LT6234IDD#PBF [Linear]

LT6234 - 60MHz, Rail-to-Rail Output, 1.9nV/rtHz, 1.2mA Op Amp Family; Package: DFN; Pins: 8; Temperature Range: -40°C to 85°C;
LT6234IDD#PBF
型号: LT6234IDD#PBF
厂家: Linear    Linear
描述:

LT6234 - 60MHz, Rail-to-Rail Output, 1.9nV/rtHz, 1.2mA Op Amp Family; Package: DFN; Pins: 8; Temperature Range: -40°C to 85°C

放大器 光电二极管
文件: 总24页 (文件大小:767K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT6233/LT6233-10  
LT6234/LT6235  
60MHz, Rail-to-Rail Output,  
1.9nV/Hz, 1.2mA Op Amp Family  
FeaTures  
DescripTion  
n Low Noise Voltage: 1.9nV/√Hz  
n Low Supply Current: 1.2mA/Amp Max  
n Low Offset Voltage: 350µV Max  
n Gain-Bandwidth Product:  
LT6233: 60MHz; A ≥ 1  
LT6233-10: 375MHz; A ≥ 10  
n Wide Supply Range: 3V to 12.6V  
n Output Swings Rail-to-Rail  
n Common Mode Rejection Ratio: 115dB Typ  
n Output Current: 30mA  
n Operating Temperature Range: –40°C to 85°C  
n LT6233 Shutdown to 10µA Maximum  
n LT6233/LT6233-10 in a Low Profile (1mm)  
ThinSOT™ Package  
n Dual LT6234 in 8-Pin SO and Tiny DFN Packages  
n LT6235 in a 16-Pin SSOP Package  
The LT®6233/LT6234/LT6235 are single/dual/quad low  
noise, rail-to-rail output unity-gain stable op amps that  
feature 1.9nV/√Hz noise voltage and draw only 1.2mA of  
supply current per amplifier. These amplifiers combine  
very low noise and supply current with a 60MHz gain-  
bandwidth product, a 17V/µs slew rate and are optimized  
for low supply voltage signal conditioning systems. The  
LT6233-10 is a single amplifier optimized for higher gain  
applications resulting in higher gain bandwidth and slew  
rate. The LT6233 and LT6233-10 include an enable pin  
that can be used to reduce the supply current to less  
than 10µA.  
V
V
Theamplifierfamilyhasanoutputthatswingswithin50mV  
of either supply rail to maximize the signal dynamic range  
in low supply applications and is specified on 3.3V, 5V and  
5Vsupplies.Thee • √I  
productof2.1peramplifier  
n
SUPPLY  
is among the most noise efficient of any op amp.  
applicaTions  
The LT6233/LT6233-10 are available in the 6-lead SOT-23  
package and the LT6234 dual is available in the 8-pin SO  
package with standard pinouts. For compact layouts,  
the dual is also available in a tiny dual fine pitch leadless  
package (DFN). The LT6235 is available in the 16-pin  
SSOP package.  
n
Ultrasound Amplifiers  
n
Low Noise, Low Power Signal Processing  
n
Active Filters  
Driving A/D Converters  
Rail-to-Rail Buffer Amplifiers  
n
n
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. ThinSOT is a trademark of Linear Technology Corporation. All other  
trademarks are the property of their respective owners.  
Typical applicaTion  
Noise Voltage and Unbalanced  
Noise Current vs Frequency  
Low Noise Low Power Instrumentation Amplifier  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
+
V
= 2ꢀ5V  
V
S
S
A
T
= 25°C  
= 0V  
+
R4  
R6  
V
IN  
CM  
499Ω  
499Ω  
±/2 LT6234  
+
V
S
R2  
47ꢀΩ  
+
R±  
49.9Ω  
LT6233  
V
OUT  
NOISE VOLTAGE  
NOISE CURRENT  
EN  
R3  
47ꢀΩ  
Rꢀ  
499Ω  
R7  
499Ω  
V
S
62334ꢀ TA0±a  
±/2 LT6234  
10  
100  
1k  
10k  
100k  
IN  
A
= 20  
I
E
= 3mA  
= 8µV  
V
S
FREQUENCY (Hz)  
BW = 2.8MHz  
= ±±.ꢀV ꢁt ±ꢀV  
INPUT REFERRED,  
RMS  
MEASUREMENT BW = 4MHz  
N
V
V
S
623345 TA01b  
S
623345fc  
1
LT6233/LT6233-10  
LT6234/LT6235  
absoluTe MaxiMuM raTings (Note 1)  
+
Junction Temperature (DD Package).................... 125°C  
Storage Temperature Range .................. –65°C to 150°C  
Storage Temperature Range  
Total Supply Voltage (V to V )..............................12.6V  
Input Current (Note 2)......................................... 40mA  
Output Short-Circuit Duration (Note 3) ............ Indefinite  
Operating Temperature Range (Note 4)....–40°C to 85°C  
Specified Temperature Range (Note 5) ....–40°C to 85°C  
Junction Temperature ........................................... 150°C  
(DD Package)........................................ –65°C to 125°C  
Lead Temperature (Soldering, 10 sec)...................300°C  
pin conFiguraTion  
TOP VIEW  
TOP VIEW  
+
+
OUT A  
–IN A  
+IN A  
1
2
3
4
8
7
6
5
V
OUT 1  
6 V  
OUT B  
–IN B  
+IN B  
+
5 ENABLE  
4 –IN  
V
2
+
+IN 3  
V
S6 PACKAGE  
6-LEAD PLASTIC TSOT-23  
DD PACKAGE  
8-LEAD (3mm × 3mm) PLASTIC DFN  
T
= 150°C, θ = 250°C/W  
JMAX  
JA  
T
= 125°C, θ = 160°C/W  
JMAX  
JA  
UNDERSIDE METAL CONNECTED TO V (PCB CONNECTION OPTIONAL)  
TOP VIEW  
OUT A  
–IN A  
+IN A  
1
2
3
4
5
6
7
8
16 OUT D  
15 –IN D  
TOP VIEW  
+
+A  
D
C
+
OUT A  
–IN A  
+IN A  
1
2
3
4
8
7
6
5
V
14  
13  
12  
11  
10  
9
+IN D  
+
OUT B  
–IN B  
+IN B  
V
V
+
+
+
+IN B  
–IN B  
OUT B  
NC  
+IN C  
–IN C  
OUT C  
NC  
+
B  
V
S8 PACKAGE  
8-LEAD PLASTIC SO  
T
JMAX  
= 150°C, θ = 190°C/W  
JA  
GN PACKAGE  
16-LEAD NARROW PLASTIC SSOP  
T
JMAX  
= 150°C, θ = 135°C/W  
JA  
623345fc  
2
LT6233/LT6233-10  
LT6234/LT6235  
orDer inForMaTion  
LEAD FREE FINISH  
LT6233CS6#PBF  
LT6233IS6#PBF  
LT6233CS6-10#PBF  
LT6233IS6-10#PBF  
LT6234CS8#PBF  
LT6234IS8#PBF  
LT6234CDD#PBF  
LT6234IDD#PBF  
LT6235CGN#PBF  
LT6235IGN#PBF  
TAPE AND REEL  
PART MARKING* PACKAGE DESCRIPTION  
SPECIFIED TEMPERATURE RANGE  
0°C to 70°C  
LT6233CS6#TRPBF  
LT6233IS6#TRPBF  
LT6233CS6-10#TRPBF  
LT6233IS6-10#TRPBF  
LT6234CS8#TRPBF  
LT6234IS8#TRPBF  
LT6234CDD#TRPBF  
LT6234IDD#TRPBF  
LT6235CGN#TRPBF  
LT6235IGN#TRPBF  
LTAFL  
LTAFL  
LTAFM  
LTAFM  
6234  
6-Lead Plastic TS0T-23  
6-Lead Plastic TS0T-23  
–40°C to 85°C  
6-Lead Plastic TS0T-23  
0°C to 70°C  
6-Lead Plastic TS0T-23  
–40°C to 85°C  
8-Lead Plastic SO  
0°C to 70°C  
6234I  
LAET  
LAET  
6235  
8-Lead Plastic SO  
–40°C to 85°C  
0°C to 70°C  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
16-Lead Narrow Plastic SSOP  
16-Lead Narrow Plastic SSOP  
–40°C to 85°C  
0°C to 70°C  
6235I  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
elecTrical characTerisTics TA = 25°C, VS = 5V, 0V; VS = 3.3V, 0V; VCM = VOUT = half supply,  
ENABLE = 0V, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
OS  
Input Offset Voltage  
LT6233S6, LT6233S6-10  
LT6234S8, LT6235GN  
LT6234DD  
100  
50  
75  
500  
350  
450  
µV  
µV  
µV  
Input Offset Voltage Match  
(Channel-to-Channel) (Note 6)  
80  
600  
µV  
I
I
Input Bias Current  
1.5  
0.04  
0.04  
220  
1.9  
3
µA  
µA  
µA  
B
I Match (Channel-to-Channel) (Note 6)  
B
0.3  
0.3  
Input Offset Current  
OS  
Input Noise Voltage  
0.1Hz to 10Hz  
nV  
P-P  
e
Input Noise Voltage Density  
f = 10kHz, V = 5V  
3
nV/√Hz  
n
S
i
n
Input Noise Current Density, Balanced Source  
Input Noise Current Density, Unbalanced Source  
f = 10kHz, V = 5V, R = 10k  
0.43  
0.78  
pA/√Hz  
pA/√Hz  
S
S
f = 10kHz, V = 5V, R = 10k  
S
S
Input Resistance  
Input Capacitance  
Large-Signal Gain  
