LT6220IS5 [Linear]

Single/Dual/Quad 60MHz, 20V/us, Low Power, Rail-to-Rail Input and Output Precision Op Amps; 单/双/四路为60MHz , 20V / us的,低功耗,轨到轨输入和输出精密运算放大器
LT6220IS5
型号: LT6220IS5
厂家: Linear    Linear
描述:

Single/Dual/Quad 60MHz, 20V/us, Low Power, Rail-to-Rail Input and Output Precision Op Amps
单/双/四路为60MHz , 20V / us的,低功耗,轨到轨输入和输出精密运算放大器

运算放大器
文件: 总20页 (文件大小:280K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT6220/LT6221/LT6222  
Single/Dual/Quad 60MHz,  
20V/µs, Low Power, Rail-to-Rail Input  
and Output Precision Op Amps  
U
FEATURES  
DESCRIPTIO  
The LT®6220/LT6221/LT6222 are single/dual/quad, low  
Gain Bandwidth Product: 60MHz  
Input Common Mode Range Includes Both Rails  
Output Swings Rail-to-Rail  
power, high speed rail-to-rail input and output operational  
amplifiers with excellent DC performance. The LT6220/  
LT6221/LT6222 feature reduced supply current, lower  
input offset voltage, lower input bias current and higher  
DC gain than other devices with comparable bandwidth.  
Low Quiescent Current: 1mA Max  
Input Offset Voltage: 350µV Max  
Input Bias Current: 150nA Max  
Wide Supply Range: 2.2V to 12.6V  
Large Output Current: 50mA Typ  
Low Voltage Noise: 10nVHz Typ  
Slew Rate: 20V/µs Typ  
Typically, the LT6220/LT6221/LT6222 have an input off-  
setvoltageoflessthan100µV, aninputbiascurrentofless  
than 15nA and an open-loop gain of 100V/mV. The parts  
have an input range that includes both supply rails and an  
outputthatswingswithin10mVofeithersupplyrailtomaxi-  
mize the signal dynamic range in low supply applications.  
Common Mode Rejection: 102dB Typ  
Power Supply Rejection: 105dB Typ  
Open-Loop Gain: 100V/mV Typ  
Operating Temperature Range: – 40°C to 85°C  
Single in the 8-Pin SO and 5-Pin Low Profile  
(1mm) ThinSOTTM Packages  
The LT6220/LT6221/LT6222 maintain performance for  
supplies from 2.2V to 12.6V and are specified at 3V, 5V  
and ±5V supplies. The inputs can be driven beyond the  
supplies without damage or phase reversal of the output.  
Dual in the 8-Pin SO and (3mm x 3mm) DFN  
Packages  
The LT6220 is housed in the 8-pin SO package with the  
standard op amp pinout as well as the 5-pin SOT-23  
package. The LT6221 is available in 8-pin SO and DFN  
(3mm × 3mm low profile dual fine pitch leadless) pack-  
ages with the standard op amp pinout. The LT6222 fea-  
tures the standard quad op amp configuration and is  
availableinthe16-PinSSOPpackage.TheLT6220/LT6221/  
LT6222 can be used as plug-in replacements for many op  
amps to improve input/output range and performance.  
Quad in the 16-PUin SSOP Package  
APPLICATIO S  
Low Voltage, High Frequency Signal Processing  
Driving A/D Converters  
Rail-to-Rail Buffer Amplifiers  
Active Filters  
Video Amplifiers  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
ThinSOT is a trademark of Linear Technology Corporation.  
Fast Current Sensing Amplifiers  
U
TYPICAL APPLICATIO  
VOS Distribution, VCM = 0V  
(S8, PNP Stage)  
Stepped-Gain Photodiode Amplifier  
50  
V
V
= 5V, 0V  
CM  
S
+
V
S
45  
40  
35  
30  
25  
20  
15  
10  
5
= 0V  
10k  
30pF  
3.24k  
+
V
S
1pF  
100k  
+
V
S
I
PD  
33k  
LT1634-1.25  
V
S
PHOTODIODE  
~4pF  
LT6220  
V
OUT  
0
–250  
–150  
–50  
0
50  
150  
250  
+
V
S
= ±1.5V TO ±5V  
INPUT OFFSET VOLTAGE (µV)  
622012 TA01  
V
S
622012 G01  
sn622012 622012fs  
1
LT6220/LT6221/LT6222  
W W  
U W  
ABSOLUTE AXI U RATI GS (Note 1)  
+
Total Supply Voltage (VSto VS ) ......................... 12.6V  
Maximum Junction Temperature .......................... 150°C  
(DD Package) ................................................... 125°C  
Storage Temperature .............................–65°C to 150°C  
(DD Package) ....................................–65°C to 125°C  
Lead Temperature (Soldering, 10 sec.)................. 300°C  
Input Voltage (Note 2) ..............................................±VS  
Input Current (Note 2) ........................................ ±10mA  
Output Short Circuit Duration (Note 3) ............ Indefinite  
Operating Temperature Range (Note 4) ...–40°C to 85°C  
Specified Temperature Range (Note 5)....–40°C to 85°C  
U
W
U
PACKAGE/ORDER I FOR ATIO  
ORDER PART  
NUMBER  
ORDER PART  
TOP VIEW  
NUMBER  
TOP VIEW  
+
OUT A  
–IN A  
+IN A  
1
2
3
4
V
S
8
7
6
5
+
V
1
2
5 V  
LT6220CS5  
LT6220IS5  
LT6220CS8  
LT6220IS8  
OUT  
S
OUT B  
–IN B  
+IN B  
V
A
S
+
+IN 3  
4 –IN  
B
V
S
S8 PART  
MARKING  
S5 PART*  
MARKING  
S5 PACKAGE  
5-LEAD PLASTIC TSOT-23  
S8 PACKAGE  
8-LEAD PLASTIC SO  
T
JMAX = 150°C, θJA = 250°C/W (NOTE 10)  
6220  
6220I  
LTAFP  
TJMAX = 150°C, θJA = 190°C/W  
TOP VIEW  
TOP VIEW  
OUT A  
OUT D  
16  
1
2
3
4
5
6
7
8
TOP VIEW  
–IN A  
+IN A  
–IN D  
15  
+
OUT A  
–IN A  
+IN A  
1
2
3
4
8
7
6
5
V
S
A
D
C
NC  
1
2
3
4
NC  
8
7
6
5
+IN D  
14  
OUT B  
–IN B  
+IN B  
+
A
+
–IN  
V
V
+
V
S
13  
V
S
S
B
+IN  
V
OUT  
+IN B  
–IN B  
OUT B  
NC  
12 +IN C  
–IN C  
S
B
V
S
NC  
11  
10 OUT C  
DD PACKAGE  
8-LEAD (3mm × 3mm) PLASTIC DFN  
S8 PACKAGE  
8-LEAD PLASTIC SO  
9
NC  
TJMAX = 125°C, θJA = 160°C/W (NOTE 10)  
EXPOSED PAD INTERNALLY CONNECTED TO VS  
(PCB CONNECTION OPTIONAL)  
TJMAX = 150°C, θJA = 190°C/W  
GN PACKAGE  
16-LEAD NARROW PLASTIC SSOP  
TJMAX = 150°C, θJA = 135°C/W  
ORDER PART  
NUMBER  
DD PART*  
MARKING  
ORDER PART  
NUMBER  
S8 PART  
MARKING  
ORDER PART  
NUMBER  
SSOP PART  
MARKING  
LT6221CDD  
LT6221IDD  
LADZ  
LT6221CS8  
LT6221IS8  
6221  
6221I  
LT6222CGN  
LT6222IGN  
6222  
6222I  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
*The temperature grades are identified by a label on the shipping container.  
sn622012 622012fs  
2
LT6220/LT6221/LT6222  
ELECTRICAL CHARACTERISTICS  
TA = 25°C, VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply, unless otherwise noted  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
V
V
V
V
V
= 0V  
70  
150  
200  
0.5  
0.5  
350  
700  
850  
2.5  
3
µV  
µV  
µV  
mV  
mV  
OS  
CM  
CM  
CM  
CM  
CM  
= 0V (DD Package)  
= 0V (S5 Package)  
= V  
S
= V (S5 Package)  
S
V  
OS  
Input Offset Voltage Shift  
V = 5V, V = 0V to 3.5V  
30  
15  
195  
120  
µV  
µV  
S
CM  
V = 3V, V = 0V to 1.5V  
S
CM  
Input Offset Voltage Match (Channel-to-Channel)  
(Note 9)  
V
V
= 0V  
100  
150  
600  
1100  
µV  
µV  
CM  
CM  
= 0V (DD Package)  
I
I
Input Bias Current  
V
V
= 1V  
15  
250  
150  
600  
nA  
nA  
B
CM  
CM  
= V  
S
Input Bias Current Match (Channel-to-Channel)  
(Note 9)  
V
V
= 1V  
15  
20  
175  
250  
nA  
nA  
CM  
CM  
= V  
S
Input Offset Current  
V
V
= 1V  
15  
15  
100  
100  
nA  
nA  
OS  
CM  
CM  
= V  
S
Input Noise Voltage  
0.1Hz to 10Hz  
f = 10kHz  
0.5  
10  
0.8  
2
µV  
P-P  
e
Input Noise Voltage Density  
Input Noise Current Density  
Input Capacitance  
nV/Hz  
pA/Hz  
pF  
n
i
f = 10kHz  
n
C
A
IN  
Large Signal Voltage Gain  
V = 5V, V = 0.5V to 4.5V, R = 1k at V /2  
35  
3.5  
30  
100  
10  
90  
V/mV  
V/mV  
V/mV  
VOL  
S
O
L
S
V = 5V, V = 1V to 4V, R = 100at V /2  
S
O
L
S
V = 3V, V = 0.5V to 2.5V, R = 1k at V /2  
S
O
L
S
CMRR  
PSRR  
Common Mode Rejection Ratio  
V = 5V, V = 0V to 3.5V  
85  
82  
102  
102  
dB  
dB  
S
CM  
V = 3V, V = 0V to 1.5V  
S
CM  
CMRR Match (Channel-to-Channel) (Note 9)  
V = 5V, V = 0V to 3.5V  
79  
76  
100  
100  
dB  
dB  
S
CM  
V = 3V, V = 0V to 1.5V  
S
CM  
Input Common Mode Range  
0
V
V
dB  
dB  
V
S
Power Supply Rejection Ratio  
V = 2.5V to 10V, V = 0V  
84  
79  
105  
105  
2.2  
S
CM  
PSRR Match (Channel-to-Channel) (Note 9)  
Minimum Supply Voltage (Note 6)  
Output Voltage Swing LOW (Note 7)  
2.5  
V
V
No Load  
5
100  
325  
40  
200  
650  
mV  
mV  
mV  
OL  
OH  
I
I
= 5mA  
= 20mA  
SINK  
SINK  
Output Voltage Swing HIGH (Note 7)  
Short-Circuit Current  
No Load  
5
130  
475  
40  
250  
900  
mV  
mV  
mV  
I
I
= 5mA  
= 20mA  
SOURCE  
SOURCE  
I
I
V = 5V  
20  
20  
45  
35  
mA  
mA  
SC  
S
V = 3V  
S
Supply Current Per Amplifier  
Gain-Bandwidth Product  
Slew Rate  
0.9  
60  
1
mA  
MHz  
V/µs  
MHz  
dBc  
ns  
S
GBW  
SR  
V = 5V, Frequency = 1MHz  
S
35  
10  
V = 5V, A = –1, R = 1k, V = 4V  
20  
S
V
L
O
FPBW  
HD  
Full Power Bandwidth  
Harmonic Distortion  
Settling Time  
V = 5V, A = 1, V = 4V  
p-p  
1.6  
S
V
O
V = 5V, A = 1, R = 1k, V = 2V , f = 500kHz  
–77.5  
300  
0.3  
S
V
L
O
P-P C  
t
0.01%, V = 5V, V  
= 2V, A = 1, R = 1k  
STEP V L  
S
S
G  
Differential Gain (NTSC)  
Differential Phase (NTSC)  
V = 5V, A = 2, R = 1k  
%
S
V
L
∆θ  
V = 5V, A = 2, R = 1k  
0.3  
Deg  
S
V
L
sn622012 622012fs  
3
LT6220/LT6221/LT6222  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the 0°C TA 70°C  
temperature range. VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
V
V
V
V
V
= 0V  
90  
180  
230  
0.5  
0.5  
500  
850  
1250  
3
µV  
µV  
µV  
mV  
mV  
OS  
CM  
CM  
CM  
CM  
CM  
= 0V (DD Package)  
= 0V (S5 Package)  
= V  
S
= V (S5 Package)  
3.5  
S
V  
OS  
Input Offset Voltage Shift  
V = 5V, V = 0V to 3.5V  
30  
15  
280  
190  
µV  
µV  
S
CM  
V = 3V, V = 0V to 1.5V  
S
CM  
Input Offset Voltage Match (Channel-to-Channel) V = 0V  
110  
180  
850  
1400  
µV  
µV  
CM  
(Note 9)  
V
= 0V (DD Package)  
CM  
V
TC  
Input Offset Voltage Drift (Note 8)  
1.5  
3.5  
5
10  
µV/°C  
µV/°C  
OS  
(S5 Package)  
I
Input Bias Current  
V
V
= 1V  
20  
275  
175  
800  
nA  
nA  
B
CM  
CM  
= V – 0.2V  
S
Input Bias Current Match (Channel-to-Channel)  
(Note 9)  
V
V
= 1V  
15  
20  
200  
300  
nA  
nA  
CM  
CM  
= V – 0.2V  
S
I
Input Offset Current  
V
V
= 1V  
15  
15  
125  
125  
nA  
nA  
OS  
CM  
CM  
= V – 0.2V  
S
A
Large Signal Voltage Gain  
V = 5V, V = 0.5V to 4.5V, R = 1kat V /2  
30  
3
25  
90  
9
80  
V/mV  
V/mV  
V/mV  
VOL  
S
O
L
S
V = 5V, V = 1V to 4V, R = 100at V /2  
S
O
L
S
V = 3V, V = 0.5V to 2.5V, R = 1kat V /2  
S
O
L
S
CMRR  
Common Mode Rejection Ratio  
V = 5V, V = 0V to 3.5V  
82  
78  
100  
100  
dB  
dB  
S
CM  
V = 3V, V = 0V to 1.5V  
S
CM  
CMRR Match (Channel-to-Channel) (Note 9)  
V = 5V, V = 0V to 3.5V  
77  
73  
100  
100  
dB  
dB  
S
CM  
V = 3V, V = 0V to 1.5V  
S
CM  
Input Common Mode Range  
0
V
V
dB  
dB  
V
S
PSRR  
Power Supply Rejection Ratio  
V = 2.5V to 10V, V = 0V  
81  
76  
104  
104  
2.2  
S
CM  
PSRR Match (Channel-to-Channel) (Note 9)  
Minimum Supply Voltage (Note 6)  
Output Voltage Swing LOW (Note 7)  
2.5  
V
V
No Load  
8
110  
375  
50  
220  
750  
mV  
mV  
mV  
OL  
OH  
I
I
= 5mA  
= 20mA  
SINK  
SINK  
Output Voltage Swing HIGH (Note 7)  
Short-Circuit Current  
No Load  
8
150  
600  
50  
300  
1100  
mV  
mV  
mV  
I
I
= 5mA  
= 20mA  
SOURCE  
SOURCE  
I
I
V = 5V  
20  
20  
40  
30  
mA  
mA  
SC  
S
V = 3V  
S
Supply Current Per Amplifier  
Gain-Bandwidth Product  
Slew Rate  
1
1.4  
mA  
MHz  
V/µs  
S
GBW  
SR  
V = 5V, Frequency = 1MHz  
S
30  
9
60  
18  
V = 5V, A = –1, R = 1k, V = 4V  
S P-P  
V
L
O
sn622012 622012fs  
4
LT6220/LT6221/LT6222  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the –40°C TA 85°C  
temperature range. VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply unless otherwise noted. (Note 5)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
V
V
V
V
V
= 0V  
125  
300  
350  
0.75  
1
700  
1300  
2000  
3.5  
µV  
µV  
µV  
mV  
mV  
OS  
CM  
CM  
CM  
CM  
CM  
= 0V (DD Package)  
= 0V (S5 Package)  
= V  
S
= V (S5 Package)  
4.5  
S
V  
OS  
Input Offset Voltage Shift  
V = 5V, V = 0V to 3.5V  
30  
30  
300  
210  
µV  
µV  
S
CM  
V = 3V, V = 0V to 1.5V  
S
CM  
Input Offset Voltage Match (Channel-to-Channel) V = 0V  
175  
300  
1200  
2200  
µV  
µV  
CM  
(Note 9)  
V
= 0V (DD Package)  
CM  
V
TC  
Input Offset Voltage Drift (Note 8)  
1.5  
3.5  
7.5  
15  
µV/°C  
µV/°C  
OS  
(S5 Package)  
I
Input Bias Current  
V
V
= 1V  
25  
300  
200  
900  
nA  
nA  
B
CM  
CM  
= V – 0.2V  
S
Input Bias Current Match (Channel-to-Channel)  
(Note 9)  
V
V
= 1V  
15  
20  
250  
350  
nA  
nA  
CM  
CM  
= V – 0.2V  
S
I
Input Offset Current  
V
V
= 1V  
20  
20  
150  
150  
nA  
nA  
OS  
CM  
CM  
= V – 0.2V  
S
A
Large Signal Voltage Gain  
V = 5V, V = 0.5V to 4.5V, R = 1k at V /2  
25  
2.5  
20  
70  
8
60  
V/mV  
V/mV  
V/mV  
VOL  
S
O
L
S
V = 5V, V = 1.5V to 3.5V, R = 100at V /2  
S
O
L
S
V = 3V, V = 0.5V to 2.5V, R = 1k at V /2  
S
O
L
S
CMRR  
Common Mode Rejection Ratio  
V = 5V, V = 0V to 3.5V  
81  
77  
100  
100  
dB  
dB  
S
CM  
V = 3V, V = 0V to 1.5V  
S
CM  
CMRR Match (Channel-to-Channel) (Note 9)  
V = 5V, V = 0V to 3.5V  
76  
72  
100  
100  
dB  
dB  
S
CM  
V = 3V, V = 0V to 1.5V  
S
CM  
Input Common Mode Range  
0
V
V
dB  
dB  
V
S
PSRR  
Power Supply Rejection Ratio  
V = 2.5V to 10V, V = 0V  
79  
74  
104  
104  
2.2  
S
CM  
PSRR Match (Channel-to-Channel) (Note 9)  
Minimum Supply Voltage (Note 6)  
Output Voltage Swing LOW (Note 7)  
2.5  
V
V
No Load  
10  
120  
220  
60  
240  
450  
mV  
mV  
mV  
OL  
I
I
= 5mA  
= 10mA  
SINK  
SINK  
Output Voltage Swing HIGH (Note 7)  
Short-Circuit Current  
No Load  
10  
160  
325  
60  
325  
650  
mV  
mV  
mV  
OH  
I
I
= 5mA  
= 10mA  
SOURCE  
SOURCE  
I
I
V = 5V  
12.5  
12.5  
30  
25  
mA  
mA  
SC  
S
V = 3V  
S
Supply Current Per Amplifier  
Gain-Bandwidth Product  
Slew Rate  
1.1  
50  
15  
1.5  
