LT6656AIS6-2.048TRPBF [Linear]

1μA Precision Series Voltage Reference; 1μA精准串联电压基准
LT6656AIS6-2.048TRPBF
型号: LT6656AIS6-2.048TRPBF
厂家: Linear    Linear
描述:

1μA Precision Series Voltage Reference
1μA精准串联电压基准

文件: 总18页 (文件大小:558K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT6656  
1µA Precision Series  
Voltage Reference  
FeaTures  
DescripTion  
The LT®6656 is a small precision voltage reference that  
draws less than 1µA of supply current and can operate  
with a supply voltage within 10mV of the output voltage.  
The LT6656 offers an initial accuracy of 0.05% and tem-  
perature drift of 10ppm/°C. The combined low power and  
precision characteristics are ideal for portable and battery  
powered instrumentation.  
n
Low Drift  
A Grade: 10 ppm/°C Max  
B Grade: 20 ppm/°C Max  
High Accuracy  
n
A Grade: 0.05% Max  
B Grade: 0.1% Max  
n
n
n
n
n
n
n
n
Ultralow Supply Current: 850nA  
High Output Drive Current: 5mA Min  
Low Dropout Voltage: 10mV Max  
Fully Specified from –40°C to 85°C  
Operational from –55°C to 125°C  
Wide Supply Range to 18V  
The LT6656 can supply up to 5mA of output drive with  
65ppm/mA of load regulation, allowing it to be used as  
the supply voltage and the reference input to a low power  
ADC. The LT6656 can accept a supply voltage up to 18V  
and withstand the reversal of the input connections.  
Reverse Input/Output Protection  
Available Output Voltage Options:  
1.25V, 2.048V, 2.5V, 3V, 3.3V, 4.096V and 5V  
Thermal Hysteresis: 25ppm  
The LT6656 output is stable with 1µF or larger output  
capacitance and operates with a wide range of output  
capacitor ESR.  
n
n
Low Profile (1mm) ThinSOT™ Package  
This reference is fully specified for operation from –40°C  
to 85°C, and is functional over the extreme temperature  
range of –55°C to 125°C. Low hysteresis and a consistent  
temperature drift are obtained through advanced design,  
processing and packaging techniques.  
applicaTions  
n
Precision A/D and D/A Converters  
n
Portable Gas Monitors  
n
The LT6656 is offered in the 6-lead SOT-23 package.  
L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation. ThinSOT is  
a trademark of Linear Technology Corporation. All other trademarks are the property of their  
respective owners.  
Battery- or Solar-Powered Systems  
n
Precision Regulators  
n
Low Voltage Signal Processing  
n
Micropower Remote Sensing  
Typical applicaTion  
Output Voltage Temperature Drift  
LT6656-2.5  
2.503  
38 TYPICAL UNITS  
Basic Connection  
2.502  
2.501  
2.500  
2.499  
2.498  
LT6656-2.5  
V
OUT  
2.51V ≤ V ≤ 18V  
V
V
OUT  
IN  
IN  
2.5V  
GND  
0.1µF  
1µF  
6656 TA01a  
–40 –20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
6652 TA01b  
6656fa  
LT6656  
absoluTe MaxiMuM raTings  
pin conFiguraTion  
(Note 1)  
TOP VIEW  
Input Voltage........................................................... 20V  
Output Voltage........................................... –0.3V to 20V  
Output Voltage Above Input Voltage .........................20V  
Specified Temperature Range  
GND* 1  
GND 2  
NC 3  
6 V  
OUT  
5 NC  
4 V  
IN  
S6 PACKAGE  
6-LEAD PLASTIC TSOT-23  
= 150°C, θ = 230°C/W  
Commercial ............................................. 0°C to 70°C  
Industrial .............................................–40°C to 85°C  
Operating Temperature Range ............... –55°C to 125°C  
Output Short Circuit Duration ......................... Indefinite  
Junction Temperature .......................................... 150°C  
Storage Temperature Range (Note 2)..... –65°C to 150°C  
Lead Temperature (Soldering, 10 sec.)  
T
JMAX  
JA  
*CONNECT PIN TO DEVICE GND (PIN 2)  
(Note 3).................................................................300°C  
orDer inForMaTion  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING*  
LTFNK  
PACKAGE DESCRIPTION  
SPECIFIED TEMPERATURE RANGE  
LT6656ACS6-1.25#PBF  
LT6656BCS6-1.25#PBF  
LT6656AIS6-1.25#PBF  
LT6656BIS6-1.25#PBF  
LT6656ACS6-2.048#PBF  
LT6656BCS6-2.048#PBF  
LT6656AIS6-2.048#PBF  
LT6656BIS6-2.048#PBF  
LT6656ACS6-2.5#PBF  
LT6656BCS6-2.5#PBF  
LT6656AIS6-2.5#PBF  
LT6656BIS6-2.5#PBF  
LT6656ACS6-3#PBF  
LT6656BCS6-3#PBF  
LT6656AIS6-3#PBF  
LT6656ACS6-1.25#TRPBF  
LT6656BCS6-1.25#TRPBF  
LT6656AIS6-1.25#TRPBF  
LT6656BIS6-1.25#TRPBF  
LT6656ACS6-2.048#TRPBF  
LT6656BCS6-2.048#TRPBF  
LT6656AIS6-2.048#TRPBF  
LT6656BIS6-2.048#TRPBF  
LT6656ACS6-2.5#TRPBF  
LT6656BCS6-2.5#TRPBF  
LT6656AIS6-2.5#TRPBF  
LT6656BIS6-2.5#TRPBF  
LT6656ACS6-3#TRPBF  
LT6656BCS6-3#TRPBF  
LT6656AIS6-3#TRPBF  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
0°C to 70°C  
LTFNK  
0°C to 70°C  
LTFNK  
–40°C to 85°C  
–40°C to 85°C  
0°C to 70°C  
LTFNK  
LTFNN  
LTFNN  
LTFNN  
LTFNN  
LTFGW  
LTFGW  
LTFGW  
LTFGW  
LTFNQ  
LTFNQ  
LTFNQ  
LTFNQ  
LTFNS  
0°C to 70°C  
–40°C to 85°C  
–40°C to 85°C  
0°C to 70°C  
0°C to 70°C  
–40°C to 85°C  
–40°C to 85°C  
0°C to 70°C  
0°C to 70°C  
–40°C to 85°C  
–40°C to 85°C  
0°C to 70°C  
LT6656BIS6-3#PBF  
LT6656BIS6-3#TRPBF  
LT6656ACS6-3.3#PBF  
LT6656BCS6-3.3#PBF  
LT6656AIS6-3.3#PBF  
LT6656BIS6-3.3#PBF  
LT6656ACS6-3.3#TRPBF  
LT6656BCS6-3.3#TRPBF  
LT6656AIS6-3.3#TRPBF  
LT6656BIS6-3.3#TRPBF  
LTFNS  
0°C to 70°C  
LTFNS  
–40°C to 85°C  
–40°C to 85°C  
LTFNS  
6656fa  
LT6656  
orDer inForMaTion  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING*  
LTFNV  
PACKAGE DESCRIPTION  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
SPECIFIED TEMPERATURE RANGE  
0°C to 70°C  
LT6656ACS6-4.096#PBF  
LT6656BCS6-4.096#PBF  
LT6656AIS6-4.096#PBF  
LT6656BIS6-4.096#PBF  
LT6656ACS6-5#PBF  
LT6656BCS6-5#PBF  
LT6656AIS6-5#PBF  
LT6656ACS6-4.096#TRPBF  
LT6656BCS6-4.096#TRPBF  
LT6656AIS6-4.096#TRPBF  
LT6656BIS6-4.096#TRPBF  
LT6656ACS6-5#TRPBF  
LT6656BCS6-5#TRPBF  
LT6656AIS6-5#TRPBF  
LT6656BIS6-5#TRPBF  
LTFNV  
0°C to 70°C  
LTFNV  
–40°C to 85°C  
–40°C to 85°C  
0°C to 70°C  
LTFNV  
LTFNX  
LTFNX  
0°C to 70°C  
LTFNX  
–40°C to 85°C  
–40°C to 85°C  
LT6656BIS6-5#PBF  
LTFNX  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
*The temperature and performance grades are identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
available opTions  
SPECIFIED TEMPERATURE RANGE  
0°C to 70°C  
–40°C to 85°C  
TEMPERATURE  
COEFFICIENT  
OUTPUT VOLTAGE  
INITIAL ACCURACY  
ORDER PART NUMBER**  
ORDER PART NUMBER**  
1.250V  
0.05%  
0.1%  
10ppm/°C  
20ppm/°C  
LT6656ACS6-1.25  
LT6656BCS6-1.25  
LT6656AIS6-1.25  
LT6656BIS6-1.25  
2.048V  
2.500V  
3.000V  
3.300V  
4.096V  
5.000V  
0.05%  
0.1%  
10ppm/°C  
20ppm/°C  
LT6656ACS6-2.048  
LT6656BCS6-2.048  
LT6656AIS6-2.048  
LT6656BIS6-2.048  
0.05%  
0.1%  
10ppm/°C  
20ppm/°C  
LT6656ACS6-2.5  
LT6656BCS6-2.5  
LT6656AIS6-2.5  
LT6656BIS6-2.5  
0.05%  
0.1%  
10ppm/°C  
20ppm/°C  
LT6656ACS6-3  
LT6656BCS6-3  
LT6656AIS6-3  
LT6656BIS6-3  
0.05%  
0.1%  
10ppm/°C  
20ppm/°C  
LT6656ACS6-3.3  
LT6656BCS6-3.3  
LT6656AIS6-3.3  
LT6656BIS6-3.3  
0.05%  
0.1%  
10ppm/°C  
20ppm/°C  
LT6656ACS6-4.096  
LT6656BCS6-4.096  
LT6656AIS6-4.096  
LT6656BIS6-4.096  
0.05%  
0.1%  
10ppm/°C  
20ppm/°C  
LT6656ACS6-5  
LT6656BCS6-5  
LT6656AIS6-5  
LT6656BIS6-5  
**See Order Information section for complete part number listing.  
6656fa  
LT6656  
elecTrical characTerisTics The l denotes the specifications which apply over the specified  
temperature range, otherwise specifications are at TA = 25°C. VIN = VOUT + 0.5V (for LT6656-1.25, VIN = 2.2V), CL = 1μF, IL = 0,unless  
otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Output Voltage Error  
LT6656A  
LT6656B  
–0.05  
–0.10  
0.05  
0.10  
%
%
l
l
Output Voltage Temperature Coefficient (Note 4)  
Line Regulation  
LT6656A  
LT6656B  
5
10  
20  
ppm/°C  
ppm/°C  
12  
V
IN  
= (V  
+ 0.5V) to 18V  
2
25  
40  
ppm/V  
ppm/V  
OUT  
l
LT6656-2.048, LT6656-2.5, LT6656-3,  
LT6656-3.3, LT6656-4.096, LT6656-5  
V
= 2.2V to 18V  
2
25  
40  
ppm/V  
ppm/V  
IN  
l
l
LT6656-1.25  
Load Regulation (Note 5)  
Dropout Voltage (Note 6)  
I = 5mA, Sourcing  
65  
150  
375  
ppm/mA  
ppm/mA  
L
LT6656-2.048, LT6656-2.5, LT6656-3,  
LT6656-3.3, LT6656-4.096, LT6656-5  
I = 5mA, Sourcing  
80  
3
175  
425  
ppm/mA  
ppm/mA  
L
l
l
l
LT6656-1.25  
V
L
– V , ∆V  
Error ≤ 0.1%  
OUT  
IN  
OUT  
I = 0  
10  
40  
mV  
mV  
LT6656-2.048, LT6656-2.5, LT6656-3,  
LT6656-3.3, LT6656-4.096, LT6656-5  
I = 5mA, Sourcing  
250  
370  
500  
mV  
mV  
L
LT6656-2.048, LT6656-2.5, LT6656-3,  
LT6656-3.3, LT6656-4.096, LT6656-5  
Minimum Input Voltage  
I = 0, ∆V  
Error ≤ 0.1%  
L
OUT  
LT6656-1.25  
0°C ≤ T ≤ 70°C  
1.35  
0.85  
1.5  
1.6  
1.8  
V
V
V
l
l
A
–40°C ≤ T ≤ 85°C  
A
Supply Current  
1.0  
1.5  
µA  
µA  
l
Output Short Circuit Current  
Short V  
Short V  
to GND  
18  
4
mA  
mA  
OUT  
OUT  
to V  
IN  
Input Reverse Leakage Current  
Reverse Output Current  
V
IN  
V
IN  
= –18V, V  
= GND, V  
= GND  
80  
30  
µA  
µA  
OUT  
OUT  
= 18V  
Output Voltage Noise (Note 7)  
0.1Hz to 10Hz  
30  
50  
ppm  
P-P  
RMS  
RMS  
RMS  
10Hz to 1kHz, LT6656-1.25  
10Hz to 1kHz, LT6656-2.5  
10Hz to 1kHz, LT6656-5  
µV  
µV  
µV  
80  
140  
Turn-On Time  
LT6656-1.25, 0.1% Settling  
LT6656-2.5, 0.1% Settling  
LT6656-5, 0.1% Settling  
15  
30  
60  
ms  
ms  
ms  
Long Term Drift of Output Voltage (Note 8)  
Hysteresis (Note 9)  
50  
ppm/√kHr  
∆T = 0°C to 70°C  
∆T = –40°C to 85°C  
25  
70  
ppm  
ppm  
6656fa  
LT6656  
elecTrical characTerisTics  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
environment to eliminate thermocouple effects on the leads. The test  
time is 10 seconds. RMS noise is measured on a spectrum analyzer in a  
shielded environment.  
Note 8: Long term stability typically has a logarithmic characteristic and  
therefore, changes after 1000 hours tend to be much smaller than before  
that time. Total drift in the second thousand hours is normally less than  
one third that of the first thousand hours with a continuing trend toward  
reduced drift with time. Long-term stability will also be affected by  
differential stresses between the IC and the board material created during  
board assembly.  
Note 2: If the parts are stored outside of the specified temperature range,  
the output may shift due to hysteresis.  
Note 3: The stated temperature is typical for soldering of the leads during  
manual rework. For detailed IR reflow recommendations, refer to the  
Applications section.  
Note 4: Temperature coefficient is measured by dividing the maximum  
Note 9: Hysteresis in output voltage is created by mechanical stress  
that differs depending on whether the IC was previously at a higher or  
lower temperature. Output voltage is always measured at 25°C, but  
the IC is cycled to the hot or cold temperature limit before successive  
measurements. For instruments that are stored at well controlled  
temperatures (within 20 or 30 degrees of operational temperature)  
hysteresis is usually not a dominant error source.  
change in output voltage by the specified temperature range.  
Note 5: Load regulation is measured with a pulse from no load to the  
specified load current. Output changes due to die temperature change  
must be taken into account separately.  
Note 6: Excludes load regulation errors.  
Note 7: Peak-to-peak noise is measured with a 3-pole highpass filter at  
0.1Hz and a 4-pole lowpass filter at 10Hz. The unit is enclosed in a still-air  
Typical perForMance characTerisTics  
Output Voltage Temperature Drift  
Typical VOUT Distribution  
Supply Current vs Input Voltage  
100  
10  
1
200  
180  
160  
140  
120  
100  
80  
10000  
9000  
8000  
7000  
6000  
5000  
4000  
3000  
2000  
1000  
0
T
T
T
T
T
= 125°C  
= 85°C  
1.25V OPTION  
ALL OPTIONS  
25 TYPICAL UNITS  
NORMALIZED AT 25°C  
ALL OPTIONS  
A
A
A
A
A
C
L
= 1µF  
L
= 25°C  
I
= 0  
= –40°C  
= –55°C  
C
I
= 1µF  
= 0  
T
= 25°C  
A
L
L
60  
40  
20  
0.1  
–1000  
0
0
2
4
6
8
10 12 14 16 18 20  
–0.10  
–0.06  
–0.02 0 0.02  
0.06  
0.10  
–60 –40 –20  
0
20 40 60 80 100 120  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
OUTPUT VOLTAGE ERROR (%)  
6652 G01  
6656 G17  
6656 G02  
6656fa  
LT6656  
Typical perForMance characTerisTics  
Minimum Supply Voltage  
vs Load Current  
Dropout Voltage vs Load Current  
Supply Current vs Input Voltage  
100  
10  
1
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
1000  
100  
10  
T
T
T
T
= 125°C  
= 85°C  
= 25°C  
= –55°C  
2.048V TO 5V OPTIONS  
1.25V OPTION  
2.048V TO 5V OPTIONS  
A
A
A
A
INITIAL V = 2.2V  
V
– V  
IN  
= 0.1%  
IN OUT  
∆V  
INITIAL V = V  
+ 0.5V  
OUT  
OUT  
IN  
∆V  
= 0.1%  
OUT  
V
ON  
T
T
T
T
T
= 125°C  
= 85°C  
A
A
A
A
A
T
T
T
T
= 125°C  
= 85°C  
= 25°C  
= –55°C  
A
A
A
A
2.5V OPTION SHOWN  
MOVES WITH VOLTAGE OPTION  
= 25°C  
V
= –40°C  
= –55°C  
ON  
0.1  
1
0
2
4
6
8
10 12 14 16 18 20  
0.1µ  
1µ  
10µ  
100µ  
1m  
10m  
0.1µ  
1µ  
10µ  
100µ  
1m  
10m  
INPUT VOLTAGE (V)  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
6656 G03  
6656 G18  
6656 G04  
Load Regulation (Sourcing)  
Load Regulation (Sourcing)  
Load Regulation (Sinking)  
500  
250  
750  
500  
250  
0
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1.25V OPTION  
2.048V TO 5V OPTIONS  
ALL OPTIONS  
V
C
= 1.75V  
V
C
= V  
+ 0.5V  
V
C
= V + 0.5V  
IN  
L
IN  
L
OUT  
IN  
OUT  
= 1µF  
= 1µF  
= 1µF  
L
0
T
T
T
T
= 85°C, 125°C  
= 25°C  
A
A
A
A
–250  
–500  
–750  
–1000  
= –40°C  
= –55°C  
–250  
–500  
–750  
T
T
T
T
T
= 125°C  
= 85°C  
A
A
A
A
A
T
T
T
T
= 125°C  
= 85°C  
= 25°C  
= –55°C  
A
A
A
A
= 25°C  
= –40°C  
= –55°C  
–0.5  
0.1µ  
1µ  
10µ  
100µ  
1m  
10m  
0.1µ  
1µ  
10µ  
100µ  
1m  
10m  
10µ  
100µ  
1m  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
6656 G19  
6656 G05  
6656 G06  
Power Supply Rejection Ratio  
vs Frequency  
Power Supply Rejection Ratio  
vs Frequency  
Line Regulation  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
ALL OPTIONS  
T
T
T
T
= 125°C  
= 85°C  
= 25°C  
= –55°C  
V
C
I
= V + 0.5V  
OUT  
2.5V OPTION  
V = 3V  
IN  
A
A
A
A
IN  
L
L
I
= 0  
L
= 1µF  
L
C
= 1µF  
= 0  
2.5V OPTION SHOWN  
MOVES WITH  
V
ON  
VOLTAGE OPTION  
V
ON  
I
L
I
L
I
L
I
L
= 0, C = 1µF  
L
= 0, C = 10µF  
L
1.25V OPTION  
2.5V OPTION  
5V OPTION  
= 1mA, C = 1µF  
L
= 1mA, C = 10µF  
L
–100  
–200  
–10  
0
2
4
6
8
10 12 14 16 18 20  
10  
100  
1k  
10k  
10  
100  
1k  
10k  
INPUT VOLTAGE (V)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
6656 G08  
6656 G09  
6656 G20  
6656fa  
LT6656  
Typical perForMance characTerisTics  
Ground Current vs Load Current  
Output Impedance vs Frequency  
Output Impedance vs Frequency  
10k  
1k  
10k  
1k  
1000  
100  
10  
V
C
I
= V  
+ 0.5V  
OUT  
2.5V OPTION  
ALL OPTIONS  
IN  
L
L
= 1µF  
V
= 3V  
V
C
= V  
+ 0.5V  
IN  
IN  
L
OUT  
= 0  
= 1µF  
100  
10  
1
100  
10  
1
I
L
I
L
I
L
I
L
= 0, C = 1µF  
L
T
T
T
T
= 125°C  
= 85°C  
= 25°C  
= –55°C  
A
A
A
A
= 0, C = 10µF  
L
1.25V OPTION  
2.5V OPTION  
5V OPTION  
= 100µA, C = 1µF  
L
= 100µA, C = 10µF  
L
1
10  
100  
1k  
10k  
10  
100  
1k  
10k  
10µ  
100µ  
1m  
10m  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
LOAD CURRENT (A)  
6656 G21  
6656 G22  
6656 G07  
Reverse Output Current  
Output Noise 0.1Hz to 10Hz  
Reverse Input Current  
1000  
100  
10  
100  
10  
1
ALL OPTIONS  
ALL OPTIONS  
ALL OPTIONS  
V
= GND  
V
= GND  
V
C
L
= V  
+ 0.5V  
OUT  
IN  
IN  
L
OUT  
= 1µF  
I
= 0  
1
T
T
T
T
= 125°C  
= 85°C  
= 25°C  
= –55°C  
T
T
T
T
= 125°C  
= 85°C  
= 25°C  
= –55°C  
A
A
A
A
A
A
A
A
0
0
–2 –4 –6 –8 –10 –12 –14 –16 –18 –20  
0
5
10  
15  
20  
TIME (1s/DIV)  
6656 G13  
INPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
6656 G11  
6656 G12  
Output Voltage Noise Spectrum  
vs Load Current  
Output Noise Voltage Spectrum  
vs Load Capacitance  
Output Voltage Noise Spectrum  
30  
25  
20  
15  
10  
5
16  
14  
12  
10  
8
40  
35  
30  
25  
20  
15  
10  
5
V
C
I
= V  
+ 5V  
OUT  
2.5V OPTION  
2.5V OPTION  
I
L
I
L
I
L
I
L
= 0  
IN  
L
L
= 1µF  
V
C
= 3V  
V
I
= 3V  
= 10µA  
= 250µA  
= 1mA  
IN  
L
IN  
L
C = 47µF  
L
= 0  
= 1µF  
= 0  
5V OPTION  
C
= 4.7µF  
C
L
6
= 0.47µF  
4
L
2.5V OPTION  
2
1.25V OPTION  
1k  
0
0
0
10  
100  
10k  
10  
100  
1k  
10k  
1
10  
100  
1k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
6656 G24  
6656 G14  
6656 G15  
6656fa  
LT6656  
Typical perForMance characTerisTics  
Integrated 10Hz to 1kHz Noise  
vs Load Current  
Integrated 10Hz to 1kHz Noise  
vs Load Current  
Long-Term Drift  
500  
400  
300  
200  
100  
0
250  
200  
150  
100  
50  
200  
150  
100  
50  
V
C
= V  
+ 0.5V  
OUT  
2.5V OPTION  
ALL OPTIONS  
IN  
L
= 1µF  
C = 1µF  
L
L
I
= 0  
0
5V OPTION  
–50  
–100  
–150  
–200  
2.5V OPTION  
C
C
C
C
= 0.47µF  
= 1µF  
= 10µF  
= 47µF  
L
L
L
L
1.25V OPTION  
5 TYPICAL PARTS  
SOLDERED ONTO PCB  
0
0.1µ  
1µ  
10µ  
100µ  
1m  
10m  
0.1µ  
1µ  
10µ  
100µ  
1m  
10m  
0
100 200 300 400 500 600 700 800 900 1000  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
HOURS  
6656 G25  
6656 G23  
6656 G16  
pin FuncTions  
GND* (Pin 1): Internal Function. This pin must be tied  
to ground.  
NC (Pin 5): Not internally connected. May be tied to V ,  
OUT  
IN  
V
, GND or floated.  
GND (Pin 2): Device Ground.  
V
(Pin 6): Output Voltage. An output capacitor of 1µF  
OUT  
minimum is required for stable operation.  
NC (Pin 3): Not internally connected. May be tied to V ,  
IN  
V , GND or floated.  
OUT  
V
(Pin 4): Power Supply. Bypass V with a 0.1µF  
IN  
IN  
capacitor to ground.  
block DiagraM  
V
IN  
NC  
V
OUT  
ERROR  
AMP  
BANDGAP  
NC  
GND  
GND  
6656 BD  
6656fa  
LT6656  
applicaTions inForMaTion  
Long Battery Life  
Output Voltage Options  
Series references have a large advantage over shunt style  
references. Shunt references require a resistor from the  
power supply to operate. This resistor must be chosen  
to supply the maximum current that can be demanded by  
the load. When the load is not operating at this maximum  
current, theshuntreferencemustalwayssinkthiscurrent,  
resulting in high dissipation and shortened battery life.  
TheperformanceoftheLT6656isconsistentforthe2.048V  
to 5V options. The 1.25V option has slightly reduced load  
regulation, and unlike the higher voltage options, the  
minimum operating supply voltage is limited by internal  
circuitry rather than the output voltage.  
Parametersthatarebasedonchangesintheoutputvoltage,  
suchasloadregulationandhysteresis,remainproportional  
to the output voltage and are specified in relative units,  
for example, parts per million (ppm). Parameters that  
are not based on changes in the output voltage, such as  
supply current and reverse input current, are the same  
for all options.  
The LT6656 series reference does not require a current  
setting resistor and is specified to operate with any supply  
from 1.5V to 18V, depending on the output voltage option,  
load current and operating temperature (see Dropout  
Voltage and Minimum Input Voltage in the Typical Perfor-  
mance Characteristics). When the load does not demand  
current, the LT6656 reduces its dissipation and battery life  
is extended. If the reference is not delivering load current,  
it dissipates only a few µW, yet the same connection can  
deliver 5mA of load current when required.  
ThebandwidthoftheLT6656decreaseswithhigheroutput  
voltage. This causes parameters that are affected by both  
bandwidth and output voltage, such as wideband noise  
and output impedance, to increase less with higher output  
voltage.  
Start-Up  
Bypass and Load Capacitance  
To ensure proper start-up, the output voltage should be  
between –0.3V and the rated output voltage. If the output  
load may be driven more than 0.3V below ground, a low  
forward voltage schottky diode from the output to ground  
is required. The turn-on characteristics can be seen in  
Figure 1.  
The LT6656 voltage reference needs a 0.1μF input bypass  
capacitor placed within an inch of the input pin. An ad-  
ditional 2.2μF capacitor should be used when the source  
impedance of the input supply is high or when driving  
heavy loads. The bypassing of other local devices may  
serve as the required components. The output of the  
LT6656requiresacapacitanceof1µForlarger. TheLT6656  
is stable with a wide variety of capacitor types including  
ceramic,tantalumandelectrolyticduetoitslowsensitivity  
to ESR (5Ω or less).  
V
IN  
1V/DIV  
The test circuit in Figure 2 was used to test the response  
and stability of the LT6656 to various load currents. The  
resultant transient responses can be seen in Figure 3 and  
Figure4.Thelargescaleoutputresponsetoa500mVinput  
step is shown in Figure 5 with a more detailed photo and  
description in the Output Settling section.  
V
OUT  
6656 F01  
1ms/DIV  
Figure 1. LT6656-2.5 Turn-On Characteristics, CL = 1µF  
R2  
V
IN  
LT6656-2.5  
3V  
V
GEN  
3V  
C
IN  
C
L
1µF  
R1  
0.1µF  
2N7000  
6656 F02  
Figure 2. Transient Load Test Circuit  
6656fa  
LT6656  
applicaTions inForMaTion  
Thesettlingtimeistypicallylessthan8msforoutputloads  
up to 5mA, however the time required to settle when the  
loadisturnedofforinresponsetoaninputtransientcanbe  
significantly longer due to the dead band (shown in Figure  
7). Duringthisintervaltheoutputstageisneithersourcing  
nor sinking current so the settling time is dominated by  
the ability of the application circuit to discharge the output  
capacitor to the voltage at which the sourcing circuitry  
in the output stage reactivates. Larger load currents will  
decrease the settling time and higher output capacitance  
will increase the settling time.  
0µA  
I
OUT  
100µA  
2.52V  
2.50V  
2.48V  
V
OUT  
6656 F03  
5ms/DIV  
Figure 3. Transient Response, 0µA to 100µA Load Step  
(R2 = 24.9k, R1 = Open)  
In application circuits where the LT6656 is experiencing  
a load step greater than 5µA, such as an ADC reference  
and supply implementation, the settling time will typically  
remain less than 8ms, regardless of the output settling  
from a previous load step.  
1mA  
I
OUT  
2mA  
The settling time can be estimated by the following  
equation:  
2.52V  
2.50V  
2.48V  
V
OUT  
2(Deadband)(CL)  
Settling time≈  
+(VOUT)(0.8ms/V)  
IL  
6656 F04  
5ms/DIV  
The deadband is ≈7mV for the 2.5V option, is proportional  
to the voltage option (i.e., ≈14mV for the 5V option) and  
can double due to variations in processing.  
Figure 4. Transient Response, 1mA to 2mA Load Step  
(R1 = R2 = 2.49k)  
The graph in Figure 6 shows the settling time versus load  
step with no load and with a constant 2µA load applied.  
Note the settling time can be longer with load steps that  
are not large enough to activate the sinking side of the  
output stage.  
3.25V  
V
IN  
2.75V  
2.7V  
2.5V  
2.3V  
30  
2.5V OPTION  
V
OUT  
V
C
= 3V  
IN  
L
= 1µF  
25  
20  
15  
10  
5
∆I = LOAD  
L
STEP TO ZERO  
6656 F05  
5ms/DIV  
Figure 5. Output Response to 0.5VP-P Step on VIN, CL = 1µF, IL = 0  
∆I = LOAD  
L
STEP TO 2µA  
Output Settling  
The output of the LT6656 is primarily designed to source  
current into a load, but is capable of sinking current to  
aid in output transient recovery. The output stage uses a  
class B architecture to minimize quiescent current and  
has a crossover dead band as the output transitions from  
sourcing to sinking current.  
∆I = ZERO TO  
L
LOAD STEP  
0
0.001  
0.01  
0.1  
LOAD STEP (mA)  
1
10  
6656 F06  
Figure 6. Output Settling Time to 0.05% vs Load Step  
6656fa  
ꢀ0  
LT6656  
applicaTions inForMaTion  
input pulled to ground, the reverse output protection of  
the LT6656 limits the output current to typically less than  
30µA. The current versus reverse voltage is shown in the  
Typical Performance Characteristics section.  
3.25V  
V
IN  
2.75V  
I
= 0  
L
V
Long-Term Drift  
OUT  
10mV/DIV  
I
= 5µA  
Long-term drift cannot be extrapolated from accelerated  
high temperature testing. This erroneous technique gives  
drift numbers that are wildly optimistic. A more realistic  
way to determine long-term drift is to measure it over the  
time interval of interest. The LT6656 drift data was taken  
over 100 parts that were soldered onto PC boards in a  
typical application configuration. The boards were then  
L
6656 F07  
5ms/DIV  
Figure 7. Detailed Output Response to a 0.5V Input Step,  
CIN = CL = 1µF  
The photo in Figure 7 shows the output response to a 0.5V  
input step in both a no-load and 5µA load condition. In  
the no-load condition only the bias current of the internal  
bandgapreference(about400nA)isavailabletodischarge  
the output capacitor.  
= 30°C,  
placed into a constant temperature oven with T  
A
their outputs scanned regularly and measured with an  
8.5 digit DVM. The parts chosen in the Long Term Drift  
curves in the Typical Performance Characteristics section  
represent high, low and typical units.  
Output Noise  
Hysteresis  
Low frequency noise is proportional to the output voltage  
and is insensitive to output current and moderate levels  
of output capacitance.  
Hysteresis on the LT6656 is measured in two steps, for  
example, from 25°C to –40°C to 25°C, then from 25°C to  
85°C to 25°C, for the industrial temperature range. This  
two-stepcycleisrepeatedseveraltimesandthemaximum  
hysteresis from all the partial cycles is noted. Unlike other  
commonly used methods for specifying hysteresis, this  
ensures the worst-case hysteresis is included, whether it  
occurs in the first temperature excursion or the last.  
Wideband noise increases less with higher output voltage  
and is proportional to the bandwidth of the output stage,  
increasing with higher load current and lower output  
capacitance.  
Peaking in the noise response is another factor contribut-  
ing to the output noise level for a given frequency range.  
Noise peaking can be reduced by increasing the size of the  
outputcapacitorwhendrivingheavierloads,orconversely,  
reducing the size of the output capacitor when driving  
lighterloads.NoiseplotsintheTypicalPerformanceCurves  
section show noise spectrum with various load currents  
and output capacitances.  
Results over both commercial and industrial temperature  
rangesareshowninFigure8andFigure9.Thepartscycled  
overthehighertemperaturerangehaveahigherhysteresis  
than those cycled over the lower range.  
Power Dissipation  
The LT6656 will not exceed the maximum junction tem-  
perature when operating within its specified temperature  
range of –40°C to 85°C, maximum input voltage of 18V  
and specified load current of 5mA.  
Internal Protection  
The LT6656 incorporates several internal protection  
features that make it ideal for use in battery powered  
systems. Reverse input protection limits the input cur-  
rent to typically less than 40µA when either the LT6656  
or the battery is installed backwards. In systems where  
the output can be held up by a backup battery with the  
IR Reflow Shift  
The different expansion and contraction rates of the mate-  
rials that make up the LT6656 package may induce small  
stressesonthediethatcancausetheoutputtoshiftduring  
6656fa  
ꢀꢀ  
LT6656  
applicaTions inForMaTion  
30  
300  
225  
150  
75  
380s  
2.5V OPTION  
0°C TO 25°C  
70°C TO 25°C  
T
= 260°C  
P
V
C
= 3V  
IN  
RAMP  
DOWN  
= 1µF  
25  
20  
15  
10  
5
L
= 0  
T = 217°C  
L
I
L
T
= 200°C  
S(MAX)  
t
T
= 190°C  
P
S
30s  
T = 150°C  
t
L
RAMP TO  
150°C  
130s  
40s  
120s  
4
0
0
–60 –40 –20  
0
20  
40  
60  
0
2
6
8
10  
MINUTES  
HYSTERESIS (ppm)  
6656 F10  
6656 F08  
Figure 10. Lead Free Reflow Profile Due to IR Reflow  
Figure 8. 0°C to 70°C Hysteresis  
7
20  
18  
16  
14  
12  
10  
8
2.5V OPTION  
3 CYCLES  
1 CYCLE  
2.5V OPTION  
–40°C TO 25°C  
85°C TO 25°C  
V
C
I
= 3V  
V
C
I
= 3V  
IN  
IN  
6
5
4
3
2
1
0
= 1µF  
= 1µF  
L
= 0  
L
= 0  
L
L
6
4
2
0
0
20  
60  
100  
140  
180  
220  
–160 –120 –80 –40  
0
40 80 120 160  
CHANGE IN OUTPUT VOLTAGE (ppm)  
HYSTERESIS (ppm)  
6656 F11  
6656 F09  
Figure 9. –40°C to 85°C Hysteresis  
Figure 11. Output Voltage Shift Due to IR Reflow,  
Peak Temperature = 260°C  
IR reflow. Common lead free IR reflow profiles reach over  
250°C, considerably more than lead solder profiles. The  
higherreflowtemperatureoftheleadfreepartsexacerbates  
the issue of thermal expansion and contraction causing  
the output shift to generally be greater than with a leaded  
reflow process.  
PC Board Layout  
The mechanical stress of soldering a surface mount volt-  
age reference to a PC board can cause the output voltage  
to shift and temperature coefficient to change.  
To reduce the effects of stress-related shifts, position  
the reference near the short edge of the PC board or in a  
corner. In addition, slots can be cut into the board on two  
sides of the device. See Application Note AN82 for more  
information. http://www.linear.com  
The lead free IR reflow profile used to experimentally  
measure the output voltage shift in the LT6656-2.5 is  
shown in Figure 10. Similar results can be expected using  
a convection reflow oven. Figure 11 shows the change  
in output voltage that was measured for parts that were  
run through the reflow process for 1 cycle and also 3  
cycles. The results indicate that the standard deviation  
of the output voltage increases with a positive mean shift  
of 120ppm. While there can be up to 220ppm of output  
voltage shift, additional drift of the LT6656 after IR reflow  
does not vary significantly.  
The input and output capacitors should be mounted close  
to the package. The GND and V  
short as possible to minimize the voltage drops caused  
by load and ground currents. Excessive trace resistance  
directly impacts load regulation.  
traces should be as  
OUT  
6656fa  
ꢀꢁ  
LT6656  
Typical applicaTions  
Regulator Reference  
Low Power ADC Reference  
The robust input and output of the LT6656 along with its  
high output current make it an excellent precision low  
power regulator as well as a reference. The LT6656 would  
be a good match with a small, low power microcontroller.  
Using the LT6656 as a regulator reduces power consump-  
tion, decreases solution size and increases the accuracy  
of the microcontroller’s on board ADC.  
Low power ADCs draw only a few µAs during their idle  
period and well over 100µA during conversions. Despite  
these surges of current, the ADC in reality can have very  
low power consumption. Figure 13 shows the LTC2480, a  
low power delta sigma ADC. When the ADC is disabled its  
quiescentcurrent(I )isroughly1µA,duringconversionthe  
Q
I jumps up to 160µA. In reality, the power consumption  
Q
is not only based on the I during conversion, but the real  
Q
LT6656-2.5  
power consumption of the ADC is set by the conversion  
timeandthesamplerate. TheLTC2480showninFigure13  
has a conversion time of 160ms which sets the maximum  
samplerateof6samplespersecond.Themaximumsample  
ratealsosetsthemaximumcurrentconsumptionto160µA,  
but at slower sample rates the ADC will have significantly  
lower average current draw. If the ADC is sampled at 1  
sample per second the average current drawn by the ADC  
during a 1 second interval would only be 26.4µA. When  
taking into consideration the current drawn by the refer-  
ence, the total current draw is only 27.4µA. This system is  
greatlysimplifiedbecausetheprecisionreferencedoesnot  
need to be cycled on and off to save power. Furthermore,  
leaving the reference on continuously eliminates concern  
for turn-on settling time.  
3V ≤ V ≤ 18V  
IN  
OUT  
IN  
MCU  
V /V  
CC REF  
0.1µF  
10µF  
5
6
7
2
3
1
PB0/AIN0/A /MOSI  
REF  
PB1/INT0/A /MISO/OC1A  
IN1  
PB2/ADC1/SCK/T0/INT0  
PB3/ADC2  
PB4/ADC3  
PB5/RESET/ADC0  
GND  
6656 TA02  
Figure 12. Microcontroller Reference and Regulator  
LT6656-5  
5.1V ≤ V ≤ 18V  
IN  
OUT  
IN  
4.7µF  
0.1µF  
REF  
V
CC  
+
IN  
IN  
CS  
SCK  
SDO  
DIFFERENTIAL INPUT  
±V • 0.5 (±±.5Vꢀ  
LTC±480  
REF  
AT 1sps, I = ±7.4µA  
Q
6656 TA05  
Figure 13. Low Power ADC Reference  
6656fa  
ꢀꢂ  
LT6656  
Typical applicaTions  
Extended Supply Range Reference  
V
CC  
UP TO 160V  
330k  
MMBT5551  
IN  
BZX584C12  
0.1µF  
V
OUT  
OUT  
LT6656-2.5  
2.2µF  
1µF  
6656 TA03  
Boosted Output Current Reference  
3.6V ≤ V ≤ 18V  
CC  
+
2207  
10µF  
2N2905  
1µF  
0.1µF  
IN  
V
OUT  
OUT  
LT6656-2.5  
40mA MAX  
6656 TA04  
Micropower Regulator, IQ = 2µA, Sink Up to 8mA  
3V ≤ V ≤ 18V  
CC  
LT6656-2.5  
IN  
OUT  
+
0.1µF  
1µF  
LT6003  
2.5V  
6656 TA06  
ADC Reference and Bridge Excitation Supply  
3.3V ≤ V ≤ 5.5V  
CC  
LT6656-3.3  
3.8V ≤ V ≤ 18V  
IN  
OUT  
IN  
0.1µF  
1µF  
0.1µF  
10µF  
10k  
10k  
10k  
V
V
CC  
REF  
+
IN  
CS  
SCK  
SDO  
0.1µF  
0.1µF  
LTC2452  
IN  
6656fa  
ꢀꢃ  
LT6656  
Typical applicaTions  
Low Power Precision High Voltage Supply Monitor, IQ = 1.4µA, High Voltage Supply Load = 10µA  
100V  
105V OVERVOLTAGE THRESHOLD  
V
CC  
9.53M  
3
4
7
+
6.5V ≤ V ≤ 10V  
CC  
OVERVOLTAGE FLAG  
LTC1540  
LT6656-5  
6
IN  
OUT  
5
0.1µF  
1µF 475k  
1, 2  
6656 TA08  
2-Terminal Current Source  
+
+
LT6003  
R3  
V
REF  
R1  
1µF  
LT6656-1.25  
GND  
IN  
OUT  
0.1µF  
R2  
6656 TA09  
VREF R2  
¥
´
IOUT  
1  
µ
¦
§
R1 R3  
Precision Current and Boosted Reference, IQ = 5.5µA  
249k  
V
CC  
+
+
1k  
2.75V  
200k  
2N5086  
LT6004  
LT6004  
1µA OUT  
3V ≤ V ≤ 16V  
CC  
2M  
LT6656-2.5  
IN  
OUT  
2.5V  
0.1µF  
1µF  
6656 TA10  
6656fa  
ꢀꢄ  
LT6656  
package DescripTion  
S6 Package  
6-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1636)  
2.90 BSC  
(NOTE 4)  
0.62  
MAX  
0.95  
REF  
1.22 REF  
1.4 MIN  
1.50 – 1.75  
2.80 BSC  
3.85 MAX 2.62 REF  
(NOTE 4)  
PIN ONE ID  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.30 – 0.45  
6 PLCS (NOTE 3)  
0.95 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
S6 TSOT-23 0302 REV B  
NOTE:  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
6656fa  
ꢀꢅ  
LT6656  
revision hisTory  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
7/10  
Voltage options added (1.25, 2.048, 3, 3.3), reflected throughout the data sheet  
1 to 18  
6656fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
ꢀꢆ  
LT6656  
Typical applicaTion  
Reference Regulator for Micropower DAC, Total IQ = 4.8µA  
LT6656-5  
5V  
5.1V ≤ V ≤ 18V  
IN  
OUT  
IN  
0.1µF  
10µF  
V
V
CC  
REF  
0V TO 5V OUTPUT  
0V TO 5V OUTPUT  
DAC A  
DAC B  
CS  
SCK LTC1662  
SDI  
GND  
6656 TA07  
relaTeD parTs  
PART NUMBER DESCRIPTION  
COMMENTS  
LT1389  
LTC1440  
LT1460  
Nanopower Precision Shunt Voltage Reference 0.05% Max 10ppm/°C Max, 800nA Supply  
Micropower Comparator with Reference  
Micropower Series Reference  
3.7µA Max Supply Current, 1% 1.182V Reference, MSOP, PDIP and SO-8 Packages  
0.075% Max, 10ppm/°C Max Drift, 2.5V, 5V and 10V Versions,MSOP, PDIP, SO-8,  
SOT-23 and TO-92 Packages  
LT1461  
LT1495  
LTC1540  
LT1634  
Micropower Precision LDO Series Reference  
1.5µA Precision Rail-to-Rail Dual Op Amp  
Nanopower Comparator with Reference  
3ppm/°C Max Drift, 0°C to 70°C, –40°C to 85°C, –40°C to 125°C Options in SO-8  
1.5µA Max Supply Current, 100pA Max IOS  
600nA Max Supply Current, 2% 1.182V Reference, MSOP and SO-8 Packages  
Micropower Precision Shunt Voltage  
Reference  
0.05% Max, 10ppm/°C Max Drift, 1.25V, 2.5V, 4.096V, 5V, 10µA Maximum Supply  
Current  
LT1790  
LTC1798  
LT6003  
LT6650  
LT6660  
LT6700  
Micropower Precision Series Reference  
6µA Low Dropout Series Reference  
1.6V, 1µA Precision Rail-to-Rail Op Amp  
Micropower Reference with Buffer Amplifier  
Tiny Micropower Series Reference  
0.05% Max, 10ppm/°C Max, 60µA Supply, SOT23 Package  
Available in Adjustable, 2.5V, 3V, 4.096V and 5V  
1µA Max Supply Current, 1.6V Minimum Operating Voltage, SOT-23 Package  
0.05% Max, 5.6µA Supply, SOT-23 Package  
0.2% Max, 20ppm/°C Max, 20mA Output Current, 2mm × 2mm DFN  
6.5µA Supply Current, 1.4V Minimum Operating Voltage  
Micropower, Low Voltage Dual Comparator  
with 40mV Reference  
6656fa  
LT 0710 REV A • PRINTED IN USA  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
ꢀꢇ  
LINEAR TECHNOLOGY CORPORATION 2010  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY