LT6207CGNTRPBF [Linear]

Single/Dual/Quad Single Supply 3V, 100MHz Video Op Amps; 单/双/四路,单3V电源, 100MHz的视频运算放大器
LT6207CGNTRPBF
型号: LT6207CGNTRPBF
厂家: Linear    Linear
描述:

Single/Dual/Quad Single Supply 3V, 100MHz Video Op Amps
单/双/四路,单3V电源, 100MHz的视频运算放大器

运算放大器
文件: 总18页 (文件大小:255K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT6205/LT6206/LT6207  
Single/Dual/Quad  
Single Supply 3V,  
100MHz Video Op Amps  
DESCRIPTION  
The LT®6205/LT6206/LT6207 are low cost single/dual/  
quad voltage feedback amplifiers that feature 100MHz  
gain-bandwidth product, 450V/μs slew rate and 50mA  
output current. These amplifiers have an input range that  
includes ground and an output that swings within 60mV  
of either supply rail, making them well suited for single  
supply operation.  
FEATURES  
n
450V/μs Slew Rate  
n
100MHz Gain Bandwidth Product  
n
Wide Supply Range 2.7V to 12.6V  
Output Swings Rail-to-Rail  
n
n
Input Common Mode Range Includes Ground  
n
High Output Drive: 50mA  
n
Channel Separation: 90dB at 10MHz  
n
Specified on 3V, 5V and 5V Supplies  
These amplifiers maintain their performance for supplies  
from 2.7V to 12.6V and are specified at 3V, 5V and 5V.  
The inputs can be driven beyond the supplies without  
damage or phase reversal of the output. Isolation between  
channels is high, over 90dB at 10MHz.  
n
Input Offset Voltage: 1mV  
n
Low Power Dissipation: 20mW per Amplifier on  
Single 5V  
n
Operating Temperature Range: –40°C to 125°C  
n
Low Profile (1mm) SOT-23 (ThinSOT™) Package  
TheLT6205isavailableinthe5-pinSOT-23,andtheLT6206  
is available in an 8-lead MSOP package with standard op  
amp pinouts. For compact layouts the quad LT6207 is  
available in the 16-pin SSOP package. These devices are  
specified over the commercial, industrial and automotive  
temperature ranges.  
APPLICATIONS  
n
Video Line Driver  
n
Automotive Displays  
n
RGB Amplifiers  
Coaxial Cable Drivers  
n
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and  
ThinSOT is a trademark of Linear Technology Corporation. All other trademarks are the property  
of their respective owners.  
n
Low Voltage High Speed Signal Processing  
TYPICAL APPLICATION  
Baseband Video Splitter/Cable Driver  
Output Step Response  
3.3V  
1μF  
V
OUT  
75Ω  
499Ω  
499Ω  
V
OUT1  
0V  
8
LT6206  
75Ω  
2
3
1
7
V
IN  
+
V
IN  
0V  
75Ω  
20ns/DIV  
V
V
= 3.3V  
S
5
6
= 0.1V TO 1.1V  
+
IN  
75Ω  
f = 10MHz  
620567 TA01b  
V
OUT2  
75Ω  
4
F
z 50MHz  
3dB  
b 25mA  
499Ω  
499Ω  
I
S
620567 TA01a  
620567fc  
1
LT6205/LT6206/LT6207  
ABSOLUTE MAXIMUM RATINGS (Note 1)  
+
Specified Temperature Range (Note 4)  
Total Supply Voltage (V to V )..............................12.6V  
LT6205C/LT6206C/LT6207C..................... 0°C to 70°C  
LT6205I/LT6206I/LT6207I .................... –40°C to 85°C  
LT6205H ........................................... –40°C to 125°C  
Storage Temperature Range .................. –65°C to 150°C  
Maximum Junction Temperature .......................... 150°C  
Lead Temperature (Soldering, 10 sec) ................. 300°C  
Input Current ....................................................... 10mA  
Input Voltage Range (Note 2).................................... V  
S
Output Short-Circuit Duration (Note 3) ........... Indefinite  
Pin Current While Exceeding Supplies (Note 9) ... 25mA  
Operating Temperature Range (Note 4)  
LT6205C/LT6206C/LT6207C,  
LT6205I/LT6206I/LT6207I .................... –40°C to 85°C  
LT6205H ........................................... –40°C to 125°C  
PIN CONFIGURATION  
TOP VIEW  
OUT A  
–IN A  
+IN A  
1
2
3
4
5
6
7
8
16 OUT D  
15 –IN D  
+
+
TOP VIEW  
A
B
D
C
TOP VIEW  
14  
13  
12  
11  
10  
9
+IN D  
+
+
OUT A  
–IN A  
+IN A  
1
2
3
4
8 V  
OUT 1  
5 V  
+
V
V
+
7 OUT B  
6 –IN B  
5 +IN B  
V
2
+
+IN B  
–IN B  
OUT B  
NC  
+IN C  
–IN C  
OUT C  
NC  
+
+
+IN 3  
4 –IN  
V
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
S5 PACKAGE  
5-LEAD PLASTIC TSOT-23  
T
= 150°C, θ = 250°C/W  
JMAX  
JA  
T
= 150°C, θ = 250°C/W  
JA  
JMAX  
GN PACKAGE  
16-LEAD NARROW PLASTIC SSOP  
= 150°C, θ = 135°C/W  
T
JMAX  
JA  
ORDER INFORMATION  
LEAD FREE FINISH  
LT6205CS5#PBF  
LT6205IS5#PBF  
LT6205HS5#PBF  
LT6206CMS8#PBF  
LT6206IMS8#PBF  
LT6207CGN#PBF  
LT6207IGN#PBF  
TAPE AND REEL  
PART MARKING*  
LTAEM  
LTAEM  
LTAEM  
LTH3  
PACKAGE DESCRIPTION  
SPECIFIED TEMPERATURE RANGE  
0°C to 70°C  
LT6205CS5#TRPBF  
LT6205IS5#TRPBF  
LT6205HS5#TRPBF  
LT6206CMS8#TRPBF  
LT6206IMS8#TRPBF  
LT6207CGN#TRPBF  
LT6207IGN#TRPBF  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
8-Lead Plastic MSOP  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
LTH4  
8-Lead Plastic MSOP  
–40°C to 85°C  
6207  
16-Lead Narrow Plastic SSOP  
16-Lead Narrow Plastic SSOP  
0°C to 70°C  
6207I  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
620567fc  
2
LT6205/LT6206/LT6207  
ELECTRICAL CHARACTERISTICS The l denotes specifications which apply over the specified temperature  
range, otherwise specifications are at TA = 25°C. VS = 3V, 0V; VS = 5V, 0V; VCM = VOUT = 1V, unless otherwise noted.  
