LT6411CUD#PBF [Linear]

LT6411 - 650MHz Differential ADC Driver/Dual Selectable Gain Amplifier; Package: QFN; Pins: 16; Temperature Range: 0°C to 70°C;
LT6411CUD#PBF
型号: LT6411CUD#PBF
厂家: Linear    Linear
描述:

LT6411 - 650MHz Differential ADC Driver/Dual Selectable Gain Amplifier; Package: QFN; Pins: 16; Temperature Range: 0°C to 70°C

放大器
文件: 总16页 (文件大小:347K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT6411  
650MHz Differential ADC  
Driver/Dual Selectable  
Gain Amplifier  
FEATURES  
DESCRIPTION  
TheLT®6411isadualamplifierwithindividuallyselectable  
gains of +1, +2 and –1. The amplifiers have excellent dis-  
tortion performance for driving ADCs as well as excellent  
bandwidth and slew rate for video, data transmission and  
other high speed applications. Single-ended to differential  
conversion with a system gain of 2 is particularly straight-  
forward by configuring one amplifier with a gain of +1  
and the other amplifier with a gain of –1. The LT6411 can  
be used on split supplies as large as 6ꢀ and on a single  
supply as low as 4.5.  
650MHz –3dB Small-Signal Bandwidth  
600MHz –3dB Large-Signal Bandwidth  
High Slew Rate: 3300V/µs  
Easily Configured for Single-Ended to Differential  
Conversion  
200MHz 0.1dꢁ ꢁandwidth  
User Selectable Gain of +1, +2 and –1  
No External Resistors Required  
46.5dꢁmEquivalentOIP3at30MHzWhenDrivingan  
ADC  
IM3 with 2ꢀ Composite, Differential Output:  
P-P  
Each amplifier draws only 8mA of quiescent current when  
enabled. When disabled, the output pins become high  
impedance and each amplifier draws less than 350µA.  
–87dꢁc at 30MHz, –83dꢁc at 70MHz  
–77dꢁ SFDR at 30MHz, 2ꢀ Differential Output  
P-P  
6ns 0.1% Settling Time for 2ꢀ Step  
The LT6411 is manufactured on Linear Technology’s  
proprietary, low voltage, complimentary, bipolar process  
and is available in the ultra-compact, 3mm × 3mm, 16pin  
QFN package.  
Low Supply Current: 8mA per Ampifier  
Differential Gain of 0.02%, Differential Phase of 0.01°  
50dꢁ Channel Separation at 100MHz  
Wide Supply Range: 2.25ꢀ ꢂ4.5ꢀV to 6.3ꢀ ꢂ12.6ꢀV  
3mm × 3mm 16-Pin QFN Package  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
APPLICATIONS  
Differential ADC Driver  
Single-Ended to Differential Conversion  
Differential ꢀideo Line Driver  
TYPICAL APPLICATION  
30MHz 2-Tone 32768 Point FFT, LT6411  
Driving an LTC®2249 14-Bit ADC  
Differential ADC Driver  
5V  
0
–10  
–20  
–30  
V
CC  
LT6411  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
–130  
–140  
24  
24Ω  
+
1.9V  
DC  
+
A
A
370Ω  
370Ω  
370Ω  
IN  
LTC2249  
14-BIT ADC  
80Msps  
30MHz  
INPUT  
370Ω  
IN  
1.9V  
+
DC  
6411 TA01a  
V
0
5
10 15 20 25 30 35 40  
EE  
DGND  
FREQUENCY (MHz)  
6411 TA01b  
EN  
6411f  
1
LT6411  
ABSOLUTE MAXIMUM RATINGS  
PACKAGE/ORDER INFORMATION  
(Note 1)  
Total Supply ꢀoltage ꢂꢀ to ꢀ V ..........................12.6ꢀ  
TOP VIEW  
CC  
EE  
Input Current ꢂNote 2V.......................................... 10mA  
Output Current ꢂContinuousV ............................... 70mA  
EN to DGND ꢀoltage ꢂNote 2V ..................................5.5ꢀ  
Output Short-Circuit Duration ꢂNote 3V ............ Indefinite  
Operating Temperature Range ꢂNote 4V ... –40°C to 85°C  
Specified Temperature Range ꢂNote 5V .... –40°C to 85°C  
Storage Temperature Range................... –65°C to 125°C  
Junction Temperature ........................................... 125°C  
16 15 14 13  
1
2
3
4
12  
11  
10  
9
V
V
V
DGND  
EN  
EE  
EE  
EE  
17  
V
CC  
NC  
VCC  
5
6
7
8
UD PACKAGE  
16-LEAD (3mm × 3mm) PLASTIC QFN  
= 125°C, θ = 68°C/W, θ = 4.2°C/W  
T
JMAX  
JA  
JC  
EXPOSED PAD ꢂPIN 17V IS ꢀ , MUST ꢁE SOLDERED TO PCꢁ  
EE  
ORDER PART NUMꢁER  
UD PART MARKING*  
LCGP  
LCGP  
LT6411CUD  
LT6411IUD  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PꢁF Lead Free Tape and Reel: Add #TRPꢁF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
*Temperature grade is identified by a label on the shipping container.  
ELECTRICAL CHARACTERISTICS The  
unless otherwise noted.  
denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at T = 25°C. V = 5V, A = 2, R = 150Ω, C = 1.5pF, V = 0.4V, V  
= 0V,  
A
S
V
L
L
EN  
DGND  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Input Referred Offset ꢀoltage  
= 0, ꢀ = ꢀ /2  
3
10  
20  
mꢀ  
mꢀ  
OS  
IN  
OS  
OUT  
I
Input Current  
–17  
500  
1
50  
µA  
kΩ  
pF  
IN  
R
Input Resistance  
Input Capacitance  
IN  
=
1ꢀ  
150  
56  
IN  
C
f = 100kHz  
IN  
Maximum Input Common Mode ꢀoltage  
Minimum Input Common Mode ꢀoltage  
– 1  
CC  
CMR  
+ 1  
EE  
PSRR  
Power Supply Rejection Ratio  
Input Current Power Supply Rejection  
Gain Error  
ꢀ ꢂTotalV = 4.5ꢀ to 12ꢀ ꢂNote 6V  
S
62  
dꢁ  
µA/ꢀ  
%
I
ꢀ ꢂTotalV = 4.5ꢀ to 12ꢀ ꢂNote 6V  
S
1
4
5
PSRR  
A ERR  
=
=
2ꢀ  
2ꢀ  
–1.2  
1
OUT  
OUT  
A MATCH Gain Matching  
%
Maximum Output ꢀoltage Swing  
R = 1k  
L
R = 150Ω  
L
3.70  
3.25  
3.10  
3.ꢃ5  
3.6  
OUT  
L
R = 150Ω  
I
S
Supply Current, Per Amplifier  
Supply Current, Disabled, per Amplifier  
Enable Pin Current  
8
11  
14  
mA  
mA  
EN  
EN  
= 4ꢀ  
= Open  
22  
0.5  
350  
350  
µA  
µA  
I
EN  
EN  
EN  
= 0.4ꢀ  
= ꢀ  
–200  
–ꢃ5  
0.5  
µA  
µA  
+
50  
6411f  
2
LT6411  
ELECTRICAL CHARACTERISTICS The  
unless otherwise noted.  
denotes the specifications which apply over the full operating  
= 0V,  
temperature range, otherwise specifications are at T = 25°C. V = 5V, A = 2, R = 150Ω, C = 1.5pF, V = 0.4V, V  
A
S
V
L
L
EN  
DGND  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
105  
3300  
650  
200  
600  
525  
263  
MAX  
UNITS  
mA  
I
Output Short-Circuit Current  
Slew Rate  
R = 0Ω, ꢀ =  
L IN  
1ꢀ  
50  