Common Mode  
22  
25  
MΩ  
kΩ  
Differential Mode  
C
A
Common Mode  
Differential Mode  
2.5  
4.2  
pF  
pF  
IN  
V = 5V, V = 0.5V to 4.5V, R = 10k to V /2  
73  
18  
140  
35  
V/mV  
V/mV  
VOL  
S
O
L
L
S
V = 5V, V = 0.5V to 4.5V, R = 1k to V /2  
S
O
S
V = 3.3V, V = 0.65V to 2.65V, R = 10k to V /2  
53  
11  
100  
20  
V/mV  
V/mV  
S
O
L
S
V = 3.3V, V = 0.65V to 2.65V, R = 1k to V /2  
S
O
L
S
V
Input Voltage Range  
Guaranteed by CMRR, V = 5V, 0V  
1.5  
1.15  
4
2.65  
V
V
CM  
S
Guaranteed by CMRR, V = 3.3V, 0V  
S
CMRR  
Common Mode Rejection Ratio  
CMRR Match (Channel-to-Channel) (Note 6)  
V = 5V, V = 1.5V to 4V  
90  
85  
115  
110  
dB  
dB  
S
CM  
V = 3.3V, V = 1.15V to 2.65V  
S
CM  
V = 5V, V = 1.5V to 4V  
84  
115  
dB  
623345fc  
3
S
CM  
LT6233/LT6233-10  
LT6234/LT6235  
elecTrical characTerisTics TA = 25°C, VS = 5V, 0V; VS = 3.3V, 0V; VCM = VOUT = half supply,  
ENABLE = 0V, unless otherwise noted.  
SYMBOL PARAMETER  
PSRR Power Supply Rejection Ratio  
CONDITIONS  
V = 3V to 10V  
MIN  
90  
84  
3
TYP  
115  
115  
MAX  
UNITS  
dB  
S
PSRR Match (Channel-to-Channel) (Note 6)  
Minimum Supply Voltage (Note 7)  
V = 3V to 10V  
S
dB  
V
V
V
Output Voltage Swing Low (Note 8)  
No Load  
4
40  
mV  
mV  
mV  
mV  
OL  
OH  
I
= 5mA  
75  
180  
320  
240  
SINK  
V = 5V, I  
= 15mA  
SINK  
165  
125  
S
V = 3.3V, I  
= 10mA  
SINK  
S
Output Voltage Swing High (Note 8)  
Short-Circuit Current  
No Load  
5
85  
220  
165  
50  
mV  
mV  
mV  
mV  
I
= 5mA  
195  
410  
310  
SOURCE  
V = 5V, I  
= 15mA  
SOURCE  
= 10mA  
SOURCE  
S
V = 3.3V, I  
S
I
I
I
V = 5V  
40  
35  
55  
50  
mA  
mA  
SC  
S
V = 3.3V  
S
Supply Current per Amplifier  
Disabled Supply Current per Amplifier  
1.05  
0.2  
1.2  
10  
mA  
µA  
S
+
ENABLE = V – 0.35V  
ENABLE = 0.3V  
ENABLE Pin Current  
–25  
–75  
0.3  
µA  
V
ENABLE  
V
V
ENABLE Pin Input Voltage Low  
ENABLE Pin Input Voltage High  
Output Leakage Current  
Turn-On Time  
L
+
V – 0.35  
V
H
+
ENABLE = V – 0.35V, V = 1.5V to 3.5V  
0.2  
500  
76  
10  
µA  
ns  
µs  
O
t
t
ENABLE = 5V to 0V, R = 1k, V = 5V  
L S  
ON  
Turn-Off Time  
ENABLE = 0V to 5V, R = 1k, V = 5V  
L S  
OFF  
GBW  
Gain-Bandwidth Product  
Frequency = 1MHz, V = 5V  
55  
320  
MHz  
MHz  
S
LT6233-10  
SR  
Slew Rate  
V = 5V, A = 1, R = 1k, V = 1.5V to 3.5V  
10  
15  
80  
V/µs  
V/µs  
S
V
L
O
LT6233-10, V = 5V, A = 10, R = 1k,  
S
V
L
V = 1.5V to 3.5V  
O
FPBW  
Full-Power Bandwidth  
V = 5V, V  
= 3V (Note 9)  
1.06  
1.6  
2.2  
MHz  
MHz  
ns  
S
OUT  
P-P  
LT6233-10, HD2 = HD3 ≤ 1%  
0.1%, V = 5V, V = 2V, A = 1, R = 1k  
t
Settling Time (LT6233, LT6234, LT6235)  
175  
S
S
STEP  
V
L
623345fc  
4
LT6233/LT6233-10  
LT6234/LT6235  
elecTrical characTerisTics The l denotes the specifications which apply over the 0°C < TA < 70°C  
temperature range. VS = 5V, 0V; VS = 3.3V, 0V; VCM = VOUT = half supply, ENABLE = 0V, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
l
l
l
V
Input Offset Voltage  
LT6233CS6, LT6233CS6-10  
LT6234CS8, LT6235CGN  
LT6234CDD  
600  
450  
550  
µV  
µV  
µV  
OS  
l
Input Offset Voltage Match  
(Channel-to-Channel) (Note 6)  
800  
µV  
l
l
l
l
V
TC  
Input Offset Voltage Drift (Note 10)  
Input Bias Current  
V
= Half Supply  
0.5  
3.0  
3.5  
0.4  
0.4  
µV/°C  
µA  
OS  
CM  
I
I
B
I Match (Channel-to-Channel) (Note 6)  
B
µA  
Input Offset Current  
µA  
OS  
l
l
A
Large-Signal Gain  
V = 5V, V = 0.5V to 4.5V, R = 10k to V /2  
47  
12  
V/mV  
V/mV  
VOL  
S
O
L
S
V = 5V, V = 0.5V to 4.5V, R = 1k to V /2  
S
O
L
S
l
l
V = 3.3V, V = 0.65V to 2.65V, R = 10k to V /2  
40  
7.5  
V/mV  
V/mV  
S
O
L
S
V = 3.3V, V = 0.65V to 2.65V, R = 1k to V /2  
S
O
L
S
V
Input Voltage Range  
Guaranteed by CMRR  
CM  
l
l
V = 5V, 0V  
1.5  
1.15  
4
2.65  
V
V
S
Vs = 3.3V, 0V  
l
l
CMRR  
PSRR  
Common Mode Rejection Ratio  
V = 5V, V = 1.5V to 4V  
90  
85  
dB  
dB  
S
CM  
V = 3.3V, V = 1.15V to 2.65V  
S
CM  
l
l
l
l
CMRR Match (Channel-to-Channel) (Note 6) V = 5V, V = 1.5V to 4V  
84  
90  
84  
3
dB  
dB  
dB  
V
S
CM  
Power Supply Rejection Ratio  
V = 3V to 10V  
S
PSRR Match (Channel-to-Channel) (Note 6) V = 3V to 10V  
S
Minimum Supply Voltage (Note 7)  
l
l
l
l
V
V
Output Voltage Swing Low (Note 8)  
Output Voltage Swing High (Note 8)  
Short-Circuit Current  
No Load  
= 5mA  
50  
mV  
mV  
mV  
mV  
OL  
OH  
I
195  
360  
265  
SINK  
V = 5V, I  
= 15mA  
SINK  
S
S
V = 3.3V, I  
= 10mA  
SINK  
l
l
l
l
No Load  
60  
mV  
mV  
mV  
mV  
I
= 5mA  
205  
435  
330  
SOURCE  
V = 5V, I  
= 15mA  
SOURCE  
S
V = 3.3V, I  
= 10mA  
SOURCE  
S
l
l
I
I
I
V = 5V  
35  
30  
mA  
mA  
SC  
S
V = 3.3V  
S
l
l
Supply Current per Amplifier  
Disabled Supply Current per Amplifier  
1.45  
mA  
µA  
S
+
ENABLE = V – 0.25V  
ENABLE = 0.3V  
1
l
l
l
l
l
l
l
l
l
ENABLE Pin Current  
ENABLE Pin Input Voltage Low  
ENABLE Pin Input Voltage High  
Output Leakage Current  
Turn-On Time  
–85  
0.3  
µA  
V
ENABLE  
V
V
L
+
V – 0.25  
V
H
+
ENABLE = V – 0.25V, V = 1.5V to 3.5V  
1
µA  
O
t
t
ENABLE = 5V to 0V, R = 1k, V = 5V  
500  
120  
ns  
ON  
L
S
Turn-Off Time  
ENABLE = 0V to 5V, R = 1k, V = 5V  
µs  
OFF  
L
S
SR  
Slew Rate  
V = 5V, A = 1, R = 1k, V = 1.5V to 3.5V  
9
V/µs  
V/µs  
kHz  
S
V
L
O
LT6233-10, A = –10, R = 1k, V = 1.5V to 3.5V  
75  
V
L
O
FPBW  
Full-Power Bandwidth (Note 9)  
V = 5V, V  
= 3V ; LT6233C, LT6234C,  
955  
S
OUT  
P-P  
LT6235C  
623345fc  
5
LT6233/LT6233-10  
LT6234/LT6235  
elecTrical characTerisTics The l denotes the specifications which apply over the –40°C < TA < 85°C  
temperature range. VS = 5V, 0V; VS = 3.3V, 0V; VCM = VOUT = half supply, ENABLE = 0V, unless otherwise noted. (Note 5)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
l
V
Input Offset Voltage  
LT6233IS6, LT6233IS6-10  
LT6234IS8, LT6235IGN  
LT6234IDD  
700  
550  
650  
µV  
µV  
µV  
OS  
l
Input Offset Voltage Match  
(Channel-to-Channel) (Note 6)  
1000  
µV  
l
l
l
l
V
TC  
Input Offset Voltage Drift (Note 10)  
Input Bias Current  
V
CM  
= Half Supply  
0.5  
3
µV/°C  
µA  
OS  
I
I
4
B
I Match (Channel-to-Channel) (Note 6)  
B
0.4  
0.5  
µA  
Input Offset Current  
µA  
OS  
l
l
A
VOL  
Large-Signal Gain  
V = 5V, V = 0.5V to 4.5V, R = 10k to V /2  
45  
11  
V/mV  
V/mV  
S
O
L
S
V = 5V, V = 0.5V to 4.5V, R = 1k to V /2  
S
O
L
S
l
l
V = 3.3V, V = 0.65V to 2.65V, R = 10k to V /2  
38  
7
V/mV  
V/mV  
S
O
L
S
V = 3.3V, V = 0.65V to 2.65V, R = 1k to V /2  
S
O
L
S
V
Input Voltage Range  
Guaranteed by CMRR  
V = 5V, 0V  
CM  
l
l
1.5  
1.15  
4
2.65  
V
V
S
V = 3.3V, 0V  
S
l
l
CMRR  
PSRR  
Common Mode Rejection Ratio  
V = 5V, V = 1.5V to 4V  
90  
85  
dB  
dB  
S
CM  
V = 3.3V, V = 1.15V to 2.65V  
S
CM  
l
l
l
l
CMRR Match (Channel-to-Channel) (Note 6) V = 5V, V = 1.5V to 4V  
84  
90  
84  
3
dB  
dB  
dB  
V
S
CM  
Power Supply Rejection Ratio  
V = 3V to 10V  
S
PSRR Match (Channel-to-Channel) (Note 6) V = 3V to 10V  
S
Minimum Supply Voltage (Note 7)  
l
l
l
l
V
Output Voltage Swing Low (Note 8)  
Output Voltage Swing High (Note 6)  
Short-Circuit Current  
No Load  
= 5mA  
50  
mV  
mV  
mV  
mV  
OL  
OH  
I
195  
370  
275  
SINK  
V = 5V, I  
= 15mA  
SINK  
S
S
V = 3.3V, I  
= 10mA  
SINK  
l
l
l
l
V
No Load  
60  
mV  
mV  
mV  
mV  
I
= 5mA  
210  
445  
335  
SOURCE  
V = 5V, I  
= 15mA  
SOURCE  
S
V = 3.3V, I  
= 10mA  
SOURCE  
S
l
l
I
I
I
V = 5V  
30  
20  
mA  
mA  
SC  
S
V = 3.3V  
S
l
l
Supply Current per Amplifier  
Disabled Supply Current per Amplifier  
1.5  
mA  
µA  
S
+
ENABLE = V – 0.2V  
ENABLE = 0.3V  
1
l
l
l
l
l
l
l
l
l
ENABLE Pin Current  
ENABLE Pin Input Voltage Low  
ENABLE Pin Input Voltage High  
Output Leakage Current  
Turn-On Time  
–100  
0.3  
µA  
V
ENABLE  
V
V
L
+
V – 0.2  
V
H
+
ENABLE = V – 0.2V, V = 1.5V to 3.5V  
1
µA  
O
t
t
ENABLE = 5V to 0V, R = 1k, V = 5V  
500  
135  
ns  
ON  
L
S
Turn-Off Time  
ENABLE = 0V to 5V, R = 1k, V = 5V  
µs  
OFF  
L
S
SR  
Slew Rate  
V = 5V, A = 1, R = 1k, V = 1.5V to 3.5V  
8
V/µs  
V/µs  
kHz  
S
V
L
O
LT6233-10, A = –10, R = 1k, V = 1.5V to 3.5V  
70  
V
L
O
FPBW  
Full-Power Bandwidth (Note 9)  
V = 5V, V  
= 3V ; LT6233I, LT6234I,  
848  
S
OUT  
P-P  
LT6235I  
623345fc  
6
LT6233/LT6233-10  
LT6234/LT6235  
elecTrical characTerisTics TA = 25°C, VS = 5V, VCM = VOUT = 0V, ENABLE = 0V, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
LT6233S6, LT6233S6-10  
LT6234S8, LT6235GN  
LT6234DD  
100  
50  
75  
500  
350  
450  
µV  
µV  
µV  
OS  
Input Offset Voltage Match  
(Channel-to-Channel) (Note 6)  
100  
600  
µV  
I
I
Input Bias Current  
1.5  
0.04  
0.04  
220  
1.9  
3
µA  
µA  
µA  
B
I Match (Channel-to-Channel) (Note 6)  
B
0.3  
0.3  
Input Offset Current  
OS  
Input Noise Voltage  
0.1Hz to 10Hz  
f = 10kHz  
nV  
P-P  
e
Input Noise Voltage Density  
Input Noise Current Density, Balanced Source  
Input Noise Current Density, Unbalanced Source f = 10kHz, R = 10k  
3.0  
nV/√Hz  
n
i
n
f = 10kHz, R = 10k  
0.43  
0.78  
pA/√Hz  
pA/√Hz  
S
S
Input Resistance  
Input Capacitance  
Large-Signal Gain  
Common Mode  
22  
25  
MΩ  
kΩ  
Differential Mode  
C
A
V
Common Mode  
Differential Mode  
2.1  
3.7  
pF  
pF  
IN  
V = 4.5V, R = 10k  
97  
28  
180  
55  
V/mV  
V/mV  
VOL  
O
L
V = 4.5V, R = 1k  
O
L
Input Voltage Range  
Guaranteed by CMRR  
–3  
90  
84  
90  
84  
4
V
dB  
dB  
dB  
dB  
CM  
CMRR  
Common Mode Rejection Ratio  
CMRR Match (Channel-to-Channel) (Note 6)  
Power Supply Rejection Ratio  
V
CM  
V
CM  
= –3V to 4V  
= –3V to 4V  
110  
120  
115  
115  
PSRR  
V = 1.5V to 5V  
S
PSRR Match (Channel-to-Channel) (Note 6)  
Output Voltage Swing Low (Note 8)  
V = 1.5V to 5V  
S
V
V
No Load  
4
40  
180  
320  
mV  
mV  
mV  
OL  
I
I
= 5mA  
= 15mA  
75  
SINK  
SINK  
165  
Output Voltage Swing High (Note 8)  
Short-Circuit Current  
No Load  
5
50  
195  
410  
mV  
mV  
mV  
OH  
I
I
= 5mA  
85  
SOURCE  
SOURCE  
= 15mA  
220  
I
I
40  
55  
mA  
SC  
Supply Current per Amplifier  
Disabled Supply Current per Amplifier  
1.15  
0.2  
1.4  
10  
mA  
µA  
S
ENABLE = 4.65V  
ENABLE = 0.3V  
I
ENABLE Pin Current  
–35  
–85  
0.3  
µA  
V
ENABLE  
V
V
ENABLE Pin Input Voltage Low  
ENABLE Pin Input Voltage High  
Output Leakage Current  
Turn-On Time  
L
4.65  
V
H
ENABLE = 4.65V, V = 1V  
0.2  
900  
100  
10  
µA  
ns  
µs  
O
t
t
ENABLE = 5V to 0V, R = 1k  
L
ON  
Turn-Off Time  
ENABLE = 0V to 5V, R = 1k  
OFF  
L
GBW  
Gain-Bandwidth Product  
Frequency = 1MHz  
LT6233-10  
42  
260  
60  
375  
MHz  
MHz  
SR  
Slew Rate  
A = –1, R = 1k, V = –2V to 2V  
12  
17  
115  
1.8  
2.2  
170  
V/µs  
V/µs  
MHz  
MHz  
ns  
V
L
O
LT6233-10, A = –10, R = 1k, V = –2V to 2V  
V
L
O
FPBW  
Full-Power Bandwidth  
Settling Time (LT6233, LT6234, LT6235)  
V
OUT  
= 3V (Note 9)  
1.27  
P-P  
LT6233-10, HD2 = HD3 ≤ 1%  
0.1%, V = 2V, A = 1, R = 1k  
t
S
STEP  
V
L
623345fc  
7
LT6233/LT6233-10  
LT6234/LT6235  
elecTrical characTerisTics The l denotes the specifications which apply over the 0°C < TA < 70°C  
temperature range. VS = 5V, VCM = VOUT = 0V, ENABLE = 0V, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
l
V
Input Offset Voltage  
LT6233CS6, LT6233CS6-10  
LT6234CS8, LT6235CGN  
LT6234CDD  
600  
450  
550  
µV  
µV  
µV  
OS  
l
Input Offset Voltage Match  
(Channel-to-Channel) (Note 6)  
800  
µV  
l
l
l
l
V
TC  
Input Offset Voltage Drift (Note 10)  
Input Bias Current  
0.5  
3
µV/°C  
µA  
OS  
I
I
3.5  
0.4  
0.4  
B
I Match (Channel-to-Channel) (Note 6)  
B
µA  
Input Offset Current  
µA  
OS  
l
l
A
Large-Signal Gain  
V = 4.5V, R = 10k  
75  
22  
V/mV  
V/mV  
VOL  
O
L
V = 4.5V, R = 1k  
O
L
l
l
l
l
l
V
Input Voltage Range  
Guaranteed by CMRR  
–3  
90  
84  
90  
84  
4
V
dB  
dB  
dB  
dB  
CM  
CMRR  
Common Mode Rejection Ratio  
CMRR Match (Channel-to-Channel) (Note 6)  
Power Supply Rejection Ratio  
V
CM  
V
CM  
= –3V to 4V  
= –3V to 4V  
PSRR  
V = 1.5V to 5V  
S
PSRR Match (Channel-to-Channel) (Note 6) V = 1.5V to 5V  
S
l
l
l
V
V
Output Voltage Swing Low (Note 8)  
Output Voltage Swing High (Note 8)  
Short-Circuit Current  
No Load  
50  
mV  
mV  
mV  
OL  
OH  
I
I
= 5mA  
195  
360  
SINK  
SINK  
= 15mA  
l
l
l
No Load  
60  
205  
435  
mV  
mV  
mV  
I
I
= 5mA  
SOURCE  
SOURCE  
= 15mA  
l
I
I
35  
mA  
SC  
l
l
Supply Current per Amplifier  
Disabled Supply Current per Amplifier  
1.7  
mA  
µA  
S
ENABLE = 4.75V  
ENABLE = 0.3V  
1
l
l
l
l
l
l
l
l
l
I
ENABLE Pin Current  
ENABLE Pin Input Voltage Low  
ENABLE Pin Input Voltage High  
Output Leakage Current  
Turn-On Time  
–95  
0.3  
µA  
V
ENABLE  
V
V
L
4.75  
V
H
ENABLE = 4.75V, V = 1V  
1
µA  
O
t
t
ENABLE = 5V to 0V, R = 1k  
900  
150  
ns  
ON  
L
Turn-Off Time  
ENABLE = 0V to 5V, R = 1k  
µs  
OFF  
L
SR  
Slew Rate  
A = –1, R = 1k, V = –2V to 2V  
V
11  
V/µs  
V/µs  
MHz  
L
O
LT6233-10, A = –10, R = 1k, V = –2V to 2V  
105  
V
L
O
FPBW  
Full-Power Bandwidth (Note 9)  
V
= 3V ; LT6233C, LT6234C, LT6235C  
1.16  
OUT  
P-P  
623345fc  
8
LT6233/LT6233-10  
LT6234/LT6235  
elecTrical characTerisTics The l denotes the specifications which apply over the –40°C < TA < 85°C  
temperature range. VS = 5V, VCM = VOUT = 0V, ENABLE = 0V, unless otherwise noted. (Note 5)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
l
V
OS  
Input Offset Voltage  
LT6233IS6, LT6233IS6-10  
LT6234IS8, LT6235IGN  
LT6234IDD  
700  
550  
650  
µV  
µV  
µV  
l
Input Offset Voltage Match  
(Channel-to-Channel) (Note 6)  
1000  
µV  
l
l
l
l
V
TC  
Input Offset Voltage Drift (Note 10)  
Input Bias Current  
0.5  
3
µV/°C  
µA  
OS  
I
I
4
B
I Match (Channel-to-Channel) (Note 6)  
B
0.4  
0.5  
µA  
Input Offset Current  
µA  
OS  
l
l
A
Large-Signal Gain  
V = 4.5V, R = 10k  
68  
20  
V/mV  
V/mV  
VOL  
O
L
V = 4.5V, R = 1k  
O
L
l
l
l
l
l
V
Input Voltage Range  
Guaranteed by CMRR  
–3  
90  
84  
90  
84  
4
V
dB  
dB  
dB  
dB  
CM  
CMRR  
Common Mode Rejection Ratio  
CMRR Match (Channel-to-Channel) (Note 6)  
Power Supply Rejection Ratio  
V
CM  
V
CM  
= –3V to 4V  
= –3V to 4V  
PSRR  
V = 1.5V to 5V  
S
PSRR Match (Channel-to-Channel) (Note 6) V = 1.5V to 5V  
S
l
l
l
V
V
Output Voltage Swing Low (Note 8)  
Output Voltage Swing High (Note 8)  
Short-Circuit Current  
No Load  
50  
mV  
mV  
mV  
OL  
I
I
= 5mA  
195  
370  
SINK  
SINK  
= 15mA  
l
l
l
No Load  
70  
210  
445  
mV  
mV  
mV  
OH  
I
I
= 5mA  
SOURCE  
SOURCE  
= 15mA  
l
I
I
30  
mA  
SC  
l
l
Supply Current per Amplifier  
Disabled Supply Current per Amplifier  
1.75  
mA  
µA  
S
ENABLE = 4.8V  
ENABLE = 0.3V  
1
l
l
l
l
l
l
l
l
l
I
ENABLE Pin Current  
ENABLE Pin Input Voltage Low  
ENABLE Pin Input Voltage High  
Output Leakage Current  
Turn-On Time  
–110  
0.3  
µA  
V
ENABLE  
V
V
L
4.8  
V
H
ENABLE = 4.8V, V = 1V  
1
µA  
O
t
t
ENABLE = 5V to 0V, R = 1k  
900  
160  
ns  
ON  
L
Turn-Off Time  
ENABLE = 0V to 5V, R = 1k  
µs  
OFF  
L
SR  
Slew Rate  
A = –1, R = 1k, V = –2V to 2V  
V
10  
V/µs  
V/µs  
MHz  
L
O
LT6233-10, A = –10, R = 1k, V = –2V to 2V  
95  
V
L
O
FPBW  
Full-Power Bandwidth (Note 9)  
V
OUT  
= 3V ; LT6233I, LT6234I, LT6235I  
1.06  
P-P  
Note 5: The LT6233C/LT6234C/LT6235C are guaranteed to meet specified  
performance from 0°C to 70°C. The LT6233C/LT6234C/LT6235C are  
designed, characterized and expected to meet specified performance from  
–40°C to 85°C, but are not tested or QA sampled at these temperatures.  
The LT6233I/LT6234I/LT6235I are guaranteed to meet specified  
performance from –40°C to 85°C.  
Note 6: Matching parameters are the difference between the two amplifiers  
A and D and between B and C of the LT6235; between the two amplifiers  
of the LT6234. CMRR and PSRR match are defined as follows: CMRR and  
PSRR are measured in µV/V on the matched amplifiers. The difference is  
calculated between the matching sides in µV/V. The result is converted to  
dB.  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: Inputs are protected by back-to-back diodes. If the differential  
input voltage exceeds 0.7V, the input current must be limited to less than  
40mA.  
Note 3: A heat sink may be required to keep the junction temperature  
below the absolute maximum rating when the output is shorted  
indefinitely.  
Note 4: The LT6233C/LT6233I the LT6234C/LT6234I, and LT6235C/LT6235I  
are guaranteed functional over the temperature range of –40°C to 85°C.  
623345fc  
9
LT6233/LT6233-10  
LT6234/LT6235  
elecTrical characTerisTics  
Note 7: Minimum supply voltage is guaranteed by power supply rejection  
Note 9: Full-power bandwidth is calculated from the slew rate:  
FPBW = SR/2πV  
ratio test.  
P
Note 8: Output voltage swings are measured between the output and  
power supply rails.  
Note 10: This parameter is not 100% tested.  
Typical perForMance characTerisTics  
(LT6233/LT6234/LT6235)  
Supply Current vs Supply Voltage  
(Per Amplifier)  
Offset Voltage vs Input Common  
Mode Voltage  
VOS Distribution  
2.0  
1.5  
1.0  
0.5  
0
500  
400  
60  
50  
40  
30  
20  
10  
0
V
= 5V, 0V  
V
V
= 5V, 0V  
CM  
S
S
+
= V /2  
S8  
300  
T
= 125°C  
= 25°C  
A
200  
T
100  
A
0
–100  
–200  
–300  
–400  
–500  
T
= –55°C  
A
T
A
= –55°C  
T
= 25°C  
A
T
= 125°C  
A
50 100  
0
2
4
6
8
10  
12  
14  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
–200 –150 –100 –50  
0
150 200  
INPUT OFFSET VOLTAGE (µV)  
TOTAL SUPPLY VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
623345 GO2  
623345 GO3  
623345 GO1  
Input Bias Current  
vs Common Mode Voltage  
Output Saturation Voltage  
vs Load Current (Output Low)  
Input Bias Current vs Temperature  
10  
1
6
5
6
5
V
= 5V, 0V  
V
= 5V, 0V  
V
= 5V, 0V  
S
S
S
4
4
3
T
= 125°C  
A
0.1  
T
= –55°C  
3
A
2
T
= –55°C  
A
V
= 4V  
CM  
2
0.01  
0.001  
0.0001  
T
A
= 125°C  
1
V
= 1.5V  
T
= 25°C  
CM  
A
1
T
= 25°C  
0
A
0
–1  
–2  
–1  
0.01  
0.1  
1
10  
100  
0
1
3
4
5
6
–1  
2
–25  
0
50  
75 100 125  
–50  
25  
LOAD CURRENT (mA)  
COMMON MODE VOLTAGE (V)  
TEMPERATURE (°C)  
623345 GO6  
623345 GO4  
623345 GO5  
623345fc  
10  
LT6233/LT6233-10  
LT6234/LT6235  
Typical perForMance characTerisTics  
(LT6233/LT6234/LT6235)  
Output Short-Circuit Current  
Output Saturation Voltage  
vs Power Supply Voltage  
vs Load Current (Output High)  
Minimum Supply Voltage  
10  
1
1.0  
0.8  
80  
V
= V /2  
S
V
= 5V, 0V  
CM  
S
T
= –55°C  
= 125°C  
A
60  
40  
0.6  
T
A
0.4  
SINKING  
T
= 25°C  
20  
A
0.2  
T
= 125°C  
0.1  
0
A
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
T
= –55°C  
–20  
–40  
–60  
–80  
SOURCING  
T
= –55°C  
A
A
T
= 125°C  
A
0.01  
0.001  
T
= –55°C  
A
T
= 25°C  
A
T
= 25°C  
1
A
T
= 125°C  
T
= 25°C  
3.0  
A
A
0.5  
1
2
1.5  
2.5  
3
3.5  
4 4.5 5  
0
0.01  
0.1  
10  
100  
2.0  
2.5  
3.5 4.0 4.5 5.0  
1.5  
LOAD CURRENT (mA)  
TOTAL SUPPLY VOLTAGE (V)  
POWER SUPPLY VOLTAGE ( Vꢀ  
623345 G07  
623345 G08  
623345 GO9  
Open-Loop Gain  
Open-Loop Gain  
Open-Loop Gain  
2.5  
2.0  
2.5  
2.0  
2.5  
2.0  
V
T
= 5V, 0V  
= 25°C  
V
T
= 5V  
= 25°C  
V
T
= 3V, 0V  
= 25°C  
S
A
S
A
S
A
1.5  
1.5  
1.5  
1.0  
1.0  
1.0  
0.5  
0.5  
0.5  
R
= 1k  
R
= 1k  
R
= 1k  
L
L
L
0
0
0
R
= 100Ω  
R
= 100Ω  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
L
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
R = 100Ω  
L
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
L
0.5  
1
2
2.5  
3
3.5  
4
4.5  
5
–4 –3  
–1  
0
1
2
3
4
5
0
1.5  
–5  
–2  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
623345 G11  
623345 G12  
623345 G10  
Total Noise vs Total Source  
Resistance  
Offset Voltage vs Output Current  
Warm-Up Drift vs Time  
100  
10  
1
2.0  
1.5  
40  
35  
30  
25  
20  
15  
10  
0
V
V
=
CM  
2.5V  
= 0V  
T
= 25°C  
V
=
5V  
S
A
S
TOTAL NOISE  
f = 100kHz  
UNBALANCED  
SOURCE  
V
=
5V  
S
T
= 125°C  
A
1.0  
RESISTORS  
0.5  
RESISTOR NOISE  
0
V
=
2ꢀ5V  
1ꢀ5V  
30  
S
AMPLIFIER NOISE VOLTAGE  
–0.5  
–1.0  
–1.5  
–2.0  
V
=
S
T
= –55°C  
A
T
= 25°C  
A
0.1  
–60  
–30  
0
30  
60  
90  
10  
40  
50  
–90  
0
20  
10  
100  
1k  
10k  
100k  
TOTAL SOURCE RESISTANCE (Ω)  
OUTPUT CURRENT (mA)  
TIME AFTER POWER-UP (s)  
623345 G15  
623345 G13  
623345 G14  
623345fc  
11  
LT6233/LT6233-10  
LT6234/LT6235  
Typical perForMance characTerisTics  
(LT6233/LT6234/LT6235)  
Noise Voltage and Unbalanced  
Noise Current vs Frequency  
0.1Hz to 10Hz Output Voltage  
Noise  
Gain Bandwidth and Phase Margin  
vs Temperature  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
70  
60  
50  
40  
V
= 2ꢀ5V  
V
T
= 2ꢀ5V  
S
S
A
= 25°C  
= 0V  
V
= 5V  
S
V
CM  
PHASE MARGIN  
V
= 3V, 0V  
S
100nV  
90  
80  
70  
60  
50  
40  
C
= 5pF  
L
L
R
= 1k  
V
= V /2  
CM  
S
–100nV  
NOISE VOLTAGE  
NOISE CURRENT  
GAIN BANDWIDTH  
V
= 5V  
S
V
= 3V, 0V  
5
S
5s/DIV  
10  
100  
1k  
10k  
100k  
–55  
–25  
35  
65  
95  
125  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
623345 G16  
623345 G17  
623345 G18  
Gain Bandwidth and Phase Margin  
vs Supply Voltage  
Open-Loop Gain vs Frequency  
Slew Rate vs Temperature  
80  
120  
100  
80  
80  
70  
60  
50  
40  
26  
24  
C
= 5pF  
T
= 25°C  
= 5pF  
= 1k  
A
= –1  
G
L
L
A
V
R
= 1k  
C
L
R = R = 1k  
70  
60  
50  
40  
30  
20  
10  
0
V
= V /2  
R
L
CM  
S
PHASE  
V
=
5V ꢀALLꢁIG  
S
22  
20  
18  
16  
14  
12  
10  
60  
V
=
5V RꢁSꢁIG  
S
V
= 5V  
S
PHASE MARGIN  
V
= 3V, 0V  
S
40  
20  
70  
60  
50  
40  
30  
0
V
= 5V  
S
V
= 3V, 0V  
V
= 2ꢂ5V ꢀALLꢁIG  
–20  
–40  
–60  
–80  
S
S
GAIN BANDWIDTH  
GAIN  
V
= 2ꢂ5V RꢁSꢁIG  
S
–10  
–20  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
0
2
4
6
8
10  
12  
14  
–35 –15  
25 45 65 85 105 125  
5
TEMPERATURE (°C)  
–55  
TOTAL SUPPLY VOLTAGE (V)  
623345 G19  
623345 G20  
623345 G21  
Common Mode Rejection Ratio  
vs Frequency  
Output Impedance vs Frequency  
Channel Separation vs Frequency  
1k  
100  
10  
–40  
120  
100  
80  
60  
40  
20  
0
V
= 5V, 0V  
A
= 1  
S
V
A
S
–50  
–60  
T
= 25°C  
V
= 5V  
A
= 10  
–70  
V
–80  
A
= 2  
–90  
V
–100  
–110  
–120  
–130  
–140  
A
= 1  
V
1
V
V
= 5V, 0V  
S
= V /2  
CM  
S
0.1  
100k  
1M  
10M  
100M  
10k  
100k  
1M  
10M  
100M  
1G  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
623345 G24  
623345 G23  
623345 G22  
623345fc  
12  
LT6233/LT6233-10  
LT6234/LT6235  
Typical perForMance characTerisTics  
(LT6233/LT6234/LT6235)  
Power Supply Rejection Ratio  
vs Frequency  
Series Output Resistance and  
Overshoot vs Capacitive Load  
Series Output Resistance and  
Overshoot vs Capacitive Load  
50  
120  
100  
80  
60  
40  
20  
0
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
V
T
= 5V, 0V  
V
A
= 5V, 0V  
= 1  
V
A
= 5V, 0V  
= 2  
S
A
S
V
S
V
= 25°C  
= V /2  
45  
40  
35  
30  
25  
20  
15  
10  
5
R
= 10Ω  
V
S
CM  
S
R
= 10Ω  
S
R
= 20Ω  
R
= 20Ω  
POSITIVE SUPPLY  
S
S
R
= 50Ω  
= 50Ω  
S
L
R
NEGATIVE SUPPLY  
R
R
= 50Ω  
= 50Ω  
S
L
0
0
1k  
10k  
100k  
1M  
10M  
100M  
10  
100  
CAPACITIVE LOAD (pF)  
1000  
10  
100  
CAPACITIVE LOAD (pF)  
1000  
FREQUENCY (Hz)  
623345 G25  
623345 G26  
623345 G27  
Settling Time vs Output Step  
(Noninverting)  
Settling Time vs Output Step  
(Inverting)  
Maximum Undistorted Output  
Signal vs Frequency  
10  
9
400  
350  
300  
250  
200  
150  
100  
50  
400  
350  
300  
250  
200  
150  
100  
50  
V
=
5V  
V
= 5V  
= 25°C  
= –1  
A
= 2  
500Ω  
S
A
V
S
A
V
V
T
= 25°C  
= 1  
T
A
A
A = –1  
V
500Ω  
+
+
V
IN  
8
V
V
OUT  
OUT  
7
V
500Ω  
IN  
6
1mV  
1mV  
5
1mV  
1mV  
10mV  
10mV  
10mV  
10mV  
4
V
=
5V  
S
A
3
T
= 25°C  
HD2, HD3 < –40dBc  
2
–3 –2 –1  
1
2
3
4
–3 –2 –1  
1
2
3
4
10k  
100k  
1M  
10M  
–4  
0
–4  
0
FREQUENCY (Hz)  
OUTPUT STEP (V)  
OUTPUT STEP (V)  
623345 G30  
623345 G28  
623345 G29  
Distortion vs Frequency  
Distortion vs Frequency  
Distortion vs Frequency  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
V
A
V
=
2ꢀ5V  
V
A
V
=
5V  
V
A
V
=
2ꢀ5V  
S
V
S
V
S
V
= 1  
= 1  
= 2  
R
= 1k, 3RD  
L
= 2V  
= 2V  
= 2V  
P-P  
P-P  
P-P  
OUT  
OUT  
OUT  
R
R
= 100Ω, 2ND  
= 100Ω, 3RD  
R = 100Ω, 2ND  
L
L
R
= 1k, 3RD  
R
R
= 100Ω, 2ND  
= 100Ω, 3RD  
L
L
R
= 1k, 3RD  
R
= 100Ω, 3RD  
L
L
L
L
R
= 1k, 2ND  
L
R
= 1k, 2ND  
R
= 1k, 2ND  
L
L
10k  
100k  
1M  
10M  
10k  
100k  
1M  
10M  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
623345 G31  
623345 G32  
623345 G33  
623345fc  
13  
LT6233/LT6233-10  
LT6234/LT6235  
Typical perForMance characTerisTics  
(LT6233/LT6234/LT6235)  
Distortion vs Frequency  
Large-Signal Response  
Small-Signal Response  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
V
A
V
=
5V  
S
V
= 2  
= 2V  
P-P  
OUT  
R
= 1k, 3RD  
2V  
0V  
L
R
= 100Ω, 2ND  
L
0V  
R
= 100Ω, 3RD  
L
–2V  
R
= 1k, 2ND  
L
623345 G35  
623345 G36  
V
S
A
V
=
= –1  
= 1k  
2ꢀ5V  
200ns/DIV  
V
S
A
V
=
2ꢀ5V  
200ns/DIV  
= 1  
R
R
= 1k  
L
L
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
623345 G34  
Large-Signal Response  
Output Overdrive Recovery  
5V  
0V  
0V  
0V  
–5V  
623345 G38  
623345 G37  
V
S
A
V
=
= 3  
2ꢀ5V  
200ns/DIV  
V
A
=
5V  
200ns/DIV  
S
V
L
= 1  
R
= 1k  
(LT6233) ENABLE Characteristics  
Supply Current  
vs ENABLE Pin Voltage  
ENABLE Pin Current  
vs ENABLE Pin Voltage  
ENABLE Pin Response Time  
1.4  
35  
30  
25  
20  
15  
10  
5
V
A
= 2ꢀ5V  
S
V
T
= 125°C  
A
T
= –55°C  
A
= 1  
1.2  
T
= 25°C  
5V  
0V  
A
1.0  
0.8  
0.6  
0.4  
0.2  
0
T
T
= 25°C  
A
A
T
= –55°C  
A
= 125°C  
0.5V  
0V  
623345 G41  
V
V
A
=
2.5V  
200µs/DIV  
S
= 0.5V  
IN  
= 1  
V
V
= 2.5V  
S
0
R
= 1k  
–2.0  
0
1.0  
2.0  
–2ꢀ0  
–1ꢀ0  
0
1ꢀ0  
2ꢀ0  
–1.0  
L
PIN VOLTAGE (V)  
PIN VOLTAGE (V)  
623345 G39  
623345 G40  
623345fc  
14  
LT6233/LT6233-10  
LT6234/LT6235  
Typical perForMance characTerisTics  
(LT6233-10)  
Gain Bandwidth and Phase Margin  
Series Output Resistor and  
Overshoot vs Capacitive Load  
70  
vs Temperature  
Slew Rate vs Temperature  
200  
180  
160  
140  
120  
100  
80  
450  
400  
350  
300  
250  
200  
A
= 10  
A = –10  
V
V
A
= 5V, 0V  
= 10  
V
S
V
R = 1k  
G
V
= 5V  
S
R = 10Ω  
S
60  
50  
40  
30  
20  
10  
0
R
= 100Ω  
V
=
5V ꢀALLING  
2ꢁ5V RISING  
S
GAIN BANDWIDTH  
PHASE MARGIN  
V
= 5V RISING  
S
R
= 20Ω  
S
V
= 3V, 0V  
S
R
= 50Ω  
S
V
=
S
70  
60  
50  
40  
60  
V
= 5V  
V
= 2ꢁ5V ꢀALLING  
S
S
40  
V
= 3V, 0V  
S
20  
0
–25  
0
50  
75 100 125  
–35 –15  
25 45 65 85 105 125  
5
TEMPERATURE (°C)  
10  
100  
1000  
10000  
–50  
25  
–55  
CAPACITIVE LOAD (pF)  
TEMPERATURE (°C)  
623345 G44  
623345 G42  
623345 G43  
Open-Loop Gain and Phase  
vs Frequency  
Gain Bandwidth and Phase Margin  
vs Supply Voltage  
Gain Bandwidth vs Resistor Load  
80  
70  
60  
50  
40  
30  
20  
10  
0
120  
450  
375  
300  
225  
400  
350  
300  
250  
200  
150  
100  
50  
A
V
= 10  
= 5pF  
= 1k  
T
= 25°C  
= 10  
= 5pF  
= 1k  
V = 5V  
S
A
V
L
PHASE  
C
A
C
T = 25°C  
A
100  
80  
L
R
V
R = 1k  
F
L
CM  
= V /2  
R
R = 100Ω  
G
S
L
V
= 5V  
S
60  
GAIN BANDWIDTH  
PHASE MARGIN  
GAIN  
V
= 3V, 0V 40  
S
20  
0
V
= 3V, 0V  
S
100  
50  
0
–20  
V
= 5V  
S
–40  
–60  
–80  
–10  
–20  
0
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
2
4
8
10  
12  
200  
400  
800  
1000  
0
6
0
600  
TOTAL SUPPLY VOLTAGE (V)  
TOTAL RESISTOR LOAD (Ω)  
(INCLUDES FEEDBACK R)  
623345 G45  
623345 G46  
623345 G47  
Common Mode Rejection Ratio  
vs Frequency  
Maximum Undistorted Output  
vs Frequency  
2nd and 3rd Harmonic Distortion  
vs Frequency  
120  
100  
80  
60  
40  
20  
0
10  
9
8
7
6
5
4
3
2
1
0
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
V
V
= 5V, 0V  
S
V
A
V
=
2ꢀ5V  
= 10  
= 2V  
S
V
= V /2  
CM  
S
R
= 1k, 3RD  
P-P  
OUT  
L
R
= 100Ω, 3RD  
L
R
= 100Ω, 2ND  
L
R
= 1k, 2ND  
L
V
= 5V  
= 25°C  
= 10  
S
A
V
T
A
HD2, HD3 ≤ 40dBc  
10k 100k  
FREQUENCY (Hz)  
10k  
100k  
1M  
10M  
100M  
1G  
1M  
10M  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
623345 G49  
623345 G50  
623345 G48  
623345fc  
15  
LT6233/LT6233-10  
LT6234/LT6235  
Typical perForMance characTerisTics  
(LT6233-10)  
2nd and 3rd Harmonic Distortion  
vs Frequency  
Large-Signal Response  
Output-Overload Recovery  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
V
A
V
=
5V  
= 10  
= 2V  
S
V
P-P  
OUT  
R
= 1k, 2ND  
L
R
= 100Ω, 3RD  
L
R
= 100Ω, 2ND  
0V  
0V  
0V  
L
R
= 1k, 3RD  
L
623345 G52  
623345 G53  
V
A
=
5V  
100ns/DIV  
V
A
= 5V, 0V  
= 10  
100ns/DIV  
S
V
F
S
V
F
= 10  
R = 900Ω  
R = 900Ω  
R = 100Ω  
G
R
= 100Ω  
10k  
100k  
1M  
10M  
G
FREQUENCY (Hz)  
623345 G51  
Input Referred High Frequency  
Noise Spectrum  
Small-Signal Response  
10  
2.5V  
0
623345 G54  
V
A
= 5V, 0V  
= 10  
100ns/DIV  
S
V
F
100kHz  
20MHz  
623345 G55  
2MHz/DIV  
R = 900Ω  
R
= 100Ω  
G
623345fc  
16  
LT6233/LT6233-10  
LT6234/LT6235  
applicaTions inForMaTion  
Amplifier Characteristics  
be limited to 40mA. This implies 25Ω of protection re-  
sistance is necessary per volt of overdrive beyond 0.7V.  
These input diodes are rugged enough to handle transient  
currents due to amplifier slew rate overdrive and clipping  
without protection resistors.  
Figure 1 is a simplified schematic of the LT6233/LT6234/  
LT6235, which has a pair of low noise input transistors  
Q1 and Q2. A simple current mirror Q3/Q4 converts the  
differential signal to a single-ended output, and these  
transistors are degenerated to reduce their contribution  
to the overall noise.  
The photo of Figure 2 shows the output response to an  
input overdrive with the amplifier connected as a voltage  
follower. With the input signal low, current source I satu-  
1
Capacitor C1 reduces the unity-cross frequency and im-  
proves the frequency stability without degrading the gain  
rates and the differential drive generator drives Q6 into  
saturation so the output voltage swings all the way to V .  
bandwidth of the amplifier. Capacitor C sets the overall  
M
The input can swing positive until transistor Q2 saturates  
into current mirror Q3/Q4. When saturation occurs, the  
outputtriestophaseinvert, butdiodeD2conductscurrent  
from the signal source to the output through the feedback  
connection. The output is clamped a diode drop below the  
input. In this photo, the input signal generator is limiting  
at about 20mA.  
amplifier gain bandwidth. The differential drive generator  
supplies current to transistors Q5 and Q6 that swing the  
output from rail-to-rail.  
Input Protection  
Thereareback-to-backdiodes,D1andD2acrossthe+and  
– inputs of these amplifiers to limit the differential input  
voltage to 0.7V. The inputs of the LT6233/LT6234/LT6235  
do not have internal resistors in series with the input tran-  
sistors. This technique is often used to protect the input  
devices from overvoltage that causes excessive current  
to flow. The addition of these resistors would significantly  
degrade the low noise voltage of these amplifiers. For  
instance, a 100Ω resistor in series with each input would  
generate 1.8nV/√Hz of noise, and the total amplifier noise  
voltage would rise from 1.9nV/√Hz to 2.6nV/√Hz. Once  
the input differential voltage exceeds 0.7V, steady-state  
current conducted through the protection diodes should  
2.5V  
0V  
–2.5V  
623345 F02  
500µs/DIV  
Figure 2. VS = 2.5V, AV = 1 with Large Overdrive  
+V  
+V  
Q5  
C
M
DESD5  
Q3  
Q4  
V
OUT  
–V  
+V  
DESD6  
C1  
DESD2  
DIFFERENTIAL  
DESD1  
DRIVE GENERATOR  
–V  
D2  
–V  
+V  
–V  
Q1  
Q2  
IN  
Q6  
D1  
+V  
+V  
IN  
BIAS  
ENABLE  
I
1
DESD3  
DESD4  
–V  
–V  
623345 F01  
Figure 1. Simplified Schematic  
623345fc  
17  
LT6233/LT6233-10  
LT6234/LT6235  
applicaTions inForMaTion  
With the amplifier connected in a gain of A ≥ 2, the output  
The product of e • √I  
is an interesting way to  
SUPPLY  
V
N
can invert with very heavy overdrive. To avoid this inver-  
sion, limit the input overdrive to 0.5V beyond the power  
supply rails.  
gauge low noise amplifiers. Most low noise amplifiers  
with low e have high I current. In applications that  
N
SUPPLY  
require low noise voltage with the lowest possible supply  
current, this product can prove to be enlightening. The  
ESD  
LT6233/LT6234/LT6235 have an e • √I  
product of  
SUPPLY  
N
only 2.1 per amplifier, yet it is common to see amplifiers  
The LT6233/LT6234/LT6235 have reverse-biased ESD  
protection diodes on all inputs and outputs as shown in  
Figure 1. If these pins are forced beyond either supply,  
unlimited current will flow through these diodes. If the  
current is transient and limited to one hundred milliamps  
or less, no damage to the device will occur.  
with similar noise specifications to have e • √I  
high as 13.5.  
as  
N
SUPPLY  
For a complete discussion of amplifier noise, see the  
LT1028 data sheet.  
Enable Pin  
Noise  
The LT6233 and LT6233-10 include an ENABLE pin that  
shuts down the amplifier to 10µA maximum supply cur-  
rent. The ENABLE pin must be driven low to operate the  
amplifier with normal supply current. The ENABLE pin  
The noise voltage of the LT6233/LT6234/LT6235 is  
equivalent to that of a 225Ω resistor, and for the lowest  
possible noise it is desirable to keep the source and feed-  
back resistance at or below this value, i.e., R + R ||R  
+
must be driven high to within 0.35V of V to shut down  
S
G
FB  
≤ 225Ω. With R + R ||R = 225Ω the total noise of the  
the supply current. This can be accomplished with simple  
gate logic; however care must be taken if the logic and the  
LT6233 operate from different supplies. If this is the case,  
then open-drain logic can be used with a pull-up resis-  
tor to ensure that the amplifier remains off. See Typical  
Performance Characteristics.  
S
G
FB  
amplifier is:  
2
2
e = √(1.9nV) + (1.9nV) = 2.69nV/√Hz  
N
Below this resistance value, the amplifier dominates the  
noise, but in the region between 225Ω and about 30k,  
the noise is dominated by the resistor thermal noise. As  
the total resistance is further increased beyond 30k, the  
amplifier noise current multiplied by the total resistance  
eventually dominates the noise.  
The output leakage current when disabled is very low;  
however, current can flow into the input protection diodes  
D1 and D2 if the output voltage exceeds the input voltage  
by a diode drop.  
623345fc  
18  
LT6233/LT6233-10  
LT6234/LT6235  
Typical applicaTions  
Single Supply, Low Noise, Low Power, Bandpass Filter with Gain = 10  
Frequency Response Plot of  
Bandpass Filter  
C2  
47pF  
R1  
732Ω  
23  
1
f
0
=
= 1MHz  
+
2πRC  
V
C = √C1,C2 R = R1 = R2  
C1  
1000pF  
732Ω  
0.1µF  
R3  
R2  
f
f
=
MHz, MAXIMUM f = 1MHz  
0
0
(
)
R
f
10k  
732Ω  
0
2.5  
=
V
+
–3dB  
IN  
3
LT6233  
EN  
V
OUT  
A
E
I
= 20dB at f  
V
0
= 6µV  
INPUT REFERRED  
+
N
RMS  
= 1.5mA FOR V = 5V  
S
R4  
10k  
C3  
0.1µF  
623345 F03  
–7  
100k  
1M  
10M  
FREQUENCY (Hz)  
623345 F04  
Low Power, Low Noise, Single Supply, Instrumentation Amplifier with Gain = 100  
R1  
30.9Ω  
R2  
511Ω  
+
C2  
2200pF  
V
C8  
68pF  
U1  
LT6233-10  
+
R15  
88.7Ω  
R10  
511Ω  
V
V
+
IN1  
EN  
C1  
1µF  
R13  
2k  
+
R6  
511Ω  
U3  
V
OUT  
LT6233  
EN  
R3  
30.9Ω  
R4  
511Ω  
R16  
88.7Ω  
C9  
68pF  
R12  
511Ω  
+
V
R14  
2k  
C4  
10µF  
R5  
511Ω  
V
= 100 (V – V )  
IN1  
R1 = R3  
U2  
OUT  
IN2  
LT6233-10  
R2 = R4  
R2  
R1  
R10  
GAIN =  
+ 1  
R10 = R12  
R15 = R16  
(
) (R15)  
V
+
IN2  
EN  
INPUT RESISTANCE = R5 = R6  
= 310Hz TO 2.5MHz  
C3  
1µF  
f
–3dB  
E
N
= 10µV  
INPUT REFERRED  
RMS  
I
= 4.7mA FOR V = 5V, 0V  
S
S
623345 F05  
623345fc  
19  
LT6233/LT6233-10  
LT6234/LT6235  
package DescripTion  
S6 Package  
6-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1636)  
2.90 BSC  
(NOTE 4)  
0.62  
MAX  
0.95  
REF  
1.22 REF  
1.4 MIN  
1.50 – 1.75  
2.80 BSC  
3.85 MAX 2.62 REF  
(NOTE 4)  
PIN ONE ID  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.30 – 0.45  
6 PLCS (NOTE 3)  
0.95 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
S6 TSOT-23 0302  
NOTE:  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
623345fc  
20  
LT6233/LT6233-10  
LT6234/LT6235  
package DescripTion  
DD Package  
8-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1698 Rev C)  
0.70 ±0.05  
3.5 ±0.05  
2.10 ±0.05 (2 SIDES)  
1.65 ±0.05  
PACKAGE  
OUTLINE  
0.25 ± 0.05  
0.50  
BSC  
2.38 ±0.05  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
R = 0.125  
0.40 ± 0.10  
TYP  
5
8
3.00 ±0.10  
(4 SIDES)  
1.65 ± 0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(NOTE 6)  
(DD8) DFN 0509 REV C  
4
1
0.25 ± 0.05  
0.75 ±0.05  
0.200 REF  
0.50 BSC  
2.38 ±0.10  
BOTTOM VIEW—EXPOSED PAD  
0.00 – 0.05  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-1)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON TOP AND BOTTOM OF PACKAGE  
623345fc  
21  
LT6233/LT6233-10  
LT6234/LT6235  
package DescripTion  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.189 – .197  
(4.801 – 5.004)  
.045 ±.005  
NOTE 3  
.050 BSC  
7
5
8
6
.245  
MIN  
.160 ±.005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.030 ±.005  
TYP  
1
3
4
2
RECOMMENDED SOLDER PAD LAYOUT  
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
SO8 0303  
GN Package  
16-Lead Plastic SSOP (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1641)  
.189 – .196*  
(4.801 – 4.978)  
.045 ±.005  
.009  
(0.229)  
REF  
16 15 14 13 12 11 10 9  
.254 MIN  
.150 – .165  
.229 – .244  
.150 – .157**  
(5.817 – 6.198)  
(3.810 – 3.988)  
.0165 ±.0015  
.0250 BSC  
RECOMMENDED SOLDER PAD LAYOUT  
1
2
3
4
5
6
7
8
.015 ± .004  
(0.38 ± 0.10)  
× 45°  
.0532 – .0688  
(1.35 – 1.75)  
.004 – .0098  
(0.102 – 0.249)  
.007 – .0098  
(0.178 – 0.249)  
0° – 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.0250  
(0.635)  
BSC  
.008 – .012  
GN16 (SSOP) 0204  
(0.203 – 0.305)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: INCHES  
INCHES  
2. DIMENSIONS ARE IN  
(MILLIMETERS)  
3. DRAWING NOT TO SCALE  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
623345fc  
22  
LT6233/LT6233-10  
LT6234/LT6235  
revision hisTory (Revision history begins at Rev C)  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
C
1/11  
Revised y-axis lable on curve G40 in Typical Performance Characteristics  
Updated ENABLE Pin section in Applications Information  
14  
18  
623345fc  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
23  
LT6233/LT6233-10  
LT6234/LT6235  
Typical applicaTions  
The LT6233 is applied as a transimpedance amplifier with  
an I-to-V conversion gain of 10kΩ set by R1. The LT6233  
is ideally suited to this application because of its low in-  
put offset voltage and current, and its low noise. This is  
because the 10k resistor has an inherent thermal noise of  
13nV/√Hz or 1.3pA/√Hz at room temperature, while the  
LT6233 contributes only 2nV and 0.8pA/√Hz. So, with  
respect to both voltage and current noises, the LT6233 is  
actually quieter than the gain resistor.  
the photodiode, it induces a current I which flows into  
PD  
the amplifier circuit. The amplifier output falls negative  
to maintain balance at its inputs. The transfer function  
is therefore V  
= –I • 10k. C1 ensures stability and  
PD  
OUT  
goodsettlingcharacteristics. Outputoffsetwasmeasured  
at better than 500µV, so low in part because R2 serves to  
cancel the DC effects of bias current. Output noise was  
measured at below 1mV  
on a 20MHz measurement  
P-P  
bandwidth,withC2shuntingR2’sthermalnoise. Asshown  
inthescopephoto,therisetimeis45ns,indicatingasignal  
bandwidth of 7.8MHz.  
Thecircuitusesanavalanchephotodiodewiththecathode  
biased to approximately 200V. When light is incident on  
Low Power Avalanche Photodiode Transimpedance Amplifier  
IS = 1.2mA  
Photodiode Amplifier Time Domain Response  
≈ 200V BIAS  
C1  
2.7pF  
ADVANCED PHOTONIX  
012-70-62-541  
WWW.ADVANCEDPHOTONIX.COM  
R1  
10k  
5V  
R2  
10k  
LT6233  
+
623345 TA02b  
–5V  
100ns/DIV  
ENABLE  
623345 TA02a  
C2  
0.1µF  
OUTPUT OFFSET = 500µV TYPICAL  
BANDWIDTH = 7.8MHz  
OUTPUT NOISE = 1mV (20MHz MEASUREMENT BW)  
P-P  
relaTeD parTs  
PART NUMBER  
LT1028  
DESCRIPTION  
COMMENTS  
Single, Ultralow Noise 50MHz Op Amp  
Single, Low Noise Rail-to-Rail Amplifier  
Single/Dual, Low Noise 325MHz Rail-to-Rail Amplifier  
Single/Dual, Low Noise 165MHz  
0.85nV/√Hz  
LT1677  
3V Operation, 2.5mA, 4.5nV/√Hz, 60µV Max V  
OS  
LT1806/LT1807  
LT6200/LT6201  
2.5V Operation, 550µV Max V , 3.5nV/√Hz  
OS  
0.95nV√Hz, Rail-to-Rail Input and Output  
LT6202/LT6203/LT6204 Single/Dual/Quad, Low Noise, Rail-to-Rail Amplifier  
1.9nV/√Hz, 3mA Max, 100MHz Gain Bandwidth  
623345fc  
LT 0111 REV C • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
24  
LINEAR TECHNOLOGY CORPORATION 2003  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT6234IDD#TRPBF

LT6234 - 60MHz, Rail-to-Rail Output, 1.9nV/rtHz, 1.2mA Op Amp Family; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT6234IS8

60MHz, Rail-to-Rail Output, 1.9nV / SIGME Hz, 1.15mA Op Amp Family
Linear

LT6234IS8#PBF

LT6234 - 60MHz, Rail-to-Rail Output, 1.9nV/rtHz, 1.2mA Op Amp Family; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT6234IS8#TR

LT6234 - 60MHz, Rail-to-Rail Output, 1.9nV/rtHz, 1.2mA Op Amp Family; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT6234IS8#TRPBF

暂无描述
Linear

LT6234_15

60MHz, Rail-to-Rail Output
Linear

LT6235

60MHz, Rail-to-Rail Output, 1.9nV / SIGME Hz, 1.15mA Op Amp Family
Linear

LT6235CGN

60MHz, Rail-to-Rail Output, 1.9nV / SIGME Hz, 1.15mA Op Amp Family
Linear

LT6235CGN#PBF

LT6235 - 60MHz, Rail-to-Rail Output, 1.9nV/rtHz, 1.2mA Op Amp Family; Package: SSOP; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT6235CGN#TR

LT6235 - 60MHz, Rail-to-Rail Output, 1.9nV/rtHz, 1.2mA Op Amp Family; Package: SSOP; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT6235CGN#TRPBF

LT6235 - 60MHz, Rail-to-Rail Output, 1.9nV/rtHz, 1.2mA Op Amp Family; Package: SSOP; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT6235IGN

60MHz, Rail-to-Rail Output, 1.9nV / SIGME Hz, 1.15mA Op Amp Family
Linear