LT6205C/LT6206C/LT6207C  
LT6205I/LT6206I/LT6207I  
MIN  
TYP  
MAX  
SYMBOL  
PARAMETER  
CONDITIONS  
UNITS  
V
Input Offset Voltage  
1
3.5  
5
mV  
mV  
OS  
l
Input Offset Voltage Match  
1
3
4
mV  
mV  
l
l
l
l
(Channel-to-Channel) (Note 5)  
Input Offset Voltage Drift (Note 6)  
Input Bias Current  
7
10  
0.6  
2
15  
30  
3
μV/°C  
μA  
I
I
B
Input Offset Current  
μA  
OS  
Input Noise Voltage  
0.1Hz to 10Hz  
f = 10kHz  
μV  
P-P  
e
n
Input Noise Voltage Density  
Input Noise Current Density  
Input Resistance  
9
nV/√Hz  
pA/√Hz  
MΩ  
pF  
i
f = 10kHz  
4
n
+
V
= 0V to V – 2V  
1
CM  
CM  
Input Capacitance  
2
+
l
l
l
CMRR  
PSRR  
Common Mode Rejection Ratio  
Input Voltage Range  
V
= 0V to V – 2V  
78  
0
90  
dB  
+
V – 2  
V
Power Supply Rejection Ratio  
V = 3V to 12V  
67  
75  
dB  
S
CM  
V
= V  
= 0.5V  
OUT  
l
Minimum Supply Voltage  
Large-Signal Voltage Gain  
V
= 0.5V  
2.7  
V
CM  
l
l
l
A
V
V = 5V, V = 0.5V to 4.5V, R = 1k  
30  
5
20  
100  
20  
60  
V/mV  
V/mV  
V/mV  
VOL  
S
O
O
O
L
V = 5V, V = 1V to 3V, R = 150Ω  
S
L
V = 3V, V = 0.5V to 2.5V, R = 1k  
S
L
l
l
l
l
Output Voltage Swing Low (Note 7) No Load, Input Overdrive = 30mV  
10  
75  
300  
200  
25  
mV  
mV  
mV  
mV  
OL  
I
= 5mA  
150  
500  
350  
SINK  
V = 5V, I  
S
= 25mA  
= 15mA  
S
SINK  
SINK  
V = 3V, I  
l
l
l
l
V
OH  
Output Voltage Swing High (Note 7) No Load, Input Overdrive = 30mV  
60  
100  
250  
1200  
500  
mV  
mV  
mV  
mV  
I
= 5mA  
150  
650  
300  
SOURCE  
V = 5V, I  
S
= 25mA  
= 15mA  
S
SOURCE  
SOURCE  
V = 3V, I  
I
SC  
Short-Circuit Current  
V = 5V, Output Shorted to GND  
35  
20  
60  
mA  
mA  
S
l
l
V = 3V, Output Shorted to GND  
S
30  
20  
50  
mA  
mA  
I
Supply Current per Amplifier  
3.75  
5
5.75  
mA  
mA  
S
l
l
GBW  
SR  
Gain Bandwidth Product  
Slew Rate  
f = 2MHz  
65  
100  
450  
MHz  
V/μs  
V = 5V, A = 2, R = R = 1k  
S
V
F
G
V = 1V to 4V, Measured from 1.5V to 3.5V  
O
Channel Separation  
f = 10MHz  
90  
71  
dB  
FPBW  
Full Power Bandwidth  
V
OUT  
= 2V (Note 8)  
MHz  
P-P  
t
Settling Time to 3%  
Settling Time to 1%  
V = 5V, ΔV  
S
= 2V, A = 1, R = 150Ω  
15  
25  
ns  
ns  
s
OUT  
V
L
Differential Gain  
Differential Phase  
V = 5V, A = 2, R = 150Ω, Output Black Level = 1V  
0.05  
0.08  
%
Deg  
S
V
L
V = 5V, A = 2, R = 150Ω, Output Black Level = 1V  
S
V
L
620567fc  
3
LT6205/LT6206/LT6207  
ELECTRICAL CHARACTERISTICS The l denotes specifications which apply over the specified temperature  
range, otherwise specifications are at TA = 25°C. VS = 5V; VCM = VOUT = 0V, unless otherwise noted.  