SC  
SR  
1ꢀ on 2ꢀ Output Step ꢂNote ꢃV  
1700  
ꢀ/µs  
MHz  
MHz  
MHz  
MHz  
MHz  
–3dꢁ ꢁW  
Small-Signal –3dꢁ ꢁandwidth  
OUT  
OUT  
OUT  
OUT  
OUT  
= 200mꢀ , Single Ended  
P-P  
0.1dꢁ ꢁW Gain Flatness 0.1dꢁ ꢁandwidth  
= 200mꢀ , Single Ended  
P-P  
FPꢁW  
Full Power ꢁandwidth 2ꢀ Differential  
Full Power ꢁandwidth 2ꢀ  
Full Power ꢁandwidth 4ꢀ  
All Hostile Crosstalk  
= 2ꢀ Differential, –3dꢁ  
P-P  
= 2ꢀ ꢂNote 7V  
270  
P-P  
= 4ꢀ ꢂNote 7V  
P-P  
f = 10MHz, ꢀ  
= 2ꢀ  
–75  
–50  
dꢁ  
dꢁ  
OUT  
P-P  
f = 100MHz, ꢀ  
= 2ꢀ  
P-P  
OUT  
t
Settling Time  
0.1% to ꢀ  
, ꢀ = 2ꢀ  
6
ns  
ps  
s
FINAL STEP  
t , t  
r
Small-Signal Rise and Fall Time  
Differential Gain  
10% to ꢃ0%, ꢀ  
= 200mꢀ  
P-P  
550  
0.02  
0.01  
f
OUT  
dG  
dP  
ꢂNote 8V  
%
Diffierential Phase  
ꢂNote 8V  
Deg  
The  
CC  
denotes the specifications which apply over the full operating temperature range, otherwise specifications are at T = 25°C.  
A
V
= 5V, V = 0V, A = 2, No R  
, V = 0.4V, V  
= 0V, unless otherwise noted.  
EE  
V
LOAD EN  
DGND  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Noise/Harmonic Performance Input/Output Characteristics  
1MHz Signal  
HD  
Second/Third Harmonic Distortion  
2ꢀ Differential  
P-P  
–88  
–87  
dꢁc  
dꢁc  
P-P  
2ꢀ Differential, R = 200Ω Differential  
L
IMD3  
Third-Order IMD  
2ꢀ Differential Composite, f1 = 0.ꢃ5MHz,  
–ꢃ3  
dꢁc  
1M  
P-P  
f2 = 1.05MHz  
2ꢀ Differential Composite, f1 = 0.ꢃ5MHz,  
–ꢃ1  
dꢁc  
P-P  
f2 = 1.05MHz, R = 200Ω Differential  
L
OIP3  
NF  
Output Third-Order Intercept  
Noise Figure  
Differential, f1 = 0.ꢃ5MHz, f2 = 1.05MHz ꢂNote 10V  
Single Ended  
4ꢃ.5  
25.1  
8
dꢁm  
dꢁ  
1M  
e
n1M  
Input Referred Noise ꢀoltage Density  
1dꢁ Compression Point  
nꢀ/√Hz  
dꢁm  
P1dꢁ  
10MHz Signal  
ꢂNote 10V  
1ꢃ.5  
HD  
Second/Third Harmonic Distortion  
2ꢀ Differential  
P-P  
–85  
–76  
dꢁc  
dꢁc  
P-P  
2ꢀ Differential, R = 200Ω Differential  
L
IMD3  
Third-Order IMD  
2ꢀ Differential Composite, R = 1k,  
–ꢃ2  
dꢁc  
10M  
P-P  
L
f1 = ꢃ.5MHz, f2 = 10.5MHz  
2ꢀ Differential Composite, f1 = ꢃ.5MHz,  
–8ꢃ  
dꢁc  
P-P  
f2 = 10.5MHz, R = 200Ω Differential  
L
OIP3  
NF  
Output Third-Order Intercept  
Noise Figure  
Differential, f1 = ꢃ.5MHz, f2 = 10.5MHz ꢂNote 10V  
Single Ended  
4ꢃ  
dꢁm  
dꢁ  
10M  
24.7  
7.7  
e
Input Referred Noise ꢀoltage Density  
1dꢁ Compression Point  
nꢀ/√Hz  
dꢁm  
n10M  
P1dꢁ  
ꢂNote 10V  
1ꢃ.5  
6411f  
3
LT6411  
ELECTRICAL CHARACTERISTICS The  
denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at T = 25°C. V = 5V, V = 0V, A = 2, No R  
, V = 0.4V, V  
= 0V,  
A
CC  
EE  
V
LOAD EN  
DGND  
unless otherwise noted.  
SYMBOL PARAMETER  
30MHz Signal  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
HD  
Second/Third Harmonic Distortion  
2ꢀ Differential  
P-P  
–77  
–64  
dꢁc  
dꢁc  
P-P  
2ꢀ Differential, R = 200Ω Differential  
L
IMD3  
Third-Order IMD  
2ꢀ Differential Composite, f1 = 2ꢃ.5MHz,  
–87  
dꢁc  
30M  
P-P  
Differential, f2 = 30.5MHz  
2ꢀ Differential Composite, f1 = 2ꢃ.5MHz,  
–75  
dꢁc  
P-P  
f2 = 30.5MHz, R = 200Ω Differential  
L
OIP3  
NF  
Output Third-Order Intercept  
Noise Figure  
Differential, f1 = 2ꢃ.5MHz, f2 = 30.5MHz ꢂNote 10V  
Single Ended  
46.5  
24.6  
7.6  
dꢁm  
dꢁ  
30M  
e
Input Referred Noise ꢀoltage Density  
1dꢁ Compression Point  
nꢀ/√Hz  
dꢁm  
n30M  
P1dꢁ  
70MHz Signal  
ꢂNote 10V  
1ꢃ.5  
HD  
Second/Third Harmonic Distortion  
2ꢀ Differential  
P-P  
–63  
–52  
dꢁc  
dꢁc  
P-P  
2ꢀ Differential, R = 200Ω Differential  
L
IMD3  
Third-Order IMD  
2ꢀ Differential Composite, f1 = 6ꢃ.5MHz,  
–83  
dꢁc  
70M  
P-P  
Differential, f2 = 70.5MHz  
2ꢀ Differential Composite, f1 = 6ꢃ.5MHz,  
–64  
dꢁc  
P-P  
f2 = 70.5MHz, R = 200Ω Differential  
L
OIP3  
NF  
Output Third-Order Intercept  
Noise Figure  
Differential, f1 = 6ꢃ.5MHz, f2 = 70.5MHz ꢂNote 10V  
Single Ended  
44.5  
24.7  
7.7  
dꢁm  
dꢁ  
70M  
e
Input Referred Noise ꢀoltage Density  
1dꢁ Compression Point  
nꢀ/√Hz  
dꢁm  
n70M  
P1dꢁ  
ꢂNote 10V  
1ꢃ.5  
Note 7: Full power bandwidth is calculated from the slew rate:  
FPꢁW = SR/ꢂπ • ꢀ  
Note 8: Differential gain and phase are measured using a Tektronix  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: This parameter is guaranteed to meet specified performance  
through design and characterization. It is not production tested.  
Note 3: As long as output current and junction temperature are kept  
below the Absolute Maximum Ratings, no damage to the part will occur.  
Depending on the supply voltage, a heat sink may be required.  
V
P-P  
TSG120YC/NTSC signal generator and a Tektronix 1780R video  
measurement set. The resolution of this equipment is better than 0.05%  
and 0.05°. Ten identical amplifier stages were cascaded giving an effective  
resolution of better than 0.005% and 0.005°.  
Note 9: Slew rate is 100% production tested on channel 1. Slew rate of  
channel 2 is guaranteed through design and characterization.  
Note 4: The LT6411C is guaranteed functional over the operating  
temperature range of –40°C to 85°C.  
Note 5: The LT6411C is guaranteed to meet specified performance from  
0°C to 70°C. The LT6411C is designed, characterized and expected to  
meet specified performance from –40°C and 85°C but is not tested or  
QA sampled at these temperatures. The LT6411I is guaranteed to meet  
specified performance from –40°C to 85°C.  
Note 10: Since the LT6411 is a feedback amplifier with low output  
impedance, a resistive load is not required when driving an ADC.  
Therefore, typical output power is very small. In order to compare the  
LT6411 with typical g amplifiers that require 50Ω output loading, the  
m
LT6411 output voltage swing driving an ADC is converted to OIP3 and  
P1dꢁ as if it were driving a 50Ω load.  
Note 6: The two supply voltage settings for power supply rejection  
are shifted from the typical ꢀ points for ease of testing. The first  
S
measurement is taken at ꢀ = 3, ꢀ = 1.5ꢀ to provide the required 3ꢀ  
CC  
EE  
headroom for the enable circuitry to function with EN, DGND and all inputs  
connected to 0. The second measurement is taken at ꢀ = 8, ꢀ = 4.  
CC  
EE  
6411f  
4
LT6411  
TYPICAL PERFORMANCE CHARACTERISTICS  
All measurements are per amplifier with single-ended outputs unless otherwise noted.  
Supply Current per Ampifier  
vs Supply Voltage  
Supply Current per Amplifier  
vs Temperature  
Supply Current per Amplifier  
vs EN Pin Voltage  
12  
10  
8
12  
12  
10  
8
V
R
V
=
5V  
V
V
T
= –V  
, V  
V
V
V
=
5V  
= 0V  
IN  
S
L
CC  
EE  
S
+
= ∞  
, V , V = 0V  
IN  
EN DGND IN  
= 25°C  
A
DGND  
+
+
T
= –55°C  
, V = 0V  
A
10  
8
, V = 0V  
IN  
IN  
IN  
V
EN  
= 0V  
T
= 25°C  
A
T
= 125°C  
A
V
EN  
= 0.4V  
6
6
6
4
4
4
2
2
2
0
0
0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
EN PIN VOLTAGE (V)  
0
1
2
3
4
5
6
7
8
9
10 11 12  
–55 –35 –15  
5
25 45 65 85 105 125  
TOTAL SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
6411 G03  
6411 G02  
6411 G01  
Output Offset Voltage  
vs Temperature  
Positive Input Bias Current  
vs Input Voltage  
EN Pin Current vs EN Pin Voltage  
20  
0
20  
15  
0
–20  
V
V
A
= 5V  
V
A
=
= 2  
5V  
S
V
V
=
5V  
= 0V  
S
V
S
= 0V  
IN  
= 2  
V
DGND  
10  
–40  
T
= 125°C  
A
5
T
= 125°C  
A
–60  
–20  
–40  
–60  
0
T
T
= 25°C  
T
= –55°C  
A
A
–80  
–5  
T
= 25°C  
= –55°C  
A
A
–100  
–120  
–140  
–10  
–15  
–20  
–55 –35 –15  
5
25 45 65 85 105 125  
–2.5  
–1.5  
–0.5  
0.5  
1.5  
2.5  
0
3
4
5
1
2
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
EN PIN VOLTAGE (V)  
6411 G04  
6411 G05  
6411 G06  
Output Voltage Swing vs I  
(Output High)  
Output Voltage Swing vs I  
(Output Low)  
LOAD  
LOAD  
Output Voltage vs Input Voltage  
5
4
5
4
3
2
1
0
0
–1  
–2  
–3  
–4  
–5  
V
R
A
= 5V  
= 1k  
= 1  
V
A
V
=
5V  
V
A
V
=
5V  
S
L
V
S
V
S
V
= 2  
= 2  
= 2V  
= –2V  
IN  
IN  
3
T
= 25°C  
T = 25°C  
A
2
A
T
= –55°C  
A
1
T
= 125°C  
A
T
= 25°C  
A
0
–1  
–2  
–3  
–4  
–5  
T
= –55°C  
A
T
= 125°C  
T
A
= –55°C  
A
T
= 125°C  
A
0
10 20 30 40 50 60 70 80 90 100  
–4.5 –3.5 –2.5 –1.5 –0.5 0.5 1.5 2.5 3.5 4.5  
INPUT VOLTAGE (V)  
0
10 20 30 40 50 60 70 80 90 100  
SOURCE CURRENT (mA)  
6411 G08  
SINK CURRENT (mA)  
6411 G07  
6411 G09  
6411f  
5
LT6411  
TYPICAL PERFORMANCE CHARACTERISTICS  
All measurements are per amplifier with single-ended outputs unless otherwise noted.  
Positive Input Impedance  
vs Frequency  
Input Noise Spectral Density  
PSRR vs Frequency  
70  
60  
50  
40  
30  
20  
10  
0
1000  
100  
10  
1000  
100  
10  
V
A
T
=
5V  
V
S
V
T
A
=
= 2  
= 25°C  
5V  
V
V
T
=
5V  
S
V
A
S
PSRR  
= 2  
= 0V  
A
IN  
= 25°C  
= 25°C  
A
–PSRR  
e
n
+PSRR  
i
n
1
1
0.1  
0.01  
0.001  
0.01  
0.1  
1
10  
100  
0.1  
1
10  
100  
1000  
0.001  
0.01  
0.1  
1
10  
100  
FREQUENCY (kHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
6553 G10  
6411 G11  
6411 G12  
Frequency Response  
vs Gain Configuration  
Frequency Response with  
Capacitive Loads  
Gain Flatness vs Frequency  
18  
16  
14  
12  
10  
8
9
6.5  
6.4  
6.3  
6.2  
6.1  
6.0  
5.9  
5.8  
5.7  
5.6  
5.5  
V
A
V
=
5V  
V
A
V
=
5V  
S
V
S
V
= 2  
= 2  
A
= 2, V  
= 2V  
OUT P-P  
V
= 2V  
= 200mV  
OUT  
= 150Ω  
= 25°C  
P-P  
OUT  
P-P  
6
3
C
= 12pF  
R
L
R
T
= 150Ω  
L
L
A
= 2, V  
= 200mV  
V
OUT  
P-P  
T
= 25°C  
A
A
C
L
= 6.8pF  
CHANNEL 1  
A
= 1, A = –1,V  
V
= 200mV  
V
OUT  
P-P  
6
4
0
C
L
= 2.2pF  
CHANNEL 2  
2
A
= 1, V  
= 2V  
OUT P-P  
V
0
A
= –1, V  
= 2V  
OUT P-P  
V
–3  
–6  
V
= 5V  
= 150Ω  
= 25°C  
S
L
–2  
–4  
–6  
R
T
A
0.1  
1
10  
100  
1000  
0.1  
1
10  
FREQUENCY (MHz)  
100  
1000  
0.1  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
6411 G13  
6411 G14  
6553 G15  
Harmonic Distortion vs Frequency,  
Differential Input  
Harmonic Distortion vs Amplitude,  
30MHz, Differential Input  
Harmonic Distortion vs Load,  
30MHz, Differential Input  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
A
V
= 2, V = 5V  
CC  
V
A
V
= 2V , DIFFERENTIAL  
V
A
V
T
= 2V , DIFFERENTIAL  
OUT P-P  
V
OUT  
V
EE  
P-P  
= 0V, V = 1.6V  
= 2, V = 5V  
= 2, V = 5V  
EE  
= ∞  
CM  
CC  
V CC  
R
T
= 0V, V = 1.6V  
= 0V, V = 1.6V  
L
CM  
EE  
CM  
= 25°C  
DIFFERENTIAL R  
= 25°C  
= 25°C  
A
A
LOAD  
T
A
HD3, R = 200Ω  
L
HD3, R = ∞  
L
HD2, R = 200Ω  
L
HD3  
HD2  
HD3  
HD2  
HD2, R = ∞  
L
1
10  
FREQUENCY (MHz)  
100  
0.4  
1.8  
0
100 200 300 400 500 600 700 800 9001000  
DIFFERENTIAL R ()  
0.6 0.8 1.0 1.2 1.4 1.6  
2.0  
DIFFERENTIAL OUTPUT AMPLITUDE (V  
)
P-P  
LOAD  
6411 G16  
6411 G17  
1011 G06  
6411f  
6
LT6411  
TYPICAL PERFORMANCE CHARACTERISTICS  
All measurements are per amplifier with single-ended outputs unless otherwise noted.  
Third Order Intermodulation  
Distortion vs Frequency,  
Differential Input  
Output Third Order Intercept  
vs Frequency, Differential Input  
Output Impedance vs Frequency  
0
–10  
–20  
60  
50  
40  
30  
1000  
100  
10  
V
= 2V , COMPOSITE, DIFFERENTIAL  
P-P  
OUT  
DISABLED  
EN  
R
= ∞  
L
1MHz TONE SPACING  
V
= 4V  
COMPUTED FOR 50ENVIRONMENT  
A
V
= 2, V = 5V  
V
EE  
CC  
= 0V, V = 1.6V  
CM  
–30 DIFFERENTIAL R  
LOAD  
T
= 25°C  
A
R
= 200Ω  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
L
V
= 2V , COMPOSITE, DIFFERENTIAL  
P-P  
1MHz TONE SPACING  
R
= 200Ω  
OUT  
L
20  
10  
0
ENABLED  
1
A
V
= 2, V = 5V  
V
EE  
CC  
R
= ∞  
L
V
EN  
= 0.4V  
= 0V, V = 1.6V  
V
= 5V  
= 150Ω  
= 25°C  
CM  
S
L
DIFFERENTIAL R  
= 25°C  
R
T
LOAD  
T
A
A
0.1  
0
20  
30  
40  
50  
60  
70  
0
10  
20  
30  
40  
50  
60  
70  
0.1  
10  
10  
0.01  
1
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
6411 G19  
6411 G20  
6411 G21  
Video Amplitude Transient  
Response  
Small-Signal Transient Response  
Large-Signal Transient Response  
0.15  
0.10  
0.05  
0
2.0  
1.5  
1.0  
4
3
V
A
V
= 100mV  
= 2  
V
A
V
= 700mV  
= 2  
IN  
V
S
P-P  
IN  
V
S
P-P  
V
A
V
= 2.5V  
= 2  
IN  
V
S
P-P  
=
5V  
=
5V  
=
5V  
R
T
= 150Ω  
= 25°C  
R
T
= 150Ω  
= 25°C  
L
A
L
A
R
A
= 150Ω  
= 25°C  
L
2
T
1
0
0.5  
0
–1  
–2  
–3  
– 4  
–0.05  
–0.10  
–0.15  
–0.5  
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
12 14 16 18 20  
8
10  
0
2
4
6
8
10 12 14 16 18 20  
TIME (ns)  
TIME (ns)  
TIME (ns)  
6411 G22  
6411 G23  
6411 G24  
Gain Error Distribution  
Crosstalk vs Frequency  
Gain Matching Distribution  
0
–20  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
V
V
=
OUT  
= 150Ω  
= 25°C  
5V  
2V  
V
V
=
OUT  
= 150Ω  
= 25°C  
5V  
2V  
S
V
V
=
OUT  
= 150Ω  
= 25°C  
5V  
S
S
=
=
= 2V  
P-P  
R
T
R
T
L
R
T
L
L
A
A
A
–40  
–60  
DRIVE 2  
LISTEN 1  
–80  
DRIVE 1  
–100  
–120  
LISTEN 2  
0
–3.0  
0
0
1
10  
100  
1000  
–3.0 –2.0 –1.0  
1.0  
2.0  
3.0  
–2.0 –1.0  
0
1.0  
2.0  
3.0  
FREQUENCY (MHz)  
GAIN MATCHING–BETWEEN CHANNELS (%)  
GAIN ERROR–INDIVIDUAL CHANNEL (%)  
1635 G25  
6411 G26  
6411 G27  
6411f  
7
LT6411  
PIN FUNCTIONS  
V (Pins 1, 2): Negative Supply ꢀoltage. ꢀ pins are not  
EN (Pin 11): Enable Control Pin. An internal pull-up resis-  
tor of 46k will turn the part off if the pin is allowed to float  
and defines the pin’s impedance. When the pin is pulled  
low, the part is enabled.  
EE  
EE  
internally connected to each other and must all be con-  
nected externally. Proper supply bypassing is necessary  
for best performance. See the Applications Information  
section.  
DGND (Pin 12): Digital Ground Reference for Enable Pin.  
This pin is normally connected to ground.  
V (Pins 3, 7): Negative Supply ꢀoltage for Output Stage.  
EE  
EE  
pins are not internally connected to each other and  
+
IN1 (Pin 13): Channel 1 Positive Input. This pin has a  
mustallbeconnectedexternally. Propersupplybypassing  
is necessary for best performance. See the Applications  
Information section.  
nominalimpedanceof400kΩanddoesnothaveaninternal  
termination resistor.  
IN1 (Pin 14): This pin connects to the internal resistor  
NC (Pin 4): This pin is not internally connected.  
network of the channel 1 amplifier, connecting by a 370Ω  
OUT2 (Pin 5): Output of Channel 2. The gain between the  
inputandtheoutputofthischannelissetbytheconnection  
of the channel 2 input pins. See Table 1 in Applications  
Information for details.  
resistor to the inverting input.  
IN2 (Pin 15): This pin connects to the internal resistor  
network of the channel 2 amplifier, connecting by a 370Ω  
resistor to the inverting input.  
V
(Pins 6, 9): Positive Supply ꢀoltage for Output Stage.  
pins are not internally connected to each other and  
+
CC  
CC  
IN2 (Pin 16): Channel 2 Positive Input. This pin has a  
nominalimpedanceof400kΩanddoesnothaveaninternal  
mustallbeconnectedexternally. Propersupplybypassing  
is necessary for best performance. See the Applications  
Information section.  
termination resistor.  
Exposed Pad (Pin 17): The pad is internally connected to  
ꢂPin 1V. If split supplies are used, do not tie the pad  
EE  
OUT1 (Pin 8): Output of Channel 1. The gain between the  
inputandtheoutputofthischannelissetbytheconnection  
of the channel 1 input pins. See Table 1 in Applications  
Information for details.  
to ground.  
V
(Pin 10): Positive Supply ꢀoltage. ꢀ pins are not  
CC  
CC  
internally connected to each other and must all be con-  
nected externally. Proper supply bypassing is necessary  
for best performance. See the Applications Information  
section.  
6411f  
8
LT6411  
APPLICATIONS INFORMATION  
Since the EN pin is referenced to DGND, it may need to be  
pulled below ground in those cases. In order to protect the  
internal enable circuitry, the EN pin should not be forced  
more than 0.5ꢀ below DGND.  
Power Supplies  
The LT6411 can be operated on as little as 2.25ꢀ or a  
single 4.5ꢀ supply and as much as 6ꢀ or a single 12ꢀ  
supply. Internally, each supply is independent to improve  
channel isolation. Note that the Exposed Pad is internally  
In single supply applications above 5.5, an additional  
resistor may be needed from the EN pin to DGND if the  
pin is ever allowed to float. For example, on a 12ꢀ single  
supply, a 33k resistor would protect the pin from floating  
too high while still allowing the internal pull-up resistor  
to disable the part.  
connected to ꢀ and must not be grounded when using  
EE  
splitsupplies.Donotleaveanysupplypinsdisconnected  
or the part may not function correctly!  
Enable/Shutdown  
The LT6411 has a TTL compatible shutdown mode con-  
trolled by the EN pin and referenced to the DGND pin. If  
the amplifier will be enabled at all times, the EN pin can  
be connected directly to DGND. If the enable function is  
desired, either driving the pin above 2ꢀ or allowing the  
internal 46k pull-up resistor to pull the EN pin to the top  
railwilldisabletheamplifier. Whendisabled,theDCoutput  
impedance will rise to approximately 740Ω through the  
internal feedback and gain resistors ꢂassuming inputs at  
groundV. Supply current into the amplifier in the disabled  
The DGND pin should not be pulled above the EN pin since  
doing so will turn on an ESD protection diode. If the EN  
pin voltage is forced a diode drop below the DGND pin,  
current should be limited to 10mA or less.  
The enable/disable times of the LT6411 are fast when  
driven with a logic input. Turn on ꢂfrom 50% EN input to  
50% outputV typically occurs in less than 50ns. Turn off  
is slower, but is less than 300ns.  
Gain Selection  
state will be primarily through ꢀ and approximately  
CC  
The gain of the internal amplifiers of the LT6411 is config-  
equal to ꢂꢀ – ꢀ V/46k.  
CC  
EN  
+
ured by connecting the IN and IN pins to the input signal  
or ground in the combinations shown in Figure 1.  
It is important that the two following constraints on the  
DGND pin and the EN pin are always followed:  
AsshownintheSimplifiedSchematic,theIN pinsconnect  
– ꢀ  
≥ 3ꢀ  
DGND  
CC  
totheinternalgainresistorofeachamplifier,andtherefore,  
each pin can be configured independently. Floating the  
–0.5ꢀ ≤ ꢀ – ꢀ  
≤ 5.5ꢀ  
EN  
DGND  
IN pins is not recommended as the parasitic capacitance  
Split supplies of 3ꢀ to 5.5ꢀ will satisfy these require-  
ments with DGND connected to 0.  
causes an AC gain of 2 at high frequencies, despite a DC  
gain of +1. ꢁoth inputs are connected together in the gain  
of +1 configuration to avoid this limitation.  
In dual supply cases with ꢀ less than 3, DGND should  
CC  
be connected to a potential below ground such as ꢀ .  
EE  
+V  
+V  
+V  
A
V
= +1  
A
V
= –1  
IN+  
OUT+  
OUT+  
OUT–  
LT6411  
LT6411  
LT6411  
OUT–  
IN+  
+
+
+
IN+  
A
= +2  
V
IN–  
OUT+  
IN–  
+
+
+
IN–  
OUT–  
6411 F01  
–V  
–V  
–V  
Figure 1. LT6411 Configured in Noninverting Gain of 2, Noninverting Gain of 1 and Inverting Gain of 1, All Shown with Dual Supplies  
6411f  
9
LT6411  
APPLICATIONS INFORMATION  
Input Considerations  
the blocking capacitor to the gain setting resistors sets  
the input and output DC common mode voltages equal.  
When using the LT6411 to drive an A-to-D converter, the  
DC common mode voltage level will affect the harmonic  
distortionofthecombinedamplifier/ADCsystem. Figure4  
shows the measured distortion of an LTC224ꢃ ADC when  
driven by the LT6411 at different common mode voltage  
levels with the inputs configured as shown in Figure 3.  
Adjusting the DC bias voltage can optimize the design for  
the lowest possible distortion.  
The LT6411 input voltage range is from ꢀ + 1ꢀ to  
EE  
– 1. Therefore, on split supplies the LT6411 input  
CC  
rangeisalwaysaslargeasorlargerthantheoutputswing.  
On a single positive supply with a gain of +2 and IN con-  
nected to ground, however, the input range limit of +1ꢀ  
limits the linear output low swing to 2ꢀ ꢂ1ꢀ multiplied by  
the internal gain of 2V.  
The inputs can be driven beyond the point at which the  
output clips so long as input currents are limited to  
10mA. Continuing to drive the input beyond the output  
limit can result in increased current drive and slightly  
increased swing, but will also increase supply current  
and may result in delays in transient response at larger  
levels of overdrive.  
If the input signals are within the input voltage range  
and output swing of the LT6411, but outside the input  
range of an ADC or other circuit the LT6411 is driving,  
+V  
+
V
C
C
IN+  
IN–  
LARGE  
R1  
LT6411  
V
OUT+  
OUT–  
DC  
OV  
+
DC Biasing Differential Amplifier Applications  
V
V
DC  
DC  
R2  
The inputs of the LT6411 must be DC biased within the  
input common mode voltage range, typically ꢀ + 1ꢀ to  
+
EE  
V
+
– 1. If the inputs are AC coupled or DC biased be-  
CC  
LARGE  
R1  
V
DC  
yond the input voltage range of a driven A-to-D converter,  
DC biasing or level shifting will be required. In the basic  
circuit configurations shown in Figure 1, the DC input  
common mode voltage and the differential input signal  
are both multiplied by the amplifier gain. In the gain of  
+2 configuration, the DC common mode voltage gain can  
OV  
R2  
6411 F03  
Figure 3. Using Resistor Dividers to Set the  
Input Common Mode Voltage When AC Coupling  
be set to unity by adding a capacitor at the IN pins as  
shown in Figure 2.  
–50  
V
= 5V, V = 0V  
EE  
CC  
V
A = 2  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
If the inputs are AC coupled or the LT6411 is preceded  
by a highpass filter, the input common mode voltage can  
be set by resistor dividers as shown in Figure 3. Adding  
+V  
T
A
= 25°C  
HD3  
IN+  
LT6411  
OUT+  
IM3  
V
+
DC  
V
V
DC  
HD2  
C
LARGE  
2.0 2.1  
1.6 1.7 1.8 1.9  
2.2 2.3 2.4 2.5  
OUT–  
+
V
(V)  
CM  
IN–  
6411 F04  
DC  
V
DC  
Figure 4. Harmonic and Intermodulation Distortion of the  
LT6411 Driving an LTC2249 Versus DC Common Mode  
6411 F02  
Voltage. Harmonic Distortion Measured with a –1dBFS Signal  
at 30.2MHz. Intermodulation Distortion Measured with Two  
–7dBFS Tones at 30.2MHz and 29.2MHz  
Figure 2. LT6411 Configured with a Differential Gain of 2  
and Unity DC Common Mode Gain  
6411f  
10  
LT6411  
APPLICATIONS INFORMATION  
+V  
the output signals can be AC coupled and DC biased in a  
manner similar to what is shown at the inputs in Figure  
3. A simpler alternative when using an ADC such as the  
IN+  
IN–  
LT6411  
OUT+  
V
V
+
CM  
V
V
CM  
CM  
LTC224ꢃ is to use the ADC’s ꢀ pin to set the optimal  
CM  
common mode voltage as shown in Figure 5.  
Ifunitycommonmodegainanddifferencemoderesponse  
to DC is desired, there is another configuration available.  
Figure 6 shows the LT6411 connected to provide a differ-  
ential signal gain of +3 with unity common mode gain. For  
differentialsignalgainbetweenunityand+3,threeresistors  
canbeaddedtoprovideattenuationandsetthedifferential  
input impedance of the stage as illustrated in Figure 7. The  
general expression for the differential gain is:  
OUT–  
+
CM  
6411 F06  
Figure 6. LT6411 Configured for a Differential Gain of +3  
and Unity Common Mode Gain with Response to DC  
+V  
IN+  
LT6411  
R = 13.7Ω  
OUT+  
OUT–  
2 k  
AV(DIFF) = 1+  
k + 2  
V
V
+
CM  
V
V
CM  
CM  
Scaling factor ‘k’ is the multiple between the two equal-  
value series input resistors and the resistor connected  
between the two positive inputs. The correct value of R for  
the external resistors can be computed from the desired  
k • R = 27.4Ω  
+
IN–  
CM  
R = 13.7Ω  
6411 F07  
differential input impedance, Z , as a function of k and  
IN  
the 370Ω internal gain setting resistors, as described in  
Figure 7. LT6411 Configured with a Differential Input Impedance  
of 50Ω, a Differential Gain of +2 and Unity Common Mode Gain  
the equation:  
ZIN • 370Ω  
R =  
370k + 2 – Z k + 1  
(
)
(
)
IN  
In Figure 7 k = 2 and R = 13.7Ω, setting the differential  
gain to +2 and the differential input impedance to ap-  
proximately 50Ω.  
+V  
IN+  
LT6411  
C
C
LARGE  
OV  
+
LTC2249  
10k  
LARGE  
+
V
IN–  
CM  
OV  
10k  
2.2µF  
6411 F05  
–V  
Figure 5. Level Shifting the Output Common Mode Voltage of the LT6411 Using the V Pin of an LTC2249  
CM  
6411f  
11  
LT6411  
APPLICATIONS INFORMATION  
Layout and Grounding  
supply. The smallest value capacitors should be placed  
closest to the LT6411 package.  
It is imperative that care is taken in PCꢁ layout in order  
to utilize the very high speed and very low crosstalk of  
the LT6411. Separate power and ground planes are highly  
recommended and trace lengths should be kept as short  
as possible. If input or output traces must be run over a  
distanceofseveralcentimeters,theyshoulduseacontrolled  
impedance with matching series and shunt resistances to  
maintain signal fidelity.  
Iftheundriveninputpinsarenotconnecteddirectlytoalow  
impedancegroundplane, theymustbecarefullybypassed  
to maintain minimal impedance over frequency. Although  
crosstalk will be very dependent on the board layout, a  
recommended starting point for bypass capacitors would  
be 470pF as close as possible to each input pin with one  
4700pF capacitor in parallel.  
Series termination resistors should be placed as close to  
theoutputpinsaspossibletominimizeoutputcapacitance.  
See the Typical Performance Characteristics section for  
a plot of frequency response with various output capaci-  
tors—only 12pF of parasitic output capacitance causes  
6dꢁ of peaking in the frequency response!  
To maintain the LT6411’s channel isolation, it is beneficial  
to shield parallel input and output traces using a ground  
plane or power supply traces. ꢀias between topside  
and backside metal may be required to maintain a low  
inductance ground near the part where numerous traces  
converge.  
LowESL/ESRbypasscapacitorsshouldbeplacedasclose  
to the positive and negative supply pins as possible. One  
ESD Protection  
The LT6411 has reverse-biased ESD protection diodes  
on all pins. If any pins are forced a diode drop above the  
positive supply or a diode drop below the negative sup-  
ply, large currents may flow through these diodes. If the  
current is kept below 10mA, no damage to the devices  
will occur.  
4700pF ceramic capacitor is recommended for both ꢀ  
CC  
andꢀ .Additional470pFceramiccapacitorswithminimal  
EE  
trace length on each supply pin will further improve AC  
and transient response as well as channel isolation. For  
high current drive and large-signal transient applications,  
additional 1µF to 10µF tantalums should be added on each  
TYPICAL APPLICATIONS  
Single-Ended to Differential Converter  
5V  
ꢁecause the gains of each channel of the LT6411 can  
be configured independently, the LT6411 can be used to  
provide a gain of +2 when amplifying differential signals  
and when converting single-ended signals to differential.  
With both channels connected to a single-ended input,  
one channel configured with a gain of +1 and the other  
configuredwithagainof1,theoutputwillbeadifferential  
versionoftheinputwithtwicethepeak-to-peakdifferentialV  
amplitude. Figure 8 shows the proper connections and  
Figure ꢃ displays the resulting performance when driv-  
ing an LTC224ꢃ. This configuration can preserve signal  
amplitude when converting single ended video signals to  
differentialsignalswhendrivingdoubleterminatedcables.  
The 10k resistors in Figure 8 set the common mode volt-  
age at the output.  
V
CC  
LT6411  
+
IN1  
+
370Ω  
OUT1  
OUT2  
+
OUT  
OUT  
1µF  
370Ω  
370Ω  
INPUT  
IN1  
IN2  
370Ω  
5V  
10k  
+
+
V
IN2  
CM  
0.1µF  
10k  
V
EE  
DGND  
EN  
6411 F08  
Figure 8. Single-Ended to Differential Converter  
with Gain of +2 and Common Mode Control  
6411f  
12  
LT6411  
TYPICAL APPLICATIONS  
0
5V  
6,9,10  
–10  
13  
+
50Ω  
50Ω  
IN  
IN  
–20  
–30  
–40  
–50  
+
14  
15  
LT6411  
100Ω  
RECEIVER  
A
V
= 2  
16  
5
–60  
–70  
–80  
–90  
1,2,3,7  
6411 F10  
11,12  
–5V  
–100  
–110  
–120  
–130  
–140  
Figure 10. Twisted-Pair Driver  
of 100Ω, the cables can be terminated with a smaller  
series resistance or a larger shunt resistance in order to  
compensate for attenuation. A typical circuit for a twisted-  
pair driver is shown in Figure 10.  
0
5
10 15 20 25 30 35 40  
FREQUENCY (MHz)  
6411 F09  
Figure 9. 2-Tone Response of the LT6411 Configured with  
Single-Ended Inputs Driving the LTC2249 at 29.5MHz, 30.5MHz  
Single Supply Differential ADC Driver  
The LT6411 is well suited for driving differential analog  
to digital converters. The low output impedance of the  
LT6411 is capable of driving a variety of filters as well as  
interfacing with the typically high impedance inputs of  
ADCs. Inaddition, theLT6411’sexcellentdistortionallows  
the part to perform with an SFDR below the limits of many  
high speed ADCs. The DC1057 demo board, shown sche-  
matically in Figure 11 and physically in Figure 12, allows  
implementation and testing of the LT6411 with a variety  
of different Linear Technology high speed ADCs.  
Twisted-Pair Line Driver  
The LT6411 is ideal when used for driving inexpensive  
unshielded twisted-pair wires as often found in telephone  
or communications infrastructure. The input can be com-  
posite video, or if three parts are used, RGꢁ or similar and  
can be either single ended or differential. The LT6411 has  
excellent performance with all formats.  
Double termination of the video cable will enhance fidelity  
and isolate the LT6411 from capacitive loads. Although  
most twisted-pair cables have a characteristic impedance  
6411f  
13  
LT6411  
TYPICAL APPLICATIONS  
V
CC  
C
D1  
0.1µF  
E1  
V
+
V
C1  
CC  
EE  
OPT  
C
D2  
4700pF  
“B” CASE  
E2  
GND  
JP1  
ENABLE  
R1  
C
D3  
470pF  
10Ω  
0603  
1
2
3
V
CC  
V
CC  
L2  
TBD  
0603  
C
D4  
0.1µF  
R2  
OPT  
R4  
R3  
R5  
C2  
C5  
J1  
IN  
+
OPT  
A
0603  
6
9
10 11 12  
V EN DGND  
R8  
R9  
10Ω  
1%  
R35  
12.1Ω  
1%  
C3  
10Ω  
C4  
V
R6  
TBD  
0603  
V
V
T1  
CC  
CC CC CC  
+
R7  
1%  
13  
14  
15  
16  
8
5
ETC1-1TTR  
+
A
IN1  
OUT1  
IN  
R37  
OPT  
5
1
LT6411  
+
L1  
TO  
IN1  
IN2  
IN2  
2
3
V
R11  
10Ω  
1%  
R12  
R36  
EE  
C6  
C7  
C9  
TBD  
ADC  
R10  
R14  
10Ω  
12.1Ω  
C8  
0603  
INPUTS  
4
R38  
OPT  
1%  
1%  
TBD  
C11  
J2  
A
OUT2  
NC  
0603  
IN  
A
L3  
TBD  
0603  
IN  
R13  
V
V
V
V
EE EE EE EE  
C10  
C12  
1
2
3
7
4
R16  
0Ω  
V
EE  
E7  
R17  
OPT  
R18  
D5  
470pF  
V
EE  
C
C31  
D8  
C
OPT  
R19  
0Ω  
0.1µF  
+ OPT  
V
0603  
CC  
C
C
“B” CASE  
E8  
D6  
D7  
4700pF 1µF  
6411 F11 GND  
Figure 11. DC1057 Demo Circuit Schematic  
Figure 12. Layout of DC1057 Demo Circuit  
6411f  
14  
LT6411  
SIMPLIFIED SCHEMATIC  
V
CC  
V
CC  
TO OTHER  
AMPLIFIER  
BIAS  
IN  
370Ω  
V
CC  
46k  
1k  
150Ω  
+
EN  
IN  
370Ω  
OUT  
V
EE  
DGND  
V
V
EE  
EE  
6411 SS  
PACKAGE DESCRIPTION  
UD Package  
16-Lead Plastic QFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1691)  
BOTTOM VIEW—EXPOSED PAD  
PIN 1 NOTCH R = 0.20 TYP  
OR 0.25 × 45° CHAMFER  
R = 0.115  
TYP  
0.75 0.05  
3.00 0.10  
(4 SIDES)  
15 16  
0.70 0.05  
PIN 1  
TOP MARK  
(NOTE 6)  
0.40 0.10  
1
2
1.45 0.10  
(4-SIDES)  
3.50 0.05  
2.10 0.05  
1.45 0.05  
(4 SIDES)  
PACKAGE  
OUTLINE  
(UD16) QFN 0904  
0.200 REF  
0.25 0.05  
0.50 BSC  
0.25 0.05  
0.50 BSC  
0.00 – 0.05  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
NOTE:  
1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WEED-2)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
6411f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
15  
LT6411  
TYPICAL APPLICATION  
or additional filtering. Figure 15 shows the corresponding  
SFDR of –75.5dꢁc with a 30MHz tone. Figure 16 shows  
the 2-tone response of the LT6411 with 2ꢃ.5MHz and  
In cases where lowering the noise floor is paramount,  
adding higher order lowpass or bandpass filtering can  
significantly increase signal-to-noise ratio. In Figure 13,  
the LT6411 is shown driving an LTC224ꢃ with a 2nd order  
lowpass filter that has been carefully chosen to ensure  
optimal intermodulation distortion. The response is  
shown in Figure 14. The filter improves the SNR over the  
unfiltered case by 6dꢁ to 6ꢃ.5dꢁ. With the filter, the SNR  
of the ADC and the LT6411 are comparable; better SNR  
can be achieved by using either a higher resolution ADC  
30.5MHz inputs. Note that 0dꢁFS corresponds to a 2ꢀ  
P-P  
differential signal.  
9
6
3
0
–3  
–6  
–9  
–12  
80.6  
5V  
IN+  
390nH  
55Ω  
10Ω  
+
A
1.9V  
1.9V  
+
IN  
IN  
DC  
DC  
15pF  
390nH  
LT6411  
LTC2249  
IN–  
A
+
1
10  
100  
1000  
10Ω  
55Ω  
80.6Ω  
6411 F13  
FREQUENCY (MHz)  
6411 F14  
Figure 13. Optimized 30MHz LT6411 Differential ADC Driver  
Figure 14. Frequency Response of the LT6411 and Filter  
0
0
–10  
–10  
–20  
–30  
–40  
–20  
–30  
–40  
–50  
–50  
–60  
–60  
–70  
–70  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–130  
–140  
–100  
–110  
–120  
–130  
–140  
0
5
10 15 20 25 30 35 40  
FREQUENCY (MHz)  
0
5
10 15 20 25 30 35 40  
FREQUENCY (MHz)  
6411 F15  
6411 F16  
Figure 15. SNR and SFDR of the LT6411 and Filter  
Driving the LTC2249  
Figure 16. 2-Tone Response of the LT6411 and Filter  
Driving the LTC2249 at 29.5MHz, 30.5MHz  
RELATED PARTS  
PART NUMBER  
LT1ꢃꢃ3-2  
LT1ꢃꢃ3-4  
LT1ꢃꢃ3-10  
LT1ꢃꢃ4  
DESCRIPTION  
800MHz Low Distortion, Low Noise ADC Driver, A = 2  
COMMENTS  
3.8nꢀ/√Hz Total Noise, Low Distortion to 100MHz  
2.4nꢀ/√Hz Total Noise, Low Distortion to 100MHz  
1.ꢃnꢀ/√Hz Total Noise, Low Distortion to 100MHz  
70MHz Gain ꢁandwidth Differential In and Out  
3.8nꢀ/√Hz Input Referred Noise, Low Distortion to 30MHz  
Triple Amplifier with Fixed Gain  
ꢃ00MHz Low Distortion, Low Noise ADC Driver, A = 4  
700MHz Low Distortion, Low Noise ADC Driver, A = 10  
Low Noise, Low Distortion Fully Differential Amplfier  
LT6402-6  
LT6553  
300MHz Low Distortion, Low Noise ADC Driver, A = 2  
650MHz Gain of 2 Triple ꢀideo Amplifier  
650MHz Gain of 1 Triple ꢀideo Amplifier  
LT6554  
Triple Amplifier with Fixed Gain  
6411f  
LT 0606 • PRINTED IN USA  
16 LinearTechnology Corporation  
1630 McCarthy ꢁlvd., Milpitas, CA ꢃ5035-7417  
© LINEAR TECHNOLOGY CORPORATION 2006  
ꢂ408V 432-1ꢃ00 FAX: ꢂ408V 434-0507 www.linear.com  

相关型号:

LT6411CUD#TRPBF

LT6411 - 650MHz Differential ADC Driver/Dual Selectable Gain Amplifier; Package: QFN; Pins: 16; Temperature Range: 0°C to 70°C
Linear

LT6411IUD

650MHz Differential ADC Driver/Dual Selectable Gain Amplifi er
Linear

LT6411IUD#PBF

LT6411 - 650MHz Differential ADC Driver/Dual Selectable Gain Amplifier; Package: QFN; Pins: 16; Temperature Range: -40°C to 85°C
Linear

LT6411IUD#TR

LT6411 - 650MHz Differential ADC Driver/Dual Selectable Gain Amplifier; Package: QFN; Pins: 16; Temperature Range: -40°C to 85°C
Linear

LT6411IUD#TRPBF

LT6411 - 650MHz Differential ADC Driver/Dual Selectable Gain Amplifier; Package: QFN; Pins: 16; Temperature Range: -40°C to 85°C
Linear

LT6412

High Linearity Differential RF/IF Amplifier/ADC Driver
Linear

LT6413

UNDERSTANDING THE SUBJECT IS CUSTOMER SERVICE
ETC

LT6414

UNDERSTANDING THE SUBJECT IS CUSTOMER SERVICE
ETC

LT6416

1.6GHz Low Noise High Linearity Differential Buffer/ 16-Bit ADC Driver with Fast Clamp
Linear

LT64H-SERIES

Optoelectronic
ETC

LT64HXX-SERIES

Optoelectronic
ETC

LT650Z

GREEN OVAL LAMP LED
SEOUL