mA  
MHz  
V/µs  
S
GBW  
SR  
V = 5V, Frequency = 1MHz  
S
25  
8
V = 5V, A = –1, R = 1k, V = 4V  
S
V
L
O
sn622012 622012fs  
5
LT6220/LT6221/LT6222  
ELECTRICAL CHARACTERISTICS  
TA = 25°C, VS = ±5V, VCM = 0V, VOUT = 0V, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
V
V
V
V
V
= –5V  
80  
150  
200  
0.7  
0.7  
500  
750  
900  
2.5  
3
µV  
µV  
µV  
mV  
mV  
OS  
CM  
CM  
CM  
CM  
CM  
= –5V (DD Package)  
= –5V (S5 Package)  
= 5V  
= 5V (S5 Package)  
V  
OS  
Input Offset Voltage Shift  
V
= –5V to 3.5V  
70  
675  
µV  
CM  
Input Offset Voltage Match (Channel-to-Channel) V = –5V  
100  
150  
850  
1300  
µV  
µV  
CM  
V
= –5V (DD Package)  
CM  
I
I
Input Bias Current  
V
V
= –4V  
= 5V  
20  
250  
150  
700  
nA  
nA  
B
CM  
CM  
Input Bias Current Match (Channel-to-Channel)  
Input Offset Current  
V
V
= –4V  
= 5V  
15  
20  
175  
250  
nA  
nA  
CM  
CM  
V
V
= –4V  
= 5V  
15  
15  
100  
100  
nA  
nA  
OS  
CM  
CM  
Input Noise Voltage  
0.1Hz to 10Hz  
f = 10kHz  
0.5  
10  
0.8  
2
µV  
P-P  
e
Input Noise Voltage Density  
Input Noise Current Density  
Input Capacitance  
nV/Hz  
pA/Hz  
pF  
n
i
f = 10kHz  
n
C
A
f = 100kHz  
IN  
Large Signal Voltage Gain  
V = – 4V to 4V, R = 1k  
35  
3.5  
95  
10  
V/mV  
V/mV  
VOL  
O
L
V = –2V to 2V, R = 100Ω  
O
L
CMRR  
Common Mode Rejection Ratio  
CMRR Match (Channel-to-Channel)  
Input Common Mode Range  
V
= –5V to 3.5V  
82  
102  
100  
dB  
dB  
V
CM  
77  
+
V
V
S
S
+
PSRR  
Power Supply Rejection Ratio  
V
= 2.5V to 10V, V = 0V, V = 0V  
84  
79  
105  
105  
dB  
dB  
S
S
CM  
PSRR Match (Channel-to-Channel)  
Output Voltage Swing LOW (Note 7)  
V
V
No Load  
SINK  
SINK  
5
100  
325  
40  
200  
650  
mV  
mV  
mV  
OL  
OH  
I
I
= 5mA  
= 20mA  
Output Voltage Swing HIGH (Note 7)  
No Load  
SOURCE  
SOURCE  
5
130  
475  
40  
250  
900  
mV  
mV  
mV  
I
I
= 5mA  
= 20mA  
I
I
Short-Circuit Current  
Supply Current Per Amplifier  
Gain-Bandwidth Product  
Slew Rate  
25  
50  
1
mA  
mA  
SC  
1.5  
S
GBW  
SR  
Frequency = 1MHz  
A = –1, R = 1k,V = ±4V,  
60  
20  
MHz  
V/µs  
V
L
O
Measure at V = ±2V  
O
FPBW  
HD  
Full Power Bandwidth  
Harmonic Distortion  
Settling Time  
V = 8V  
0.8  
–77.5  
375  
MHz  
dBc  
ns  
O
P-P  
A = 1, R = 1k, V = 2V , f = 500kHz  
V
L
O
p-p  
c
t
0.01%, V  
= 5V, A = 1, R = 1k  
STEP V L  
S
G  
Differential Gain (NTSC)  
Differential Phase (NTSC)  
A = 2, R = 1k  
0.15  
0.6  
%
V
L
∆θ  
A = 2, R = 1k  
Deg  
V
L
sn622012 622012fs  
6
LT6220/LT6221/LT6222  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the 0°C TA 70°C  
temperature range. VS = ±5V, VCM = 0V, VOUT = 0V, unless otherwise noted.  
SYMBOL PARAMETER CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
V
V
V
V
V
= –5V  
100  
180  
230  
0.75  
0.75  
650  
900  
1300  
3
µV  
µV  
µV  
mV  
mV  
OS  
CM  
CM  
CM  
CM  
CM  
= –5V (DD Package)  
= –5V (S5 Package)  
= 5V  
= 5V (S5 Package)  
3.5  
V  
OS  
Input Offset Voltage Shift  
V
= –5V to 3.5V  
90  
850  
µV  
CM  
Input Offset Voltage Match (Channel-to-Channel) V = –5V  
90  
180  
1100  
1500  
µV  
µV  
CM  
(Note 9)  
V
= –5V (DD Package)  
CM  
V
TC  
Input Offset Voltage Drift (Note 8)  
1.5  
3.5  
5
10  
µV/°C  
µV/°C  
OS  
(S5 Package)  
I
Input Bias Current  
V
V
= –4V  
= 4.8V  
20  
275  
175  
800  
nA  
nA  
B
CM  
CM  
Input Bias Current Match (Channel-to-Channel)  
(Note 9)  
V
V
= –4V  
= 4.8V  
15  
20  
200  
300  
nA  
nA  
CM  
CM  
I
Input Offset Current  
V
V
= –4V  
= 4.8V  
15  
15  
125  
125  
nA  
nA  
OS  
CM  
CM  
A
Large Signal Voltage Gain  
V = – 4V to 4V, R = 1k  
30  
3
90  
9
V/mV  
V/mV  
VOL  
O
L
V = –2V to 2V, R =100Ω  
O
L
CMRR  
Common Mode Rejection Ratio  
V
= –5V to 3.5V  
80  
100  
100  
dB  
dB  
V
CM  
CMRR Match (Channel-to-Channel) (Note 9)  
Input Common Mode Range  
75  
+
V
V
S
S
+
PSRR  
Power Supply Rejection Ratio  
V
= 2.5V to 10V, V = 0V, V = 0V  
81  
76  
104  
104  
dB  
dB  
S
S
CM  
PSRR Match (Channel-to-Channel) (Note 9)  
Output Voltage Swing LOW (Note 7)  
V
V
No Load  
8
110  
375  
50  
220  
750  
mV  
mV  
mV  
OL  
OH  
I
I
= 5mA  
= 20mA  
SINK  
SINK  
Output Voltage Swing HIGH (Note 7)  
No Load  
8
150  
600  
50  
300  
1100  
mV  
mV  
mV  
I
I
= 5mA  
= 20mA  
SOURCE  
SOURCE  
I
I
Short-Circuit Current  
Supply Current Per Amplifier  
Gain-Bandwidth Product  
Slew Rate  
20  
40  
1.2  
60  
18  
mA  
mA  
SC  
2
S
GBW  
SR  
Frequency = 1MHz  
A = –1, R = 1k, V = ±4V,  
MHz  
V/µs  
V
L
O
Measure at V = ±2V  
O
sn622012 622012fs  
7
LT6220/LT6221/LT6222  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the –40°C TA 85°C  
temperature range. VS = ±5V, VCM = 0V, VOUT = 0V, unless otherwise noted. (Note 5)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
V
V
V
V
V
= –5V  
150  
300  
350  
0.75  
1
800  
1300  
2000  
3.5  
µV  
µV  
µV  
mV  
mV  
OS  
CM  
CM  
CM  
CM  
CM  
= –5V (DD Package)  
= –5V (S5 Package)  
= 5V  
= 5V (S5 Package)  
4.5  
V  
OS  
Input Offset Voltage Shift  
V
= – 5V to 3.5V  
90  
950  
µV  
CM  
Input Offset Voltage Match (Channel-to-Channel) V = –5V  
175  
300  
1350  
2200  
µV  
µV  
CM  
(Note 9)  
V
= –5V (DD Package)  
CM  
V
TC  
Input Offset Voltage Drift (Note 8)  
1.5  
3.5  
7.5  
15  
µV/°C  
µV/°C  
OS  
(S5 Package)  
I
Input Bias Current  
V
V
= –4V  
= 4.8V  
25  
300  
200  
900  
nA  
nA  
B
CM  
CM  
Input Bias Current Match (Channel-to-Channel)  
(Note 9)  
V
V
= –4V  
= 4.8V  
15  
20  
250  
350  
nA  
nA  
CM  
CM  
I
Input Offset Current  
V
V
= –4V  
= 4.8V  
20  
20  
150  
150  
nA  
nA  
OS  
CM  
CM  
A
Large Signal Voltage Gain  
V = –4V to 4V, R = 1k  
25  
2.5  
70  
8
V/mV  
V/mV  
VOL  
O
L
V = –1V to 1V, R = 100Ω  
O
L
CMRR  
Common Mode Rejection Ratio  
V
= –5V to 3.5V  
79  
74  
–5  
79  
74  
100  
100  
dB  
dB  
V
CM  
CMRR Match (Channel-to-Channel) (Note 9)  
Input Common Mode Range  
5
+
PSRR  
Power Supply Rejection Ratio  
V
= 2.5V to 10V, V = 0V, V = 0V  
104  
104  
dB  
dB  
S
S
CM  
PSRR Match (Channel-to-Channel) (Note 9)  
Output Voltage Swing LOW (Note 7)  
V
V
No Load  
10  
120  
220  
60  
240  
450  
mV  
mV  
mV  
OL  
OH  
I
I
= 5mA  
= 10mA  
SINK  
SINK  
Output Voltage Swing HIGH (Note 7)  
No Load  
10  
160  
325  
60  
325  
650  
mV  
mV  
mV  
I
I
= 5mA  
= 10mA  
SOURCE  
SOURCE  
I
I
Short-Circuit Current  
Supply Current  
12.5  
30  
1.4  
50  
15  
mA  
mA  
SC  
2.25  
S
GBW  
SR  
Gain-Bandwidth Product  
Slew Rate  
Frequency = 1MHz  
A = –1, R = 1k,V = ±4V,  
MHz  
V/µs  
V
L
O
Measure at V = ±2V  
O
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
LT6220I/LT6221I/LT6222I are guaranteed to meet specified performance  
from –40°C to 85°C.  
Note 2: The inputs are protected by back-to-back diodes. If the differential  
input voltage exceeds 1.4V, the input current should be limited to less than  
10mA.  
Note 3: A heat sink may be required to keep the junction temperature  
below the absolute maximum rating when the output is shorted  
indefinitely.  
Note 6: Minimum supply voltage is guaranteed by power supply rejection  
ratio test.  
Note 7: Output voltage swings are measured between the output and  
power supply rails.  
Note 8: This parameter is not 100% tested.  
Note 9: Matching parameters are the difference between amplifiers A and  
D and between B and C on the LT6222; between the two amplifiers on the  
LT6221.  
Note 4: The LT6220C/LT6221C/LT6222C and LT6220I/LT6221I/LT6222I  
are guaranteed functional over the temperature range of –40°C and 85°C.  
Note 5: The LT6220C/LT6221C/LT6222C are guaranteed to meet specified  
performance from 0°C to 70°C. The LT6220C/LT6221C/LT6222C are  
designed, characterized and expected to meet specified performance from  
–40°C to 85°C but is not tested or QA sampled at these temperatures. The  
Note 10: Thermal resistance (θ ) varies with the amount of PC board  
JA  
metal connected to the package. The specified values are for short traces  
connected to the leads. If desired, the thermal resistance can be  
substantially reduced by connecting Pin 2 of the LT6220CS5/LT6220IS5 or  
the underside metal of DD packages to a larger metal area (V trace).  
S
sn622012 622012fs  
8
LT6220/LT6221/LT6222  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
VOS Distribution, VCM = 0V  
(S8, PNP Stage)  
VOS Distribution, VCM = 0V  
(SOT5, PNP Stage)  
VOS Distribution, VCM = 5V  
(S8, NPN Stage)  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
50  
V
V
= 5V, 0V  
CM  
V
V
= 5V, 0V  
CM  
V
V
= 5V, 0V  
CM  
S
S
S
= 0V  
= 0V  
45  
40  
35  
30  
25  
20  
15  
10  
5
= 5V  
0
0
0
–250  
–150  
–50  
0
50  
150  
250  
–1000  
–600  
–200  
0
200  
600  
1000  
–2000 –1200  
–400  
0
400  
1200  
2000  
INPUT OFFSET VOLTAGE (µV)  
INPUT OFFSET VOLTAGE (µV)  
INPUT OFFSET VOLTAGE (µV)  
622012 G01  
622012 G02  
622012 G03  
VOS Distribution, VCM = 5V  
(SOT5, NPN Stage)  
Offset Voltage  
vs Input Common Mode Voltage  
Supply Current vs Supply Voltage  
700  
500  
3
2
1
0
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
V = 5V, 0V  
S
TYPICAL PART  
V
V
= 5V, 0V  
CM  
S
= 5V  
300  
T
= –55°C  
= 25°C  
A
T
= 125°C  
A
100  
T
A
T
= 25°C  
A
–100  
–300  
–500  
–700  
T
= 125°C  
A
T
= –55°C  
A
0
0
1
4
5
6
7
8
9
10 11 12  
0
1
2
3
4
5
2
3
–3000 –1800  
–600  
0
600  
1800  
3000  
TOTAL SUPPLY VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
INPUT OFFSET VOLTAGE (µV)  
622012 G05  
622012 G06  
622012 G04  
Input Bias Current  
vs Common Mode Voltage  
Input Bias Current  
vs Temperature  
Output Saturation Voltage  
vs Load Current (Output Low)  
10  
1
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
400  
300  
V
= 5V, 0V  
V = 5V, 0V  
S
V
S
= 5V, 0V  
S
T
= 25°C  
A
T
= –55°C  
A
200  
100  
NPN ACTIVE  
= 5V  
T
= 125°C  
A
V
CM  
0
T
A
= 125°C  
0.1  
–100  
–200  
–300  
–400  
–500  
–600  
PNP ACTIVE  
= 1V  
T
A
= 25°C  
V
CM  
0.01  
0.001  
T
A
= –55°C  
–0.1  
–0.2  
1
2
3
4
5
6
–55  
–25  
35  
5
TEMPERATURE (°C)  
65  
95  
125  
0.01  
0.1  
1
10  
100  
0
LOAD CURRENT (mA)  
COMMON MODE VOLTAGE (V)  
622012 G09  
622012 G07  
622012 G08  
sn622012 622012fs  
9
LT6220/LT6221/LT6222  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Output Saturation Voltage  
vs Load Current (Output High)  
Output Short-Circuit Current  
vs Power Supply Voltage  
Minimum Supply Voltage  
0.6  
0.4  
10  
1
70  
60  
50  
40  
30  
20  
10  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
V
= 5V, 0V  
T
= 25°C  
S
A
T
= 125°C  
= –55°C  
A
SINKING  
T
A
0.2  
0
T
T
= –55°C  
A
T
= 25°C  
A
T
= 125°C  
A
0.1  
= 125°C  
A
T
= 25°C  
–0.2  
–0.4  
–0.6  
A
T
= –55°C  
A
0.01  
0.001  
SOURCING  
T
= –55°C  
A
T
A
= 125°C  
T
= 25°C  
A
0
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
0.01  
0.1  
1
10  
100  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
TOTAL SUPPLY VOLTAGE (V)  
LOAD CURRENT (mA)  
POWER SUPPLY VOLTAGE (±V)  
622012 G10  
622012 G11  
622012 G12  
Open-Loop Gain  
Open-Loop Gain  
Open-Loop Gain  
1000  
800  
1000  
800  
1000  
800  
V
= 5V, 0V  
TO GND  
V = ±5V  
S
R TO GND  
L
V
= 3V, 0V  
TO GND  
S
L
S
L
R
R
600  
600  
600  
400  
400  
400  
200  
200  
200  
R
= 1k  
R
R
= 1k  
R
L
= 1k  
L
L
0
0
0
= 100  
–200  
–400  
–600  
–800  
–1000  
–200  
–400  
–600  
–800  
–1000  
–200  
–400  
–600  
–800  
–1000  
L
R
1
= 100Ω  
R
= 100  
L
L
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
6
–5 –4 –3 –2 –1  
0
2
3
4
5
0
0.5  
1.5  
2
2.5  
3
1
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
622012 G14  
622012 G15  
622012 G13  
Offset Voltage vs Output Current  
Warm-Up Drift vs Time  
Input Noise Voltage vs Frequency  
40  
35  
30  
25  
20  
15  
10  
5
2.0  
1.5  
10  
8
V
= 5V, 0V  
V
= ±5V  
S
S
6
1.0  
4
0.5  
LT6222  
GN16  
S
LT6220  
SOT5  
S
LT6221  
2
T
= –55°C  
T = 25°C  
A
A
S8  
0
V
= ±2.5V  
V
= ±2.5V  
0
V
= ±2.5V  
S
NPN ACTIVE  
= 4.25V  
V
CM  
–2  
–4  
–6  
–8  
–10  
–0.5  
–1.0  
–1.5  
–2.0  
T
= 125°C  
A
PNP ACTIVE  
LT6222  
GN16  
S
LT6221  
S8  
LT6220  
SOT5  
S
V
= 2.5V  
CM  
V
= ±5V  
V
= ±5V  
V
= ±5V  
S
0
0.01  
0.1  
1
10  
100  
–75 –60 –45 –30 –15  
0
15 30 45 60 75  
0
5
10 15 20 25 30 35 40 45 50  
FREQUENCY (kHz)  
OUTPUT CURRENT (mA)  
TIME AFTER POWER-UP (SECONDS)  
622012 G18  
622012 G16  
622012 G17  
sn622012 622012fs  
10  
LT6220/LT6221/LT6222  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Gain Bandwidth and Phase  
Margin vs Supply Voltage  
Input Current Noise vs Frequency  
0.1Hz to 10Hz Output Voltage Noise  
3.0  
800  
600  
90  
80  
70  
60  
50  
V
= 5V, 0V  
T
= 25°C  
S
V = 5V, 0V  
S
A
2.5  
2.0  
GAIN BANDWIDTH PRODUCT  
PHASE MARGIN  
400  
200  
0
1.5  
1.0  
70  
60  
50  
40  
30  
20  
PNP ACTIVE  
= 2.5V  
–200  
–400  
–600  
–800  
V
CM  
NPN ACTIVE  
0.5  
0
V
CM  
= 4.25V  
0.01  
0.1  
1
10  
100  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
FREQUENCY (kHz)  
TIME (SECONDS)  
TOTAL SUPPLY VOLTAGE (V)  
622012 G19  
622012 G20  
622012 G21  
Gain Bandwidth and Phase  
Margin vs Temperature  
Gain and Phase vs Frequency  
Slew Rate vs Temperature  
80  
120  
100  
80  
30  
90  
80  
70  
60  
50  
A
R
R
= –1  
G
= 1k  
V
F
L
70  
60  
50  
= R = 1k  
GAIN BANDWIDTH PRODUCT  
PHASE  
V
= ±2.5V  
V
= ±5V  
S
S
V
= ±5V  
S
60  
25  
20  
15  
V
= ±5V  
S
40  
30  
40  
20  
V
= ±2.5V  
= ±2.5V  
S
70  
V
GAIN  
PHASE MARGIN  
S
V
= ±5V  
S
V
= ±2.5V  
20  
10  
0
S
60  
50  
40  
30  
20  
V
= ±5V  
S
–20  
–40  
–60  
–80  
V
= ±2.5V  
S
0
–10  
–20  
10k  
100k  
1M  
10M  
100M  
–55  
5
35  
65  
95  
125  
–25  
–55  
–25  
5
35  
65  
95  
125  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
622012 G23  
622012 G24  
622012 G22  
Gain vs Frequency (AV = 1)  
Gain vs Frequency (AV = 2)  
Output Impedance vs Frequency  
15  
15  
1000  
100  
10  
V
= ±2.5V  
A
C
= 1  
= 10pF  
= 1k  
S
V
L
L
12  
9
12  
9
R
6
6
A
= 10  
= 1  
V
3
0
3
0
V
S
= ±2.5V  
V
S
= ±2.5V  
1
V
S
= ±5V  
V
= ±5V  
S
A
= 2  
V
–3  
–6  
–3  
–6  
A
0.1  
V
A
= 2  
V
R
= R = 1k  
F
F
L
G
–9  
–9  
C
C
= 20pF  
= 10pF  
= 1k  
0.01  
0.001  
–12  
–12  
R
L
–15  
–15  
0.1  
1
10  
100  
0.1  
1
10  
100  
0.1  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
622012 G25  
622012 G26  
620012 G27  
sn622012 622012fs  
11  
LT6220/LT6221/LT6222  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Common Mode Rejection Ratio  
vs Frequency  
Power Supply Rejection Ratio  
vs Frequency  
Series Output Resistor  
vs Capacitive Load  
120  
120  
100  
80  
60  
40  
20  
0
50  
45  
40  
35  
V
= 5V, 0V  
V
= 5V, 0V  
S
V
A
= 5V, 0V  
S
S
V
L
= 1  
100  
80  
R
= , UNLESS NOTED  
POSITIVE  
SUPPLY  
R
= 10Ω  
OS  
30  
25  
60  
40  
R
= 20Ω  
NEGATIVE  
SUPPLY  
OS  
20  
15  
10  
5
R
= R = 50Ω  
L
OS  
20  
0
0
0.01  
0.1  
1
10  
100  
0.001  
0.01  
0.1  
1
10  
100  
10  
100  
1000  
10000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
CAPACITIVE LOAD (pF)  
622012 G28  
622012 G29  
622012 G31  
Series Output Resistor  
vs Capacitive Load  
Distortion vs Frequency  
Distortion vs Frequency  
50  
45  
40  
35  
–30  
–40  
–30  
–40  
V
A
= 5V, 0V  
V
A
V
= 5V, 0V  
= 1  
V
A
V
= 5V, 0V  
= 2  
S
V
L
S
V
S
V
= 2  
R
= , UNLESS NOTED  
= 2V  
= 2V  
OUT  
P-P  
OUT  
P-P  
–50  
–50  
R
= 150,  
L
R
L
= 150,  
3RD  
R = 1k,  
L
2ND  
–60  
2ND  
–60  
30  
25  
R
L
= 150,  
R
= 150,  
L
–70  
–70  
3RD  
2ND  
R
= 10Ω  
OS  
R
= 1k,  
20  
15  
10  
5
L
–80  
–80  
R = 1k,  
L
3RD  
2ND  
–90  
–90  
R
= 1k,  
L
3RD  
R
= 20Ω  
OS  
–100  
–100  
R
= R = 50Ω  
L
OS  
0
–110  
–110  
10  
100  
1000  
10000  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
CAPACITIVE LOAD (pF)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
622012 G32  
622012 G33  
622012 G34  
Maximum Undistorted Output  
Signal vs Frequency  
5V Small-Signal Response  
5V Large-Signal Response  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
50mV/DIV  
2.5V  
A
= –1  
A = 2  
V
V
1V/DIV  
0V  
V
S = 5V, 0V  
AV = 1  
L = 1k  
50ns/DIV  
622012 G37  
VS = 5V, 0V  
AV = 1  
100ns/DIV  
622012 G36  
V
= 5V, 0V  
= 1k  
S
L
R
R
RL = 1k  
0
0.01  
0.1  
1
10  
FREQUENCY (MHz)  
622012 G35  
sn622012 622012fs  
12  
LT6220/LT6221/LT6222  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
±5V Large-Signal Response  
±5V Small-Signal Response  
Output Overdriven Recovery  
VIN  
1V/DIV  
50mV/DIV  
0V  
2V/DIV  
0V  
0V  
VOUT  
2V/DIV  
0V  
VS = ±5V  
AV = 1  
RL = 1k  
200ns/DIV  
622012 G38  
VS = ±5V  
AV = 1  
RL = 1k  
50ns/DIV  
622012 G39  
V
S = 5V, 0V  
200ns/DIV  
622012 G40  
AV = 2  
RL = 1k  
W U U  
U
APPLICATIO S I FOR ATIO  
Circuit Description  
tail current, I1, to the current mirror, Q6/Q7, activating the  
NPN differential pair and the PNP pair becomes inactive  
for the rest of the input common mode range up to the  
positive supply. Also, at the input stage, devices Q17 to  
Q19 act to cancel the bias current of the PNP input pair.  
When Q1/Q2 are active, the current in Q16 is controlled to  
be the same as the current Q1/Q2. Thus, the base current  
of Q16 is nominally equal to the base current of the input  
devices. The base current of Q16 is then mirrored by  
devices Q17-Q19 to cancel the base current of the input  
devices Q1/Q2.  
The LT6220/LT6221/LT6222 have an input and output  
signalrangethatcoversfromthenegativepowersupplyto  
the positive power supply. Figure 1 depicts a simplified  
schematic of the amplifier. The input stage comprises two  
differential amplifiers, a PNP stage, Q1/Q2, and an NPN  
stage, Q3/Q4, that are active over different ranges of  
common mode input voltage. The PNP stage is active  
between the negative supply to approximately 1.2V below  
the positive supply. As the input voltage moves closer  
toward the positive supply, the transistor Q5 will steer the  
+
V
R3  
R4  
R5  
+
V
V
+
+
D1  
ESDD1  
ESDD2  
Q12  
I
I
1
Q11  
Q15  
2
Q13  
C2  
+IN  
–IN  
+
D6  
D5  
D8  
D7  
Q5  
V
BIAS  
I
3
D2  
OUT  
C
C
V
Q4 Q3  
Q1 Q2  
D3  
BUFFER  
AND  
OUTPUT BIAS  
ESDD4  
ESDD3  
Q10  
+
V
V
D4  
Q9  
R1  
Q8  
Q16  
C1  
Q17  
Q18  
Q14  
Q7  
Q6  
Q19  
R2  
V
622012 F01  
Figure 1. LT6220/LT6221/LT6222 Simplified Schematic Diagram  
sn622012 622012fs  
13  
LT6220/LT6221/LT6222  
W U U  
U
APPLICATIO S I FOR ATIO  
Input Offset Voltage  
ApairofcomplementarycommonemitterstagesQ14/Q15  
that enable the output to swing from rail-to-rail construct  
the output stage. The capacitors C2 and C3 form the local  
feedback loops that lower the output impedance at high  
frequency. These devices are fabricated by Linear  
Technology’s proprietary high speed complementary bi-  
polar process.  
Theoffsetvoltagewillchangedependinguponwhichinput  
stage is active. The PNP input stage is active from the  
negative supply rail to 1.2V below the positive supply rail,  
then the NPN input stage is activated for the remaining  
input range up to the positive supply rail during which the  
PNP stage remains inactive. The offset voltage is typically  
less than 70µV in the range that the PNP input stage is  
active.  
Power Dissipation  
The LT6222, with four amplifiers, is housed in a small  
16-lead SSOP package and typically has a thermal resis-  
tance (θJA) of 135°C/W. It is necessary to ensure that the  
die’s junction temperature does not exceed 150°C. The  
junction temperature, TJ, is calculated from the ambient  
temperature,TA,powerdissipation,PD,andthermalresis-  
tance, θJA:  
Input Bias Current  
The LT6220/LT6221/LT6222 employ a patent pending  
technique to trim the input bias current to less than 150nA  
for the input common mode voltage of 0.2V above the  
negative supply rail to 1.2V below the positive rail. The low  
input offset voltage and low input bias current of the  
LT6220/LT6221/LT6222 provide precision performance  
especially for high source impedance applications.  
TJ = TA + (PD θJA)  
ThepowerdissipationintheICisthefunctionofthesupply  
voltage,outputvoltageandtheloadresistance.Foragiven  
supply voltage, the worst-case power dissipation PD(MAX)  
occurs when the maximum supply current and the output  
voltage is at half of either supply voltage for a given load  
resistance. PD(MAX) is given by:  
Output  
The LT6220/LT6221/LT6222 can deliver a large output  
current, so the short-circuit current limit is set around  
50mA to prevent damage to the device. Attention must be  
paid to keep the junction temperature of the IC below the  
absolute maximum rating of 150°C (refer to the Power  
Dissipation section) when the output is in continuous  
short circuit. The output of the amplifier has reverse-  
biased diodes connected to each supply. If the output is  
forced beyond either supply, unlimited current will flow  
throughthesediodes. Ifthecurrentistransientandlimited  
to several hundred milliamperes, no damage will occur to  
the device.  
2
V
2
S
PD(MAX) = V I  
+
/ RL  
(
)
S
S(MAX)  
Example: For an LT6222 in a 16-lead SSOP package  
operating on ±5V supplies and driving a 100load, the  
worst-case power dissipation is given by:  
2
PD(MAX)/Amp = 10 1.8mA + 2.5 / 100  
(
) (  
)
= 0.018 + 0.0625 = 80.5mW  
Overdrive Protection  
If all four amplifiers are loaded simultaneously, then the  
total power dissipation is 322mW.  
When the input voltage exceeds the power supplies, two  
pair of crossing diodes, D1 to D4, will prevent the output  
from reversing polarity. If the input voltage exceeds either  
power supply by 700mV, diode D1/D2 or D3/D4 will turn  
on to keep the output at the proper polarity. For the phase  
reversal protection to perform properly, the input current  
must be limited to less than 5mA. If the amplifier is  
The maximum ambient temperature at which the part is  
allowed to operate is:  
TA = TJ – (PD(MAX) • 135°C/W)  
= 150°C – (0.322W • 135°C/W) = 106.5°C  
sn622012 622012fs  
14  
LT6220/LT6221/LT6222  
W U U  
APPLICATIO S I FOR ATIO  
U
severelyoverdriven, anexternalresistorshouldbeusedto  
limit the overdriven current.  
capacitive load, a resistor of 10to 50should be  
connected between the output and the capacitive load to  
avoid ringing or oscillation. The feedback should still be  
taken from the output so that the resistor will isolate the  
capacitive load to ensure stability. Graphs on capacitive  
loads show the transient response of the amplifier when  
driving capacitive load with specified series resistors.  
The LT6220/LT6221/LT6222’s input stages are also pro-  
tected against a large differential input voltage of 1.4V or  
higher by a pair of back-to-back diodes, D5/D8, to prevent  
the emitter-base breakdown of the input transistors. The  
current in these diodes should be limited to less than  
10mA when they are active. The worse-case differential  
inputvoltageusuallyoccurswhentheinputisdrivenwhile  
the output is shorted to ground in a unity-gain configura-  
tion. In addition, the amplifier is protected against ESD  
strikes up to 3kV on all pins by a pair of protection diodes  
on each pin that are connected to the power supplies as  
shown in Figure 1.  
Feedback Components  
Whenfeedbackresistorsareusedtosetupgain,caremust  
be taken to ensure that the pole formed by the feedback  
resistors and the total capacitance at the inverting input  
does not degrade stability. For instance, the LT6220/  
LT6221/LT6222, set up with a noninverting gain of 2, two  
5kresistorsandacapacitanceof5pF(partplusPCboard),  
will probably oscillate. The pole is formed at 12.7MHz that  
will reduce phase margin by 52 degrees when the cross-  
overfrequencyoftheamplifierisaround10MHz.Acapaci-  
tor of 10pF or higher connecting across the feedback  
resistor will eliminate any ringing or oscillation.  
Capacitive Load  
The LT6220/LT6221/LT6222 are optimized for high band-  
width, low power and precision applications. They can  
drive a capacitive load up to 100pF in a unity-gain configu-  
ration and more for higher gain. When driving a larger  
U
TYPICAL APPLICATIO S  
Stepped-Gain Photodiode Amplifier  
ground, so Q1 is reverse biased and no current flows  
through R2. So for small signals, the only feedback path  
is R1 (and C1) and the circuit is a simple transimpedance  
amplifier with 100kgain.  
The circuit of Figure 2 is a stepped gain transimpedance  
photodiode amplifier. At low signal levels, the circuit has  
a high 100kgain, but at high signal levels the circuit  
automatically and smoothly changes to a low 3.2kgain.  
The benefit of a stepped gain approach is that it maximizes  
dynamic range, which is very useful on limited supplies.  
Put another way, in order to get 100ksensitivity and still  
handle a 1mA signal level without resorting to gain reduc-  
tion, the circuit would need a 100V negative voltage  
supply.  
+
V
S
R4  
10k  
R2  
3.24k  
PHILIPS  
BCV62  
C2  
30pF  
3
4
+
V
S
R1  
100k  
C1  
1pF  
Q1  
V
Q2  
+
V
S
I
PD  
2
1
R3  
33k  
The operation of the circuit is quite simple. At low photo-  
diode currents (below 10µA) the output and inverting  
input of the op amp will be no more than 1V below ground.  
The LT1634 in parallel with R3 and Q2 keep a constant  
current though Q2 of about 20µA. R4 maintains quiescent  
current through the LT1634 and pulls Q2’s emitter above  
LT1634-1.25  
S
PHOTODIODE  
~4pF  
LT6220  
V
OUT  
+
V
S
= ±1.5V TO ±5V  
622012 F02  
V
S
Figure 2. Stepped-Gain Photodiode Amplifier  
sn622012 622012fs  
15  
LT6220/LT6221/LT6222  
U
PACKAGE DESCRIPTIO  
20  
0
As the signal level increases though, the output of the op  
amp goes more negative. At 12.5µA of photodiode cur-  
rent, the 100kgain dictates that the LT6220 output will  
be about 1.25V below ground. However, at that point the  
emitter of Q2 will be at ground, and the base of Q1 will be  
1V below ground. Thus, Q1 turns on and photodiode  
current starts to flow through R2. The transimpedance  
gain is therefore now reduced to R1||R2, or about 3.1k.  
ThecircuitresponseisshowninFigure3.Notethesmooth  
transition between the two operating gains, as well as the  
linearity.  
–20  
–40  
–60  
–80  
–100  
–120  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
622012 F05  
PHOTO  
CURRENT  
100µA/DIV  
Figure 5. Frequency Response of Filter  
Differential-In/Differential-Out Amplifier  
The circuit of Figure 6 shows the LT6222 applied as a  
buffered differential-in differential-out amplifier with a  
gain of 2. Op amps A and B are configured as simple unity-  
gain buffers, offering high input impedance to upstream  
circuitry. Resistors R1 and R2 perform an averaging  
function on the common mode input voltage and R3  
attenuates it by a factor of 2/3 and references it to the  
voltage source VOCM. The resultant voltage, VMID = 2/3 •  
VICM, isplacedatthenoninvertinginputsofopampsCand  
D. The other four resistors set gains of +3 from the  
noninvertinginputand2throughtheinvertingpath.Thus  
the output voltage of the upper path is:  
V
OUT  
0.5V/DIV  
622012 F03  
5µs/DIV  
Figure 3. Stepped-Gain Photodiode Amplifier Response  
Single 3V Supply, 1MHz, 4th Order Butterworth Filter  
The circuit shown in Figure 4 makes use of the low voltage  
operation and the wide bandwidth of the LT6221 to create  
aDCaccurate1MHz4thorderlowpassfilterpoweredfrom  
a 3V supply. The amplifiers are configured in the inverting  
mode for the lowest distortion and the output can swing  
rail-to-rail for maximum dynamic range. Figure 5 displays  
the frequency response of the filter. Stopband attenuation  
is greater than 100dB at 50MHz.  
–OUT = 3 • (2/3 • VICM + 1/3 • VOCM) – 2  
• (VICM + VDIFF/2)  
= 2VICM + VOCM – 2VICM – VDIFF  
= VOCM – VDIFF  
909Ω  
2.67k  
220pF  
47pF  
1.1k  
2.21k  
470pF  
22pF  
909Ω  
3V  
V
IN  
1.1k  
1/2 LT6221  
+
1/2 LT6221  
V
OUT  
+
V /2  
S
622012 F04  
Figure 4. 3V, 1MHz, 4th Order Butterworth Filter  
sn622012 622012fs  
16  
LT6220/LT6221/LT6222  
U
PACKAGE DESCRIPTIO  
and the output of the lower path is:  
risetotheeffectivedifferentialgainof2.Calculationsshow  
that using 1% resistors gives worst-case input common  
mode feedthrough better than –31dB, whether looking at  
the output common mode or difference mode. Consider-  
ing the 6dB of gain, worst-case common mode rejection  
ratio is 37dB. (Remember this is assuming 1% resistors.  
Of course, this can be improved with more precise resis-  
tors.) Results achieved on the bench with typical 1%  
resistors showed 67dB of CMRR at low frequency and  
40dB CMRR at 1MHz. Gains other than 2 can be achieved  
by setting R3 = α• (R1||R2), R5 = α• R4 and R7 = α• R6  
where gain = α.  
+OUT = 3 • (2/3 • VICM + 1/3 • VOCM) – 2  
• (VICM – VDIFF/2)  
= 2VICM + VOCM – 2VICM + VDIFF  
= VOCM + VDIFF  
Notethattheinputcommonmodevoltagedoesnotappear  
in the output as either a common mode or a difference  
mode term. However the voltage VOCM does appear in the  
output terms, and with the same polarity, so it sets up the  
output DC level. Also, the differential input voltage VDIFF  
appearsfullyatbothoutputswithoppositepolarity, giving  
U
PACKAGE DESCRIPTIO  
DD Package  
8-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1698)  
R = 0.115  
0.38 ± 0.10  
TYP  
5
8
0.675 ±0.05  
3.5 ±0.05  
2.15 ±0.05 (2 SIDES)  
1.65 ±0.05  
3.00 ±0.10  
(4 SIDES)  
1.65 ± 0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(NOTE 6)  
PACKAGE  
OUTLINE  
(DD8) DFN 1203  
4
1
0.25 ± 0.05  
0.75 ±0.05  
0.200 REF  
0.25 ± 0.05  
0.50 BSC  
0.50  
BSC  
2.38 ±0.05  
(2 SIDES)  
2.38 ±0.10  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-1)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON TOP AND BOTTOM OF PACKAGE  
sn622012 622012fs  
17  
LT6220/LT6221/LT6222  
U
PACKAGE DESCRIPTIO  
S5 Package  
5-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1635)  
0.62  
MAX  
0.95  
REF  
2.90 BSC  
(NOTE 4)  
1.22 REF  
1.50 – 1.75  
(NOTE 4)  
2.80 BSC  
1.4 MIN  
3.85 MAX 2.62 REF  
PIN ONE  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.30 – 0.45 TYP  
5 PLCS (NOTE 3)  
0.95 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
S5 TSOT-23 0302  
NOTE:  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
3. DIMENSIONS ARE INCLUSIVE OF PLATING 6. JEDEC PACKAGE REFERENCE IS MO-193  
sn622012 622012fs  
18  
LT6220/LT6221/LT6222  
U
PACKAGE DESCRIPTIO  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.189 – .197  
(4.801 – 5.004)  
.045 ±.005  
NOTE 3  
.050 BSC  
7
5
8
6
.245  
MIN  
.160 ±.005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.030 ±.005  
TYP  
1
3
4
2
RECOMMENDED SOLDER PAD LAYOUT  
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
SO8 0303  
GN Package  
16-Lead Plastic SSOP (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1641)  
.189 – .196*  
(4.801 – 4.978)  
.045 ±.005  
.009  
(0.229)  
REF  
16 15 14 13 12 11 10 9  
.254 MIN  
.150 – .165  
.229 – .244  
.150 – .157**  
(5.817 – 6.198)  
(3.810 – 3.988)  
.0165 ±.0015  
.0250 BSC  
RECOMMENDED SOLDER PAD LAYOUT  
1
2
3
4
5
6
7
8
.015 ± .004  
(0.38 ± 0.10)  
× 45°  
.0532 – .0688  
(1.35 – 1.75)  
.004 – .0098  
(0.102 – 0.249)  
.007 – .0098  
(0.178 – 0.249)  
0° – 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.0250  
(0.635)  
BSC  
.008 – .012  
GN16 (SSOP) 0204  
(0.203 – 0.305)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: INCHES  
INCHES  
2. DIMENSIONS ARE IN  
(MILLIMETERS)  
3. DRAWING NOT TO SCALE  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
sn622012 622012fs  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
19  
LT6220/LT6221/LT6222  
U
TYPICAL APPLICATIO  
R5  
2k  
5.6pF  
V
ICM  
+ V  
/2  
+
DIFF  
V
R4  
1k  
S
+
+IN  
A
1/4 LT6222  
D
–OUT  
1/4 LT6222  
R1  
2k  
+
R3  
2k  
V
MID  
V
OCM  
R2  
2k  
R6  
1k  
+
V
ICM  
– V  
/2  
DIFF  
C
+OUT  
–IN  
+
1/4 LT6222  
B
1/4 LT6222  
R7  
2k  
V
S
5.6pF  
622012 F06  
V
= ±1.3V TO ±6V  
S
BW 11MHz  
Figure 6. Buffered Gain of 2 Differential-In/Differential-Out Amplifier  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
Dual/Quad 10MHz, 6V/µs Rail-to-Rail Input/  
Output C Op Amps  
COMMENTS  
LT1498/LT1499  
High DC Accuracy, 475µV V  
Wide Supply Range, 2.2V to 30V  
Max Supply Current 2.2mA/Amp,  
, Max Supply Current 2mA/Amp  
BIAS(MAX)  
OS(MAX)  
LOAD  
LT1800/LT1801/LT1802 Single/Dual/Quad 80MHz, 25V/µs,  
Low Power Rail-to-Rail Input/Output Precision Op Amps  
350µV V , 250nA I  
OS(MAX)  
LT1803/LT1804/LT1805 Single/Dual/Quad 85MHz, 100V/µs  
2mV V , Max Supply Current 3mA/Amp  
OS(MAX)  
Rail-to-Rail Input/Output Op Amps  
LT1806/LT1807  
LT1809/LT1810  
Single/Dual 325MHz, 140V/µs Rail-to-Rail Input/  
Output Op Amps  
High DC Accuracy, 550µV V  
Low Distortion 80dBc at 5MHz, Power Down (LT1806)  
Max Low Noise 3.5nV/Hz  
OS(MAX)  
Single/Dual 180MHz, Rail-to-Rail Input/Output Op Amps 350V/µs Slew Rate, Low Distortion –90dBc at 5MHz,  
Power Down (LT1809)  
sn622012 622012fs  
LT/TP 0204 1K • PRINTED IN USA  
20 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
©LINEAR TECHNOLOGY CORPORATION 2003  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT6220IS5#TR

LT6220 - Single 60MHz, 20V/µs Low Power, Rail-to-Rail Input and Output Precision Op Amps; Package: SOT; Pins: 5; Temperature Range: -40°C to 85°C
Linear

LT6220IS5#TRM

LT6220 - Single 60MHz, 20V/µs Low Power, Rail-to-Rail Input and Output Precision Op Amps; Package: SOT; Pins: 5; Temperature Range: -40°C to 85°C
ADI

LT6220IS5#TRPBF

LT6220 - Single 60MHz, 20V/µs Low Power, Rail-to-Rail Input and Output Precision Op Amps; Package: SOT; Pins: 5; Temperature Range: -40°C to 85°C
Linear

LT6220IS8

Single/Dual/Quad 60MHz, 20V/us, Low Power, Rail-to-Rail Input and Output Precision Op Amps
Linear

LT6220IS8#PBF

暂无描述
Linear

LT6220IS8#TR

LT6220 - Single 60MHz, 20V/µs Low Power, Rail-to-Rail Input and Output Precision Op Amps; Package: SO; Pins: 8; Temperature Range: -40°C to 85°C
Linear

LT6220_15

Single/Dual/Quad 60MHz, 20V/s, Low Power, Rail-to-Rail Input
Linear

LT6221CDD

Single/Dual/Quad 60MHz, 20V/us, Low Power, Rail-to-Rail Input and Output Precision Op Amps
Linear

LT6221CDD#PBF

LT6221 - Dual 60MHz, 20V/µs Low Power, Rail-to-Rail Input and Output Precision Op Amp; Package: DFN; Pins: 8; Temperature Range: 0°C to 70°C
Linear

LT6221CDD#TR

LT6221 - Dual 60MHz, 20V/µs Low Power, Rail-to-Rail Input and Output Precision Op Amp; Package: DFN; Pins: 8; Temperature Range: 0°C to 70°C
Linear

LT6221CDD#TRPBF

LT6221 - Dual 60MHz, 20V/µs Low Power, Rail-to-Rail Input and Output Precision Op Amp; Package: DFN; Pins: 8; Temperature Range: 0°C to 70°C
Linear

LT6221CS8

Single/Dual/Quad 60MHz, 20V/us, Low Power, Rail-to-Rail Input and Output Precision Op Amps
Linear