LT6205C/LT6206C/LT6207C  
LT6205I/LT6206I/LT6207I  
MIN  
TYP  
MAX  
SYMBOL  
PARAMETER  
CONDITIONS  
UNITS  
V
Input Offset Voltage  
1
4.5  
6
mV  
mV  
OS  
l
Input Offset Voltage Match  
1
3
4
mV  
mV  
l
l
l
l
(Channel-to-Channel) (Note 5)  
Input Offset Voltage Drift (Note 6)  
Input Bias Current  
10  
18  
0.6  
2
18  
30  
3
μV/°C  
μA  
I
I
B
Input Offset Current  
μA  
OS  
Input Noise Voltage  
0.1Hz to 10Hz  
f = 10kHz  
μV  
P-P  
e
n
Input Noise Voltage Density  
Input Noise Current Density  
Input Resistance  
9
nV/√Hz  
pA/√Hz  
MΩ  
pF  
i
f = 10kHz  
4
n
V
= –5V to 3V  
1
CM  
CM  
Input Capacitance  
2
l
l
l
l
l
CMRR  
PSRR  
Common Mode Rejection Ratio  
Input Voltage Range  
V
= –5V to 3V  
78  
–5  
67  
50  
7.5  
90  
dB  
3
V
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V = 2V to 6V  
S
75  
133  
20  
dB  
A
VOL  
V = –4V to 4V, R = 1k  
O
V/mV  
V/mV  
L
V = –3V to 3V, R = 150Ω  
O
L
l
l
l
Output Voltage Swing  
No Load, Input Overdrive = 30mV  
4.88  
4.75  
3.8  
4.92  
4.85  
4.35  
V
V
V
I
I
=
=
5mA  
OUT  
OUT  
25mA  
I
I
Short-Circuit Current  
Short to Ground  
40  
30  
60  
mA  
mA  
SC  
S
l
Supply Current per Amplifier  
4
5.6  
6.5  
mA  
mA  
l
l
GBW  
SR  
Gain Bandwidth Product  
Slew Rate  
f = 2MHz  
65  
100  
600  
MHz  
V/μs  
A = –1, R = 1k  
350  
V
L
V = –4V to 4V, Measured from –3V to 3V  
O
Channel Separation  
f = 10MHz  
90  
24  
dB  
FPBW  
Full Power Bandwidth  
V
OUT  
= 8V (Note 8)  
14  
MHz  
P-P  
t
s
Settling Time to 3%  
Settling Time to 1%  
ΔV  
= 2V, A = 1, R = 150Ω  
15  
25  
ns  
ns  
OUT  
V
L
Differential Gain  
Differential Phase  
A = 2, R = 150Ω, Output Black Level = 1V  
0.05  
0.08  
%
Deg  
V
L
A = 2, R = 150Ω, Output Black Level = 1V  
V
L
The l denotes specifications which apply over the full specified temperature range, –40°C ≤ TA ≤ 125°C, otherwise specifications are  
at TA = 25°C. VS = 3V, 0V; VS = 5V, 0V; VCM = VOUT = 1V, unless otherwise noted.  
LT6205H  
SYMBOL  
PARAMETER  
CONDITIONS  
UNITS  
MIN  
TYP  
MAX  
V
Input Offset Voltage  
1
3.5  
6
mV  
mV  
OS  
l
l
l
Input Offset Voltage Drift (Note 6)  
Input Bias Current  
20  
45  
μV/°C  
μA  
I
B
620567fc  
4
LT6205/LT6206/LT6207  
ELECTRICAL CHARACTERISTICS The l denotes specifications which apply over the full specified temperature  
range, –40°C ≤ TA ≤ 125°C, otherwise specifications are at TA = 25°C. VS = 3V, 0V; VS = 5V, 0V; VCM = VOUT = 1V, unless otherwise noted.  
LT6205H  
SYMBOL  
PARAMETER  
CONDITIONS  
UNITS  
MIN  
TYP  
MAX  
l
I
OS  
Input Offset Current  
5
μA  
Input Noise Voltage  
0.1Hz to 10Hz  
f = 10kHz  
2
9
4
1
2
μV  
P-P  
e
n
Input Noise Voltage Density  
Input Noise Current Density  
Input Resistance  
nV/√Hz  
pA/√Hz  
MΩ  
pF  
i
f = 10kHz  
n
+
V
= 0V to V – 2V  
CM  
CM  
Input Capacitance  
+
l
l
l
CMRR  
PSRR  
Common Mode Rejection Ratio  
Input Voltage Range  
V
= 0V to V – 2V  
72  
0
dB  
+
V – 2  
V
Power Supply Rejection Ratio  
V = 3V to 12V  
62  
dB  
S
CM  
V
= V  
= 0.5V  
OUT  
l
Minimum Supply Voltage  
Large-Signal Voltage Gain  
V
= 0.5V  
2.7  
V
CM  
l
l
l
A
VOL  
V = 5V, V = 0.5V to 4.5V, R = 1k  
25  
3.5  
15  
V/mV  
V/mV  
V/mV  
S
0
0
0
L
V = 5V, V = 1V to 3V, R = 150Ω  
S
L
V = 3V, V = 0.5V to 2.5V, R = 1k  
S
L
l
l
l
l
V
Output Voltage Swing Low (Note 7) No Load, Input Overdrive = 30mV  
40  
mV  
mV  
mV  
mV  
OL  
OH  
I
= 5mA  
200  
600  
400  
SINK  
S
V = 3V, I  
S
V = 5V, I  
= 25mA  
= 15mA  
SINK  
SINK  
l
l
l
l
V
Output Voltage Swing High (Note 7) No Load, Input Overdrive = 30mV  
125  
300  
1400  
600  
mV  
mV  
mV  
mV  
I
= 5mA  
SOURCE  
SOURCE  
SOURCE  
S
S
V = 5V, I  
= 25mA  
= 15mA  
V = 3V, I  
I
I
Short-Circuit Current  
V = 5V, Output Shorted to GND  
35  
20  
60  
50  
mA  
mA  
SC  
S
l
l
V = 3V, Output Shorted to GND  
S
30  
15  
mA  
mA  
Supply Current per Amplifier  
3.75  
5
6.5  
mA  
mA  
S
l
l
GBW  
SR  
Gain Bandwidth Product  
Slew Rate  
f = 2MHz  
50  
MHz  
V/μs  
V = 5V, A = 2, R = R = 1k  
450  
S
V
F
G
V = 1V to 4V, Measured from 1.5V to 3.5V  
O
Channel Separation  
f = 10MHz  
90  
71  
dB  
FPBW  
Full Power Bandwidth  
V
OUT  
= 2V (Note 8)  
MHz  
P-P  
t
Settling Time to 3%  
Settling Time to 1%  
V = 5V, ΔV  
S
= 2V, A = 1, R = 150Ω  
15  
25  
ns  
ns  
s
OUT  
V
L
Differential Gain  
Differential Phase  
V = 5V, A = 2, R = 150Ω, Output Black Level = 1V  
0.05  
0.08  
%
Deg  
S
V
L
V = 5V, A = 2, R = 150Ω, Output Black Level = 1V  
S
V
L
The l denotes specifications which apply over the full specified temperature range, –40°C ≤ TA ≤ 125°C, otherwise specifications are  
at TA = 25°C. VS = 5V; VCM = VOUT = 0V, unless otherwise noted.  
