W U U  
U
APPLICATIO S I FOR ATIO  
Amplifier Characteristics  
negative supply pin. For optimum performance all feed-  
back components and bypass capacitors should be con-  
tained in a 0.5 inch by 0.5 inch area. This helps ensure  
minimal stray capacitances.  
Figure 1 shows a simplified schematic of the LT6205/  
LT6206/LT6207. The input stage consists of transistors  
Q1 to Q8 and resistor R1. This topology allows for high  
slew rates at low supply voltages. The input common  
mode range extends from ground to typically 1.75V from  
VCC, and is limited by 2 VBEs plus a saturation voltage of  
acurrentsource.Thereareback-to-backseriesdiodes,D1  
to D4, across the + and – inputs of each amplifier to limit  
the differential voltage to ±1.4V. RIN limits the current  
through these diodes if the input differential voltage ex-  
ceeds ±1.4V. The input stage drives the degeneration  
resistors of PNP and NPN current mirrors, Q9 to Q12,  
which convert the differential signals into a single-ended  
output. The complementary drive generator supplies cur-  
rent to the output transistors that swing from rail-to-rail.  
The parallel combination of the feedback resistor and gain  
setting resistor on the inverting input can combine with  
the input capacitance to form a pole which can degrade  
stability. In general, use feedback resistors of 1k or less.  
Capacitive Load  
TheLT6205/LT6206/LT6207areoptimizedforwideband-  
width video applications. They can drive a capacitive load  
of 20pF in a unity-gain configuration. When driving a  
larger capacitive load, a resistor of 10to 50should be  
connected between the output and the capacitive load to  
avoid ringing or oscillation. The feedback should still be  
taken from the output pin so that the resistor will isolate  
the capacitive load and ensure stability. The Typical Per-  
formanceCurvesshowtheoutputovershootwhendriving  
a capacitive load with different series resistors.  
The current generated through R1, divided by the capaci-  
tor CM, determines the slew rate. Note that this current,  
and hence the slew rate, are proportional to the magnitude  
of the input step. The input step equals the output step  
divided by the closed loop gain. The highest slew rates are  
therefore obtained in the lowest gain configurations. The  
Typical Performance Characteristic Curve of Slew Rate vs  
Closed Loop Gain shows the details.  
Video Signal Characteristics  
Composite video is the most commonly used signal in  
broadcast-grade products and includes Luma (or lumi-  
nance, the intensity information), Chroma (the colorim-  
etry information) and Sync (vertical and horizontal raster  
timing) elements combined into a single signal, NTSC and  
PAL being the common formats. Component video for  
entertainment systems include separate signal(s) for the  
Luma and Chroma (i.e. Y/C or YPbPr) with Sync generally  
appliedtotheLumachannel(Ysignal). Insomeinstances,  
native RGB signals (separate intensity information for  
each primary color: red, green, blue) will have Sync  
included as well. All the signal types that include Sync are  
electricallysimilarfromavoltage-swingstandpoint,though  
various timing and bandwidth relationships exist depend-  
ing on the applicable standard.  
ESD  
The LT6205/LT6206/LT6207 have reverse-biased ESD  
protection diodes on all inputs and outputs as shown in  
Figure 1. If these pins are forced beyond either supply  
unlimited current will flow through these diodes. If the  
current is transient, and limited to 25mA or less, no  
damage to the device will occur.  
Layout and Passive Components  
With a gain bandwidth product of 100MHz and a slew rate  
of 450V/µs the LT6205/LT6206/LT6207 require special  
attention to board layout and supply bypassing. Use a  
ground plane, short lead lengths and RF-quality low ESR  
supply bypass capacitors. The positive supply pin should  
be bypassed with a small capacitor (typically 0.01µF to  
0.1µF) within 0.25 inches of the pin. When driving heavy  
loads, an additional 4.7µF electrolytic capacitor should be  
used. When using split supplies, the same is true for the  
The typical video waveforms that include Sync (including  
full composite) are specified to have nominal 1VP-P ampli-  
tude. The lower 0.3V is reserved for “sync tips” that carry  
timing information, and by being at a lower potential than  
all the other information, represents blacker-than-black  
intensity, thereby causing scan retrace activity to be  
620567f  
10  
LT6205/LT6206/LT6207  
W U U  
APPLICATIO S I FOR ATIO  
U
invisible on a CRT. The “black” level of the waveform is at  
(or “setup” very slightly above) the upper limit of the sync  
information. Waveform content above the black-level is  
intensity information, with peak brightness represented at  
the maximum signal level. In the case of composite video,  
the modulated color subcarrier is superimposed on the  
waveform, but the dynamics remain inside the 1VP-P limit  
(a notable exception is the chroma ramp used for differen-  
tial-gain and differential-phase measurements, which can  
reach 1.15VP-P).  
tive design margin of 1.03V. The amplifier output (for gain  
of 2) must swing +1.47V to –1.65V around the DC-  
operating point, so the biasing circuitry needs to be  
designed accordingly for optimal fidelity.  
Clamped AC-Input Cable Driver  
A popular method of further minimizing supply require-  
ments with AC-coupling is to employ a simple clamping  
scheme as shown in Figure 2. In this circuit, the LT6205  
operates from 3.3V by having the sync-tips control the  
charge on the coupling capacitor C1, thereby reducing the  
black-level input wander to 0.07V. The only minor  
drawback to this circuit is the slight sync-tip compression  
(0.025V at input) due to the diode conduction current,  
thoughthepicturecontentremainsfullfidelity.Thiscircuit  
has nearly the design margin of its DC-coupled counter-  
part,at0.31V(forthiscircuit,VMIN =2.14+VOH +VOL).The  
clamp-diode anode bias is selected to set the sync-tip  
output voltage at or slightly above VOL.  
DC-Coupled Video Amplifier Considerations  
Typically video amplifiers drive cables that are series  
terminated (“back-terminated”) at the source and load-  
terminated at the destination with resistances equal to the  
cable characteristic impedance, Z0 (usually 75). This  
configuration forms a 2:1 resistor divider in the cabling  
that must be accounted for in the driver amplifier by  
delivering 2VP-P output into an effective 2 • Z0 load (e.g.  
150). Driving the cable can require more than 13mA  
whiletheoutputisapproachingthesaturation-limitsofthe  
YPbPr to RGB Component-Video Converter  
amplifier output. The absolute minimum supply is: VMIN  
=
Theback-pageapplicationusestheLT6207quadtoimple-  
ment a minimum amplifier count topology to transcode  
consumer component-video into RGB. In this circuit,  
signals only pass through one active stage from any input  
to any output, with passive additions being performed by  
the cable back-termination resistors. The compromise in  
using passive output addition is that the amplifier outputs  
must be twice as large as that of a conventional cable  
driver. The Y-channel section also has the demanding  
requirement that it single-handedly drives all three out-  
puts to full brightness during times of white content, so a  
helper current source is used to assure unclipped video  
when operating from ±5V supplies. This circuit maps  
sync-on-Y to sync on all the RGB channels, and for best  
results should have input black-levels at 0V nominal to  
prevent clipping.  
2 + VOH +VOL. For example, the LT6206 dual operating on  
3.3V as shown on the front page of this datasheet, with  
exceptionally low VOH 0.5V and VOL 0.35V, provides a  
design margin of 0.45V. The design margin must be large  
enough to include supply variations and DC bias accuracy  
for the DC-coupled video input.  
Handling AC-Coupled Video Signals  
AC-coupled video inputs are intrinsically more difficult to  
handle than those with DC-coupling because the average  
signal voltage of the video waveform is effected by the  
picture content, meaning that the black-level at the ampli-  
fier “wanders” with scene brightness. The wander is  
measured as 0.56V for a 1VP-P NTSC waveform changing  
from black-field to white-field and vice-versa, so an addi-  
tional 1.12V allowance must be made in the amplifier  
supply (assuming gain of 2, so VMIN = 3.12 + VOH +VOL).  
For example, an LT6205 operating on 5V has a conserva-  
620567f  
11  
LT6205/LT6206/LT6207  
U
TYPICAL APPLICATIO  
3.3V  
0.1µF  
75Ω  
1k  
1k  
2.4k  
VIDEO OUT  
75Ω  
5
LT6205  
2
4
3
+
C1  
4.7µF  
1
COMPOSITE  
VIDEO IN 1V  
P–P  
BAT54  
10k  
C2  
4.7µF  
470Ω  
I
19mA  
S
620567 TA02  
Figure 2. Clamped AC-Input Video Cable Driver  
620567f  
12  
LT6205/LT6206/LT6207  
U
PACKAGE DESCRIPTIO  
S5 Package  
5-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1635)  
0.62  
MAX  
0.95  
REF  
2.90 BSC  
(NOTE 4)  
1.22 REF  
1.50 – 1.75  
(NOTE 4)  
2.80 BSC  
1.4 MIN  
3.85 MAX 2.62 REF  
PIN ONE  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.30 – 0.45 TYP  
5 PLCS (NOTE 3)  
0.95 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
NOTE:  
S5 TSOT-23 0302  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
620567f  
13  
LT6205/LT6206/LT6207  
U
PACKAGE DESCRIPTIO  
MS8 Package  
8-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1660)  
0.889 ± 0.127  
(.035 ± .005)  
5.23  
(.206)  
MIN  
3.20 – 3.45  
(.126 – .136)  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 3)  
0.52  
(.0205)  
REF  
0.65  
(.0256)  
BSC  
0.42 ± 0.038  
(.0165 ± .0015)  
TYP  
8
7 6 5  
RECOMMENDED SOLDER PAD LAYOUT  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 4)  
4.90 ± 0.152  
(.193 ± .006)  
DETAIL “A”  
0.254  
(.010)  
0° – 6° TYP  
GAUGE PLANE  
1
2
3
4
0.53 ± 0.152  
(.021 ± .006)  
1.10  
(.043)  
MAX  
0.86  
(.034)  
REF  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.22 – 0.38  
(.009 – .015)  
TYP  
0.127 ± 0.076  
(.005 ± .003)  
0.65  
(.0256)  
BSC  
MSOP (MS8) 0603  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
620567f  
14  
LT6205/LT6206/LT6207  
U
PACKAGE DESCRIPTIO  
GN Package  
16-Lead Plastic SSOP (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1641)  
.189 – .196*  
(4.801 – 4.978)  
.045 ±.005  
.009  
(0.229)  
REF  
16 15 14 13 12 11 10 9  
.254 MIN  
.150 – .165  
.229 – .244  
.150 – .157**  
(5.817 – 6.198)  
(3.810 – 3.988)  
.0165 ±.0015  
.0250 TYP  
RECOMMENDED SOLDER PAD LAYOUT  
1
2
3
4
5
6
7
8
.015 ± .004  
(0.38 ± 0.10)  
× 45°  
.053 – .068  
(1.351 – 1.727)  
.004 – .0098  
(0.102 – 0.249)  
.007 – .0098  
(0.178 – 0.249)  
0° – 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.0250  
(0.635)  
BSC  
.008 – .012  
(0.203 – 0.305)  
NOTE:  
1. CONTROLLING DIMENSION: INCHES  
INCHES  
2. DIMENSIONS ARE IN  
(MILLIMETERS)  
GN16 (SSOP) 0502  
3. DRAWING NOT TO SCALE  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
620567f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LT6205/LT6206/LT6207  
U
TYPICAL APPLICATIO  
YPBPR to RGB Converter  
5V  
CMPD6001S  
36Ω  
FMMT3906  
1µF  
150Ω  
150Ω  
R
4.7k  
4
75Ω  
165Ω  
499Ω  
1
2
16  
15  
499Ω  
107Ω  
80.6Ω  
+
150Ω  
150Ω  
B
3
5
14  
+
Y
75Ω  
75Ω  
LT6207  
12  
+
+
6
7
11  
499Ω  
365Ω  
499Ω  
10  
150Ω  
150Ω  
P
B
13  
95.3Ω  
133Ω  
174Ω  
G
P
R
75Ω  
F
40MHz  
R = Y + 1.4 • P  
3dB  
60mA  
R
I
S
B = Y + 1.8 • P  
1µF  
B
BLACK LEVELS 0V  
G = Y – 0.34 • P – 0.71 • P  
B R  
620567 TA03  
–5V  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1253/LT1254  
Low Cost Dual and Quad Video Amplifiers  
–3dB Bandwidth = 90MHz, Current Feedback  
0.1dB Flatness to 100MHz, 80mA Output Drive  
LT1395/LT1396/LT1397 Single Dual Quad 400MHz Current Feedback Amplifiers  
LT1675  
RGB Multiplexer with Current Feedback Amplifiers  
Single/Dual, 180MHz, Rail-to-Rail Input and Output Amplifiers 350V/µs Slew Rate, Shutdown, Low Distortion –90dBc at 5MHz  
–3dB Bandwidth = 250MHz, 100MHz Pixel Switching  
LT1809/LT1810  
LT6550/LT6551  
3.3V Triple and Quad Video Amplifiers  
Internal Gain of 2, 110MHz –3dB Bandwidth, Input Common  
Modes to Ground  
LT6552  
3.3V Single Supply Video Difference Amplifier  
Differential or Single-Ended Gain Block, 600V/µs Slew Rate,  
Input Common Modes to Ground  
620567f  
LT/TP 1003 1K • PRINTED IN USA  
16 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
LINEAR TECHNOLOGY CORPORATION 2003  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT6206CMS8#TR

LT6206 - Dual, Single Supply 3V, 100MHz Video Op Amps; Package: MSOP; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT6206CMS8PBF

Single/Dual/Quad Single Supply 3V, 100MHz Video Op Amps
Linear

LT6206CMS8TRPBF

Single/Dual/Quad Single Supply 3V, 100MHz Video Op Amps
Linear

LT6206IMS8

Single/Dual/Quad Single Supply 3V, 100MHz Video Op Amps
Linear

LT6206IMS8#PBF

暂无描述
Linear

LT6206IMS8#TR

LT6206 - Dual, Single Supply 3V, 100MHz Video Op Amps; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT6206IMS8PBF

Single/Dual/Quad Single Supply 3V, 100MHz Video Op Amps
Linear

LT6206IMS8TRPBF

Single/Dual/Quad Single Supply 3V, 100MHz Video Op Amps
Linear

LT6206_15

Single/Dual/Quad Single Supply 3V, 100MHz Video Op Amps
Linear

LT6207

Single/Dual/Quad Single Supply 3V, 100MHz Video Op Amps
Linear

LT6207CGN

Single/Dual/Quad Single Supply 3V, 100MHz Video Op Amps
Linear

LT6207CGNPBF

Single/Dual/Quad Single Supply 3V, 100MHz Video Op Amps
Linear