LT6375HDF#TRPBF [Linear]

LT6375 - ±270V Common Mode Voltage Difference Amplifier; Package: DFN; Pins: 14; Temperature Range: -40°C to 125°C;
LT6375HDF#TRPBF
型号: LT6375HDF#TRPBF
厂家: Linear    Linear
描述:

LT6375 - ±270V Common Mode Voltage Difference Amplifier; Package: DFN; Pins: 14; Temperature Range: -40°C to 125°C

放大器 光电二极管
文件: 总32页 (文件大小:1635K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT6375  
±±27V Common Mode  
Voltage Difference Amplifier  
FEATURES  
DESCRIPTION  
The LT®6375 is a unity-gain difference amplifier which  
combinesexcellentDCprecision,averyhighinputcommon  
mode range and a wide supply voltage range. It includes a  
precision op amp and a highly-matched thin film resistor  
network. It features excellent CMRR, extremely low gain  
error and extremely low gain drift.  
n
270V Common Mode Voltage Range  
n
97dB Minimum CMRR (LT6375A)  
n
0.0035% (35ppm) Maximum Gain Error (LT6375A)  
n
1ppm/°C Maximum Gain Error Drift  
n
2ppm Maximum Gain Nonlinearity  
n
Wide Supply Voltage Range: 3.3V to 50V  
n
Rail-to-Rail Output  
350µA Supply Current  
Comparing the LT6375 to existing difference amplifiers  
with high common mode voltage range, the selectable  
resistor divider ratios of the LT6375 offer superior system  
performance by allowing the user to achieve maximum  
SNR, precision and speed for a specific input common  
mode voltage range.  
The op amp at the core of the LT6375 has Over-The-Top®  
protected inputs which allow for robust operation in envi-  
ronments with unpredictable voltage conditions. See the  
Applications Information section for more details.  
n
n
Selectable Internal Resistor Divider Ratio  
n
300µV Maximum Offset Voltage (LT6375A)  
n
575kHz –3dB Bandwidth (Resistor Divider = 7)  
n
375kHz –3dB Bandwidth (Resistor Divider = 20)  
n
–40°C to 125°C Specified Temperature Range  
n
Low Power Shutdown: 20μA (DFN Package Only)  
n
Space-Saving MSOP and DFN Packages  
APPLICATIONS  
n
High Side or Low Side Current Sensing  
The LT6375 is specified over the –40°C to 125°C tem-  
perature range and is available in space-saving MSOP16  
and DFN14 packages.  
L, LT, LTC, LTM, Linear Technology, Over-The-Top and the Linear logo are registered  
trademarks of Linear Technology Corporation. All other trademarks are the property of their  
respective owners.  
n
Bidirectional Wide Common Mode Range Current Sensing  
n
High Voltage to Low Voltage Level Translation  
n
Precision Difference Amplifier  
n
Industrial Data-Acquisition Front-Ends  
n
Replacement for Isolation Circuits  
TYPICAL APPLICATION  
Precision Wide Voltage Range, Bidirectional Current Monitor  
Typical Distribution of CMRR  
15V  
200  
180  
160  
140  
120  
100  
80  
1248 UNITS  
FROM 4 RUNS  
V
V
= ±±15  
S
+
–REFA  
19k  
–REFB  
38k  
–REFC  
23.75k  
V
= ±±270  
IN  
DIV = 25  
190k  
+
V
= –270V TO 270V  
SOURCE  
190k  
–IN  
+IN  
+
R
OUT  
REF  
SENSE  
R
10Ω  
C
V
= 10ꢀV/ꢀA  
OUT  
10Ω  
190k  
60  
40  
LOAD  
20  
190k  
19k  
+REFA  
38k  
23.75k  
+REFC  
0
–40 –30 –20 –10  
0
10 20 30 40  
+REFB  
SHDN  
V
CMRR (µV/V = ppm)  
6375 TA01a  
6375 TA01b  
–15V  
6375fa  
1
For more information www.linear.com/LT6375  
LT6375  
ABSOLUTE MAXIMUM RATINGS  
(Note 1)  
Output Short-Circuit Duration (Note 3) Thermally Limited  
Temperature Range (Notes 4, 5)  
LT6375I................................................–40°C to 85°C  
LT6375H ............................................ –40°C to 125°C  
Storage Temperature Range .................. –65°C to 150°C  
MSOP Lead Temperature (Soldering, 10 sec)........300°C  
Supply Voltages  
(V to V )..............................................................60V  
+IN, –IN, (Note 2)  
Each Input......................................................... 270V  
Differential........................................................ 540V  
+REFA, –REFA, +REFB, –REFB, +REFC, –REFC,  
+
+
REF, SHDN (Note 2) ................ (V + 0.3V) to (V –0.3V)  
Output Current (Continuous) (Note 6)....................50mA  
PIN CONFIGURATION  
TOP VIEW  
TOP VIEW  
+IN  
1
14 –IN  
1
3
+IN  
16 –IN  
+REFA  
14 –REFA  
12 –REFB  
+REFA  
+REFB  
+REFC  
REF  
3
4
5
6
7
12 –REFA  
11 –REFB  
5
6
7
8
+REFB  
+REFC  
REF  
15 V  
11 –REFC  
+
10 –REFC  
+
10  
9
V
V
OUT  
9
8
V
MS PACKAGE  
SHDN  
OUT  
VARIATION: MS16 (12)  
16-LEAD PLASTIC MSOP  
T
JMAX  
= 150°C, θ = 130°C/W  
JA  
DF PACKAGE  
14(12)-LEAD (4mm × 4mm) PLASTIC DFN  
= 150°C, θ = 43°C/W, θ = 4°C/W  
T
JMAX  
JA  
JC  
EXPOSED PAD (PIN 15) IS V , MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING*  
6375  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
–40°C to 85°C  
LT6375IDF#PBF  
LT6375IDF#TRPBF  
LT6375HDF#TRPBF  
LT6375AHDF#TRPBF  
LT6375IMS#TRPBF  
LT6375HMS#TRPBF  
LT6375AHMS#TRPBF  
14-Lead (4mm × 4mm) Plastic DFN  
14-Lead (4mm × 4mm) Plastic DFN  
14-Lead (4mm × 4mm) Plastic DFN  
16-Lead Plastic MSOP  
LT6375HDF#PBF  
LT6375AHDF#PBF  
LT6375IMS#PBF  
LT6375HMS#PBF  
LT6375AHMS#PBF  
6375  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 85°C  
6375  
6375  
6375  
16-Lead Plastic MSOP  
–40°C to 125°C  
–40°C to 125°C  
6375  
16-Lead Plastic MSOP  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/. Some packages are available in 500 unit reels through  
designated sales channels with #TRMPBF suffix.  
6375fa  
2
For more information www.linear.com/LT6375  
LT6375  
The l denotes the specifications which apply over the full operating  
ELECTRICAL CHARACTERISTICS  
temperature range, –40°C < TA < 85°C for I-grade parts, –40°C < TA < 125°C for H-grade parts, otherwise specifications are at TA = 25°C,  
V+ = 15V, V= –15V, VCM = VOUT = VREF = 0V. VCMOP is the common mode voltage of the internal op amp. For Resistor Divider  
Ratio = 7, ±REFA = ± REFC = OPEN, ±REFB = 0V. For Resistor Divider Ratio = 20, ±REFA = ±REFC = 0V, ±REFB = OPEN. For Resistor  
Divider Ratio = 25, ±REFA = ±REFB = ±REFC = 0V.  
LT6375A  
LT6375  
TYP  
1
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
MAX  
UNITS  
G
Gain  
V
V
=
=
10V  
10V  
1
V/V  
OUT  
OUT  
∆G  
Gain Error  
0.0007 0.0035  
0.005  
0.001 0.006  
0.0075  
%
%
l
l
∆G/∆T  
GNL  
Gain Drift vs Temperature  
(Note 6)  
V
V
=
=
10V  
10V  
0.2  
1
0.2  
1
ppm/°C  
OUT  
Gain Nonlinearity  
1
2
3
1
2
3
ppm  
ppm  
OUT  
l
+
V
OS  
Output Offset Voltage  
V < V  
< V –1.75V  
CMOP  
Resistor Divider Ratio = 7  
Resistor Divider Ratio = 7  
Resistor Divider Ratio = 20  
Resistor Divider Ratio = 20  
Resistor Divider Ratio = 25  
Resistor Divider Ratio = 25  
100  
250  
300  
300  
750  
120  
300  
400  
450  
µV  
µV  
µV  
µV  
µV  
µV  
l
l
l
1500  
1200  
4000  
1500  
5000  
700  
2000  
900  
2500  
+
∆V /∆T Output Offset Voltage Drift  
V < V  
< V –1.75V  
OS  
CMOP  
l
l
(Note 6)  
Resistor Divider Ratio = 7  
Resistor Divider Ratio = 20  
3
8
9
23  
4
10  
12  
30  
µV/°C  
µV/°C  
R
IN  
Input Impedance (Note 8)  
Common Mode  
l
l
l
l
Resistor Divider Ratio = 7  
Resistor Divider Ratio = 20  
Resistor Divider Ratio = 25  
Differential  
93  
84  
111  
100  
99  
129  
116  
115  
440  
93  
84  
111  
100  
99  
129  
116  
115  
440  
kΩ  
kΩ  
kΩ  
kΩ  
83  
83  
320  
380  
320  
380  
CMRR  
Common Mode Rejection Ratio MS16 Package  
Resistor Divider Ratio = 7, V  
=
=
28V  
28V  
96  
94  
96  
94  
96  
94  
97  
94  
106  
106  
106  
107  
89  
83  
89  
83  
89  
83  
90  
83  
100  
100  
100  
100  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
CM  
CM  
l
l
l
l
Resistor Divider Ratio = 7, V  
Resistor Divider Ratio = 20, V  
Resistor Divider Ratio = 20, V  
Resistor Divider Ratio = 25, V  
Resistor Divider Ratio = 25, V  
Resistor Divider Ratio = 25, V  
Resistor Divider Ratio = 25, V  
=
=
=
=
=
=
28V  
CM  
28V  
CM  
CM  
CM  
CM  
CM  
28V  
28V  
270V  
270V  
DF14 Package  
Resistor Divider Ratio = 7, V  
Resistor Divider Ratio = 7, V  
=
28V  
28V  
94  
92  
94  
92  
94  
92  
95  
92  
104  
104  
104  
105  
89  
83  
89  
83  
89  
83  
90  
83  
100  
100  
100  
100  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
CM  
CM  
l
l
l
=
Resistor Divider Ratio = 20, V  
Resistor Divider Ratio = 20, V  
Resistor Divider Ratio = 25, V  
Resistor Divider Ratio = 25, V  
Resistor Divider Ratio = 25, V  
Resistor Divider Ratio = 25, V  
=
=
=
=
=
=
28V  
CM  
28V  
CM  
CM  
CM  
CM  
CM  
28V  
28V  
270V  
270V  
l
l
V
Input Voltage Range (Note 7)  
Power Supply Rejection Ratio  
–270  
270  
–270  
270  
V
CM  
PSRR  
V = 1.65V to 25V, V = V  
=
OUT  
S
CM  
Mid-Supply  
l
l
l
Resistor Divider Ratio = 7  
Resistor Divider Ratio = 20  
Resistor Divider Ratio = 25  
101  
93  
91  
115  
104  
101  
98  
90  
88  
110  
100  
100  
dB  
dB  
dB  
6375fa  
3
For more information www.linear.com/LT6375  
LT6375  
The l denotes the specifications which apply over the full operating  
ELECTRICAL CHARACTERISTICS  
temperature range, –40°C < TA < 85°C for I-grade parts, –40°C < TA < 125°C for H-grade parts, otherwise specifications are at TA = 25°C,  
V+ = 15V, V= –15V, VCM = VOUT = VREF = 0V. VCMOP is the common mode voltage of the internal op amp. For Resistor Divider  
Ratio = 7, ±REFA = ± REFC = OPEN, ±REFB = 0V. For Resistor Divider Ratio = 20, ±REFA = ±REFC = 0V, ±REFB = OPEN. For Resistor  
Divider Ratio = 25, ±REFA = ±REFB = ±REFC = 0V.  
LT6375A  
TYP  
LT6375  
TYP  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
MAX  
UNITS  
e
Output Referred Noise Voltage  
Density  
f = 1kHz  
no  
Resistor Divider Ratio = 7  
250  
508  
599  
250  
508  
599  
nV/√Hz  
nV/√Hz  
nV/√Hz  
Resistor Divider Ratio = 20  
Resistor Divider Ratio = 25  
Output Referred Noise Voltage  
f = 0.1Hz to 10Hz  
Resistor Divider Ratio = 7  
Resistor Divider Ratio = 20  
Resistor Divider Ratio = 25  
10  
20  
25  
10  
20  
25  
µV  
µV  
µV  
P-P  
P-P  
P-P  
l
l
V
V
Output Voltage Swing Low  
No Load  
SINK  
5
50  
5
50  
mV  
mV  
OL  
(Referred to V )  
I
= 5mA  
280  
500  
280  
500  
l
l
Output Voltage Swing High  
No Load  
SOURCE  
5
400  
20  
750  
5
400  
20  
750  
mV  
mV  
OH  
+
(Referred to V )  
I
= 5mA  
+
l
l
I
SC  
Short-Circuit Output Current  
50Ω to V  
50Ω to V  
10  
10  
28  
30  
10  
10  
28  
30  
mA  
mA  
l
SR  
Slew Rate  
∆V  
=
5V  
1.6  
2.4  
1.6  
2.4  
V/µs  
OUT  
BW  
Small Signal –3dB Bandwidth  
Resistor Divider Ratio = 7  
Resistor Divider Ratio = 20  
Resistor Divider Ratio = 25  
575  
375  
310  
575  
375  
310  
kHz  
kHz  
kHz  
t
S
Settling Time  
Resistor Divider Ratio = 7  
0.01%, ∆V  
= 10V  
41  
14  
41  
14  
µs  
µs  
µs  
OUT  
OUT  
0.1%, ∆V  
= 10V  
0.01%, ∆V = 10V, ∆V  
= 0V  
= 0V  
= 0V  
100  
100  
CM  
DIFF  
DIFF  
DIFF  
Resistor Divider Ratio = 20  
0.01%, ∆V  
= 10V  
31  
11  
100  
31  
11  
100  
µs  
µs  
µs  
OUT  
0.1%, ∆V  
= 10V  
OUT  
0.01%, ∆V = 10V, ∆V  
CM  
Resistor Divider Ratio = 25  
0.01%, ∆V  
= 10V  
26  
8
20  
26  
8
20  
µs  
µs  
µs  
OUT  
0.1%, ∆V  
= 10V  
OUT  
0.01%, ∆V = 10V, ∆V  
CM  
V
Supply Voltage  
3
3.3  
50  
50  
3
3.3  
50  
50  
V
V
S
l
t
Turn-On Time  
16  
16  
µs  
V
ON  
l
l
l
V
SHDN Input Logic Low  
(Referred to V )  
–2.5  
–2.5  
IL  
+
V
SHDN Input Logic High  
(Referred to V )  
–1.2  
–1.2  
V
IH  
+
I
I
SHDN Pin Current  
–10  
350  
–15  
–10  
350  
–15  
µA  
SHDN  
+
+
Supply Current  
Active, V  
Active, V  
≥ V –1.2V  
400  
600  
25  
400  
600  
25  
µA  
µA  
µA  
µA  
S
SHDN  
SHDN  
Shutdown, V  
Shutdown, V  
l
l
≥ V –1.2V  
+
+
≤ V –2.5V  
≤ V –2.5V  
20  
20  
SHDN  
SHDN  
70  
70  
6375fa  
4
For more information www.linear.com/LT6375  
LT6375  
The l denotes the specifications which apply over the full operating  
ELECTRICAL CHARACTERISTICS  
temperature range, –40°C < TA < 85°C for I-grade parts, –40°C < TA < 125°C for H-grade parts, otherwise specifications are at TA = 25°C,  
V+ = 5V, V= 0V, VCM = VOUT = VREF = Mid-Supply. VCMOP is the common mode voltage of the internal op amp. For Resistor  
Divider Ratio = 7, ±REFA = ±REFC = OPEN, ±REFB = Mid-Supply. For Resistor Divider Ratio = 20, ±REFA = ±REFC = Mid-Supply,  
±REFB = OPEN. For Resistor Divider Ratio = 25, ±REFA = ±REFB = ±REFC = Mid-Supply.  
LT6375A  
LT6375  
TYP  
1
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
MAX  
UNITS  
G
Gain  
V
V
= 1V to 4V  
= 1V to 4V  
1
V/V  
OUT  
OUT  
∆G  
Gain Error  
0.0007 0.0035  
0.005  
0.001 0.006  
0.0075  
%
%
l
l
∆G/∆T  
Gain Drift vs Temperature  
(Note 6)  
V
= 1V to 4V  
0.2  
1
0.2  
1
ppm/°C  
OUT  
GNL  
Gain Nonlinearity  
V
= 1V to 4V  
1
1
ppm  
OUT  
+
V
OS  
Output Offset Voltage  
0 < V  
< V –1.75V  
CMOP  
Resistor Divider Ratio = 7  
Resistor Divider Ratio = 7  
Resistor Divider Ratio = 20  
Resistor Divider Ratio = 20  
Resistor Divider Ratio = 25  
Resistor Divider Ratio = 25  
100  
250  
300  
300  
750  
120  
300  
400  
500  
µV  
µV  
µV  
µV  
µV  
µV  
l
l
l
1500  
1200  
4000  
1500  
5000  
700  
2000  
900  
2500  
+
∆V /∆T Output Offset Voltage Drift  
0 < V  
< V –1.75V  
OS  
CMOP  
l
l
(Note 6)  
Resistor Divider Ratio = 7  
Resistor Divider Ratio = 20  
3
8
9
23  
4
10  
12  
30  
µV/°C  
µV/°C  
R
IN  
Input Impedance (Note 8)  
Common Mode  
l
l
l
l
Resistor Divider Ratio = 7  
Resistor Divider Ratio = 20  
Resistor Divider Ratio = 25  
Differential  
93  
84  
111  
100  
99  
129  
116  
115  
440  
93  
84  
111  
100  
99  
129  
116  
115  
440  
kΩ  
kΩ  
kΩ  
kΩ  
83  
83  
320  
380  
320  
380  
CMRR  
Common Mode Rejection  
Ratio  
MS16 Package  
Resistor Divider Ratio = 7  
V
V
= –15V to +7.75V  
= –15V to +7.75V  
94  
92  
105  
105  
105  
85  
83  
95  
95  
95  
dB  
dB  
CM  
CM  
l
l
l
Resistor Divider Ratio = 20  
V
CM  
V
CM  
= –25.5V to +17.5V  
= –25.5V to +17.5V  
94  
92  
85  
83  
dB  
dB  
Resistor Divider Ratio = 25  
V
V
= –25.5V to +21.25V  
= –25.5V to +21.25V  
94  
92  
85  
83  
dB  
dB  
CM  
CM  
DF14 Package  
Resistor Divider Ratio = 7  
V
V
= –15V to +7.75V  
= –15V to +7.75V  
92  
90  
103  
103  
103  
85  
83  
95  
95  
95  
dB  
dB  
CM  
CM  
l
l
l
Resistor Divider Ratio = 20  
V
V
= –25.5V to +17.5V  
= –25.5V to +17.5V  
92  
90  
85  
83  
dB  
dB  
CM  
CM  
Resistor Divider Ratio = 25  
V
CM  
V
CM  
= –25.5V to +21.25V  
= –25.5V to +21.25V  
92  
90  
85  
83  
dB  
dB  
PSRR  
Power Supply Rejection Ratio V = 1.65V to 25V, V = V  
= Mid-Supply  
OUT  
S
CM  
l
l
l
Resistor Divider Ratio = 7  
101  
93  
91  
115  
104  
101  
98  
90  
88  
110  
100  
100  
dB  
dB  
dB  
Resistor Divider Ratio = 20  
Resistor Divider Ratio = 25  
e
no  
Output Referred Noise  
Voltage Density  
f = 1kHz  
Resistor Divider Ratio = 7  
250  
508  
599  
250  
508  
599  
nV/√Hz  
nV/√Hz  
nV/√Hz  
Resistor Divider Ratio = 20  
Resistor Divider Ratio = 25  
6375fa  
5
For more information www.linear.com/LT6375  
LT6375  
The l denotes the specifications which apply over the full operating  
ELECTRICAL CHARACTERISTICS  
temperature range, –40°C < TA < 85°C for I-grade parts, –40°C < TA < 125°C for H-grade parts, otherwise specifications are at TA = 25°C,  
V+ = 5V, V= 0V, VCM = VOUT = VREF = Mid-Supply. VCMOP is the common mode voltage of the internal op amp. For Resistor  
Divider Ratio = 7, ±REFA = ±REFC = OPEN, ±REFB = Mid-Supply. For Resistor Divider Ratio = 20, ±REFA = ±REFC = Mid-Supply,  
±REFB = OPEN. For Resistor Divider Ratio = 25, ±REFA = ±REFB = ±REFC = Mid-Supply.  
LT6375A  
TYP  
LT6375  
TYP  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
MAX  
UNITS  
Output Referred Noise  
Voltage  
f = 0.1Hz to 10Hz  
Resistor Divider Ratio = 7  
Resistor Divider Ratio = 20  
Resistor Divider Ratio = 25  
10  
20  
25  
10  
20  
25  
µV  
µV  
µV  
P-P  
P-P  
P-P  
l
l
V
V
Output Voltage Swing Low  
No Load  
SINK  
5
50  
5
50  
mV  
mV  
OL  
(Referred to V )  
I
= 5mA  
280  
500  
280  
500  
l
l
Output Voltage Swing High  
No Load  
SOURCE  
5
400  
20  
750  
5
400  
20  
750  
mV  
mV  
OH  
+
(Referred to V )  
I
= 5mA  
+
l
l
I
SC  
Short-Circuit Output Current 50Ω to V  
50Ω to V  
10  
10  
27  
25  
10  
10  
27  
25  
mA  
mA  
l
SR  
Slew Rate  
∆V  
= 3V  
1.3  
2
1.3  
2
V/µs  
OUT  
BW  
Small Signal –3dB Bandwidth Resistor Divider Ratio = 7  
Resistor Divider Ratio = 20  
565  
380  
325  
565  
380  
325  
kHz  
kHz  
kHz  
Resistor Divider Ratio = 25  
t
S
Settling Time  
Resistor Divider Ratio = 7  
0.01%, ∆V = 2V  
18  
10  
64  
18  
10  
64  
µs  
µs  
µs  
OUT  
= 2V  
0.1%, ∆V  
OUT  
0.01%, ∆V = 2V, ∆V  
= 0V  
= 0V  
= 0V  
CM  
DIFF  
Resistor Divider Ratio = 20  
0.01%, ∆V = 2V  
24  
7
48  
24  
7
48  
µs  
µs  
µs  
OUT  
OUT  
0.1%, ∆V  
= 2V  
0.01%, ∆V = 2V, ∆V  
CM  
DIFF  
Resistor Divider Ratio = 25  
0.01%, ∆V = 2V  
27  
9
20  
27  
9
20  
µs  
µs  
µs  
OUT  
OUT  
0.1%, ∆V  
= 2V  
0.01%, ∆V = 2V, ∆V  
CM  
DIFF  
V
S
Supply Voltage  
3
3.3  
50  
50  
3
3.3  
50  
50  
V
V
l
t
Turn-On Time  
22  
22  
µs  
V
ON  
l
l
l
V
SHDN Input Logic Low  
(Referred to V )  
–2.5  
–2.5  
IL  
+
V
SHDN Input Logic High  
(Referred to V )  
–1.2  
–1.2  
V
IH  
+
I
I
SHDN Pin Current  
–10  
330  
–15  
–10  
330  
–15  
µA  
SHDN  
+
+
Supply Current  
Active, V  
Active, V  
≥ V –1.2V  
370  
525  
20  
370  
525  
20  
µA  
µA  
µA  
µA  
S
SHDN  
SHDN  
Shutdown, V  
Shutdown, V  
l
l
≥ V –1.2V  
+
+
≤ V –2.5V  
≤ V –2.5V  
15  
15  
SHDN  
SHDN  
40  
40  
6375fa  
6
For more information www.linear.com/LT6375  
LT6375  
ELECTRICAL CHARACTERISTICS  
Nꢁol ±: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Nꢁol 5: The LT6375I is guaranteed to meet specified performance from  
–40°C to 85°C. The LT6375H is guaranteed to meet specified performance  
from –40°C to 125°C.  
Nꢁol 6: This parameter is not 100% tested.  
Nꢁol 2: See Common Mode Voltage Range in the Applications Information  
section of this data sheet for other considerations when taking +IN/–IN  
pins to 270V. All other pins should not be taken more than 0.3V beyond  
the supply rails.  
Nꢁol 3: A heat sink may be required to keep the junction temperature  
below absolute maximum. This depends on the power supply, input  
voltages and the output current.  
Nꢁol 7: Input voltage range is guaranteed by the CMRR test at V = 15V  
S
and all REF pins at ground (Resistor Divider Ratio = 25). For the other  
voltages, this parameter is guaranteed by design and through correlation  
with the 15V test. See Common Mode Voltage Range in the Applications  
Information section to determine the valid input voltage range under  
various operating conditions.  
Nꢁol 8: Input impedance is tested by a combination of direct measurement  
Nꢁol 4: The LT6375I is guaranteed functional over the operating  
temperature range of –40°C to 85°C. The LT6375H is guaranteed  
functional over the operating temperature range of –40°C to 125°C.  
and correlation to the CMRR and gain error tests.  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, VS = ±15V, unless otherwise noted.  
Typican Dieoibꢀoiꢁu ꢁf CMRR  
Typican Dieoibꢀoiꢁu ꢁf CMRR  
Typican Dieoibꢀoiꢁu ꢁf CMRR  
200  
180  
160  
140  
120  
100  
80  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
1248 UNITS  
FROM 4 RUNS  
BOTH PACKAGES  
V
V
= ±±15  
655 UNITS  
FROM 2 RUNS  
MS16(12)  
593 UNITS  
FROM 2 RUNS  
DF14(12)  
V
V
= ±±15  
V
V
= ±±15  
S
S
S
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
= ±±270  
= ±±270  
= ±±270  
IN  
IN  
IN  
DIV = 25  
DIV = 25  
DIV = 25  
60  
40  
20  
0
–40 –30 –20 –10  
0
10 20 30 40  
–40 –30 –20 –10  
0
10 20 30 40  
–40 –30 –20 –10  
0
10 20 30 40  
CMRR (µV/V = ppm)  
CMRR (µV/V = ppm)  
CMRR (µV/V = ppm)  
6375 G01  
6375 G02  
6375 G03  
Typican Dieoibꢀoiꢁu ꢁf Gaiu Eꢂꢂꢁꢂ  
Typican Dieoibꢀoiꢁu ꢁf Gaiu Eꢂꢂꢁꢂ  
Typican Dieoibꢀoiꢁu ꢁf Gaiu Eꢂꢂꢁꢂ  
400  
350  
300  
250  
200  
150  
100  
50  
200  
175  
150  
125  
100  
75  
200  
175  
150  
125  
100  
75  
593 UNITS  
FROM 2 RUNS  
DF14(12)  
V
V
= ±±1V  
S
OUT  
1248 UNITS  
FROM 4 RUNS  
BOTH PACKAGES  
V
V
= ±±1V  
S
OUT  
655 UNITS  
FROM 2 RUNS  
MS16(12)  
V
V
= ±±1V  
S
OUT  
= ±±ꢀV  
= ±±ꢀV  
= ±±ꢀV  
50  
50  
25  
25  
0
0
0
–50 –40 –30 –20 –10  
0
10 20 30 40 50  
–50 –40 –30 –20 –10  
0
10 20 30 40 50  
–50 –40 –30 –20 –10  
0
10 20 30 40 50  
GAIN ERROR (ppm)  
GAIN ERROR (ppm)  
GAIN ERROR (ppm)  
6375 G04  
6375 G05  
6375 G06  
6375fa  
7
For more information www.linear.com/LT6375  
LT6375  
TA = 25°C, VS = ±15V, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Typical Distribution of Gain  
Common Mode Voltage Range vs  
Nonlinearity  
CMRR vs Frequency  
Power Supply Voltage  
120  
100  
80  
60  
40  
20  
0
300  
250  
200  
150  
100  
50  
300  
1332 UNITS  
V
V
= ±±1V  
S
OUT  
DIV = 7  
MS16(12)  
250  
200  
150  
100  
50  
FROM 4 RUNS  
= ±±ꢀV  
BOTH PACKAGES  
DIV = 7  
DIV = 10  
DIV = 12  
DIV = 15  
DIV = 17  
DIV = 20  
DIV = 25  
OTT  
0
–50  
–100  
–150  
–200  
–250  
–300  
0
10  
100  
1k  
10k 100k  
1M  
10M  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
1
0
5
10  
15  
20  
25  
30  
FREQUENCY (Hz)  
GAIN NONLINEARITY (ppm)  
POWER SUPPLY VOLTAGE ( Vꢀ  
6375 G08  
6375 G07  
LT6375 G09  
Typican Gaiu Eꢂꢂꢁꢂ fꢁꢂ RL = ±0kΩ  
(Cꢀꢂvl e Offel o fꢁꢂ Cnaꢂioy)  
Typican Gaiu Eꢂꢂꢁꢂ fꢁꢂ RL = 5kΩ  
(Cꢀꢂvl e Offel o fꢁꢂ Cnaꢂioy)  
Typican Gaiu Eꢂꢂꢁꢂ fꢁꢂ RL = 2kΩ  
(Cꢀꢂvl e Offel o fꢁꢂ Cnaꢂioy)  
V
S
= ±±1V  
V
= ±±1V  
V
= ±±1V  
S
S
V
= ±±1V  
S
V
= ±±1V  
V
= ±±1V  
S
S
V
S
= ±±1V  
V
= ±±1V  
V
= ±±1V  
S
S
V
= ±±1V  
S
V
= ±±1V  
V
= ±±1V  
S
S
–20 –16 –12 –8 –4  
0
4
8
12 16 20  
–20 –16 –12 –8 –4  
0
4
8
12 16 20  
–20 –16 –12 –8 –4  
0
4
8
12 16 20  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
6375 G10  
6375 G12  
6375 G11  
Typican Gaiu Eꢂꢂꢁꢂ fꢁꢂ Lꢁw Sꢀppny  
Vꢁnoagl e (Cꢀꢂvl e Offel o fꢁꢂ Cnaꢂioy)  
Gaiu Nꢁuniul aꢂioy  
Gaiu Nꢁuniul aꢂioy  
100  
80  
100  
80  
V
= ±±1V  
= ±0kΩ  
V
= ±±1V  
= 2kΩ  
S
S
R
R
L
L
60  
60  
V
= ±±V, R = 10kΩ  
L
S
40  
40  
V
= ±±V, R = 2kΩ  
20  
20  
S
L
0
0
–20  
–40  
–60  
–80  
–100  
–20  
–40  
–60  
–80  
–100  
V
= ±±V, R = 1kΩ  
L
S
V
= ±±2.V, R = 1kΩ  
L
S
–15  
–10  
–5  
0
5
10  
15  
–5 –4 –3 –2 –1  
0
1
2
3
4
5
–15  
–10  
–5  
0
5
10  
15  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
6375 G15  
6375 G13  
6375 G14  
6375fa  
8
For more information www.linear.com/LT6375  
LT6375  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, VS = ±15V, unless otherwise noted.  
Gaiu Nꢁuniul aꢂioy  
Gaiu Nꢁuniul aꢂioy  
Gaiu Eꢂꢂꢁꢂ ve Tl mpl ꢂaoꢂl  
100  
80  
10  
8
100  
80  
10  
8
V
= ±±1V  
= ±00kΩ  
V
= ±±1V  
= ±MΩ  
V
V
R
= ±±15  
S
S
S
R
R
= ±±10  
L
L
OUT  
= 10kΩ  
L
60  
60  
6
6
10 UNITS  
40  
40  
4
4
20  
20  
2
2
0
0
0
0
–20  
–40  
–60  
–80  
–100  
–20  
–40  
–60  
–80  
–100  
–2  
–4  
–6  
–8  
–10  
–2  
–4  
–6  
–8  
–10  
–15  
–10  
–5  
0
5
10  
15  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–15  
–10  
–5  
0
5
10  
15  
OUTPUT VOLTAGE (V)  
TEMPERATURE (°C)  
OUTPUT VOLTAGE (V)  
6375 G16  
6375 G18  
Maximꢀm Pꢁwl ꢂ Dieeipaoiꢁu  
ve Tl mpl ꢂaoꢂl  
Oꢀopꢀo Vꢁnoagl ve Lꢁad Cꢀꢂꢂl uo  
Gaiu ve Fꢂl qꢀl ucy  
5
20  
10  
20  
15  
DF14(12) θ = 43°C/W  
JA  
4
3
2
1
0
0
10  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
5
130°C  
85°C  
25°C  
–45°C  
0
DIV = 7  
–5  
DIV = 10  
DIV = 12  
DIV = 15  
DIV = 17  
DIV = 20  
DIV = 25  
–10  
–15  
–20  
MS16(12) θ = 130°C/W  
JA  
–60 –40 –20  
0
20 40 60 80 100 120 140 160  
0.001  
0.01  
0.1  
1
10  
0
5
10  
15  
20  
25  
30  
AMBIENT TEMPERATURE (°C)  
FREQUENCY (MHz)  
OUTPUT CURRENT (mA)  
LT6375 G20  
6375 G21  
6375 G19  
Fꢂl qꢀl ucy Rl epꢁuel ve  
Capacioivl Lꢁad  
Nꢁiel Dl ueioy ve Fꢂl qꢀl ucy  
0.±Hz o±0Hz Nꢁiel  
50  
40  
20  
10  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
DIV = 20  
30  
0
20  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
DIV = 7  
10  
0
0nF  
0.5nF  
1nF  
1.5nF  
2nF  
3nF  
5nF  
–10  
–20  
–30  
–40  
–50  
DIV = 20  
DIV = 20  
DIV = 7  
0.001  
0.01  
0.1  
1
10  
1
10  
100  
1k  
10k  
100k  
TIME (10s/DIV)  
FREQUENCY (MHz)  
FREQUENCY (Hz)  
6375 G24  
6375 G22  
6375 G23  
6375fa  
9
For more information www.linear.com/LT6375  
LT6375  
TA = 25°C, VS = ±15V, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Positive PSRR vs Frequency  
Negative PSRR vs Frequency  
Slew Rate vs Temperature  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
7
V
V
V
V
V
V
= ±±2.5, Rising  
= ±±15, Rising  
= ±±25, Rising  
= ±±2.5, Falling  
= ±±15, Falling  
= ±±25, Falling  
S
S
S
S
S
S
6
5
4
3
2
1
0
DIV = 20  
DIV = 7  
DIV = 25  
DIV = 7  
DIV = 20  
R
= 10kΩ  
L
DIV = 25  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
10k  
100k  
–75 –50 –25  
0
25 50 75 100 125 150 175  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
6375 G25  
6375 G26  
6375 G27  
Small-Signal Step Response  
vs Capacitive Load  
Small-Signal Step Response  
Large-Signal Step Response  
140  
120  
100  
80  
DIV = 7  
DIV = 7  
DIV = 7  
C
R
= 560pF  
= 2kΩ  
R
L
= 2kΩ  
C
R
= 560pF  
= 2kΩ  
L
L
L
L
60  
560pF  
40  
0V  
20  
0V  
0
1000pF  
–20  
–40  
–60  
–80  
–100  
20pF  
0
5
10 15 20 25 30 35 40  
TIME (4µs/DIV)  
TIME (4µs/DIV)  
TIME (µs)  
6375 G29  
6375 G28  
6375 G30  
Small-Signal Step Response  
vs Capacitive Load  
Large-Signal Step Response  
Small-Signal Step Response  
140  
120  
100  
80  
DIV = 20  
DIV = 20  
DIV = 20  
R = 2kΩ  
L
C
R
= 560pF  
= 2kΩ  
C
R
= 560pF  
= 2kΩ  
L
L
L
L
60  
560pF  
40  
0V  
20  
1000pF  
0V  
0
–20  
–40  
–60  
–80  
–100  
20pF  
0
5
10 15 20 25 30 35 40  
TIME (4µs/DIV)  
TIME (4µs/DIV)  
TIME (µs)  
6375 G31  
6375 G32  
6375 G33  
6375fa  
10  
For more information www.linear.com/LT6375  
LT6375  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, VS = ±15V, unless otherwise noted.  
Oꢀopꢀo Offel o Vꢁnoagl  
ve Tl mpl ꢂaoꢂl  
Sl ooniug Timl  
Sl ooniug Timl  
1.0  
0.5  
4
16  
14  
12  
10  
8
3000  
2250  
1500  
750  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
DIV = 7  
DIV = 7  
DIV = 20  
10 UNITS  
2
0
0
ERROR VOLTAGE  
OUTPUT VOLTAGE  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
–2  
–4  
–6  
–8  
–10  
–12  
–14  
–16  
6
0
ERROR VOLTAGE  
4
–750  
–1500  
–2250  
–3000  
OUTPUT VOLTAGE  
2
0
–0.5  
–1.0  
–2  
–4  
–60 –40 –20  
0
20 40 60 80 100 120 140  
TIME (10µs/DIV)  
TEMPERATURE (°C)  
TIME (10µs/DIV)  
6375 G35  
6375 G36  
6375 G34  
Qꢀil ecl uo Cꢀꢂꢂl uo ve Sꢀppny  
Vꢁnoagl  
Tt l ꢂman St ꢀodꢁwu Hyeol l eie  
Qꢀil ecl uo Cꢀꢂꢂl uo ve Tl mpl ꢂaoꢂl  
600  
600  
500  
400  
300  
200  
100  
0
550  
10 UNITS  
T
= 150°C  
A
500  
450  
400  
350  
300  
250  
200  
500  
400  
300  
200  
100  
0
T
= –55°C  
A
PARAMETRIC SWEEP IN ~25°C  
INCREMENTS  
145  
150  
155  
160  
165  
170  
0
10  
20  
30  
40  
50  
–75 –50 –25  
0
25 50 75 100 125 150 175  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
6375 G38  
6375 G39  
6375 G37  
St ꢀodꢁwu Qꢀil ecl uo Cꢀꢂꢂl uo ve  
Sꢀppny Vnoagl  
Qꢀil ecl uo Cꢀꢂꢂl uo ve SHDN  
Vꢁnoagl  
Miuimꢀm Sꢀppny Vnoagl  
50  
40  
30  
20  
10  
0
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
150  
100  
50  
150°C  
125°C  
85°C  
25°C  
–40°C  
–55°C  
V
= 0V  
150°C  
125°C  
85°C  
25°C  
–40°C  
–55°C  
SHDN  
DIV = 7  
V
= ±±1V  
S
T
= 125°C  
A
0
–50  
–100  
–150  
T
= 25°C  
A
T
= –45°C  
A
0
0
10  
20  
30  
40  
50  
0
5
10  
15  
0
1
2
3
4
5
SUPPLY VOLTAGE (V)  
SHDN VOLTAGE (V)  
TOTAL SUPPLY VOLTAGE (V)  
LT6375 G40  
6375 G41  
6375 G42  
6375fa  
11  
For more information www.linear.com/LT6375  
LT6375  
TA = 25°C, VS = ±15V, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Typical Distribution of Output  
Offset Voltage  
Typical Distribution of Output  
Offset Voltage  
Typical Distribution of Output  
Offset Voltage  
200  
175  
150  
125  
100  
75  
200  
175  
150  
125  
100  
75  
200  
DIV = 25  
DIV = 20  
DIV = 7  
1332 UNITS  
1332 UNITS  
1332 UNITS  
FROM 4 RUNS  
BOTH PACKAGES  
FROM 4 RUNS  
BOTH PACKAGES  
FROM 4 RUNS  
BOTH PACKAGES  
175  
150  
125  
100  
75  
50  
50  
50  
25  
25  
25  
0
0
0
–400 –300 –200 –100  
0
100 200 300 400  
–1200 –800 –400  
0
400  
800 1200  
–1500 –1000 –500  
0
500 1000 1500  
OFFSET VOLTAGE (µV)  
OFFSET VOLTAGE (µV)  
OFFSET VOLTAGE (µV)  
6375 G43  
6375 G44  
6375 G45  
Typican Dieoibꢀoiꢁu ꢁf PSRR  
Typican Dieoibꢀoiꢁu ꢁf PSRR  
Typican Dieoibꢀoiꢁu ꢁf PSRR  
200  
175  
150  
125  
100  
75  
200  
175  
150  
125  
100  
75  
200  
175  
150  
125  
100  
75  
1352 UNITS  
FROM 4 RUNS  
V
= ±±1.6V ꢀT ±ꢁ6V  
V = ±±1.6V ꢀT ±ꢁ6V  
S
V
= ±±1.6V ꢀT ±ꢁ6V  
1352 UNITS  
FROM 4 RUNS  
BOTH PACKAGES  
1352 UNITS  
S
S
DIV = 7  
DIV = ꢁ6  
DIV = ꢁ0  
FROM 4 RUNS  
BOTH PACKAGES  
BOTH PACKAGES  
50  
50  
50  
25  
25  
25  
0
0
0
–10 –8 –6 –4 –2  
0
2
4
6
8
10  
–25 –20 –15 –10 –5  
0
5
10 15 20 25  
–30  
–20  
–10  
0
10  
20  
30  
PSRR (µV/V)  
PSRR (µV/V)  
PSRR (µV/V)  
6375 G46  
6375 G47  
6375 G48  
6375fa  
12  
For more information www.linear.com/LT6375  
LT6375  
PIN FUNCTIONS (DFN/MSOP)  
V (Pin 9/Pin 10): Positive Supply Pin.  
+
–REFA (Pin 12/Pin 14): Reference Pin A. Sets the input  
common mode range and the output noise and offset.  
V (Exposed Pad Pin 15/Pin 8): Negative Supply Pin.  
–REFB (Pin 11/Pin 12): Reference Pin B. Sets the input  
OUT (Pin 8/Pin 9): Output Pin.  
common mode range and the output noise and offset.  
+IN (Pin 1/Pin 1): Noninverting Input Pin. Accepts input  
voltages from 270V to –270V.  
–REFC (Pin 10/Pin 11): Reference Pin C. Sets the input  
common mode range and the output noise and offset.  
+REFA (Pin 3/Pin 3): Reference Pin A. Sets the input  
common mode range and the output noise and offset.  
REF (Pin 6/Pin 7): Reference Input. Sets the output level  
when the difference between the inputs is zero.  
+REFB (Pin 4/Pin 5): Reference Pin B. Sets the input  
common mode range and the output noise and offset.  
SHDN (Pin 7) DFN Only: Shutdown Pin. Amplifier is ac-  
+
tive when this pin is tied to V or left floating. Pulling the  
+
+REFC (Pin 5/Pin 6): Reference Pin C. Sets the input  
common mode range and the output noise and offset.  
pin >2.5V below V causes the amplifier to enter a low  
power state.  
–IN (Pin 14/Pin 16): Inverting Input Pin. Accepts input  
voltages from 270V to –270V.  
6375fa  
13  
For more information www.linear.com/LT6375  
LT6375  
BLOCK DIAGRAM  
+
–REFA  
19k  
–REFB  
–REFC  
23.75k  
V
38k  
190k  
190k  
190k  
–IN  
+IN  
+
OUT  
REF  
190k  
+
V
19k  
38k  
+REFB  
23.75k  
+REFC  
10µA  
V
+REFA  
SHDN  
6375 BD  
APPLICATIONS INFORMATION  
TRANSFER FUNCTION  
is recommended that the user choose the lowest resistor  
divider ratio that achieves the required input common  
mode voltage range in their application to maximize the  
system SNR, precision and speed.  
The LT6375 is a unity-gain difference amplifier with the  
transfer function:  
V
OUT  
= (V – V ) + V  
+IN –IN REF  
Table 1 shows the noise, offset/drift, and –3dB bandwidth  
oftheLT6375foralldifferentreferencepinsconfigurations.  
The voltage on the REF pin sets the output voltage when  
the differential input voltage (V = V – V ) is zero.  
This reference is used to shift the output voltage to the COMMON MODE VOLTAGE RANGE  
desired input level of the next stage of the signal chain.  
DIFF  
+IN  
–IN  
The wide common mode voltage range of the LT6375 is  
enabled by both a resistor divider at the input of the op  
amp and by an internal op amp that can withstand high  
input voltages.  
BENEFITS OF SELECTABLE RESISTOR DIVIDER RATIOS  
The LT6375 offers smaller package size, better gain ac-  
curacy and better noise performance than existing high  
common mode voltage range difference amplifiers. Ad-  
ditionally, the LT6375 allows the user to maximize system  
performance by selecting the resistor divider ratio (DIV)  
appropriate to their input common mode voltage range. A  
higher resistor divider ratio (DIV) enables higher common  
mode voltage range at the input pins, but also increases  
output noise, output offset/drift and decreases the –3dB  
bandwidth. Therefore, a trade-off exists between input  
range and DC, AC, and drift performance of the part. It  
The internal resistor network of the LT6375 divides down  
the input common mode voltage. The resulting voltage  
at the op amp inputs determines the op amp’s operating  
region. In the configuration shown in Figure 1, a resistor  
divider is created at both op amp inputs by the 190k input  
resistor and the resistance from each input to ground,  
which is ~31.66k. The resistance to ground is formed by  
the 38k (REFB resistors) in parallel with the 190k (feed-  
back/REF resistor). The result is a divide by 7 of the input  
voltage. As shown in Tables 1 to 5, different connections  
to reference pins (i.e. pins +REFA, –REFA, +REFB, –REFB,  
6375fa  
14  
For more information www.linear.com/LT6375  
LT6375  
APPLICATIONS INFORMATION  
Table 1. LT6375 Performance at Different Resistor Divider Ratios  
RESISTOR DIVIDER OPTIONS  
RESISTOR  
OUTPUT  
NOISE AT  
–3dB  
+REFA AND +REFB AND +REFC AND  
DIVIDER DIFFERENTIAL  
MAXIMUM OFFSET MAXIMUM OFFSET BANDWIDTH  
–REFA  
–REFB  
–REFC  
23.75k  
OPEN  
GND  
REF RATIO (DIV)  
GAIN  
1kHz (nV/√Hz)  
(µV)  
DRIFT (µV/°C)  
(kHz)  
19k  
38k  
190k  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
LT6375A LT6375 LT6375A LT6375  
OPEN  
OPEN  
GND  
OPEN  
GND  
GND  
GND  
GND  
7
1
1
1
1
1
1
1
250  
307  
346  
410  
445  
508  
599  
300  
380  
450  
540  
600  
700  
900  
450  
600  
9
12  
16  
19  
22  
25  
30  
37  
575  
530  
485  
445  
405  
375  
310  
OPEN  
OPEN  
GND  
10  
12  
15  
17  
20  
25  
12  
14  
16  
19  
23  
28  
OPEN  
GND  
720  
900  
GND  
OPEN  
GND  
1000  
1200  
1500  
OPEN  
GND  
GND  
+REFC, –REFC) result in different resistor divider ratios  
(DIV) and different attenuation of the LT6375’s input  
common mode voltage.  
Table 2 lists the valid input common mode voltage range  
for an LT6375 with different configurations of the refer-  
ence pins when used with dual power supplies. Using  
the voltage ranges in this table ensures that the internal  
op amp is operating in its normal (and best) region. The  
figure entitled Common Mode Voltage Range vs Power  
SupplyVoltage,intheTypicalPerformanceCharacteristics  
section of this data sheet, illustrates the information in  
Table 2 graphically.  
The internal op amp of LT6375 has two operating regions:  
a) If the common mode voltage at the inputs of the internal  
+
op amp (V  
) is between V and V –1.75V, the op amp  
CMOP  
+
operates in its normal region; b) If V  
is between V  
CMOP  
–1.75V and V +76V, the op amp continues to operate,  
butinitsOver-The-Top regionwithdegradedperformance  
(see Over-The-Top operation section of this data sheet for  
more detail).  
Table 3 lists the valid input common mode voltage range  
for an LT6375 that results in the internal op amp operating  
in its Over-The-Top region.  
+
V
S
The reference pins can be connected to ground (as in  
Tables 2 and 3) or to any reference voltage. In order to  
achieve the specified gain accuracy and CMRR perfor-  
mance of the LT6375, this reference must have a very low  
impedance. The valid input common mode range changes  
depending on the voltages chosen for reference pins. One  
positiveandonenegativereferenceshouldalwaysbecon-  
nected to a low impedance voltage to ensure the stability  
oftheamplifier. Table4liststhevalidinputcommonmode  
voltage range for an LT6375 when the part is used with  
a single power supply, and REF and the other reference  
pins are connected to mid-supply. If, as shown in Table 5,  
the REF pin remains connected to mid-supply, while the  
other reference pins are connected to ground, the result  
is a higher positive input range at the expense of a more  
restricted negative input range.  
+
–REFA  
19k  
–REFB  
38k  
–REFC  
23.75k  
V
190k  
190k  
–IN  
+IN  
V
V
+
–IN  
+IN  
OUT  
REF  
V
OUT  
190k  
190k  
19k  
+REFA  
38k  
23.75k  
+REFC  
+REFB  
SHDN  
V
6375 F01  
+
V
S
V
S
Figure 1. Basic Connections for Dual-Supply Operation  
(Resistor Divider Ratio = 7)  
6375fa  
15  
For more information www.linear.com/LT6375  
LT6375  
APPLICATIONS INFORMATION  
Table 2. Common Mode Voltage Operating Range with Dual  
Power Supplies (Normal Region)  
Table 5. Common Mode Voltage Operating Range with a Single  
Power Supply, References to GND (Normal Region)  
INPUT RANGE (REF = GND)  
INPUT RANGE (REF = V /2)  
S
+REFA +REFB +REFC  
+REFA +REFB +REFC  
AND AND AND  
V = ±2.5V  
S
V = ±15V  
S
V = ±25V  
S
V = 5V  
V = 30V  
V = 50V  
S
S
S
AND AND AND  
–REFA –REFB –REFC DIV HIGH LOW HIGH LOW HIGH LOW  
–REFA –REFB –REFC DIV HIGH LOW HIGH LOW HIGH LOW  
OPEN GND OPEN 5.25 –17.5 92.75 –105 162.75 –175  
7
OPEN GND OPEN  
7
20.25 –2.5 182.75 –15 270 –25  
30 –2.5 267.5 –15 270 –25  
OPEN OPEN GND 10  
GND OPEN OPEN 12  
7.5  
9
–25 132.5 –150 232.5 –250  
–30 159 –180 270 –270  
OPEN OPEN GND 10  
GND OPEN OPEN 12 36.5 –2.5  
OPEN GND GND 15 46.25 –2.5  
GND GND OPEN 17 52.75 –2.5  
GND OPEN GND 20 62.5 –2.5  
GND GND GND 25 78.75 –2.5  
270 –15 270 –25  
270 –15 270 –25  
270 –15 270 –25  
270 –15 270 –25  
270 –15 270 –25  
OPEN GND GND 15 11.25 –37.5 198.75 –225 270 –270  
GND GND OPEN 17 12.75 –42.5 225.25 –255 270 –270  
GND OPEN GND 20  
15  
–50  
265 –270 270 –270  
GND GND GND 25 18.75 –62.5 270 –270 270 –270  
Table 3. Common Mode Voltage Operating Range with Dual  
Power Supplies (Over-The-Top Region)  
INPUT RANGE (REF = GND)  
TheLT6375willnotoperatecorrectlyifthecommonmode  
voltage at its input pins goes below the range specified in  
abovetables,butthepartwillnotbedamagedaslongasthe  
lowest common mode voltage at the inputs of the internal  
+REFA +REFB +REFC  
V = ±2.5V  
S
V = ±15V  
S
V = ±25V  
S
AND AND AND  
–REFA –REFB –REFC DIV HIGH LOW HIGH LOW HIGH LOW  
op amp (V  
) remains between V –25V and V . Also,  
CMOP  
OPEN GND OPEN 270 –17.5 270 –105 270 –175  
7
the voltage at LT6375 input pins should never be higher  
than 270V or lower than –270V under any circumstances.  
OPEN OPEN GND 10 270  
GND OPEN OPEN 12 270  
–25  
–30  
270 –150 270 –250  
270 –180 270 –270  
OPEN GND GND 15 270 –37.5 270 –225 270 –270  
GND GND OPEN 17 270 –42.5 270 –255 270 –270  
SHUTDOWN  
GND OPEN GND 20 270  
–50  
270 –270 270 –270  
The LT6375 in the DFN14 package has a shutdown pin  
(SHDN). Under normal operation this pin should be tied  
GND GND GND 25 270 –62.5 270 –270 270 –270  
+
+
to V or allowed to float. Tying this pin to 2.5V below V  
Table 4. Common Mode Voltage Operating Range with a Single  
Power Supply, References to Mid-Supply (Normal Region)  
will cause the part to enter a low power state. The sup-  
ply current is reduced to less than 25µA and the op amp  
output becomes high impedance.  
INPUT RANGE (REF = V /2)  
S
+REFA +REFB +REFC  
AND AND AND  
V = 5V  
V = 30V  
V = 50V  
S
S
S
–REFA –REFB –REFC DIV HIGH LOW HIGH LOW HIGH LOW  
SUPPLY VOLTAGE  
OPEN V /2 OPEN  
7
7.75  
10  
–15 107.75 –90 187.75 –150  
–22.5 147.5 –135 257.5 –225  
S
The positive supply pin of the LT6375 should be bypassed  
withasmallcapacitor(typically0.1µF)asclosetothesupply  
pin as possible. When driving heavy loads an additional  
4.7µF electrolytic capacitor should be added. When using  
OPEN OPEN V /2 10  
S
V /2 OPEN OPEN 12 11.5 –27.5 174 –165 270 –270  
S
OPEN V /2 V /2 15 13.75 –35 213.75 –210 270 –270  
S
S
V /2 V /2 OPEN 17 15.25 –40 240.25 –240 270 –270  
S
S
split supplies, the same is true for the V supply pin.  
V /2 OPEN V /2 20 17.5 –47.5 270 –270 270 –270  
S
S
V /2 V /2 V /2 25 21.25 –60  
270 –270 270 –270  
S
S
S
6375fa  
16  
For more information www.linear.com/LT6375  
LT6375  
APPLICATIONS INFORMATION  
ACCURATE CURRENT MEASUREMENTS  
Increasing R  
and R slightly to R  
' removes  
SENSE  
the gain error.  
C
SENSE  
The LT6375 can be used in high side, low side and bi-  
directional wide common mode range current sensing.  
Figure 2 shows the LT6375 sensing current by measuring  
R ' = R  
SENSE  
• 190k/(190k – R  
).  
SENSE  
SENSE  
thevoltageacrossR  
.Theaddedsenseresistorscreate  
SENSE  
NOISE AND FILTERING  
a CMRR error and a gain error. For R  
greater than  
SENSE  
The noise performance of the LT6375 can be optimized  
both by appropriate choice of its internal attenuation set-  
ting and by the addition of a filter to the amplifier output  
(Figure 3). For applications that do not require the full  
bandwidth of the LT6375, the addition of an output filter  
will lower system noise. Table 6 shows the output noise  
for different internal resistor divider ratios and output  
filter bandwidths.  
2Ω the source resistance mismatch degrades the CMRR.  
Adding a resistor equal in value to R in series with  
SENSE  
the +IN terminal (R ) eliminates this mismatch.  
C
Using an R  
greater than 10Ω will cause the gain  
SENSE  
error to exceed the 0.006% specification of LT6375. This  
is due to the loading effects of the LT6375.  
V
= I  
• R  
• 190k/(190k + R  
)
OUT  
LOAD  
SENSE  
SENSE  
+
V
= 15V  
S
+
–REFA  
19k  
–REFB  
38k  
–REFC  
23.75k  
V
190k  
+
V
= 270V  
SOURCE  
190k  
190k  
–IN  
+
OUT  
REF  
V
V
R  
• I  
R
OUT  
SENSE LOAD  
SENSE  
R
C
+IN  
I
LOAD  
REF  
190k  
19k  
38k  
23.75k  
+REFC  
+REFA  
+REFB  
SHDN  
V
+
S
V
V
= –15V  
= 15V  
S
LOAD  
+
V
S
+
–REFA  
19k  
–REFB  
38k  
–REFC  
23.75k  
V
190k  
I
LOAD  
190k  
–IN  
+IN  
+
OUT  
REF  
R
V
V
R  
• I  
SENSE  
OUT  
SENSE LOAD  
R
190k  
C
REF  
V
= –270V  
SOURCE  
190k  
19k  
+REFA  
38k  
23.75k  
+REFC  
+REFB  
SHDN  
V
6375 F02  
+
= –15V  
V
V
S
S
Figure 2. Wide Voltage Range Current Sensing  
6375fa  
17  
For more information www.linear.com/LT6375  
LT6375  
APPLICATIONS INFORMATION  
+
V
S
+
–REFA  
19k  
–REFB  
38k  
–REFC  
23.75k  
V
190k  
C2  
R2  
+
190k  
–IN  
+IN  
LT6015  
V
V
V
OUT  
+
–IN  
+IN  
R1  
OUT  
REF  
190k  
C1  
V
REF  
190k  
19k  
+REFA  
38k  
23.75k  
+REFC  
+REFB  
SHDN  
V
6375 F03  
+
V
S
V
S
Figure 3. Output Filtering with 2-Pole Butterworth Filter  
Table 6. Output Noise (VP-P) for 2-Pole Butterworth Filter for  
Different Internal Resistor Divider Ratios  
Table 7. Component Values for Different 2-Pole Butterworth  
Filter Bandwidths  
Corner  
Frequency  
7
10  
12  
15  
17  
20  
25  
Corner Frequency  
100kHz  
R1  
R2  
C1  
C2  
11kΩ 11.3kΩ 100pF 200pF  
No Filter  
100kHz  
10kHz  
1kHz  
1705µV 1831µV 1901µV 2008µV 2073µV 2177µV 2330µV  
537µV 662µV 740µV 853µV 925µV 1030µV 1197µV  
169µV 210µV 236µV 274µV 298µV 334µV 393µV  
10kHz  
11kΩ 11.3kΩ  
1nF  
2nF  
20nF  
0.2µF  
1kHz  
11kΩ 11.3kΩ 10nF  
11kΩ 11.3kΩ 0.1µF  
100Hz  
54µV  
18µV  
67µV  
22µV  
75µV  
25µV  
87µV  
29µV  
95µV 107µV 126µV  
100Hz  
32µV 36µV  
43µV  
15V  
V
+
–REFA  
19k  
–REFB  
38k  
–REFC  
23.75k  
190k  
+
V
= 195V  
SOURCE  
190k  
–IN  
+
R
OUT  
REF  
SENSE  
V
OUT  
10Ω  
R , 10Ω  
C
190k  
+IN  
1A  
190k  
19k  
+REFA  
38k  
23.75k  
LOAD  
+REFB  
+REFC  
SHDN  
V
6375 F04  
–15V  
Figure 4. Current Measurement Application  
6375fa  
18  
For more information www.linear.com/LT6375  
LT6375  
APPLICATIONS INFORMATION  
ERROR BUDGET ANALYSIS  
degraded. The op amp’s input bias currents change from  
under 2nAto14µA.Theopamp’sinputoffsetcurrentrises  
to 50nA which adds 9.5mV to the output offset voltage.  
Figure 4 shows the LT6375 in a current measurement  
application. The error budget for this application is shown  
in Table 8. The resistor divider ratio is set to 15 to divide  
the 195V input common mode voltage down to 13V at the  
op amp inputs. The 1A current and 10Ω sense resistor  
produceanoutputfull-scalevoltageof10V. Table8shows  
theerrorsourcesinpartspermillion(ppm)ofthefull-scale  
voltage across the temperature range of 25°C to 85°C.  
In addition, when operating in the Over-The-Top region,  
the differential input impedance decreases from 1MΩ in  
normaloperationtoapproximately3.7kΩinOver-The-Top  
operation. This resistance appears across the summing  
nodes of the internal op amp and boosts noise and offset  
while decreasing speed. Noise and offset will increase by  
between 66% and 83% depending on the resistor divider  
ratio setting. The bandwidth will be reduced by 40% to  
45%. For more detail on Over-The-Top operation, consult  
the LT6015 data sheet.  
Different sources of error contribute to the maximum ac-  
curacy that can be achieved in an application. Gain error,  
offset voltage and common mode rejection error combine  
tosettheinitialerror.Additionally,thegainerrorandoffset  
voltage drift across the temperature range. The excellent  
gain accuracy, low offset voltage, high CMRR, low offset  
voltage drift and low gain error drift of the LT6375 all  
combine to enable extremely accurate measurements.  
OUTPUT  
The output of the LT6375 can typically swing to within  
5mV of either rail with no load and is capable of sourcing  
andsinkingapproximately25mA. TheLT6375isinternally  
compensated to drive at least 1nF of capacitance under  
any output loading conditions. For larger capacitive loads,  
a 0.22µF capacitor in series with a 150Ω resistor between  
the output and ground will compensate the amplifier to  
drive capacitive loads greater than 1nF. Additionally, the  
LT6375 has more gain and phase margin as the resistor  
divider ratio is increased.  
Over-The-Top OPERATION  
When the input common mode voltage of the internal op  
+
amp (V  
) in the LT6375 is biased near or above the V  
CMOP  
supply,theopampisoperatingintheOver-The-Top region.  
The op amp continues to operate with an input common  
mode voltage of up to 76V above V (regardless of the  
+
positive power supply voltage V ), but its performance is  
Table 8. Error Budget Analysis  
ERROR, ppm of FS  
ERROR SOURCE  
LT6375A  
LT6375  
COMPETITOR 1  
COMPETITOR 2 LT6375A LT6375 COMPETITOR 1 COMPETITOR 2  
Accuracy, T = 25°C  
A
Initial Gain Error  
Offset Voltage  
Common Mode  
0.0035% FS  
540µV  
0.006% FS  
900µV  
0.02% FS  
1100µV  
0.03% FS  
500µV  
35  
54  
60  
90  
200  
110  
617  
300  
50  
195V/96dB =  
3090µV  
195V/89dB =  
6920µV  
195V/90dB =  
6166µV  
195V/86dB =  
9770µV  
309  
692  
977  
Total Accuracy Error  
398  
842  
927  
1327  
Temperature Drift  
Gain  
1ppm/°C ×60°C 1ppm/°C ×60°C 10ppm/°C ×60°C  
10ppm/°C ×60°C  
10µV/°C ×60°C  
60  
96  
60  
132  
192  
1034  
600  
90  
600  
60  
Offset Voltage  
16µV/°C ×60°C 22µV/°C ×60°C  
Total Drift Error  
15µV/°C ×60°C  
156  
554  
690  
1617  
660  
1987  
Total Error  
6375fa  
19  
For more information www.linear.com/LT6375  
LT6375  
APPLICATIONS INFORMATION  
DISTORTION  
The power dissipated in the internal resistors (P  
)
RESD  
depends on the input voltage, the resistor divider ratio  
(DIV), the output voltage and the voltage on REF and the  
otherreferencepins. The following equations andFigure5  
The LT6375 features excellent distortion performance  
when the internal op amp is operating within the supply  
rails. Operating the LT6375 with input common mode  
voltages that go from normal to Over-The-Top operation  
will significantly degrade the LT6375’s linearity as the op  
amp must transition between two different input stages.  
show different components of P  
corresponding to  
RESD  
different groups of LT6375’s internal resistors (assuming  
that LT6375 is used with a dual supply configuration with  
REF and all reference pins at ground).  
2
P
P
P
P
P
= (V ) /(190k + 190k/(DIV – 1))  
RESDA  
RESDB  
RESDC  
RESDD  
+IN  
POWER DISSIPATION CONSIDERATIONS  
2
= (V – V /DIV) /(190k)  
–IN  
+IN  
2
Because of the ability of the LT6375 to operate on power  
supplies up to 25V, to withstand very high input volt-  
ages and to drive heavy loads, there is a need to ensure  
the die junction temperature does not exceed 150°C. The  
= (V /DIV) /(190k/(DIV – 2))  
+IN  
2
= (V /DIV – V ) /(190k)  
+IN  
OUT  
= P  
+ P  
+ P  
+ P  
RESD  
RESDA  
RESDB  
RESDC RESDD  
LT6375 is housed in DF14 (θ = 43°C/W, θ = 4°C/W)  
JA  
JC  
P
simplifies to:  
RESD  
and MS16 (θ = 130°C/W) packages.  
JA  
2
2
P
RESD  
= 2(V ((DIV – 1)/DIV – V /V ) + V  
)/190k  
+IN  
OUT +IN  
OUT  
In general, the die junction temperature (T ) can be esti-  
J
mated from the ambient temperature (T ), and the device  
In general, P  
increases with higher input voltage,  
A
RESD  
power dissipation (P ):  
higher resistor divider ratio (DIV), and lower output, REF  
D
and reference pin voltages.  
T = T + P • θ  
JA  
J
A
D
Example: An LT6375 in a DFN package mounted on a PC  
board has a thermal resistance of 43°C/W. Operating on  
25V supplies and driving a 2.5kΩ load to 12.5V with  
+IN  
given by:  
Power is dissipated by the amplifier’s quiescent current,  
by the output current driving a resistive load and by the  
inputcurrentdrivingtheLT6375’sinternalresistornetwork.  
V
= 270V and DIV = 25, the total power dissipation is  
+
P = ((V – V ) • I ) + P + P  
RESD  
D
S
S
S
OD  
2
2
For a given supply voltage, the worst-case output power  
P = (50 • 0.6mA) + 12.5 /2.5k + 270 /197.92k  
D
2
dissipationP  
occurswiththeoutputvoltageathalf  
OD(MAX)  
of either supply voltage. P  
+ (257.5 – 270/25) /190k  
2
is given by:  
OD(MAX)  
+ (270/25) /8.26k + (270/25  
2
2
– 12.5) /190k = 0.795W  
P
= (V /2) /R  
OD(MAX)  
S
LOAD  
+
V
= 25V  
S
+
–REFA –REFB –REFC  
V
P
RESDC  
P
RESDD  
190k  
19k  
38k  
23.75k  
P
RESDB  
190k  
–IN  
+IN  
V
–IN  
= 270V – V  
= 257.5V  
OUT  
+
OUT  
REF  
V
OUT  
= 12.5V  
P
RESDA  
190k  
19k  
V
= 270V  
+IN  
190k  
38k  
23.75k  
+REFA +REFB +REFC  
SHDN  
V
6375 F05  
_
V
S
= –25V  
Figure 5. Power Dissipation Example  
6375fa  
20  
For more information www.linear.com/LT6375  
LT6375  
APPLICATIONS INFORMATION  
connectingtheREFpinto+pins).Thesameconfigurations  
provide inverting gains by grounding any pins intended  
for the +signal source. The differential input resistance is  
also tabulated as well as the amplification factor of the  
internal gain section involved (noise-gain, which helps to  
estimate the error-budget of the configuration).  
Assuming a thermal resistance of 43°C/W, the die tem-  
perature will experience a 34°C rise above ambient. This  
impliesthatthemaximumambienttemperaturetheLT6375  
should operate under the above conditions is:  
T =150°C – 34°C = 116°C  
A
Keep in mind that the DFN package has an exposed pad  
Single-ended noninverting gains are also available as  
shown in Table 10, including many that operate as buffers  
(loaded only by the op amp input bias). A rich option set  
exists by using the REF pin as an additional variable. Two  
attenuation options exist that can accept signals outside  
the power supply range since they only drive the +IN pin.  
In Table 10, connections are identified asNC (no connect),  
INPUT (driven by the input), OUT (fed back from the  
output), or GROUND (grounded). Table 10 also includes  
tabulations of the internal resistor divider (DIV), noise  
gain (re-amplification), and the input loading presented  
by the circuit.  
which can be used to lower the θ of the package. The  
JA  
more PCB metal connected to the exposed pad, the lower  
the thermal resistance.  
The MSOP package has no exposed pad and a higher  
thermal resistance (θ = 130°C/W). It should not be used  
JA  
in applications which have a high ambient temperature,  
require driving a heavy load, or require an extreme input  
voltage.  
THERMAL SHUTDOWN  
For safety, the LT6375 will enter shutdown mode when  
the die temperature rises to approximately 163°C. This  
thermal shutdown has approximately 9°C of hysteresis  
requiring the die temperature to cool 9°C before enabling  
the amplifier again.  
USE AS PRECISION AC GAIN BLOCK  
In AC-coupled applications operating from a single power  
supply, it is useful to set the output voltage at mid-supply  
to maximize dynamic range. The LT6375 readily supports  
this with no additional biasing components by connecting  
USE AT OTHER PRECISION DC GAINS  
+
specific pins to the V and V potentials and AC-coupling  
the signal paths. Table 11 shows the available inverting  
gains and also tabulates the load resistances presented at  
the input. In Table 11, connections are identified as NC (no  
connect), AC IN (AC-coupled to the input) OUT (fed back  
The array of resistors within the LT6375 provides numer-  
ousconfigurableconnectionsthatprovideprecisiongains  
other than the unity differential gain options described  
previously. Note that only the +IN and –IN pins can oper-  
ate outside of the supply window. Since most of these  
alternate configurations involve driving the REFx pins, as  
well as the +IN and –IN pins, the input signals must be  
less than the supply voltages. Fully differential gains are  
available as shown in Table 9, and may be output-shifted  
with a REF offset signal. These configurations allow the  
LT6375 to be used as a versatile precision gain block with  
essentially no external components besides the supply  
decoupling. In most cases, only a single positive supply  
will be required. In Table 9, connections are identified as  
NC (no connect), INPUT (refers to both inputs driven,  
+signalto+pins,–signaltopins),CROSS(referstoinputs  
cross-coupled, +signal to –pins, –signal to +pins), OUT  
(refers to the output fed back to –pins), or REF (refers to  
+
from the output), tied to V , tied to V , or AC GND (AC-  
grounded). All pins that require an AC ground can share  
a single bypass capacitor. Likewise, all pins driven from  
the source signal may share a coupling capacitor as well.  
The output should also connect to the load circuitry using  
a coupling capacitor to block the mid-supply DC voltage.  
The LT6375 may also be used for single-supply nonin-  
verting AC gains by employing a combination of input  
attenuation and re-amplification. With numerous choices  
ofattenuationandre-amplification,severalhundredoverall  
gaincombinationsarepossible, rangingfrom0.167to23.  
ThecombinationsaremoreplentifulthantheDCconfigura-  
tions because there is no constraint on matching internal  
source resistances to minimize offset.  
6375fa  
21  
For more information www.linear.com/LT6375  
LT6375  
APPLICATIONS INFORMATION  
The input attenuator section dedicates some pins to es-  
tablishing a mid-supply bias point and with the remaining  
pins, provides several choices of input signal division fac-  
tors as shown in Table 12. The high attenuations that only  
use +IN for the signal path can accept waveform peaks  
that significantly exceed the supply range. Table 12 also  
includes tabulations of the resulting AC load resistance  
presented to the signal source. Here again, all pins that  
require an AC-ground connection may share a single by-  
pass capacitor, and all AC signal connections may share  
a coupling capacitor. Note that configurations with +IN to  
+
V will bias at 50% of supply, while the others shown will  
bias at 38% of supply.  
The single-supply AC-coupled noninverting circuit is  
completed by configuring the post-attenuator amplifica-  
tion factor. Table 13 shows the available re-amplification  
factors. Once again, all pins that require an AC-ground  
connection may share a single bypass capacitor, and  
the output should use a coupling capacitor to its load  
destination as well.  
Table 9. Configurations for Precision Differential Gains Other Than Unity  
LT6375 DIFFERENTIAL AND INVERTING PRECISION DC GAINS  
GAIN  
0.167  
0.333  
0.5  
1.5  
2
±IN  
CROSS  
NC  
±REFA  
INPUT  
INPUT  
INPUT  
NC  
±REFB  
OUT/REF  
OUT/REF  
OUT/REF  
CROSS  
CROSS  
CROSS  
OUT/REF  
OUT/REF  
OUT/REF  
INPUT  
INPUT  
INPUT  
INPUT  
NC  
±REFC  
CROSS  
CROSS  
CROSS  
INPUT  
INPUT  
NC  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
DIFF R (k)  
NOISE GAIN  
4.2  
IN  
20  
21  
20  
29  
27  
25  
20  
21  
20  
17  
63  
76  
63  
42  
48  
42  
38  
35  
27  
29  
27  
25  
24  
20  
21  
20  
16  
17  
16  
4.0  
INPUT  
OUT/REF  
CROSS  
OUT/REF  
CROSS  
NC  
4.2  
7.5  
NC  
15.0  
8.5  
2.5  
2.833  
3
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
NC  
INPUT  
INPUT  
INPUT  
CROSS  
NC  
4.2  
4.0  
3.167  
3.5  
4
INPUT  
OUT/REF  
CROSS  
NC  
4.2  
12.5  
7.0  
5
NC  
NC  
6.0  
6
INPUT  
CROSS  
NC  
NC  
NC  
7.0  
7
NC  
INPUT  
INPUT  
INPUT  
NC  
10.0  
9.0  
8
NC  
NC  
9
INPUT  
NC  
NC  
NC  
10.0  
11.0  
12.0  
15.0  
14.0  
15.0  
16.0  
17.0  
20.0  
19.0  
20.0  
25.0  
24.0  
25.0  
10  
INPUT  
INPUT  
NC  
NC  
11  
INPUT  
CROSS  
NC  
NC  
NC  
12  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
NC  
INPUT  
INPUT  
INPUT  
NC  
13  
NC  
14  
INPUT  
NC  
NC  
15  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
16  
INPUT  
CROSS  
NC  
NC  
17  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
18  
NC  
19  
INPUT  
CROSS  
NC  
NC  
22  
INPUT  
INPUT  
INPUT  
23  
24  
INPUT  
6375fa  
22  
For more information www.linear.com/LT6375  
LT6375  
APPLICATIONS INFORMATION  
Table 10. Configurations for Precision Noninverting Gains  
LT6375 NONINVERTING PRECISION DC GAINS  
NOISE  
GAIN  
GAIN FEATURE  
+IN  
+REFA  
+REFB  
+REFC  
REF  
–IN  
–REFA  
–REFB  
OUT  
OUT  
NC  
–REFC  
DIV  
25  
R (k)  
IN  
0.167 Wide Input INPUT GROUND GROUND GROUND GROUND GROUND GROUND  
GROUND 4.167  
GROUND 4.167  
198  
103  
302  
48  
0.333  
0.5  
INPUT GROUND GROUND GROUND INPUT  
GROUND GROUND  
12.5  
10  
Wide Input INPUT  
NC  
GROUND INPUT GROUND GROUND  
NC NC GROUND INPUT  
NC  
GROUND GROUND  
OUT  
NC  
NC  
GROUND  
NC  
GROUND  
GROUND  
GROUND  
5
4
5
0.833  
1
NC  
OUT  
NC  
4.8  
INPUT  
OUT  
5
170  
38  
1.167  
1.333  
1.5  
INPUT GROUND INPUT GROUND INPUT  
GROUND GROUND  
OUT  
OUT  
OUT  
OUT  
OUT  
GROUND  
OUT  
OUT  
GROUND 4.167  
3.571  
3
GROUND GROUND GROUND INPUT  
NC  
NC  
NC  
GROUND  
GROUND  
GROUND  
GROUND  
NC  
GROUND  
GROUND  
GROUND  
GROUND  
NC  
4
4
36  
NC  
NC  
GROUND GROUND INPUT  
INPUT  
2.667  
2.400  
2.182  
3.500  
1.846  
1.714  
3
34  
1.667  
1.833  
2
INPUT GROUND GROUND GROUND  
NC  
4
33  
INPUT  
INPUT  
INPUT GROUND GROUND  
NC  
INPUT  
NC  
NC  
4
32  
NC  
GROUND  
NC  
INPUT  
INPUT  
NC  
GROUND  
NC  
7
37  
2.167  
2.333  
2.5  
GROUND GROUND INPUT  
INPUT GROUND INPUT  
GROUND  
GROUND  
NC  
GROUND  
GROUND  
4
32  
NC  
NC  
4
33  
NC  
GROUND INPUT  
NC  
OUT  
NC  
GROUND GROUND  
7.5  
4
57  
2.667  
2.833  
3
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
NC  
INPUT GROUND  
NC  
GROUND  
OUT  
OUT  
GROUND  
1.500  
1.471  
2.500  
1.263  
1.250  
2.143  
1.087  
1
36  
INPUT GROUND INPUT  
INPUT GROUND GROUND  
GROUND GROUND  
GROUND 4.167  
35  
OUT  
NC  
NC  
GROUND GROUND  
7.5  
4
53  
3.167  
3.333  
3.5  
INPUT GROUND INPUT  
INPUT GROUND INPUT  
NC  
GROUND  
OUT  
OUT  
GROUND  
48  
INPUT  
GROUND GROUND  
OUT NC  
INPUT GROUND GROUND GROUND  
GROUND 4.167  
7.5  
GROUND 4.167  
GROUND  
GROUND 4.167  
47  
NC  
INPUT GROUND INPUT  
GROUND GROUND  
51  
3.833  
4
GROUND INPUT  
INPUT  
INPUT  
INPUT  
NC  
OUT  
OUT  
103  
Buffer  
Buffer  
INPUT  
INPUT  
INPUT  
NC  
INPUT  
INPUT  
NC  
INPUT  
INPUT  
NC  
NC  
GROUND  
4
Hi-Z  
Hi-Z  
302  
Hi-Z  
226  
Hi-Z  
110  
Hi-Z  
Hi-Z  
321  
Hi-Z  
Hi-Z  
200  
Hi-Z  
Hi-Z  
103  
4.167  
4.5  
INPUT  
GROUND GROUND  
OUT  
1
INPUT GROUND  
OUT  
OUT  
NC  
NC  
NC  
GROUND  
GROUND  
NC  
5
5
1.111  
1
5
Buffer  
Buffer  
INPUT  
INPUT  
NC  
NC  
NC  
NC  
NC  
NC  
GROUND  
NC  
NC  
5.5  
INPUT  
INPUT  
GROUND  
INPUT  
NC  
NC  
OUT  
GROUND  
NC  
NC  
6
1.091  
1
6
INPUT  
INPUT  
INPUT  
INPUT  
NC  
NC  
GROUND  
NC  
6
6.5  
NC  
INPUT GROUND  
OUT  
NC  
GROUND GROUND  
GROUND NC  
GROUND GROUND  
7.5  
7
1.154  
1
7
Buffer  
Buffer  
NC  
NC  
NC  
INPUT  
NC  
GROUND  
OUT  
NC  
7.5  
INPUT  
NC  
NC  
7.5  
9
1
8
NC  
INPUT GROUND  
INPUT GROUND  
NC  
NC  
NC  
GROUND  
NC  
1.125  
1
8.5  
Buffer  
Buffer  
NC  
NC  
NC  
OUT  
GROUND GROUND  
8.5  
9
9
INPUT  
INPUT  
NC  
NC  
NC  
INPUT  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
GROUND  
GROUND  
GROUND  
NC  
1
9.5  
INPUT  
INPUT  
INPUT  
NC  
INPUT GROUND  
OUT  
GROUND  
NC  
10  
10  
11  
1.053  
1
10  
Buffer  
Buffer  
NC  
NC  
NC  
NC  
NC  
GROUND  
NC  
11  
INPUT  
NC  
GROUND  
1
11.5  
GROUND INPUT  
INPUT  
INPUT GROUND  
OUT  
GROUND GROUND GROUND 12.5  
1.087  
6375fa  
23  
For more information www.linear.com/LT6375  
LT6375  
APPLICATIONS INFORMATION  
Table 10. Configurations for Precision Noninverting Gains  
NOISE  
GAIN  
GAIN FEATURE  
+IN  
INPUT  
INPUT  
NC  
+REFA  
INPUT  
INPUT  
NC  
+REFB  
NC  
+REFC  
NC  
REF  
–IN  
–REFA  
–REFB  
–REFC  
DIV  
R (k)  
IN  
12  
12.5  
13  
14  
15  
16  
17  
18  
19  
20  
23  
24  
25  
Buffer  
Buffer  
INPUT  
INPUT  
GROUND GROUND  
NC  
NC  
12  
1
Hi-Z  
Hi-Z  
205  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
201  
Hi-Z  
Hi-Z  
198  
Hi-Z  
Hi-Z  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
NC  
INPUT  
OUT  
NC  
GROUND GROUND GROUND 12.5  
1
INPUT GROUND  
NC  
NC  
NC  
GROUND GROUND  
GROUND GROUND  
GROUND GROUND  
14  
14  
15  
16  
17  
19  
19  
20  
24  
24  
25  
1.077  
Buffer  
Buffer  
Buffer  
Buffer  
INPUT  
NC  
NC  
INPUT  
NC  
NC  
NC  
NC  
NC  
1
INPUT  
INPUT  
NC  
GROUND  
NC  
1
INPUT  
NC  
NC  
GROUND GROUND  
NC  
1
INPUT GROUND GROUND GROUND GROUND  
NC  
1
NC  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
NC  
INPUT GROUND  
NC  
NC  
GROUND  
GROUND  
NC  
NC  
NC  
GROUND  
GROUND  
GROUND  
1.056  
Buffer  
Buffer  
INPUT  
INPUT  
NC  
NC  
INPUT  
INPUT  
NC  
1
NC  
INPUT  
GROUND GROUND  
1
1.043  
1
INPUT  
INPUT  
INPUT  
INPUT GROUND  
NC  
NC  
GROUND GROUND GROUND  
GROUND GROUND GROUND  
Buffer  
Buffer  
INPUT  
INPUT  
INPUT  
INPUT  
NC  
INPUT  
GROUND GROUND GROUND GROUND  
1
Table 11. Configurations for Single-Supply AC-Coupled Inverting Gains  
LT6375 SINGLE-SUPPLY INVERTING AC GAINS  
GAIN  
–3  
–IN  
NC  
–REFA  
AC IN  
AC IN  
NC  
–REFB  
OUT  
OUT  
AC IN  
AC IN  
NC  
–REFC  
AC IN  
AC IN  
NC  
+IN  
+REFA  
AC GND  
AC GND  
AC GND  
AC GND  
AC GND  
AC GND  
AC GND  
AC GND  
AC GND  
AC GND  
AC GND  
AC GND  
AC GND  
AC GND  
AC GND  
AC GND  
+REFB  
AC GND  
AC GND  
AC GND  
AC GND  
AC GND  
AC GND  
AC GND  
AC GND  
AC GND  
AC GND  
AC GND  
AC GND  
AC GND  
AC GND  
AC GND  
AC GND  
+REFC  
AC GND  
AC GND  
AC GND  
AC GND  
AC GND  
AC GND  
AC GND  
AC GND  
AC GND  
AC GND  
AC GND  
AC GND  
AC GND  
AC GND  
AC GND  
AC GND  
REF  
AC R (k)  
IN  
+
V
V
11  
10  
38  
32  
24  
21  
19  
17  
15  
14  
13  
12  
11  
10  
8
+
–3.167  
–5  
AC IN  
NC  
V
V
+
V
V
+
–6  
AC IN  
NC  
NC  
NC  
V
V
+
–8  
NC  
AC IN  
AC IN  
NC  
V
V
+
–9  
AC IN  
NC  
NC  
NC  
V
V
+
–10  
–11  
–13  
–14  
–15  
–16  
–18  
–19  
–23  
–24  
AC IN  
AC IN  
NC  
NC  
V
V
+
AC IN  
NC  
NC  
NC  
V
V
+
AC IN  
AC IN  
AC IN  
AC IN  
NC  
AC IN  
AC IN  
NC  
V
V
+
AC IN  
NC  
NC  
V
V
+
AC IN  
AC IN  
AC IN  
AC IN  
AC IN  
AC IN  
V
V
+
AC IN  
NC  
NC  
V
V
+
AC IN  
AC IN  
AC IN  
AC IN  
V
V
+
AC IN  
NC  
NC  
V
V
+
AC IN  
AC IN  
V
V
+
AC IN  
V
V
8
6375fa  
24  
For more information www.linear.com/LT6375  
LT6375  
APPLICATIONS INFORMATION  
Table 12. Configurations for Single-Supply AC-Coupled Input Attenuations  
LT6375 SINGLE-SUPPLY AC ATTENUATOR CONFIGURATIONS  
DIV  
1.087  
1.111  
1.133  
1.154  
1.2  
+IN  
+REFA  
AC IN  
AC IN  
AC IN  
NC  
+REFB  
AC IN  
NC  
+REFC  
AC IN  
AC IN  
NC  
REF  
AC R (k)  
IN  
+
V
V
103  
106  
108  
110  
114  
119  
38  
+
V
V
+
V
AC IN  
AC IN  
NC  
V
+
V
AC IN  
NC  
V
+
V
AC IN  
NC  
V
+
1.25  
1.389  
1.4  
V
NC  
AC IN  
AC IN  
NC  
V
+
V
AC IN  
NC  
AC GND  
AC IN  
AC GND  
AC GND  
AC IN  
V
+
V
V
133  
46  
+
1.7  
V
AC IN  
NC  
NC  
V
+
1.875  
1.923  
2.083  
2.182  
2.273  
2.3  
V
AC IN  
V
51  
+
V
AC GND  
AC IN  
AC IN  
AC IN  
AC IN  
AC IN  
AC IN  
AC GND  
AC GND  
AC GND  
NC  
AC IN  
V
30  
+
AC IN  
AC IN  
AC IN  
NC  
V
V
AC IN  
NC  
30  
+
V
V
32  
+
V
V
AC GND  
NC  
31  
+
V
V
34  
+
2.4  
NC  
V
V
AC GND  
33  
+
2.5  
V
AC GND  
AC GND  
AC IN  
AC GND  
AC IN  
NC  
V
32  
+
3.125  
3.4  
V
V
35  
+
V
V
54  
+
5
V
AC IN  
AC GND  
V
47  
+
7.5  
AC IN  
AC IN  
AC IN  
AC IN  
AC IN  
AC IN  
V
V
AC IN  
AC IN  
NC  
110  
103  
205  
204  
198  
198  
+
12  
AC GND  
NC  
V
V
+
14  
V
V
+
15  
NC  
V
V
AC GND  
NC  
+
24  
AC GND  
AC GND  
V
V
+
25  
V
V
AC GND  
6375fa  
25  
For more information www.linear.com/LT6375  
LT6375  
APPLICATIONS INFORMATION  
Table 13. Configurations for Single-Supply AC-Coupled Re-Amplications  
LT6375 NONINVERTING AC RE-AMPLIFICATIONS  
GAIN  
4
–IN  
NC  
–REFA  
AC GND  
AC GND  
NC  
–REFB  
OUT  
–REFC  
AC GND  
AC GND  
AC GND  
NC  
4.167  
5
AC GND  
OUT  
OUT  
NC  
6
NC  
NC  
AC GND  
AC GND  
AC GND  
AC GND  
NC  
7
AC GND  
OUT  
NC  
NC  
7.5  
8.5  
9
NC  
AC GND  
NC  
OUT  
AC GND  
NC  
NC  
AC GND  
AC GND  
NC  
10  
11  
12  
12.5  
14  
15  
16  
17  
19  
20  
24  
25  
AC GND  
NC  
NC  
NC  
AC GND  
AC GND  
AC GND  
NC  
NC  
AC GND  
OUT  
NC  
NC  
AC GND  
AC GND  
AC GND  
AC GND  
AC GND  
NC  
AC GND  
AC GND  
AC GND  
NC  
NC  
AC GND  
NC  
NC  
AC GND  
AC GND  
AC GND  
AC GND  
AC GND  
AC GND  
AC GND  
NC  
NC  
AC GND  
AC GND  
AC GND  
AC GND  
AC GND  
NC  
NC  
AC GND  
AC GND  
AC GND  
6375fa  
26  
For more information www.linear.com/LT6375  
LT6375  
TYPICAL APPLICATIONS  
Telecom Supply Monitor  
V
= 12V  
S
+
–REFA  
19k  
–REFB  
38k  
–REFC  
23.75k  
V
190k  
190k  
–IN  
+IN  
+
V
OUT  
REF  
BAT  
6
V
BAT  
= 48V  
V
OUT  
=
190k  
190k  
19k  
+REFA  
38k  
23.75k  
+REFC  
+REFB  
SHDN  
V
6375 TA02  
27dB Audio Gain Stage  
V
S
= 3.3V TO 50V  
+
–REFA  
19k  
–REFB  
38k  
–REFC  
23.75k  
V
190k  
2.2µF  
190k  
–IN  
+IN  
V
2.2µF  
+
IN  
OUT  
REF  
V
OUT  
190k  
V
OUT  
= –24  
V
IN  
190k  
19k  
+REFA  
38k  
23.75k  
+REFC  
+REFB  
SHDN  
V
6375 TA03  
2.2µF  
6375fa  
27  
For more information www.linear.com/LT6375  
LT6375  
TYPICAL APPLICATIONS  
±±5 mA Ho wl anACuur aAꢂ HCur  
+
V
S
+
–REFA  
19k  
–REFB  
38k  
–REFC  
23.75k  
V
190k  
190k  
–IN  
+IN  
+
OUT  
REF  
V
OUT  
190k  
V
= 1V  
R
CTL  
S
32.4Ω  
V
V
OUT  
41.6k  
CTL  
I
=
OUT  
6 • R  
S
190k  
19k  
38k  
23.75k  
+REFC  
LOAD  
+REFA  
+REFB  
SHDN  
V
6375 TA04  
V
S
Pur isiHaARr fr ur aꢃr ADivinr u/BCffr u  
V
REF  
+
–REFA  
19k  
–REFB  
38k  
–REFC  
23.75k  
V
190k  
190k  
–IN  
+IN  
+
V
OUT  
REF  
REF  
V
OUT  
=
2
190k  
190k  
19k  
+REFA  
38k  
23.75k  
+REFC  
+REFB  
SHDN  
V
6375 TA05  
6375fa  
28  
For more information www.linear.com/LT6375  
LT6375  
PACKAGE DESCRIPTION  
Pwr l sr Aur fr uAHAhp://ooo .wiar l u.H5 /puHnCꢃ/LT637±#pl ꢃkl giagAfHuAhr A5 HsAur r aApl ꢃkl gr Anul o iags.  
DF Package  
14(12)-Lead Plastic DFN (4mm × 4mm)  
(Reference LTC DWG # 05-08-1963 Rev Ø)  
3.00 REF  
ꢀ.00  
BSC  
0.70 0.05  
4.50 0.05  
ꢀ.70 0.05  
3.ꢀ0 0.05  
3.38 0.05  
PACKAGE OUTLINE  
0.25 0.05  
0.50 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
3.00 REF  
4.00 0.ꢀ0  
(4 SIDES)  
ꢀ.00  
BSC  
8
ꢀ4  
0.40 0.ꢀ0  
3.38 0.ꢀ0  
ꢀ.70 0.ꢀ0  
PIN ꢀ NOTCH  
0.35 × 45°  
CHAMFER  
PIN ꢀ  
TOP MARK  
(NOTE 6)  
(DFꢀ4)(ꢀ2) DFN ꢀꢀꢀ3 REV 0  
7
R = 0.ꢀꢀ5  
TYP  
0.25 0.05  
0.50 BSC  
0.200 REF  
0.75 0.05  
BOTTOM VIEW—EXPOSED PAD  
0.00 – 0.05  
NOTE:  
ꢀ. PACKAGE OUTLINE DOES NOT CONFORM TO JEDEC MO-229  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.ꢀ5mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN ꢀ LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
6375fa  
29  
For more information www.linear.com/LT6375  
LT6375  
PACKAGE DESCRIPTION  
Pwr l sr Aur fr uAHAhp://ooo .wiar l u.H5 /puHnCꢃ/LT637±#pl ꢃkl giagAfHuAhr A5 HsAur r aApl ꢃkl gr Anul o iags.  
MS Package  
16 (12)-Lead Plastic MSOP with 4 Pins Removed  
(Reference LTC DWG # 05-08-1847 Rev B)  
1.0  
0.889 ±0.127  
(.035 ±.005)  
(.0394)  
BSC  
5.10  
3.20 – 3.45  
(.201)  
4.039 ±0.102  
(.159 ±.004)  
(NOTE 3)  
(.126 – .136)  
MIN  
0.280 ±0.076  
(.011 ±.003)  
REF  
16 14 121110  
9
0.50  
(.0197)  
BSC  
0.305 ±0.038  
(.0120 ±.0015)  
TYP  
3.00 ±0.102  
(.118 ±.004)  
(NOTE 4)  
4.90 ±0.152  
(.193 ±.006)  
RECOMMENDED SOLDER PAD LAYOUT  
DETAIL “A”  
0.254  
(.010)  
0° – 6° TYP  
1
3 5 6 7 8  
GAUGE PLANE  
1.0  
(.0394)  
BSC  
0.53 ±0.152  
(.021 ±.006)  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.17 – 0.27  
(.007 – .011)  
TYP  
0.1016 ±0.0508  
(.004 ±.002)  
MSOP (MS12) 0213 REV B  
0.50  
(.0197)  
BSC  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
6375fa  
30  
For more information www.linear.com/LT6375  
LT6375  
REVISION HISTORY  
REV  
DmTE  
DEꢂ ꢀRIPTION  
PmGEANUMBER  
A
12/15 Added A-grade.  
1-7, 15, 19  
6375fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
31  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
LT6375  
TYPICAL APPLICATION  
Biniur iHal wAFCwwARl agr ACuur aAMHaiHu  
V
S
= 5V (OR 2V GREATER THAN V  
)
MON  
+
–REFA  
19k  
–REFB  
38k  
–REFC  
23.75k  
V
190k  
V
= 0V TO 3V  
MON  
190k  
–IN  
+IN  
OUT  
R
V
= V  
+ 24 • (V  
)
SENSE  
SENSE  
OUT  
REF  
REF  
190k  
+
REF  
LOAD  
V
= 1.25V  
190k  
19k  
+REFA  
38k  
23.75k  
+REFC  
+REFB  
SHDN  
V
6375 TA06  
NOTE: OPERATES OVER FULL RANGE OF LOAD VOLTAGE  
RELATED PARTS  
PmRTANUMBER  
DEꢂ ꢀRIPTION  
ꢀOMMENTꢂ  
LT1990  
250V Input Range Difference Amplifier  
Precision, 100µA Gain Selectable Amplifier  
Precision, 100µA Gain Selectable Amplifier  
2.7V to 36V Operation, CMRR > 70dB, Input Voltage = 250V  
LT1991  
2.7V to 36V Operation, 50μV Offset, CMRR > 75B, Input Voltage = 60V  
Micropower, Pin Selectable Up to Gain = 118  
LT1996  
LT1999  
High Voltage, Bidirectional Current Sense  
Amplifier  
–5V to 80V, 750 µV, CMRR 80dB 100kHz Gain: 10V/V, 20V/V, 50V/V  
LT6015/LT6016/ Single, Dual, and Quad, Over-The-Top  
3.2MHz, 0.8V/µs, 50µV V , 3V to 50V V , 0.335mA I , RRIO  
OS S S  
LT6017  
LTC6090  
LT6108  
Precision Op Amp  
140V Operational Amplifier  
50pA I , 1.6mV V , 9.5V to 140V V , 4.5mA I , RR Output  
B OS S S  
High Side Current Sense Amplifier with  
Reference and Comparator with Shutdown  
2.7V to 60V, 125µV, Resistor Set Gain, 1.25% Threshold Error  
LT1787/  
LT1787HV  
Precision, Bidirectional High Side Current  
Sense Amplifier  
2.7V to 60V Operation, 75μV Offset, 60μA Current Draw  
LTC6101/  
LTC6101HV  
High Voltage High Side Current Sense  
Amplifier  
4V to 60V/5V to 100V Operation, External Resistor Set Gain, SOT23  
LTC6102/  
LTC6102HV  
Zero Drift High Side Current Sense Amplifier  
4V to 60V/5V to 100V Operation, 10μV Offset, 1μs Step Response,  
MSOP8/DFN Packages  
LTC6104  
Bidirectional, High Side Current Sense  
4V to 60V, Gain Configurable, 8-Pin MSOP Package  
6375fa  
LT 1215 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
32  
LINEAR TECHNOLOGY CORPORATION 2015  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LT6375  

相关型号:

LT6376HDF#TRPBF

LT6376 - ±230V Common Mode Voltage G = 10 Difference Amplifier; Package: DFN; Pins: 14; Temperature Range: -40&deg;C to 125&deg;C
Linear

LT63H-SERIES

Optoelectronic
ETC

LT63HXX-SERIES

Optoelectronic
ETC

LT6402-12

1.3GHz Low Noise, Low Distortion Differential ADC Driver for 140MHz IF
Linear

LT6402-20

300MHz Low Distortion, Low Noise Differential Amplifier/ ADC Driver (AV = 20dB)
Linear

LT6402-6

1.3GHz Low Noise, Low Distortion Differential ADC Driver for 140MHz IF
Linear

LT6402CUD-12

300MHz Low Distortion, Low Noise Differential Amplifi er/ ADC Driver (AV = 12dB)
Linear

LT6402CUD-12#PBF

LT6402-12 - 300MHz Low Distortion, Low Noise Differential Amplifier/ADC Driver (AV = 12dB); Package: QFN; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT6402CUD-12#TR

暂无描述
Linear

LT6402CUD-12#TRPBF

LT6402-12 - 300MHz Low Distortion, Low Noise Differential Amplifier/ADC Driver (AV = 12dB); Package: QFN; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT6402CUD-12-PBF

300MHz Low Distortion, Low Noise Differential Amplifi er/ ADC Driver (AV = 12dB)
Linear

LT6402CUD-12-TR

300MHz Low Distortion, Low Noise Differential Amplifi er/ ADC Driver (AV = 12dB)
Linear