LT6205H  
SYMBOL  
PARAMETER  
CONDITIONS  
UNITS  
MIN  
TYP  
MAX  
V
OS  
Input Offset Voltage  
1.3  
4.5  
7
mV  
mV  
l
l
Input Offset Voltage Drift (Note 6)  
25  
μV/°C  
620567fc  
5
LT6205/LT6206/LT6207  
ELECTRICAL CHARACTERISTICS The l denotes specifications which apply over the full specified  
temperature range, –40°C ≤ TA ≤ 125°C, otherwise specifications are at TA = 25°C. VS = 5V; VCM = VOUT = 0V, unless otherwise noted.  
LT6205H  
SYMBOL  
PARAMETER  
CONDITIONS  
UNITS  
μA  
MIN  
TYP  
MAX  
50  
l
l
I
Input Bias Current  
B
I
OS  
Input Offset Current  
5
μA  
Input Noise Voltage  
0.1Hz to 10Hz  
f = 10kHz  
2
9
4
1
2
μV  
P-P  
e
n
Input Noise Voltage Density  
Input Noise Current Density  
Input Resistance  
nV/√Hz  
pA/√Hz  
MΩ  
pF  
i
f = 10kHz  
n
V
V
= –5V to 3V  
= –5V to 3V  
CM  
Input Capacitance  
l
l
l
l
l
CMRR  
PSRR  
Common Mode Rejection Ratio  
Input Voltage Range  
72  
–5  
62  
40  
5
dB  
CM  
3
V
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V = 2V to 6V  
S
dB  
A
V = –4V to 4V, R = 1k  
O
V/mV  
V/mV  
VOL  
L
V = –3V to 3V, R = 150Ω  
O
L
l
l
l
Output Voltage Swing  
No Load, Input Overdrive = 30mV  
4.85  
4.65  
3.5  
V
V
V
I
I
=
=
5mA  
OUT  
OUT  
25mA  
I
I
Short-Circuit Current  
Short to Ground  
40  
20  
60  
4
mA  
mA  
SC  
l
Supply Current per Amplifier  
5.6  
7.5  
mA  
mA  
S
l
l
GBW  
SR  
Gain Bandwidth Product  
Slew Rate  
f = 2MHz  
50  
MHz  
V/μs  
A = –1, R = 1k  
350  
600  
V
L
V = –4V to 4V, Measured from –3V to 3V  
O
Channel Separation  
f = 10MHz  
90  
24  
dB  
FPBW  
Full Power Bandwidth  
V
OUT  
= 8V (Note 8)  
14  
MHz  
P-P  
t
s
Settling Time to 3%  
Settling Time to 1%  
ΔV  
= 2V, A = 1, R = 150Ω  
15  
25  
ns  
ns  
OUT  
V
L
Differential Gain  
Differential Phase  
A = 2, R = 150Ω, Output Black Level = 1V  
0.05  
0.08  
%
Deg  
V
L
A = 2, R = 150Ω, Output Black Level = 1V  
V
L
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 5: Matching parameters are the difference between the two amplifiers  
A and D and between B and C of the LT6207; between the two amplifiers of  
the LT6206.  
Note 6: This parameter is not 100% tested.  
Note 2: The inputs are protected by back-to-back diodes. If the differential  
input voltage exceeds 1.4V, the input current should be limited to less than  
10mA.  
Note 3: A heat sink may be required to keep the junction temperature  
below absolute maximum. This depends on the power supply voltage and  
how many amplifiers are shorted.  
Note 4: The LT6205C/LT6206C/LT6207C are guaranteed to meet specified  
performance from 0°C to 70°C and are designed, characterized and  
expected to meet specified performance from –40°C to 85°C but are not  
tested or QA sampled at these temperatures. The LT6205I/LT6206I/LT6207I  
are guaranteed to meet specified performance from –40°C to 85°C. The  
LT6205H is guaranteed to meet specified performance from –40°C to 125°C.  
Note 7: Output voltage swings are measured between the output and  
power supply rails.  
Note 8: Full power bandwidth is calculated from the slew rate  
measurement: FPBW = SR/2πV  
.
PEAK  
Note 9: There are reverse biased ESD diodes on all inputs and outputs.  
If these pins are forced beyond either supply, unlimited current will flow  
through these diodes. If the current is transient in nature and limited to  
less than 25mA, no damage to the device will occur.  
620567fc  
6
LT6205/LT6206/LT6207  
TYPICAL PERFORMANCE CHARACTERISTICS  
Supply Current per Amplifier  
VOS Distribution  
vs Supply Voltage  
Minimum Supply Voltage  
40  
35  
30  
25  
20  
15  
10  
5
5
4
3
2
1
0
100  
V
V
= 5V, 0V  
CM  
S
= 1V  
T
= 125°C  
0
A
–100  
T
= 25°C  
A
T
= –55°C  
A
T
= –55°C  
–200  
–300  
–400  
–500  
–600  
A
T
=125°C  
A
T
= 25°C  
A
0
–3  
–2  
–1  
0
1
2
3
0
1
2
3
4
5
6
7
8
9
10 11 12  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
TOTAL SUPPLY VOLTAGE (V)  
INPUT OFFSET VOLTAGE (mV)  
TOTAL SUPPLY VOLTAGE (V)  
620567 G01  
620567 G02  
620567 G03  
Change in Offset Voltage vs Input  
Common Mode Voltage  
Input Bias Current vs Input  
Common Mode Voltage  
Input Bias Current vs Temperature  
1000  
800  
600  
400  
200  
0
–4  
–5  
–2  
–3  
V
= 5V, 0V  
V
V
= 5V, 0V  
CM  
V
= 5V, 0V  
S
S
S
= 1V  
–4  
–6  
–5  
–7  
–6  
T
= 125°C  
A
–8  
–7  
–8  
–9  
T
= 25°C  
T
= 25°C  
A
–9  
A
–10  
–11  
–12  
–10  
–11  
–12  
T
=125°C  
A
T
= –55°C  
2
A
T
= –55°C  
4
A
0
1
2
3
5
–50 –25  
0
25  
50  
75 100 125  
0
1
3
4
5
INPUT COMMON MODE VOLTAGE (V)  
TEMPERATURE (°C)  
INPUT COMMON MODE VOLTAGE (V)  
620567 G04  
620567 G06  
620567 G05  
Output Saturation Voltage  
vs Load Current (Output Low)  
Output Saturation Voltage  
vs Load Current (Output High)  
Short-Circuit Current  
vs Temperature  
10  
1
10  
1
75  
70  
65  
60  
55  
50  
45  
40  
35  
V
V
= 5V, 0V  
= 30mV  
V
V
= 5V, 0V  
= 30mV  
S
OD  
S
OD  
SINKING  
T
= 125°C  
A
SOURCING  
T
= 125°C  
A
V
V
= 5V, 0V  
CM  
S
= 1V  
SINKING  
T
= 25°C  
A
T
= 25°C  
T
A
SOURCING  
0.1  
0.01  
0.1  
0.01  
= –55°C  
T
= –55°C  
A
A
V
V
= 3V, 0V  
CM  
S
= 1V  
–50 –25  
0
25  
50  
75 100 125  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
TEMPERATURE (°C)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
620567 G08  
620567 G07  
620567 G09  
620567fc  
7
LT6205/LT6206/LT6207  
TYPICAL PERFORMANCE CHARACTERISTICS  
Short-Circuit Current  
vs Temperature  
Open-Loop Gain  
Open-Loop Gain  
500  
400  
500  
400  
90  
80  
70  
60  
50  
40  
3O  
V
T
= p5V  
V
V
T
= 5V, 0V  
= 1V  
V
= p5V  
S
A
S
CM  
A
S
= 25°C  
= 25°C  
300  
300  
SINKING  
200  
200  
100  
100  
R
= 1k  
R
= 1k  
L
L
SOURCING  
0
0
–100  
–200  
–300  
–400  
–500  
–100  
–200  
–300  
–400  
–500  
R
= 150Ω  
R
1
= 150Ω  
L
L
–5 –4 –3 –2 –1  
0
2
3
4
5
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
OUTPUT VOLTAGE (V)  
–50 –25  
0
25  
50  
75 100 125  
OUTPUT VOLTAGE (V)  
TEMPERATURE (°C)  
620567 G12  
620567 G11  
620567 G10  
Input Noise Voltage Density  
vs Frequency  
Input Noise Current Density  
vs Frequency  
Warm Up Drift vs Time (LT6206)  
120  
100  
80  
60  
40  
20  
0
16  
14  
12  
10  
8
30  
25  
20  
15  
10  
5
T
= 25°C  
V
V
T
= 5V, 0V  
= 1V  
V
V
T
= 5V, 0V  
= 1V  
A
S
CM  
A
S
CM  
A
= 25°C  
= 25°C  
V
= 5V  
S
V
= 5V, 0V  
S
6
4
2
0
0
0
10 20 30 40 50 60 70 80 90 100  
TIME AFTER POWER-UP (s)  
100  
1k  
10k  
100k  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
620567 G15  
620567 G14  
620567 G13  
Gain Bandwidth and Phase  
Margin vs Supply Voltage  
0.1Hz to 10Hz Noise Voltage  
Gain and Phase vs Frequency  
70  
60  
50  
40  
30  
20  
10  
0
140  
120  
100  
80  
50  
45  
40  
35  
V
V
T
= 5V, 0V  
= 1V  
T
= 25°C  
A
S
CM  
A
PHASE  
R
= R = 1k  
F G  
= 25°C  
C
= 5pF  
L
PHASE MARGIN  
V
= 3V, 0V  
S
V
= p5V  
S
60  
110  
105  
100  
95  
40  
GAIN BANDWIDTH  
20  
V
= 3V, 0V  
S
0
T
= 25°C  
= 1k  
= 5pF  
A
L
L
GAIN  
R
V
S
= p5V  
–10  
-20  
C
–20  
-40  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M 500M  
0
2
4
6
8
10  
12  
TIME (2 SEC/DIV)  
TOTAL SUPPLY VOLTAGE (V)  
620567 G16  
620567 G17  
620567 G18  
620567fc  
8
LT6205/LT6206/LT6207  
TYPICAL PERFORMANCE CHARACTERISTICS  
Gain Bandwidth and Phase  
Margin vs Temperature  
Slew Rate vs Temperature  
Slew Rate vs Closed-Loop Gain  
750  
700  
650  
600  
550  
500  
450  
400  
350  
750  
55  
50  
45  
40  
35  
A
V
= –1  
V
V
= p5V  
R
C
= 1k  
= 5pF  
S
O
L
L
L
V
= p5V  
R
R
= R = 1k  
= –4V to 4V  
= 1k  
S
G
L
F
700  
650  
600  
550  
500  
450  
400  
RISING V = p5V  
= 1k  
R
S
T
= 25°C  
A
PHASE MARGIN  
FALLING V = p5V  
S
RISING  
V
= 3V, 0V  
S
RISING V = 5V, 0V  
S
V
= p5V  
120  
110  
100  
90  
S
FALLING  
V
= 3V, 0V  
S
FALLING V = 5V, 0V  
S
GAIN BANDWIDTH  
80  
–50 –25  
0
25  
50  
75 100 125  
2
3
4
5
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
GAIN (A )  
V
TEMPERATURE (°C)  
620567 G20  
620567 G21  
620567 G19  
Power Supply Rejection Ratio  
vs Frequency  
Closed-Loop Gain vs Frequency  
Output Impedance vs Frequency  
1000  
100  
10  
15  
12  
9
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
T
C
A
= 25°C  
= 5pF  
= +1  
V
T
= 5V, 0V  
= 25°C  
V
T
= 5V, 0V  
= 25°C  
A
L
V
S
A
S
A
V
V
= p5V  
CM  
S
= 0V  
6
A
= 10  
V
–PSRR  
+PSRR  
3
A
= 1  
V
A
= 2  
V
0
–3  
–6  
–9  
–12  
–15  
V
V
= 3V  
CM  
S
= 1V  
1
0.1  
100k  
1M  
10M  
100M 500M  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M 500M  
10k  
100k  
1M  
FREQUENCY (Hz)  
10M  
100M  
FREQUENCY (Hz)  
620567 G22  
620567 G24  
620567 G23  
Common Mode Rejection Ratio  
vs Frequency  
Series Output Resistor  
vs Capacitive Load  
Channel Separation vs Frequency  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
120  
110  
100  
90  
40  
35  
30  
25  
20  
15  
10  
5
V
= p5V  
V
A
T
= 5V, 0V  
= 1  
= 25°C  
V
= p5V  
= 25°C  
S
S
V
A
S
A
LT6206 CH A-B  
T
LT6207 CH A-D, CH B-C  
R
= 10Ω, R = d  
L
S
T
= 25°C  
A
80  
R
= 20Ω, R = d  
L
S
70  
60  
R
= R = 50Ω  
S
L
50  
40  
0
10k  
100k  
1M  
10M  
100M  
1G  
1M  
10M  
100M  
10  
100  
1000  
FREQUENCY (Hz)  
CAPACITIVE LOAD (pF)  
FREQUENCY (Hz)  
620567 G25  
620567 G26  
620567 G27  
620567fc  
9
LT6205/LT6206/LT6207  
TYPICAL PERFORMANCE CHARACTERISTICS  
Series Output Resistor  
vs Capacitive Load  
Maximum Undistorted Output  
Signal vs Frequency  
Distortion vs Frequency  
40  
35  
30  
25  
20  
15  
10  
5
10  
9
8
7
6
5
4
3
2
1
0
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
V
A
T
= 5V, 0V  
= 2  
= 25°C  
S
V
A
A
V
= +1  
= 2V  
V
O
A
= –1  
P-P  
V
R
= 10Ω, R = d  
L
S
V
= 5V, 0V  
S
A
= 2  
V
R
= 1k, 2ND  
L
R
= 150Ω, 3RD  
L
R
= 20Ω, R = d  
L
S
R
= 150Ω, 2ND  
L
R
L
= R = 50Ω  
S
V
T
= p5V  
= 25°C  
S
A
R
= 1k, 3RD  
L
HD , HD < –30dBc  
2
3
0
10  
100  
1000  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
CAPACITIVE LOAD (pF)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
620567 G30  
620567 G31  
620567 G28  
Distortion vs Frequency  
Distortion vs Frequency  
Distortion vs Frequency  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
A
V
= +2  
= 2V  
A
V
= +1  
= 2V  
A
V
V
= +2  
= 2V  
= p5V  
V
O
V
O
V
O
P-P  
P-P  
P-P  
R
= 150Ω, 3RD  
L
V
= 5V, 0V  
V
= p5V  
S
S
S
R
= 150Ω, 3RD  
R
= 1k, 2ND  
L
L
R
= 150Ω, 2ND  
L
R
= 150Ω, 2ND  
L
R
= 150Ω, 2ND  
L
R
= 150Ω, 3RD  
L
R
= 1k, 3RD  
1
R
= 1k, 3RD  
L
R
= 1k, 2ND  
0.1  
L
R
= 1k, 3RD  
L
L
R
= 1k, 2ND  
L
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
0.01  
10  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
620567 G32  
620567 G33  
620567 G34  
Large Signal Response  
VS = 5V, 0V  
Small Signal Response  
VS = 5V, 0V  
2.5V  
0V  
620567 G35  
620567 G36  
50ns/DIV  
50ns/DIV  
V
A
= 5V, 0V  
= 1  
= 150Ω  
V
A
= 5V, 0V  
= 1  
= 150Ω  
S
V
L
S
V
L
R
R
620567fc  
10  
LT6205/LT6206/LT6207  
TYPICAL PERFORMANCE CHARACTERISTICS  
Large Signal Response VS = 5V  
Small Signal Response VS = 5V  
Output-Overdrive Recovery  
0V  
0V  
0V  
0V  
620567 G38  
620567 G37  
620567 G39  
50ns/DIV  
50ns/DIV  
V
A
=
5V  
100ns/DIV  
V
A
=
5V  
V
S
A
V
= 5V, 0V  
= 2  
S
V
L
S
V
L
= 1  
= 1  
R
= 150Ω  
R
= 150Ω  
APPLICATIONS INFORMATION  
+
V
R2  
R3  
I1  
I2  
I3  
Q13  
Q9  
Q10  
C
M
+
Q2  
Q7  
Q8  
V
Q3  
Q4  
Q5  
Q6  
+
V
R1  
DESD5  
R
IN  
COMPLEMENTARY  
DRIVE  
OUT  
DESD1  
DESD2  
150Ω  
Q1  
+IN  
–IN  
DESD6  
V
GENERATOR  
D1  
D2  
D3  
D4  
Q12  
Q11  
+
V
V
Q14  
R
150Ω  
IN  
DESD3  
DESD4  
R4  
R5  
I4  
V
620567 F01  
V
Figure 1. Simplified Schematic  
620567fc  
11  
LT6205/LT6206/LT6207  
APPLICATIONS INFORMATION  
Amplifier Characteristics  
negativesupplypin.Foroptimumperformanceallfeedback  
components and bypass capacitors should be contained  
in a 0.5 inch by 0.5 inch area. This helps ensure minimal  
stray capacitances.  
Figure 1 shows a simplified schematic of the LT6205/  
LT6206/LT6207. The input stage consists of transistors  
Q1 to Q8 and resistor R1. This topology allows for high  
slew rates at low supply voltages. The input common  
mode range extends from ground to typically 1.75V from  
The parallel combination of the feedback resistor and gain  
setting resistor on the inverting input can combine with  
the input capacitance to form a pole which can degrade  
stability. In general, use feedback resistors of 1k or less.  
V , and is limited by 2 VBEs plus a saturation voltage of  
CC  
a current source. There are back-to-back series diodes,  
D1 to D4, across the + and – inputs of each amplifier to  
Capacitive Load  
limit the differential voltage to 1.4V. R limits the current  
IN  
throughthesediodesiftheinputdifferentialvoltageexceeds  
1.4V. The input stage drives the degeneration resistors of  
PNP and NPN current mirrors, Q9 to Q12, which convert  
the differential signals into a single-ended output. The  
complementary drive generator supplies current to the  
output transistors that swing from rail-to-rail.  
The LT6205/LT6206/LT6207 are optimized for wide band-  
width video applications. They can drive a capacitive load  
of 20pF in a unity-gain configuration. When driving a  
larger capacitive load, a resistor of 10Ω to 50Ω should  
be connected between the output and the capacitive load  
to avoid ringing or oscillation. The feedback should still  
be taken from the output pin so that the resistor will  
isolate the capacitive load and ensure stability. The Typi-  
cal Performance Characteristics curves show the output  
overshoot when driving a capacitive load with different  
series resistors.  
ThecurrentgeneratedthroughR1,dividedbythecapacitor  
CM, determines the slew rate. Note that this current, and  
hence the slew rate, are proportional to the magnitude  
of the input step. The input step equals the output step  
divided by the closed loop gain. The highest slew rates  
are therefore obtained in the lowest gain configurations.  
The Typical Performance Characteristics curve of Slew  
Rate vs Closed-Loop Gain shows the details.  
Video Signal Characteristics  
Composite video is the most commonly used signal in  
broadcast grade products and includes luma (or lumi-  
nance,theintensityinformation),chroma(thecolorimetry  
information) and sync (vertical and horizontal raster tim-  
ing) elements combined into a single signal, NTSC and  
PAL being the common formats. Component video for  
entertainment systems include separate signal(s) for the  
luma and chroma (i.e., Y/C or YPbPr) with sync generally  
applied to the luma channel (Y signal). In some instances,  
nativeRGBsignals(separateintensityinformationforeach  
primary color: red, green, blue) will have sync included as  
well. All the signal types that include sync are electrically  
similar from a voltage-swing standpoint, though various  
timing and bandwidth relationships exist depending on  
the applicable standard.  
ESD  
The LT6205/LT6206/LT6207 have reverse-biased ESD  
protection diodes on all inputs and outputs as shown in  
Figure 1. If these pins are forced beyond either supply  
unlimited current will flow through these diodes. If the  
current is transient, and limited to 25mA or less, no dam-  
age to the device will occur.  
Layout and Passive Components  
With a gain bandwidth product of 100MHz and a slew rate  
of 450V/μs the LT6205/LT6206/LT6207 require special  
attention to board layout and supply bypassing. Use a  
ground plane, short lead lengths and RF quality low ESR  
supply bypass capacitors. The positive supply pin should  
be bypassed with a small capacitor (typically 0.01μF to  
0.1μF) within 0.25 inches of the pin. When driving heavy  
loads, an additional 4.7μF electrolytic capacitor should be  
used. When using split supplies, the same is true for the  
The typical video waveforms that include sync (includ-  
ing full composite) are specified to have nominal 1V  
P-P  
amplitude. The lower 0.3V is reserved for sync tips that  
carry timing information, and by being at a lower potential  
than all the other information, represents blacker-than-  
620567fc  
12  
LT6205/LT6206/LT6207  
APPLICATIONS INFORMATION  
black intensity, thereby causing scan retrace activity to be  
invisible on a CRT. The black level of the waveform is at  
(or set up very slightly above) the upper limit of the sync  
information. Waveform content above the black level is  
intensity information, with peak brightness represented  
at the maximum signal level. In the case of composite  
video, the modulated color subcarrier is superimposed on  
Clamped AC-Input Cable Driver  
A popular method of further minimizing supply require-  
ments with AC-coupling is to employ a simple clamping  
scheme, as shown in Figure 2. In this circuit, the LT6205  
operates from 3.3V by having the sync tips control the  
charge on the coupling capacitor C1, thereby reducing  
the black level input wander to ≈ 0.07V. The only minor  
drawback to this circuit is the slight sync tip compression  
(≈ 0.025V at input) due to the diode conduction current,  
thoughthepicturecontentremainsfulldelity. Thiscircuit  
has nearly the design margin of its DC-coupled counter-  
the waveform, but the dynamics remain inside the 1V  
P-P  
limit (a notable exception is the chroma ramp used for  
differential-gain and differential-phase measurements,  
which can reach 1.15V ).  
P-P  
part, at 0.31V (for this circuit, V  
= 2.14 + V +V ).  
MIN  
OH OL  
DC-Coupled Video Amplifier Considerations  
The clamp diode anode bias is selected to set the sync tip  
Typically video amplifiers drive cables that are series  
terminated (back-terminated) at the source and load-ter-  
minated at the destination with resistances equal to the  
output voltage at or slightly above V .  
OL  
YPbPr to RGB Component Video Converter  
cable characteristic impedance, Z (usually 75Ω). This  
0
The back page application uses the LT6207 quad to imple-  
ment a minimum amplifier count topology to transcode  
consumercomponentvideointoRGB.Inthiscircuit,signals  
only pass through one active stage from any input to any  
output, with passive additions being performed by the  
cableback-terminationresistors.Thecompromiseinusing  
passive output addition is that the amplifier outputs must  
be twice as large as that of a conventional cable driver. The  
Y-channelsectionalsohasthedemandingrequirementthat  
itsingle-handedlydrivesallthreeoutputstofullbrightness  
during times of white content, so a helper current source  
is used to assure unclipped video when operating from  
5V supplies. This circuit maps sync-on-Y to sync on all  
the RGB channels, and for best results should have input  
black levels at 0V nominal to prevent clipping.  
configuration forms a 2:1 resistor divider in the cabling  
that must be accounted for in the driver amplifier by  
delivering 2V output into an effective 2 • Z load (e.g.,  
P-P  
0
150Ω). Driving the cable can require more than 13mA  
while the output is approaching the saturation limits of the  
amplifier output. The absolute minimum supply is: V  
=
MIN  
2 + V +V . For example, the LT6206 dual operating on  
OH  
OL  
3.3V as shown on the front page of this data sheet, with  
exceptionally low V ≤ 0.5V and V ≤ 0.35V, provides a  
OH  
OL  
design margin of 0.45V. The design margin must be large  
enough to include supply variations and DC bias accuracy  
for the DC-coupled video input.  
Handling AC-Coupled Video Signals  
AC-coupled video inputs are intrinsically more difficult to  
handle than those with DC-coupling because the average  
signal voltage of the video waveform is effected by the  
picturecontent,meaningthattheblacklevelattheamplifier  
wanders with scene brightness. The wander is measured  
as 0.56V for a 1V NTSC waveform changing from black  
P-P  
field to white field and vice-versa, so an additional 1.12V  
allowance must be made in the amplifier supply (assum-  
ing gain of 2, so V  
= 3.12 + V +V ). For example,  
MIN  
OH OL  
an LT6205 operating on 5V has a conservative design  
margin of 1.03V. The amplifier output (for gain of 2) must  
swing +1.47V to –1.65V around the DC-operating point,  
so the biasing circuitry needs to be designed accordingly  
for optimal fidelity.  
620567fc  
13  
LT6205/LT6206/LT6207  
TYPICAL APPLICATION  
3.3V  
0.1μF  
75Ω  
1k  
1k  
2.4k  
VIDEO OUT  
75Ω  
4
3
5
LT6205  
2
+
C1  
4.7μF  
1
COMPOSITE  
VIDEO IN 1V  
P-P  
BAT54  
10k  
I
b 19mA  
S
C2  
4.7μF  
470Ω  
620567 TA02  
Figure 2. Clamped AC-Input Video Cable Driver  
620567fc  
14  
LT6205/LT6206/LT6207  
PACKAGE DESCRIPTION  
S5 Package  
5-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1635)  
0.62  
MAX  
0.95  
REF  
2.90 BSC  
(NOTE 4)  
1.22 REF  
1.50 – 1.75  
(NOTE 4)  
2.80 BSC  
1.4 MIN  
3.85 MAX 2.62 REF  
PIN ONE  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.30 – 0.45 TYP  
5 PLCS (NOTE 3)  
0.95 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
NOTE:  
S5 TSOT-23 0302  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
620567fc  
15  
LT6205/LT6206/LT6207  
PACKAGE DESCRIPTION  
MS8 Package  
8-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1660)  
0.889 ± 0.127  
(.035 ± .005)  
5.23  
(.206)  
MIN  
3.20 – 3.45  
(.126 – .136)  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 3)  
0.52  
(.0205)  
REF  
0.65  
(.0256)  
BSC  
0.42 ± 0.038  
(.0165 ± .0015)  
TYP  
8
7 6  
5
RECOMMENDED SOLDER PAD LAYOUT  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 4)  
4.90 ± 0.152  
(.193 ± .006)  
DETAIL “A”  
0.254  
(.010)  
0° – 6° TYP  
GAUGE PLANE  
1
2
3
4
0.53 ± 0.152  
(.021 ± .006)  
1.10  
(.043)  
MAX  
0.86  
(.034)  
REF  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.22 – 0.38  
(.009 – .015)  
TYP  
0.1016 ± 0.0508  
(.004 ± .002)  
0.65  
(.0256)  
BSC  
MSOP (MS8) 0307 REV F  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
GN Package  
16-Lead Plastic SSOP (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1641)  
.189 – .196*  
(4.801 – 4.978)  
.045 ±.005  
.009  
(0.229)  
REF  
16 15 14 13 12 11 10 9  
.254 MIN  
.150 – .165  
.229 – .244  
.150 – .157**  
(5.817 – 6.198)  
(3.810 – 3.988)  
.0165 ±.0015  
.0250 BSC  
RECOMMENDED SOLDER PAD LAYOUT  
1
2
3
4
5
6
7
8
.015 ± .004  
(0.38 ± 0.10)  
× 45°  
.0532 – .0688  
(1.35 – 1.75)  
.004 – .0098  
(0.102 – 0.249)  
.007 – .0098  
(0.178 – 0.249)  
0° – 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.0250  
(0.635)  
BSC  
.008 – .012  
GN16 (SSOP) 0204  
(0.203 – 0.305)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: INCHES  
INCHES  
2. DIMENSIONS ARE IN  
(MILLIMETERS)  
3. DRAWING NOT TO SCALE  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
620567fc  
16  
LT6205/LT6206/LT6207  
REVISION HISTORY (Revision history begins at Rev C)  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
C
3/10  
C Grade Specified Temperature Range Changed in the Order Information Section  
2
620567fc  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
17  
LT6205/LT6206/LT6207  
TYPICAL APPLICATION  
YPBPR to RGB Converter  
5V  
1μF  
36Ω  
CMPD6001S  
FMMT3906  
150Ω  
150Ω  
R
4.7k  
4
75Ω  
165Ω  
499Ω  
1
2
16  
15  
499Ω  
107Ω  
80.6Ω  
+
150Ω  
150Ω  
B
3
5
14  
+
Y
75Ω  
75Ω  
LT6207  
12  
+
+
6
7
11  
499Ω  
365Ω  
499Ω  
10  
150Ω  
150Ω  
P
B
13  
95.3Ω  
133Ω  
174Ω  
G
P
75Ω  
R
1μF  
F
3dB  
z 40MHz  
R = Y + 1.4 • P  
R
I
b 60mA  
B = Y + 1.8 • P  
G = Y – 0.34 • P – 0.71 • P  
S
B
620567 TA03  
BLACK LEVELS z 0V  
–5V  
B R  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
Low Cost Dual and Quad Video Amplifiers  
COMMENTS  
LT1253/LT1254  
–3dB Bandwidth = 90MHz, Current Feedback  
0.1dB Flatness to 100MHz, 80mA Output Drive  
LT1395/LT1396/LT1397 Single Dual Quad 400MHz Current Feedback Amplifiers  
LT1675  
RGB Multiplexer with Current Feedback Amplifiers  
Single/Dual, 180MHz, Rail-to-Rail Input and Output Amplifiers 350V/μs Slew Rate, Shutdown, Low Distortion –90dBc at 5MHz  
–3dB Bandwidth = 250MHz, 100MHz Pixel Switching  
LT1809/LT1810  
LT6550/LT6551  
3.3V Triple and Quad Video Amplifiers  
Internal Gain of 2, 110MHz –3dB Bandwidth, Input Common  
Modes to Ground  
LT6552  
3.3V Single Supply Video Difference Amplifier  
Differential or Single-Ended Gain Block, 600V/μs Slew Rate,  
Input Common Modes to Ground  
620567fc  
LT 0310 REV C • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
18  
© LINEAR TECHNOLOGY CORPORATION 2003  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY